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Abstract

Residual feed intake (RFI) is an efficiency trait underpinning profitability and environmental

sustainability in dairy production. This study compared performance during a complete

lactation of 36 multiparous dairy cows divided into three equal-sized groups with high

(HRFI), intermediate (IRFI) or low RFI (LRFI). Residual feed intake was determined by two

different equations. Residual feed intake according to the NorFor system was calculated as

(RFINorFor) = (NEintake)–(NEmaintenance + NEgestation + NEmilk—NEmobilisation + NEdeposition).

Residual feed intake according to the USA National Research Council (NRC) (RFINRC) was

calculated as: RFI = DMI − predicted DMI where predicteds DMI = [(0.372× ECM)

+(0.0968×BW0.75)]×(1−e−0.192×(DIM/7+3.67)). Cows in the HRFINorFor group showed higher

daily CH4 production, CH4/ECM and CH4 yield (g/kg DMI) than IRFINorFor and LRFINorFor

cows. Cows characterized by high efficiency (LRFINorFor) according to the NorFor system

had lower body weight. Dry matter intake and apparent dry matter digestibility were not

affected by efficiency group but milk yield was lower in the low efficiency, HRFINorFor, group.

Cows characterized by high efficiency according to the NRC system (LRFINRC) had lower

dry matter intake while yield of CH4 was higher. Daily CH4 production and CH4 g/kg ECM

did not differ between RFINRC groups. Dairy cows characterized by high efficiency (both

LRFINorFor and LRFINRC cows) over a complete lactation mobilized more of their body

reserves in early lactation as well as during the complete lactation. The results also indicated

great phenotypic variation in RFI between different stages the lactation.

Introduction

The efficiency of dairy cows, as defined as the fraction of feed energy captured in milk, has

been increased through genetic selection, nutrition, and management. Reduced maintenance

requirement through increased yield of milk has been the overwhelming driver of enhanced

efficiency. However, efficiency can also be improved without reducing the maintenance

requirement. Efficiency in that case can be estimated using residual feed intake (RFI),

expressed as the difference between actual feed intake of an individual and that expected based

on its energy requirements, and is not related to level of production [1]. At present, RFI is

commonly determined as the deviation of actual dry matter intake (DMI) or energy intake of a
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cow from the average intake of other cows fed and managed in the same cohort, after adjusting

for three major energy sinks: body weight (related to maintenance), milk energy output, and

body energy change [2]. Animals with negative RFI values are more efficient, because they eat

less for a given production level or produce more for a given intake level [3]. Estimation of RFI

in lactating dairy cattle is particularly difficult due to fluctuations in the energy balance (EB)

throughout the lactation cycle. Phenotypic correlations between RFI estimates made for sub-

periods of the full lactation (early, mid-, and late lactation) are reported to be poor [4, 5]. Cor-

relation analysis between full lactations and different sub-periods is reported to yield stronger

relationships, with a 64–70 day test period between 150 and 220 days in milk (DIM) giving

reliable estimates [6]. Negative energy balance (NEB) in early lactation is strongly correlated

with RFI and it was suggested that on a given time period animals who are classified as more

feed efficient are more likely to have a lower energy balance [7]. The interactions between

NEB, fertility, and metabolic diseases are well-established [8, 9]. This raises concerns that

improving feed efficiency using RFI might result in increased loss of body condition score

(BCS) and deeper NEB in early lactation, impairing health and fertility in dairy cows [7, 10,

11]. Approximately 30% of dietary energy is lost by cycling through body reserves, represent-

ing a major inefficiency [7]. Thus, cows with marked fluctuations in EB throughout the lacta-

tion cycle are less efficient. The major components affecting RFI relate to alterations in

conversion of gross energy (GE) to net energy (NE) [2]. Conversion of GE to NE can be

divided into digestive and metabolic efficiency. In beef cattle, digestive efficiency seems to be

weakly associated with RFI [12]. It is well known that enteric methane emissions from cattle

and other ruminants reduce the efficiency of converting GE to NE. High feed efficiency could

potentially lead to a decline in enteric methane emissions, due to the positive phenotypic cor-

relation between methane emissions and RFI [13].

The aims of this study were to characterize and compare traits in cows with high, interme-

diate or low RFI, estimated by the equations NorFor [14] and the USA National Research

Council [15] respectively to examine phenotypic correlations between RFI for the full lactation

and shorter sub-periods.

Material and methods

Animals, experimental design, and housing

The Uppsala Ethics Committee, Sweden approved all handling of animals for Animal

Research, (diary number C 99/16). In total, 36 cows (13 Swedish Holstein (SH) and 23 Swedish

Red (SR) breed) were studied over one full lactation period until dry off. The cows were all

multiparous (19 in second lactation, 17 older (third to seventh lactation)).

The cows were housed in a loose house with rubber mats and sawdust-bedded cubicles.

They were milked voluntarily in a single-station automatic milking system (VMS, DeLaval

International AB, Tumba, Sweden) with the FeedFirst cow traffic system, which resulted in 2.6

milkings per day (SD = 0.4). Milking interval was set to 6 h for cows with low somatic cell

count (SCC) and 4 h for cows with high SCC (>100 000 cells/mL), both with a maximum of

12 h between milkings.

Diets and feeding

Chemical composition of silage and concentrates is shown in Table 1. All cows had free access

to grass-clover silage. The concentrates were pelleted and fed individually in concentrate dis-

pensers (FSC400, DeLaval International AB, Tumba, Sweden) and in the milking unit.

The cows were also subjected to another study [16] and therefore fed two different levels of

concentrate. The concentrate ration was increased over 21 d, starting at 3 kg/d at calving, to a
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maximal concentrate ration of 12 kg/d or 6 kg/d in the two different groups which included

concentrate offered in the milking unit. The cows stayed on that rations until 210 DIM, when

the concentrate amount was gradually decreased to 0 kg/d over 95 d.

All cows had access to a small grass-covered permanent paddock for exercise and recreation

at night-time between mid-May to mid-August, in compliance with Swedish animal welfare

law. Individual pasture intake, estimated to be 0.5 kg DM/d, was not included in total DMI.

Measurements and sample collection

Individual daily forage intake was recorded automatically by 20 forage troughs on weight

scales (CRFI, BioControl Norway A/S, Rakkestad, Norway). Daily concentrate intake was

recorded by dispensers (FSC400, DeLaval International AB, Tumba, Sweden). The equipment

used for forage intake recording was calibrated weekly and the dispensers used for concentrate

intake recording were calibrated monthly. The raw data on individual daily forage intake

showed improbably high feed intake for some cows and days, caused by some cows throwing

silage out of the forage troughs. The rate of feed intake appears to be related to DMI, with little

individual variation [17]. Therefore intake for feeding occasions with intake rate>8.28 g/s of

fresh weight (95% confidence level of all eating occasions for all cows included in the study)

was replaced with individual intake estimates derived from daily average intake rate<8.28 g/s.

Forage DMI and total DMI were treated as missing values for days when total DMI divided by

metabolic body weight (BW) was above 0.22 kg/kg (95% confidence level). The cows were

automatically weighed every time they passed through a sorting gate when leaving the feeding

area, and mean daily BW was recorded (AWS100, DeLaval International AB, Tumba Sweden).

Body condition score (scale 1–5) was assessed automatically with a 3D camera (DeLaval Inter-

national AB, Tumba, Sweden) every time the cows left the milking station. Weekly mean BW

and BCS were calculated from daily mean BW and BCS, respectively.

Silage was sampled five times a week and pooled into three-week periods for analysis of

chemical composition, while concentrates were sampled once a week and pooled into four-

week periods for analysis. Silage samples were collected in plastic bags and stored at -20˚C

until analysis, while concentrate samples were stored at room temperature in plastic bags. Spot

samples of feces for estimation of digestibility were collected on three consecutive days in early

Table 1. Chemical composition (mean ± SD) of experimental feeds (g/kg DM, unless otherwise stated). Where

standard deviation is reported, the number of samples used for analyses of chemical composition was n = 31 for silage

and n = 32 for concentrates (except fat content, where n = 5).

Variable Grass-clover silage Byproduct-based concentrate

DM, g/kg 407 ± 50 872 ± 8.4

Ash 86.4 ± 4.0 65.4 ± 4.8

Crude protein 166 ± 17 151 ± 6.1

Crude fat -1 47.8 ± 6.1

NDF2 425 ± 35 361 ± 10

Starch -1 54.4 ± 11

WSC3 2.0 ± 1.4 5.3 ± 1.7

NEL, MJ/kg DM 6.54 ± 0.064 6.594

1Not analyzed.
2Neutral detergent fiber.
3Water-soluble carbohydrates.
4Calculated in NorFor (Åkerlind and Volden, 2011) based on chemical composition, and tabulated values and

estimates for digestibility characteristics where analytical data were lacking.

https://doi.org/10.1371/journal.pone.0273420.t001
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(23±5.5 DIM) and mid- lactation (134±6.4 DIM). The feces samples were stored at—20˚C

until further processing.

Milk sampling for milk composition analysis was carried out every second week until the

cows were dried off, when milk samples were taken at two consecutive milkings. The milk

meter (MM25, DeLaval International AB, Tumba, Sweden) used for measuring milk yield and

the milk sampler (DeLaval Milk Sampler, DeLaval International AB, Tumba, Sweden) have

been certified by the International Committee for Animal Recording (Rome, Italy). Milk sam-

ples were preserved with bronopol, stored at 8˚C, and analyzed within 3 d.

In lactation weeks 2, 4, and 6, blood samples were drawn from the coccygeal vein or artery

of the tail-head into 10-mL vacuum tubes containing lithium heparin as anticoagulant (BD

Vacutainer, Becton, Dickinson and Company, Franklin Lakes, NJ). The blood samples were

centrifuged immediately (4000 rcf, 10 minutes, +4˚C) and the blood plasma was transferred to

Eppendorf tubes and stored at -20˚C until analysis.

Chemical analysis and calculations

Analyses of feed, milk composition, feces, and blood plasma were performed in the laboratory

at the Department of Animal Nutrition and Management, Swedish University of Agricultural

Sciences (SLU), Uppsala, Sweden, unless otherwise stated. The DM content of silage was deter-

mined by first drying at 60˚C overnight, milling, and then drying at 60˚C overnight, according

to Åkerlind et al. [18]. The DM content of concentrate feeds was determined by drying at

103˚C overnight (EC No 152/2009). Ash content in all feeds was determined by ignition at

550˚C for 3 h (EC No. 152/2009). Acid-insoluble ash (AIA) content in all feeds was analyzed

according to Van Keulen and Young [19]. Feeds were analyzed for crude protein (CP) in an

automated Kjeldahl procedure (Foss, Hillerød, Denmark). Ether extract analyses were per-

formed by Eurofins Food & Feed Testing Sweden AB, Jönköping, Sweden, according to EC

(EC No. 152/2009). Concentrate samples were analyzed enzymatically for starch (including

maltodextrin) according to Larsson and Bengtsson [20]. All feeds were analyzed for neutral

detergent fiber (NDF) according to Chai and Udén [21]. Silage was analyzed for water-soluble

carbohydrates according to Larsson and Bengtsson [20]. Silage samples were pressed and the

silage juice was analyzed for pH.

Net energy content in the feed and energy intake were estimated according to the Nordic

feed evaluation (NorFor) system [14] (FST equation revision 1.98 and FRC equation revision

1.90).

Feces samples were freeze-dried, milled, and analyzed for DM, ash, and AIA. The total

amount of feces was calculated from the total intake of AIA and the content of AIA in the feces

[19]. Total tract apparent dry matter digestibility (DMD) was calculated from intake and

excretion of dry matter from feed and feces, as (DMintake—DMfeces)/DMintake. The calculation

was based on the feces samples taken once daily on three consecutive days and intake data

from these three sampling days and the previous day.

Milk samples were analyzed for composition of fat, C18:1 cis-9, protein, and lactose by

infrared Fourier transform spectroscopy (CombiScope FTIR 300 HP, Delta Instruments B.V.,

Drachten, the Netherlands). Lactose was corrected for lactase monohydrate by division by

1.053. Energy-corrected milk (ECM) was calculated based on fat, protein, and lactose concen-

tration according to Sjaunja et al. [22]. Since the cows were milked at different milking inter-

vals in an automated milking system, daily estimates of ECM, milk component yields, and

milk composition values were adjusted based on time since last milking.

Residual feed intake according to the NorFor system was calculated as (RFINorFor) = (NEin-

take)–(NEmaintenance + NEgestation + NEmilk—NEmobilisation + NEdeposition), where each parameter
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was calculated according to the NorFor system [14] and NEmobilisation and NEdeposition were

determined based on changes in BCS assessed with the 3D camera. A daily reduction in BCS

of 0.01 units contributed 15 MJ NEL/d, while a daily gain in BCS of 0.01 units required 18.5

MJ NEL/d [15]. Residual feed intake according to the USA National Research Council (NRC)

(RFINRC) was calculated as: RFI = DMI − predicted DMI [23], where predicted DMI (accord-

ing to the NRC (2001) equation) = [(0.372× ECM)+(0.0968×BW0.75)]×(1−e−0.192×(DIM/7+3.67)).

At the end of the experiment, the experimental cows (n = 36) were divided into three equal-

sized groups, with low, intermediate or high RFI based on RFINorFor value (LRFINorFor, IRFI-

NorFor and HRFINorFor), and were also divided into three equal-sized groups based on the

RFINRC value (LRFINRC. IRFINRC, and HRFINRC). Thus, two separate datasets were created,

based on RFINorFor and RFINRC, respectively.

The persistency of lactation was calculated as average ECM yield during wk 31–40 of lacta-

tion divided by average ECM yield during wk 1–10.

Blood plasma was analyzed for metabolites and hormones. Glucose concentration was ana-

lyzed enzymatically (D-Glucose UV-method, R-biopharm AG, Darmstadt, Germany). Insulin

concentration was analyzed using an enzyme immunoassay method adapted for bovines (Mer-

codia Bovine Insulin ELISA, Mercodia AB, Uppsala, Sweden), and the concentration of non-

esterified fatty acids (NEFA) using an enzymatic colorimetric method (NEFA-HR, Fujifilm-

Wako Diagnostics U.S.A. Corporation, CA). The concentration of β-hydroxybutyrate (BHB)

in plasma was analyzed with a colorimetric test (MAK041, Sigma-Aldrich, St. Louis, MO).

Methane (CH4) emissions were measured by a spot sampling technique where average CH4

daily emissions are based on the analysis of multiple short-term spot-samples of air emitted

from individual cows. The method used in this study was the infra-red (IR) sniffer method

described by Garnsworthy et al. [23], with a similar set-up for measurement and correction for

dilution of ambient air as previously described in Danielsson et al. [24]. In brief, a CH4 ana-

lyzer (Guardian Plus; Edinburgh Instruments Ltd., Livingston, UK) was calibrated using stan-

dard mixtures of CH4 in nitrogen. The analyzer was attached to the automatic milking system

(AMS) and the sampling tube was attached to the concentrate trough within the AMS. The

CH4 concentrations in air were then measured continuously. Eructation values (peak area and

frequency) were used to calculate individual daily mean CH4 emission rate during milking.

The CH4 concentration was logged every second on a datalogger (Simex SRD-99; Simex Sp. z

o.o., Gdansk, Poland) and then visualized using logging software (Loggy Soft; Simex Sp. z o.

o.). Times of entry to the milking station and cow ID were recognized using the VMS manage-

ment program (DelPro software, version 3.7; DeLaval International AB), and were coupled

with corresponding CH4 values from the logger. On average, milking data were recorded 2.6

times per day for each cow, as previously mentioned, but not all recordings were used for CH4

calculations, since peaks with height<200 mg/kg above baseline were discarded. Milking

occasions with fewer than three recorded peaks were removed from the analysis. On average,

2.2 readings (4.4 peaks) per animal and day were used.

Statistical analyses

Comparisons between the three RFI groups (low, intermediate and high) with 12 cows in each

group, with respect to plasma glucose, insulin, NEFA, BHB, milk C18:1 cis 9, ECM, DMI,

DMD, ECM/DMI, BCS, BCS weekly change, BW and BW weekly change were analyzed using

PROC MIXED in SAS software (version 9.4, SAS Institute Inc., Cary, NC):

Yijklm = μ + Pi + Bj + Gk + Ll + Wm + PWim + BWjm + GWkm + εijklm, where Yijklm is the

dependent variable, μ is the overall mean, Pi is the effect of parity i, Bj is the effect of breed j, Gk

is the effect of RFI group k, Ll is the effect of concentrate level l, Wm is the effect of lactation
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week m, PWim is the parity × lactation week interaction effect of parity i and lactation week m,

BWim is the breed × lactation week interaction effect of breed i and lactation week m, GWkm is

the RFI group × lactation week interaction effect of RFI group k and lactation week m, and

εijklm is the random error. The error term in the model was modelled with an autoregressive

structure, as observations were made over several lactation weeks for each cow. For CH4

related parameters, the interaction of parity × lactation week was removed.

Comparisons between the three RFI groups were made based on one value per cow for per-

sistency of lactation, ΔBW lactation week 14–1, ΔBCS lactation week 14–1. These were ana-

lyzed by PROC GLM in SAS software with the following model:

Yijkl = μ + Pi + Bj + Gk + Ll + εijkl, where Yijkl is the dependent variable, μ is the overall

mean, Pi is the effect of parity i, Bj is the effect of breed j, Gk is the effect of RFI group k, Ll is

the effect of concentrate level l, and εijkl is the random error.

Several models were tested to combine and account for interactions between variables. The

models with the lowest Akaike information criterion were used. All residuals were tested for

normality and log-transformation was applied to variables that did not follow a normal distri-

bution. Values presented in the text and tables are least squares means calculated using the

LSMEANS/ PDIFF option. Statistically significant differences were determined following

Tukey’s adjustment declared at P� 0.05, with trends noted at P� 0.10.

Phenotypic Pearson correlations between RFIFull-Lact (week 1–42) RFIEarly-Lact (week 1–14),

RFIMid-Lact (week 15–28), and RFILate-Lact (week 29–42) were calculated using Minitab 18.1

(Minitab Inc.).

Results

The mean RFINorFor (NE/d) of LRFINorFor cows was negative, of IRFINorFor close to zero, and

that of HRFINorFor cows was positive (Table 4). The mean RFINRC (kg DM/d) of LRFINRC and

IRFINRC cows was slightly negative while that of HRFINRC cows was close to zero (Table 5).

Table 2 shows the effects of RFINorFor group during the early stage of lactation. Cows of SH

breed had higher insulin values (0.10 μg/L; antilog) compared to SR cows (0.06 μg/L; antilog)

(P-value 0.05). No other parameter in Table 2 had any breed effect. The plasma concentrations

of glucose and BHB sampled in lactation week 2, 4, and 6 were not affected by RFINorFor group

(high, intermediate, low). However, insulin was lower in LRFINorFor compared with IRFINorFor

and HRFINorFor and NEFA was higher in LRFINorFor compared with HRFINorFor. During the

first 14 weeks of lactation, the percentage of C18:1 cis 9 in milk, reflecting mobilization of adi-

pose tissue, was not affected by RFINorFor group. Cows in HRFINorFor lost less BCS during the

first 14 weeks of lactation compared to the other two groups. The extent of loss of BW was not

influenced by RFI group.

Table 3 shows the effects of RFINRC group during the early stage of lactation. Here there

were no effects of breed on any parameter. The plasma concentrations of glucose, insulin and

BHB sampled in lactation week 2, 4, and 6 were not affected by RFINRC group, but NEFA was

lower in cows in the HRFINRC group. During the first 14 weeks of lactation, the percentage of

C18:1 cis 9 in milk was lower in the HRFINRC group, indicating a lower level of adipose tissue

mobilization. The HRFINRC group also lost less BCS compared with IRFINRC and LRFINRC.

The effects of RFINorFor group (LRFINorFor, IRFINorFor or HRFINorFor) during the whole

42-wk lactation are presented in Table 4. During the whole lactation, HRFINorFor cows yielded

less ECM and was less efficient (ECM yield/kg DMI) than MRFINorFor and LRFINorFor cows.

There was a breed effect on both DMI and ECM yield, with SH cows having higher DMI and

yielding more ECM than SR cows. Neither DMI nor dry matter apparent digestibility were

affected by RFI group. Throughout the lactation, BW was lower in LRFINorFor compared with
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IRFINorFor and HRFINorFor while BCS were higher in HRFINorFor cows than in LRFINorFor

cows. The HRFINorFor cows had a positive weekly change in BCS during the 42-wk lactation

period while it was negative for the other two RFINorFor groups. The persistency of lactation

was lower in HRFINorFor than in IRFINorFor and LRFINorFor cows. Emissions of CH4/day, CH4/

DMI and of CH4/ECM were all higher among HRFINorFor cows than IRFINorFor and LRFINor-

For cows.

Table 2. Metabolic and related variables (mean and SEM) in cows in early lactation divided into three groups, with low residual feed intake (LRFI; n = 12), interme-

diate (IRFI; n = 12) or high RFI (HRFI; n = 12) according to the NorFor (2011) equation. The plasma variables were sampled in lactation week 2, 4, and 6.

NorFor
Variable: Obs. LRFI SEM IRFI SEM HRFI SEM P-value

Plasma glucose (mmol/L) 104 2.98 0.11 2.71 0.13 3.07 0.12 0.12

Plasma insulin (log10) 104 -1.309b 0.086 -1.02a 0.096 -1.05a 0.091 0.05

Plasma insulin (μg/L; antilog) - 0.05 - 0.10 - 0.09 - -

Plasma NEFA1 (log10) 102 -0.30a 0.041 -0.38ab 0.047 -0.499b 0.044 0.019

Plasma NEFA1 (mmol/L; antilog) - 0.50 - 0.42 - 0.32 - -

Plasma BHB2 (log10) 104 -0.01 0.047 0.12 0.053 -0.02 0.050 0.11

Plasma BHB2 (mmol/L; antilog) - 0.98 - 1.32 - 0.95 - -

Milk C18:1 cis 9 wk 1–14 (% of milk) 220 0.90 0.036 0.97 0.041 0.86 0.039 0.17

ΔBCS3 wk 14—wk 1 (scale 1–5) 36 -0.59b 0.095 -0.5599b 0.117 -0.22a 0.109 0.03

ΔBW4 wk 14—wk 1 (kg) 36 -37.5 12.62 -40.5 15.55 -16.0 14.49 0.42

1Non-esterified fatty acids.
2β-hydroxybutyrate.
3Body condition score.
4Body weight.
a–bMeans within rows with different superscripts differ significantly (P < 0.05).

https://doi.org/10.1371/journal.pone.0273420.t002

Table 3. Metabolic and related variables (mean and SEM) in cows in early lactation divided into three groups, with low residual feed intake (LRFI; n = 12), interme-

diate (IRFI; n = 12) or high RFI (HRFI; n = 12) according the NRC (2011) equation. The plasma variables sampled in lactation week 2, 4, and 6.

NRC
Variable: Obs. LRFI SEM IRFI SEM HRFI SEM P-value

Plasma glucose (mmol/L) 104 2.88 0.124 2.89 0.125 3.01 0.118 0.71

Plasma insulin (log10) 104 -1.21 0.092 -1.21 0.092 -0.99 0.087 0.14

Plasma insulin (μg/L; antilog) - 0.062 - 0.062 - 0.102 - -

Plasma NEFA1 (log10) 102 -0.40ab 0.045 -0.30a 0.045 -0.46b 0.042 0.03

Plasma NEFA1 (mmol/L; antilog) - 0.40 - 0.50 - 0.35 - -

Plasma BHB2 (log10) 104 0.05 0.049 0.09 0.050 -0.05 0.047 0.12

Plasma BHB2 (mmol/L; antilog) - 1.12 - 1.23 - 0.89 - -

Milk C18:1 cis 9 wk 1–14 (% of milk) 220 0.93ab 0.035 0.99a 0.034 0.82b 0.032 0.003

ΔBCS3 wk 14—wk 1 (scale 1–5) 36 -0.59b 0.100 -0.53b 0.111 -0.24a 0.105 0.04

ΔBW4 wk 14—wk 1(kg) 36 -37.3 12.62 -48.0 13.98 -10.7 13.16 0.10

1Non-esterified fatty acids.
2β-hydroxybutyrate.
3Body condition score.
4Body weight.
a–bMeans within rows with different superscripts differ significantly (P < 0.05).

https://doi.org/10.1371/journal.pone.0273420.t003
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The effects of RFINRC (LRFINRC, IRFINRC or HRFINRC) during the whole 42-wk lactation

are presented in Table 5. The LRFINRC cows consumed less feed than the IRFINRC and

HRFINRC cows. There was a breed effect on both DMI and ECM yield, with SH cows having

higher DMI and yielding more ECM than SR cows. Both ECM and dry matter apparent digest-

ibility was not affected by RFI group. Efficiency, expressed as ECM yield/kg DMI, was lower in

HRFINRC cows than in IRFINRC and LRFINRC cows. Both BW and BCS were not affected by

RFINRC group. The persistency of lactation and emissions of CH4 and CH4/ECM were also not

affected by RFINRC group. However, CH4/DMI was higher in LRFINRC compared with the

other two groups.

Table 4. Full-lactation performance (least square mean and SEM) of cows divided into two groups, with low residual feed intake (LRFI; n = 12), intermediate (IRFI;

n = 12) or high RFI (HRFI; n = 12) according the NorFor (2011) equation (for parameter abbreviations, see main text).

NorFor
Variable: Obs. LRFI SEM IRFI SEM HRFI SEM P-value

RFINorFor (MJ NE/d) 661 -5.55c 1.26 0.05b 1.46 8.89a 1.38 <0.001

DMI (kg/d) 686 24.3 0.31 25.1 0.35 25.0 0.33 0.12

ECM (kg/d) 686 37.0a 0.63 37.0a 0.72 32.9b 0.69 <0.001

DMD (%) 71 69.3 0.69 71.5 0.79 69.1 0.76 0.07

Efficiency (ECM/kg DMI) 686 1.54a 0.021 1.49a 0.024 1.32b 0.023 <0.001

BCS (scale 1–5) 1523 3.10a 0.063 3.27ab 0.072 3.44b 0.070 0.003

BCS weekly change (scale 1–5; BCS/week) 1474 -0.008b 0.0020 -0.004ab 0.0023 0.004a 0.0023 0.001

BW (kg) 1494 716a 9.9 755b 11.3 759b 10.7 0.006

BW weekly change (kg/week) 1457 0.77 0.636 1.24 0.682 2.73 0.697 0.12

Persistency (kg ECM wk 31 to 40/kg ECM wk 1 to 10) 36 0.80 0.045 0.78 0.055 0.64 0.051 0.05

CH4 (g/kg ECM) 1002 11.0b 0.35 10.9b 0.39 13.9a 0.38 <0.001

CH4 (g/d) 1023 402b 6.1 402b 6.9 426a 6.7 0.02

CH4 (g/kg DMI) 1023 16.7b 0.28 16.3b 0.32 17.5a 0.31 0.03

a–cMeans within rows with different superscripts differ significantly (P < 0.05).

https://doi.org/10.1371/journal.pone.0273420.t004

Table 5. Full-lactation performance (mean and SEM) of cows divided into two groups, with low residual feed intake (LRFI) (n = 18) or high RFI (HRFI) (n = 18)

according the NRC (2001) equation (for parameter abbreviations, see main text).

NRC
Variable: Obs. LRFI SEM IRFI SEM HRFI SEM P-value

RFINRC (kg DM/d) 686 -2.77c 0.216 -1.54b 0.218 -0.37a 0.207 <0.001

DMI (kg/d) 686 23.7a 0.30 24.9b 0.31 25.7b 0.29 <0.001

ECM (kg/d) 686 35.5 0.77 36.5 0.78 34.8 0.74 0.30

DMD (%) 71 70.5 0.78 69.9 0.79 69.2 0.76 0.52

Efficiency (ECM/kg DMI) 686 1.52a 0.025 1.49a 0.026 1.36b 0.024 <0.001

BCS (scale 1–5) 1523 3.33 0.074 3.15 0.074 3.33 0.069 0.14

BCS weekly change (scale 1–5; BCS/week) 1474 -0.005ab 0.0022 -0.006b 0.0022 0.002a 0.0021 0.03

BW (kg) 1494 758 11.8 726 11.8 742 11.2 0.15

BW weekly change (kg/week) 1457 1.76 0.667 0.67 0.624 2.31 0.639 0.16

Persistency (kg ECM wk 31 to 40/kg ECM wk 1 to 10) 36 0.73 0.051 0.78 0.056 0.73 0.053 0.67

CH4 (g/kg ECM) 1002 12.0 0.47 11.5 0.47 12.5 0.45 0.31

CH4 (g/d) 1023 412 6.5 404 6.5 414 6.3 0.51

CH4 (g/kg DMI) 1023 17.6a 0.30 16.6b 0.30 16.5b 0.29 0.008

a–cMeans within rows with different superscripts differ significantly (P < 0.05).

https://doi.org/10.1371/journal.pone.0273420.t005
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Pearson correlation between RFINorForFull-lact and RFINorFor estimates based on shorter test

periods ranged from 0.54 to 0.73 for 14-wk periods in early, mid-, and late lactation. The corre-

lation between the shorter test periods ranged from 0.01 to 0.26 (Table 6). Pearson correlation

between RFINRCFull-lact and RFINRC estimates based on shorter test periods ranged from 0.68 to

0.79 for 14-wk periods in early, mid-, and late lactation. The correlation between the shorter

test periods ranged from 0.2 to 0.4 (Table 7).

Discussion

An animal’s RFI value provides an estimate of its efficiency relative to the average animal in

the cohort based on variables included in the model and their associated measurement error,

plus any errors in fitting the model itself [2, 7]. In the present study, RFI over a complete lacta-

tion was calculated according to NRC [15] and according to NorFor [14]. Thirty-six multipa-

rous cows were divided into three groups of equal size with low, intermediate or high RFI,

respectively. Residual feed intake according to the NorFor equation did not affect DMI. How-

ever, the daily ECM yield was about 4 kg lower in the HRFI cows compared with the other two

RFI groups. Cows with high RFI were, as expected, less efficient in terms of ECM/kg DM. In

contrast, RFI according to the NRC equation was related to feed intake. Feed efficient LRFINRC

cows showed lower DMI while ECM yield did not relate to RFINRC group. The result agrees

with most previous studies indicating that low RFI according to NRC is a consequence of

lower intake while ECM yield is maintained [2, 25]. The process of digestion may explain part

of the variance in RFI [26, 27]. However, in the present study, apparent DMD did not differ

between RFI groups. The DMD determinations were based on fecal spot samples. This method

is less reliable compared with total collection and the results should thus be interpreted with

caution. Cows in the HRFINorFor group showed higher daily CH4 production, CH4/ECM and

CH4 yield [g/kg DMI] than MRFINorFor and LRFINorFor cows. Most studies agree that CH4/

ECM generally is negatively related to milk production and that DMI is the main driver of

daily CH4 output [23, 28]. The DMI intake did not differ between the three RFINorFor groups

and it is thus possible that the higher emission in the HRFINorFor group reflects changes in the

rumen microbial community [24]. Such differences in in the rumen microbial community

among cows are linked with differences in the degree of CH4 production [24]. The result is

intriguing since previous studies indicate that RFI was not related to CH4 yield and there was

no overall effect on the methanogen community [29, 30]. In agreement with [31], RFI status

according to the NRC equation did not affect daily CH4 production and CH4/ECM while CH4

Table 6. Pearson correlation matrix for residual feed intake calculated using the NorFor (2011) equation (RFINorFor), estimated using data collected at different

stages of the lactation and for the full lactation (n = 36).

RFINorFor Full-lact RFINorFor Early-lact RFINorFor Mid-lact

RFINRC Early-lact 0.538

RFINorFor Mid-lact 0.709 0.207

RFINorFor Late-lact 0.727 0.007 0.264

https://doi.org/10.1371/journal.pone.0273420.t006

Table 7. Pearson correlation matrix for residual feed intake calculated using the NRC (2001) equation (RFINRC),

estimated using data collected at different stages of the lactation and for the full lactation (n = 36).

RFINRC Full-lact RFINRC Early-lact RFINorFor Mid-lact

RFINorFor Early-lact 0.723

RFINorFor Mid-lact 0.677 0.204

RFINorFor Late-lact 0.787 0.303 0.401

https://doi.org/10.1371/journal.pone.0273420.t007
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yield increased in LRFI cows. The persistency of lactation tended (p = 0.05) to be influenced

by RFINorFor status. Cows categorized as HRFINorFor showed a lower persistency than the two

groups of cows categorized as more efficient. Capuco et al. [32] postulated that efficiency could

be increased by improving persistency after reaching peak milk yield. It is possible that the ten-

dency towards decreased persistency contributed to the reduced efficiency of the HRFINorFor

cows in this study. On the other hand, persistency of the lactation curve was not affected in

groups of cows with different RFINRC status. The LRFINorFor and IRFINorFor cows lost BCS over

the lactation while HRFINorFor gained BCS. Also during the first 14 weeks of lactation, a similar

pattern was observed with a more marked loss of BCS in LRFINorFor and IRFINorFor cows than

in HRFINorFor cows. We chose to study variables related to energy balance during the first 14

weeks after parturition because many cows require that period to reach energy balance [16].

The average level of insulin in plasma was lower while NEFA was higher in LRFINorFor cows

during the first six weeks of lactation. Insulin and NEFA reflects EB as reviewed by Leduc et al.

[33]. A limitation with the present study is that blood was collected only at three occasions; a

more frequent sampling might have given a more detailed picture of the metabolism. Never

the less, a similar metabolic pattern was observed in cows categorized as HRFI according to

NRC with a less pronounced loss of BCS both in early lactation and during the full lactation.

Also, concentration of NEFA in plasma and the concentration of the fatty acid C18:1 cis 9 in

milk was lower in HRFINRC cows. The latter fatty acid has recently been shown to be related to

EB in early lactating cows [34] since it largely derives from mobilized adipose. Taken together,

the results indicate that more efficient cows with lower residual feed intake, both according to

NorFor and NRC, mobilized more of their body reserves both in early lactation and during the

complete lactation until dry off. The result indicates that the high efficiency of LRFI cows

partly was an artefact related to use of body reserves as previously suggested [7]. It appears as

the NorFor equation underestimated the energy stored in the body reserves. Never the less, the

net contribution of body reserves over the lactation could only explain a limited part of the dif-

ferences in efficiency between the RFI groups. The cows, which were feed efficient according

to the Norfor equation emitted less CH4 which, in turn, reduced energy losses related to

rumen fermentation. The persistent shape of the lactation curve may also have contributed to

the feed efficiency as mentioned above. However, based on a meta-analysis of 31 respiration

chamber experiments, Guinguina et al. [35] concluded previously that as much as 65% of the

variation in RFI between cows is explained by metabolic efficiency not related to digestion. It

is reasonable to assume that also in the present study metabolic efficiency was significantly

related to RFINorFor. We assume that metabolic efficiency was the main factor contributing to

the variation in RFI between efficiency groups also according to NRC. McNamara [36]

reported that basic metabolic functions, directly related to metabolic efficiency, could vary by

20% among cows producing similar amounts of milk. It is important to note that RFI is only

part of feed efficiency. Selection for efficiency must also consider the optimal levels of milk

production relative to BW. In the present study the LRFINorFor cows were less heavy compared

with their HRFINorFor counterparts. Body weight is actually genetically correlated negatively to

feed efficiency [37].

Efficiency measurements across full lactations are costly and time-consuming, and there-

fore shorter test periods are normally used. However, in early lactation cows generally mobilize

body resources and lose BW in order to maintain milk production, whereas cows in later

stages of lactation accrete body resources. Thus, RFI measured during shorter periods than full

lactations might be misleading. However, it has been shown that a test period of 64–70 d in

duration between approximately 150 and 220 DIM can provide a strong approximation of RFI

for a full lactation [6]. Nevertheless, it must be underlined that such correlations between sub-

periods and the full lactation include a significant number of common observations,
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improving the relationship. In the present study, we divided the full lactation into three sub-

periods of equal length and found that RFI measured during late lactation showed the stron-

gest relationship with full-lactation RFI. The relationships between RFI in the three sub-peri-

ods were weak for both models, in line with previous results [5].

Conclusions

Multiparous dairy cows characterized by high efficiency (both LRFINorFor and LRFINRC cows)

over a complete lactation mobilized more of their body reserves both in early lactation and dur-

ing the complete lactation until dry off. Highly efficient cows according to the NorFor model

had lower BW and a tended to have a more persistent shape of the lactation curve than cows

characterized as less efficient. More efficient cows according NorFor showed lower daily CH4

production, CH4/ECM and CH4 yield than low efficient cows. RFI status according to the NRC

equation did not affect daily CH4 production and CH4/ECM while CH4 yield increased in effi-

cient cows. The results also indicated great phenotypic variation in RFI between sub-periods of

the lactation, and thus efficiency studies covering the complete lactation are recommended.
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