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Abstract. Plant litter decomposition in terrestrial ecosystems involves the physical and chemical breakdown of
organic matter. Development of databases is a promising tool for achieving a predictive understanding of organic
matter degradation at regional and global scales. In this paper, we present aridec, a comprehensive open database
containing litter mass loss data from aridlands across the world. We describe in detail the structure of the database
and discuss general patterns in the data. Then, we explore what are the most appropriate model structures to
integrate with data on litter decomposition from the database by conducting a collinearity analysis. The database
includes 184 entries from aridlands across the world, representing a wide range of climates. For the majority of
the data gathered in aridec, it is possible to fit models of litter decomposition that consider initial organic matter
as a homogenous reservoir (one pool models), as well as models with two distinct types of organic compounds
that decompose at different speeds (two pool models). Moreover, these two carbon pools can either decompose
without interaction (parallel models) or with matter transfer from a labile pool to a slowly decomposing pool
after transformation (series models). Although most entries in the database can be used to fit these models, we
suggest that potential users of this database test identifiability for each individual case as well as the number of
degrees of freedom. Other model applications that are not discussed in this publication might also be suitable for
use with this database. Lastly, we give some recommendations for future decomposition studies to be potentially
added to this database. The extent of the information included in aridec in addition to its open-science approach
makes it a great platform for future collaborative efforts in the field of aridland biogeochemistry. The aridec
version 1.0.2 is archived and publicly available at https://doi.org/10.5281/zenodo.6600345 (Sarquis et al., 2022),
and the database is managed under a version-controlled system and centrally stored in GitHub (https://github.
com/AgustinSarquis/aridec, last access: 31 May 2022).
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1 Introduction

Plant litter decomposition has a central role in the balance
between carbon (C) storage and losses in terrestrial ecosys-
tems. This process involves the physical and chemical break-
down of organic matter. Together with soil organic matter
decomposition, this process is the main route of carbon diox-
ide (CO2) efflux to the atmosphere in terrestrial ecosystems
(Chapin et al., 2011). It also plays a key role in the forma-
tion and stabilization of soil organic carbon (SOC; Cotrufo
et al., 2013). Therefore, in the context of current global
change, a thorough understanding of decomposition is cru-
cial for future C budget and storage predictions (Davidson
and Janssens, 2006).

Arid ecosystems (hereafter aridlands) are variously de-
fined as water-limited ecosystems, where the scarcity and
unpredictability of precipitation drive most processes (Noy-
Meir, 1973). They are also defined as regions where evapora-
tion is higher than precipitation, which in turn limits ecosys-
tem productivity (Jafari et al., 2018). Moreover, aridlands can
be classified based on an aridity index as hyper arid, arid,
semi-arid, and dry subhumid ecosystems (United Nations
Environment Programme, 1997). Around 41 % of the global
land area are considered as aridlands (Safriel and Adeel,
2005), and these systems are expanding due to global change
(Feng and Fu, 2013; Reynolds et al., 2007; Yao et al., 2020).
Despite their comparatively low productivity, some aridlands
can have a potentially large impact on global CO2 dynamics
(Ahlström et al., 2015; Poulter et al., 2014). The wide extent
of aridland cover and its influence on regional and global bio-
geochemical cycles make the study of aridlands a priority.

In particular, plant litter decomposition in aridlands is still
not well understood (Austin, 2011). Litter mass loss in the
field is mainly studied using the litterbag method or some
variant (Harmon et al., 1999). The vast majority of litterbag
studies come from temperate forests favored by the ease of
litter collection and the concentration of researchers close to
these study sites. There are fewer studies in aridlands, and
few efforts have been made towards synthesizing aridland de-
composition literature (Austin, 2011; Cepeda-Pizarro, 1993)
or to examine patterns of decomposition in global aridlands
(Zhang and Wang, 2015). Nonetheless, substantive literature
has already been produced, which would allow for the com-
pilation of a comprehensive database on plant litter decom-
position in aridlands that could help boost our understanding
of these ecosystems.

Development of databases is a promising tool for achiev-
ing a predictive understanding of organic matter degradation
at regional and global scales (Luo et al., 2016). This pre-
dictive understanding can be obtained through mathematical
models, but there is substantial uncertainty with respect to
which models to use. For litter decomposition, some efforts
have been made by fitting models with multiple C pools of
different quality that decompose at different rates (Adair et
al., 2008), as well as incorporating the effect of abiotic stres-

sors like photodegradation on C dynamics (Adair et al., 2017;
Chen et al., 2016; Foereid et al., 2011). Taken together, in-
creased data availability and global representativity of well-
constructed databases with our current most complex model-
ing tools could help us achieve a better understanding of the
land C cycle with a higher predictive power.

Once a database of observations has been constructed,
there exists the possibility of fitting complex models from
these data, although this should be approached with caution.
A common issue with mechanistic models used in environ-
mental sciences is that they are poorly identifiable (Brun et
al., 2001), meaning that different parameter sets of a model
generate similar probability distributions for the observed
data (Sierra et al., 2015). In other words, it is impossible to
identify a unique set of parameters that explains model be-
havior. One reason behind this issue is that the information
one would like to learn from models is often of a much higher
complexity than the information content of the observed data
(Brun et al., 2001). It is possible to detect identifiability is-
sues by carrying out collinearity analyses (Sierra et al., 2015;
Soetaert and Petzoldt, 2010), among other techniques. Thus,
in addition to applying current ecological knowledge about
underlying mechanistic processes in model construction, it is
important to avoid identifiability problems when fitting these
models with real data.

Another important aspect when developing this type of
database is to follow an Open Science approach (Hampton
et al., 2015). Open Science entails the practice of making all
stages of scientific knowledge freely available and presented
in a transparent and reproducible way for the whole scien-
tific community to use. Such an approach has the potential to
enhance the quality of research products and to speed up sci-
entific progress through collaborative work. Particularly, the
development of databases can benefit greatly from an open
science perspective by allowing self-motivated reviewers to
make comments and by allowing scientists from outside of
the core research group to make their own contributions to
the database, among other benefits. This latter aspect is key to
ensure databases stay updated as new studies get published.

In this paper, we present aridec, a comprehensive open-
science database that comprises time series of litter mass loss
(decomposition) data from aridlands across the globe. First,
we describe in detail the structure of the database and discuss
general patterns in the data. Second, we run a collinearity
analysis on the database to explore what might be the most
appropriate model structures to fit. We chose a group of mod-
els of organic matter loss provided in the R package SoilR
as potential models, including models of one, two, and three
pools with and without matter transfers between them (Sierra
et al., 2012). Third, we present an example of applied usage
of the database. Lastly, we discuss the scope of the database
and give outlines on good field decomposition experimental
practices stemming from this work.
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2 Methods

2.1 Database description

We conducted a Scopus search on 17 February 2021 for field
decomposition studies of all times from aridlands published
in peer-reviewed journals. We used the search words “arid”
OR “dry season” AND “decomposition” and excluded re-
sults from unrelated subjects. This search produced a list of
1142 publications. To be included in the database, studies
additionally needed to fulfill certain criteria: (a) field stud-
ies in which leaf, shoot or root litter of terrestrial plants was
used, and (b) minimum of three time points of mass loss data.
We did not include wood or dung decomposition studies. We
also included publications from our personal libraries. In to-
tal, this left us with a list of 184 eligible publications.

We named the database aridec and uploaded it to a repos-
itory in GitHub (GitHub, 2022; Sarquis et al., 2022). From
each publication selected, we created a database entry con-
sisting of three separate files: a file containing time series
of mass loss (timeSeries.csv), a file containing metadata of
the study site and the experimental setup (metadata.yaml),
and a file with relevant information of the initial character-
istics of the litter at the beginning of the experiment (init-
Conditions.csv). We saved each entry in an individual folder
named after the last name of the first author and the year of
publication. If there was more than one paper per author and
year, we added lowercase letters to differentiate them (e.g.,
Austin2006a and Austin2006b). We included all entries in-
side the data folder. Other folders in the repository include
the Rpkg folder containing an R package for querying and
manipulating the database, a test folder with scripts for test-
ing the integrity of the data and the R package, and an ad-
ditional folder with miscellaneous scripts that demonstrate
additional functionality. The overall structure of the database
is similar to the structure of SIDb (Schädel et al., 2020), a
database of soil incubation time series, and contains the fol-
lowing folder structure:

– aridec

– Rpkg

– test

– scripts

– data

– single entry
– metadata.yaml
– initConditions.csv
– timeSeries.csv

The timeSeries.csv file includes litter mass loss over time
as reported in the original publication. It is a csv type file
(“comma-separated values”) with column names in the first
row. The first column name is always the variable Time, and

the first value in this column is always “0” (zero). Succes-
sive time values should be specified according to each sam-
pling date reported in the study. Time units accepted are days,
weeks, months, and years. Starting from the second column,
column names should be unique variable identifiers. Below
these names, mass loss data should be included as a percent-
age of the initial value, which is always 100. When data in
the paper are reported in graph form, it is necessary to extract
data point values with software tools such as WebPlotDigi-
tizer (Rohatgi, 2020). Acceptable mass loss units are percent-
age of remaining dry weight, dry organic matter, dry ash-free
mass, or C. For remaining mass data, as well as for time,
units should be specified in the metadata.yaml file described
below.

The metadata.yaml file includes additional information re-
ported in the original paper. It is a yaml type file (“YAML
ain’t markup language”), which allows us to write lists of
items in a hierarchical form and is both machine and human
readable. It includes four main sections: entry identification
data, the siteInfo, the experimentInfo, and the variables sec-
tions. A template for this file, with a full description of how
to complete it, is available inside the data folder. The first
part includes citationKey, which is a unique identifier for the
whole entry in the format LastnameYEAR (lowercase let-
ters must be added when there are two or more entries by
the same author and year, i.e., LastnameYEARa and Last-
nameYEARb). This citationKey name should be the exact
same as the folder name. Next is the doi, which stands for
the digital object identifier where data is published. entryAu-
thor and contactName are both the first and last name of the
person who wrote the entry file and their supervisor (only
if applicable), respectively. If the entry author works inde-
pendently of a supervisor, both fields should be filled with
the same name. contactEmail should be filled with the super-
visor’s e-mail address. entryCreationDate stands for the date
when the file was created, following the format: YYYY-MM-
DD. entryNote should include any notes or comments related
to this entry, such as missing data or additional data sources
used to complete this file. Lastly, study requires a short study
description of not more than one sentence.

The second part of the metadata.yaml file is the siteInfo
section, which includes environmental information of eco-
logical interest from the study site. First is the site field
that requires an identification name for the site (not nec-
essarily the site’s real name). If the study includes more
than one site, an array format should be used in this field,
and the rest of the items in this section should be arrays
of equal length. The coordinates field should be completed
using decimal units, checking for the negative sign that de-
notes Southern and Western Hemispheres. If absent from
the publication, coordinates can be approximately obtained
from Google Earth (Google LLC, 2020). The country field
should be completed avoiding full names (e.g., “China” in-
stead of “People’s Republic of China” or “USA” instead of
“United States of America”). Mean annual temperature (◦C)
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and mean annual precipitation (mm) should be entered in the
fields MAT and MAP, respectively. When climatologic data
are absent from the paper, they can be retrieved from other
databases like the POWER database (NASA Langley Re-
search Center, LaRC, 2021). The rainySeason field should
be filled with either one of five options: whole year, spring,
summer, autumn, winter; if precipitation does not follow a
unimodal pattern, this item is left blank. Elevation of the
study site in m a.s.l. should be entered under the elevation
field, which if absent from the publication can be retrieved
from other sources such as Google Earth. The type of veg-
etation cover of the site should be specified in landCover,
with possible options: marsh, greenbelt, farmland, mangrove
forest, subalpine, shrubland, urban, sandland, forest, steppe,
desert, grassland, and savanna. The item vegNote should in-
clude a short description of not more than one sentence of the
species or functional type composition at the site, if available.
The cover item should be completed with percentage values
of total plant cover or with cover values for specific plant
functional types, as available. Lastly, the soilTaxonomy item
must be completed using the taxonomic classification of the
soil at the site. If the classification system used in the paper
is unknown, it is better to leave this section blank, for exact
equivalences between soil classification systems are unlikely.

The third part of the metadata.yaml file is the experi-
mentInfo section, which includes information regarding the
experimental design of the study. incDesc stands for incu-
bation description and must include a short list of treat-
ments and sampling points in time. The number of replicates
should be specified, paying attention to occasional pseudo-
replication in decomposition studies. The experiment dura-
tion in days should be completed with the maximum time
length that samples stayed in the field. The month in which
the experiment started should be specified under starting-
Month. The name of the litter used for the experiment should
be specified under litter, and it should match the name used
in the initConditions.csv file (see below). Under the litterbag
field, many sub-fields for different characteristics of interest
should be completed, such as mesh material, mesh size (one
side of a square in mm), dimensions (in cm), mesh transmit-
tance (as a percentage of full sunlight), and litterbag position
(full list of options available in the template file). A general
rule for the experimentInfo section is that when there is more
than one option for a field, they should be considered as dif-
ferent levels of a treatment. In this case, that field should be
left blank in this section, and a new field should be created in
the variables section by replacing the experimentalTreatment
placeholder in each variable (see below).

The last section of the metadata.yaml file is the variables
section, which serves as a link between columns in the time-
Series.csv file and metadata. Thus, this section should have
as many variables as columns in the timeSeries.csv file. The
first variable (V1) must always be called “Time” and only
time units should be modified accordingly. The rest of the
variables (V2 to Vn) must be adequately edited to repre-

sent treatment application as described in the original pub-
lication. Variable names should match column names in the
timeSeries.csv file. Litter mass loss units should be expressed
either in (dry) mass remaining, organic matter remaining, or
C remaining. In our database, organic matter remaining is a
synonym of ash-free dry mass remaining. This is because the
ash-free dry mass correction assumes that ash is inorganic
matter, and thus ash-free mass is equivalent to organic matter
for the purpose of this database (Harmon et al., 1999). Under
varDesc (as in variable description) one should write a brief
sentence indicating specific treatment levels applied to this
variable. The site field should be completed using the same
site name entered in the siteInfo section. The experimental-
Treatment item is a place holder for treatments with multiple
levels. It should be replaced by any of the listed variables in
experimentInfo and completed with an appropriate treatment
level. In compTreat complementary treatments not included
in the rest of the metadata items should be indicated using
key words (e.g., grazed, ungrazed, water addition, control,
etc.). Finally, transmittance and wavelength threshold (nm)
data for radiation filters should be indicated under filter. This
sub-section should be completed only for photodegradation
studies.

The last file in the data folder is the initConditions.csv
file, which contains details on the plant litter substrate used
for each experiment. The first row contains column names.
The first column name is species and is the only manda-
tory item; nonetheless we strongly recommend completing
all items, if possible. We suggest checking for the correct-
ness of scientific names in the Global Biodiversity Informa-
tion Facility database (GBIF.org, 2022). Names in the species
column should be used to complete the litter item in the
metadata.yaml file. Four options are valid for the type col-
umn: deciduous or evergreen (for woody plants) and forb or
graminoid (for herbaceous plants). For the N-fixer item, we
recommend consulting the NodDB database (Tedersoo et al.,
2018). Units for the sample amount column are in g, for the
nutrients and fibers in percentage, and for SLA (specific leaf
area) in mm2 mg−1. When litter quality traits are not pro-
vided in the original paper, they can be obtained upon request
from the TRY database (Kattge et al., 2020). We created a
template for the initConditions.csv and a README.md file
with further instructions in the data folder. Special attention
should be paid to the material section of the README.md
file, for litter substrates are highly variable among studies,
and this is key for database consistency. In Fig. 1, we present
a flowchart with the full process of entry submitting for po-
tential contributors.

We generated a global aridity index (GAI) map with the
study sites from the database. We retrieved GAI data from the
Consortium for Spatial Information global climate datasets
(CGIAR-CSI; Trabucco and Zomer, 2019). This index is cal-
culated after dividing the mean annual precipitation by the
mean annual reference evapotranspiration. The raster dataset
that we used is based on WorldClim2 database (Fick and Hi-
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Figure 1. A guiding flowchart of the entry-submitting process for
potential contributors of aridec.

jmans, 2017). We chose this dataset because it encompasses
a relatively long period of time (from 1970 to 2000) and it
has a high spatial resolution (∼ 1 km at the Equator). We
then classified each study site by its GAI value as hyper-
arid (0–0.05), arid (0.05–0.2), semi-arid (0.2–0.5), dry sub-
humid (0.5–0.65), and humid (> 0.65; United Nations En-
vironment Programme, 1997). Complementarily, to explore
how representative our sites in aridec are of the whole cli-
matic range of aridlands, we first made a random point sam-
pling of 6793 pixel units separated at least 1 km away from
each other within the range of aridlands (GAI: 0–0.65). For
each sample, we averaged mean monthly temperatures from
WorldClim2 to obtain mean annual temperature values. We
did the same for our aridec coordinates and plotted both sets
of data together to evaluate how well aridlands are repre-
sented in our database. We used the QGIS software to process
data and created a map (QGIS Development Team, 2021).

2.2 Model fitting and collinearity analysis

A central application of this database is the development of
models of litter decomposition for aridlands. In an attempt to

explore what the most appropriate model structures to inte-
grate with data from the database are, we selected different
structures of decomposition models based on recent theory of
models of organic matter decomposition (Sierra and Müller,
2015). These model structures are already implemented in
the SoilR package (Sierra et al., 2012), and we provide here
an interface between our database and this R package. SoilR
is a modeling framework that contains a wide set of functions
and tools to model soil organic matter decomposition within
the R computing platform (R Core Team, 2020).

Organic matter decomposition in SoilR is represented by
systems of linear differential equations that generalize most
compartment-based models. A simple general structure to
represent litter decay with no inputs follows Eq. (1):

dC(t)
dt
= AC(t),

C (t)= [Cpool 1, . . .,Cpoolm]
T ,

A=

 −k1 · · · a1i
...

. . .
...

aj1 · · · −km

 , (1)

where C(t) is a m× 1 vector with m pools of litter mass ob-
served at time t , and A is a squarem×mmatrix that contains
decomposition rates (km) for each pool and transfer rates
(aij ) between them. These different pools may correspond to
different ways in which the quality of the litter is expressed
in different studies. For example, they may correspond to dif-
ferent compounds obtained from a specific extraction method
(e.g., water soluble sugars or acid detergent lignin), or they
can be defined by general decay classes such as fast and slow
decay compounds. These pools have different decomposition
rates, pool 1 being the fastest decomposing pool and pool m
being the slowest. The linear dynamical system represented
by Eq. (1) has many different solutions, but we are only in-
terested in the solution that satisfies

C(t = 0)= C0 = [total C0 ·p1, . . ., total C0 ·pm]
T , (2)

where C0 is an m× 1 vector with the value of initial litter
mass content in the different compartments m. Total C0 is
set to be 100 % in SoilR for our database, and the resulting
parameters pm are the initial proportions of litter in m pools.
Using this framework, we chose to fit a total of five different
models with an increasing number of parameters (Table 1).

For this set of models, we performed an identifiabil-
ity analysis following the procedure described by Soetaert
and Petzoldt (2010). Non-identifiability is a common issue
with inverse-modeling approaches. It is a type of model
over-parameterization that makes precisely determining pa-
rameter values virtually impossible; thus parameters are
“non-identifiable”. When parameters are functionally re-
lated, changes in one parameter can be compensated by
changes in others. This produces different parameter sets that
have similar probability distributions, thus the inability to de-
termine a single parameter set for the model (Sierra et al.,
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Table 1. Fitted model structures and parameters. m: number of C
pools. k1, k2, k3: decomposition rates of pools 1, 2, and 3, respec-
tively. p1, p2: initial proportions of C in pools 1 and 2, respectively.
a21: transfer rate from pool 1 to pool 2. a12: transfer rate from pool 2
to pool 1. a32: transfer rate from pool 2 to pool 3.

Model structure m Parameters

Two-pool parallel 2 k1, k2, and p1
Two-pool series 2 k1, k2, p1, and a21
Two-pool with feedback 2 k1, k2, p1, a21, and a12
Three-pool parallel 3 k1, k2, k3, p1, and p2
Three-pool series 3 k1, k2, k3, p1, p2, a21, and a32

2015). Analyzing for parameter identifiability in models fit-
ted with aridec data allowed us to assess which model struc-
tures are the most appropriate to use in this context.

This identifiability analysis is based on the calculation of
the collinearity index (Brun et al., 2001). This index is a mea-
sure of the degree to which changes in one parameter are
compensated by changes in other parameters for a certain
model structure and dataset. We used the modCost function
from the FME R package to first adjust a model cost func-
tion (Soetaert and Petzoldt, 2010). This function estimates
weighted residuals of the model output versus the observed
data and calculates sums of squared residuals, according to
the formula:

resk,l =
Modk,l −Obsk,l

errork,l · nl
, (3)

where Modk,l and Obsk,l are the modeled and observed val-
ues for any data point, k, of a variable l, respectively. Errork,l
is a weighing factor that makes the term non-dimensional.

The model cost function, together with a set of pre-set
initial parameter values, is then used as an input to calcu-
late a matrix of sensitivity functions using the sensFun func-
tion from FME. This function estimates the sensitivity of the
model output to the parameter values using the expression:

Sij =
∂ri

∂2j
·
w2j

wri
, (4)

where Si,j represents each entry of the matrix, ri are model
residuals calculated from the cost function, 2j is a model
parameter, wri is the scaling of ri , and w2j is the scaling of
parameter 2j (Soetaert and Petzoldt, 2010).

The final step in this analysis is calculating the collinearity
index γ . The collin function from FME uses the sensitivity
matrix as an input to calculate γ for every combination of
parameters; γ is defined as

γ =
1√

min
(

EV
[
ŜT Ŝ

]) . (5)

Here Ŝij is calculated as:

Ŝij =
Sij√
6jS

2
ij

, (6)

where Ŝij contains the columns of the sensitivity matrix that
correspond to the parameters included in the set, and EV es-
timates the eigenvalues. The collinearity index equals 1 if the
columns are orthogonal, and the set is identifiable. The index
equals infinity if columns in the sensitivity matrix are lin-
early dependent (Soetaert and Petzoldt, 2010). The interpre-
tation of the collinearity index is thus a change in the residu-
als caused by a change in one of the parameters can be com-
pensated by a proportional change 1/γ in another parameter.
For practical purposes, if γ > 20, the parameter combination
is considered non-identifiable (Sierra et al., 2015).

For the identifiability analysis, we first selected a repre-
sentative group of 30 entries from the database ranging from
three to 19 time points (Table 2). The number of data points
in time limits the number of parameters that can be fitted
because it affects the number of degrees of freedom. Thus,
models with more parameters require longer datasets. This
meant that, a priori, not all entries could be used to fit all
model structures. On the other hand, it is possible to test iden-
tifiability for restricted model versions, that is, models with
some of their parameters fixed to a known value. This implies
that there are fewer parameters to be determined, and thus it
allows us to use shorter time series. The details of all the
models tested are reported in Table 3. From this first anal-
ysis, we noticed that two pool parallel and series structure
models with a restricted initial proportion of litter in pool 1
(p1) were the two models more likely to meet identifiability
with our data. Because of this, we tested collinearity for all
the 184 entries in the database, but only for these two models
and for the respective models with the full set of parameters,
for comparison. The R code for this analysis can be found in
the collinearity.R script inside the scripts folder of aridec.

2.3 Applied example

Our collinearity analysis (see below) showed that although
most entries could be used to fit two-pool parallel and series
models with a fixed p1 parameter (i.e., the initial proportion
of litter in pool 1), this was dependent on each dataset. Re-
stricting the p1 parameter is a sensible way of achieving iden-
tifiability because it is common to find information on litter
lignin content in decomposition publications, and this can be
used as an initial proportion value for the slow-decomposing
litter pool (i.e., p2). Since

p1+p2 = 1, (7)

it is possible to estimate the p1 as the complementary value
of p2.
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Table 2. Aridec entries used in the identifiability analysis with their corresponding DOI o URL. The number of time points refers to the
number of sampling dates at each study plus the initial date.

Number of time points Aridec citation key Publication DOI or URL

3

Classen2007 https://doi.org/10.1111/j.1365-2745.2007.01297.x
Correa2016 https://doi.org/10.3832/ifor1459-008
Dominguez2010 https://doi.org/10.1016/j.still.2010.06.008
Gehrke1995 https://doi.org/10.2307/3546223
Gliksman2018a https://doi.org/10.1111/1365-2435.13018

4

Bernaschini2019 https://doi.org/10.1016/j.jaridenv.2015.11.009
delCid2019 https://doi.org/10.1556/168.2019.20.3.10
Dipman2019 https://doi.org/10.1016/j.apsoil.2019.07.005
Glassman2018 https://doi.org/10.1073/pnas.1811269115
Henry2008 https://doi.org/10.1007/s10021-008-9141-4
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Table 3. Minimum number of time points in datasets fitted to each
model structure T , number of parameters for each model structure
P , number of datasets used for each model structureD, and the pos-
sible number of combinations of parameters to identify with specific
combinations of available data C.

Model structure Two-pool models Three-pool models

T P D C T P D C

Parallel 3 3 30 120 6 5 15 390
Series 4 4 25 275 8 7 5 935
Feedback 6 5 15 390 – – – –

To give a practical example of what can be done with this
database, we chose to fit these models using one of the en-
tries where both the models were identifiable, and the initial
proportion of litter lignin was available. Together with these

models, we fit a simple one-pool model for comparison. We
used variable 2 (V2) from the Day2018 entry, which corre-
sponds to Simmondsia chinensis (Link) C. K. Schneid. leaf
litter decomposed under full sunlight treatment in the field
(Day et al., 2018). The initial proportion of lignin (p2) was
0.09. We used the Bias Corrected Akaike Information Cri-
teria (AICc) to assess the model fit (Shumway and Stoffer,
2017).

3 Results

3.1 Data overview

The 184 studies in the database included data for 212 unique
study sites around the world. Twenty-four of these sites
were repeated in two or more studies. According to the
GAI, ∼ 3.6 % of sites were classified as hyper-arid (0–0.05),
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Figure 2. GAI map generated using data from the WorldClim 2 database. Hyper-arid: 0–0.03. Arid: 0.03–0.2. Semi-arid: 0.2–0.5. Dry sub-
humid: 0.5–0.65. Humid: > 0.65. Points represent study sites in the aridec database. Colors represent different ecosystems as reported in the
original publications.

∼ 35.9 % as arid (0.05–0.2), ∼ 43 % as semi-arid (0.2–0.5),
∼ 6 % as dry sub-humid (0.5–0.65), and ∼ 12 % as humid
(> 0.65). We recognize that humid sites do not classify as
aridlands, but we included them nonetheless because these
sites had marked dry seasons according to the original pub-
lications. A total of 33 countries was represented in our
database. The top-five countries with the largest number of
study sites were China (58 sites), USA (49 sites), Argentina
(32 sites), Israel (22 sites), and Brazil (12 sites). Most sites
in the database correspond to arid regions where the mean
annual temperatures are above zero degrees Celsius, with a
very low representativity of colder regions (Fig. 3)

Out of the 184 database entries, we retrieved 1752 series
of litter mass loss over time. The oldest publication in the
database is from 1975, and the newest is from 2021. More-
over, there has been a considerable growth in the number
of publications per year (Fig. 4a). The study duration in the
database ranged from 18 d to 10 years, with a median of 365
and a mean of 430 d (Fig. 4b). The number of sample har-
vests from the field went from 2 to 23, with a mean of ∼ 6
and a median of 5 (Fig. 4c). The sampling frequency ranged
from 0.08 to 11.1 samples per month, with a median of 0.4
and a mean of 0.8 samples per month (Fig. 3d). Elevation at
the study sites varied from −375 to 4000 m a.s.l., with me-
dian and mean values of 557 and ∼ 811 m a.s.l., respectively
(Fig. 4e). The mean annual temperatures ranged from −0.45
to 29.5 ◦C at the study sites with a mean value of 14.9 ◦C and
median of 15.6 ◦C (Fig. 4f). The mean annual precipitation
in aridec ranged from 2 to 1700 mm, with median and mean
values of ∼ 375 and ∼ 494 mm, respectively (Fig. 4g). Out
of all sites, 23 % were reported by the authors to be deserts,
17 % forests, 16 % agroecosystems, 12 % grasslands, 10 %
shrublands, 10 % steppes, 8 % savannas, 2 % coastal ecosys-
tems, and 2 % urban sites (Fig. 4h).

Figure 3. Climate representativity of the aridec database. GAI plot-
ted against mean annual temperature (◦C). WorldClim2 points were
generated via a random sampling of 6793 pixels in QGIS. All data
comes from the WorldClim2 database. Horizontal dashed lines rep-
resent the breaks in GAI between aridland categories: hyper-arid, 0–
0.03; arid, 0.03–0.2; semi-arid, 0.2–0.5; dry sub-humid, 0.5–0.65;
humid, > 0.65.

3.2 Identifiability analysis

Figure 5 shows results from the first identifiability analysis
carried out on a subset of 30 entries. Here, we can compare
how entries with an equal number of time points behave un-
der each model structure. For the two-pool parallel model
structure, four parameter combinations were compared: a
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Figure 4. Aridec data overview including number of publications per year (a), study duration in days (b), number of sample harvests (c),
study sampling frequency as number of samplings per month (d), study site altitude in m a.s.l. (e), mean annual temperature in ◦C (f), mean
annual precipitation in mm (g), and number of studies per type of land cover (h). Dashed lines represent the mean, and dotted lines represent
the median in each panel.

full three-parameter model and three alternative models with
one restricted parameter each. There were 30 points for the
full model with 62.1 % of values below the collinearity in-
dex γ = 20 threshold, i.e., almost 40 % of the models were
not identifiable. For the models restricted to two parame-
ters, 95.6 % out of the 90 models compared were identifiable.
When specifically looking at the model with a restricted p1
value, 100 % of the models were identifiable. This was ex-
pected because usually the fewer the parameters to be esti-
mated, the lower the collinearity in models.

The two-pool series model structure analysis included a
full four-parameter model and ten alternative models with
one or two restricted parameters each. From a total of 25

full parameter models, 48 % were identifiable according to
their γ values. Out of 150 models with two restricted param-
eters, 94.7 % of models were identifiable, while for models
with only one restricted parameter, 68.3 % of models were
identifiable. When specifically checking for the collinearity
index in models with a restricted p1 parameter, 84.6 % of
them were identifiable. The non-identifiable values in this
last case corresponded to four entries with four time points
each. That means that 100 % of models with > 5 time points
were identifiable for the restricted p1 model version. This
highlights the importance of having longer time series avail-
able for modeling.
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Figure 5. Collinearity index (γ ) comparison for different model structures using entries from aridec. γ values were log10 transformed, and
horizontal lines at log10(20) denote the maximum value of γ for a model to be considered identifiable. Infinite γ values were not plotted.
Each panel shows data for a different model structure. The number of entries from the database used for each model structure is reported
in Table 3. Each point represents γ for a model structure fitted for a specific dataset with different parameter combinations. The color scale
for data points shows the number of data points in each dataset (i.e., the number of sampling dates plus the initial date). Values with > 8
time points were grouped for easier interpretation. The number of model variants fitted for each model structure and database entry were
n= 30 for the two pool parallel model with all three parameters and n= 90 with one restricted parameter (a); n= 25 for the two pool
series model with all four parameters, n= 150 with two restricted parameters, and n= 100 with one restricted parameter (b); n= 15 for
the two-pool model with feedback and all five parameters, n= 150 with two and three restricted parameters, and n= 75 with one restricted
parameter (c); n= 15 for the three pool parallel model with all five parameters, n= 150 with two and three restricted parameters, and n= 75
with one restricted parameter (d); n= 5 for the three pool series model with all seven parameters, n= 250 with five restricted parameters,
n= 300 with four restricted parameters, n= 230 with three restricted parameters, n= 115 with two restricted parameters, and n= 35 with
one restricted parameter (e).

The case of the two-pool model structure with feedback
included a full parameter model and 24 other model vari-
ants with one, two, and three restricted parameters each.
The analysis of 15 models with all five parameters showed
100 % of non-identifiable results. The results for the re-
stricted model version with four parameters showed 100 %
of non-identifiable models out of 75 data points, while only
4.7 % of the 150 data points with three parameters gave γ
values lower than 20. The analysis of the restricted model
version with two estimated parameters generated 57.3 % of
identifiable results out of 150 models.

When testing for the three-pool parallel model structure,
we used one full model with five parameters and 24 model
variations comprising from two to four parameters each.
None of the full model data points showed collinearity index
values lower than 20. Out of the restricted four-parameter
models only 34.7 % could be identifiable. When we specifi-
cally looked at the models where either p1 or p2 were fixed,
none of them were identifiable. Restricted models with three
parameters produced a 68 % of identifiable results. Further,
restricted models that only had k values were not identifi-
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able. Finally, 89.3 % of models restricted to two parameters
were identifiable according to our analysis.

The last model structure analyzed was the three-pool series
structure, which produced comparisons for models with all
seven parameters, plus 118 other model variants with differ-
ent restricted parameters. None of the models with all seven
parameters were identifiable. Only 5.7 % of the models with
six parameters were identifiable, none of which corresponded
to the models where either p1 or p2 were fixed. Models re-
stricted to five parameters produced 10.5 % of identifiable re-
sults. Specifically looking at models with both fixed p1 and
p2, 100 % of those were not identifiable. Restricting models
to four parameters generated 28 % of results with γ > 20.
Models with three estimated parameters produced 54.9 %
of identifiable results. Lastly, 84.8 % of models restricted to
only two parameters were identifiable.

Because two-pool parallel and series models with a fixed
p1 parameter showed the highest percentage of identifiable
cases in this first analysis, we did a second test with the
whole database for these models and for their respective full-
parameter versions for comparison (Fig. 6). For the two-pool
parallel model with the full set of parameters, 58.7 % of en-
tries were identifiable, whereas restricting the p1 parameter
yielded 99.5 % of identifiable entries. For the more complex
series models, the percentages of identifiable entries were
much lower, with only 20.1 % for the restricted version and
no identifiable cases for the version with a full set of param-
eters. Clearly, restricting the number of parameters to be es-
timated decreases collinearity, but the results are highly vari-
able and dependent on each particular dataset.

3.3 Applied example

The previous analysis of the collinearity index (Fig. 6) shows
that from the proposed model structures to be fitted, our data
can, in most cases, be fitted to two pool parallel and series
structure models with a restricted initial proportion of litter
in pool 1, aside from single-pool models. Figure 7 shows the
results from the simulation of the dynamics of organic mat-
ter loss from leaf litter fitted from the Day2018 entry. The
one-pool model showed how a single reservoir of organic
matter from leaf litter decomposed at a k rate of 0.0142 per
month (Fig. 7a). At the end of the almost 3-year period, the
remaining percentage of total organic matter was 61.02 %.
The two-pool parallel model showed a fast decomposing or-
ganic matter pool with a k1 of 0.0158 per month (Fig. 7b).
This pool went from representing 91 % of total organic mat-
ter to 52.4 % after almost 3 years. On the other hand, the slow
decomposing pool, which we defined as the initial lignin con-
tent of litter, had a value of k2 of 1.5× 10−16 per month. We
defined this pool as 9 %, and it remained unchanged after 2
years, which was expected from a k2 of nearly zero. Lastly,
the two-pool series model showed a fast decomposing pool
with a k1 of 0.11 per month (Fig. 7c). This pool went from
91 % of total organic matter to 1.7 % at the end of the ex-

periment. In this case, the slow decomposing pool had a k2
of 0.02 per month. This model also had a transfer coefficient
from the fast decomposing pool to the slow pool of 1 (i.e.,
100 % of organic matter in the fast pool that decomposed in
a month transformed into more recalcitrant forms, adding to
the slow decomposing pool). Then, the slow decomposing
pool went from 9 % at the start of the simulation to 54.08 %
after almost 3 years. Judging by their AICc values, the three
models were similarly supported by the data.

4 Discussion

4.1 The aridec database

The aridec database is a comprehensive database with a wide
range of information on decomposition studies from arid-
lands worldwide, which includes litter mass loss data, litter
traits, and experimental design information. Our exhaustive
bibliographic search gave us close to 200 papers that fulfilled
our criteria. Notably, we did not limit our work to studies
published in English; aridec also includes papers in Span-
ish, Portuguese, and Mandarin. This widens the scope of our
work to achieve a more inclusive database.

From a geographic perspective, study sites included in
aridec cover most of the main aridlands of the world (Fig. 2).
As expected, countries like China, USA, and Argentina had
the largest number of studies, which might be related to the
extension of aridlands in these countries, since China has
6.07× 106 km2 of drylands (Huang et al., 2019), and around
40 % and 69 % of USA and Argentina territories are consid-
ered as drylands, respectively (Verbist et al., 2010; White and
Nackoney, 2003). In contrast, some of the biggest deserts in
the world, such as the Sahara, the Kalahari, the Australian
Outback, and the Arabian desert are underrepresented, if not
absent, in our database. Future efforts should focus on this
information void, and the aridec database will be available
to include these coming studies in our framework.

Study sites in the database represent a big part of the cli-
mate range where aridlands occur, from hyper arid deserts to
dry sub-humid ecosystems (Fig. 2). Some of the study sites
(∼ 12 %) were classified as humid according to the GAI. We
chose to include them because those studies reported marked
dry seasons at the study sites and focused on seasonal pat-
terns of litter decomposition. The range of climatic variables
such as mean annual temperature and precipitation, physi-
cal variables like altitude, along with land cover types are
also very well represented in this database (Fig. 4). This
wide representativity of climates in aridec is a crucial as-
set if the database is to be used to answer global-scale ques-
tions. Nonetheless, dry sub-humid lands but mainly hyper-
arid deserts are the least represented in the database, suggest-
ing more studies should be developed in these areas. More-
over, there is a void in the colder end of the climatic range of
aridlands (Fig. 3). This might be related to the lack of sites
in aridec of ecosystems like tundra where the GAI is mostly
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Figure 6. Collinearity index (γ ) comparison for four different model structures using the entire database. The full parameter combination
includes k1, k2, p1, and a12 (the latter only for the series model). The restricted parameter combination excludes p1. γ values were log10
transformed and horizontal lines at log10(20) denote the maximum value of γ for a model to be considered identifiable. Infinite γ values were
not plotted. Each panel shows data for a different model structure. Each point represents γ for a model structure fitted for a specific dataset
with different parameter combinations (n= 184, for each model structure). The color scale for data points shows the number of data points
in each dataset (i.e., the number of sampling dates plus the initial date). Values with > 8 time points were grouped for easier interpretation.

low, but a bibliographical search like ours could not retrieve
the studies in those areas. There is clearly much room to ex-
pand our database and increase its potential applications.

One of the advantages of the aridec database is that its
files are compatible with R and, specifically, with the SoilR
library (Sierra et al., 2012). In addition to the fact that this
database is an open-source and open-code project, there is
huge potential for broadening the extent of the information in
aridec and for developing code to work with it. Nonetheless,
we should mention that the formats included in the database
are not R-exclusive and can be used with most commonly
available software. YAML files can be read and edited from
any text processor, and CSV files can also be opened with
any spreadsheet software. Although statistical analysis on R
scripts cannot be used elsewhere, raw data itself can be freely
processed with any statistical software.

The aridec database can be used on its own, but we rec-
ommend complementing our information with other publicly
available databases to expand the application possibilities.
Metadata are not always fully reported in publications, so it is
possible to fill these gaps with climate and altitude data from
databases like NASA Prediction of Worldwide Energy Re-
sources (POWER; NASA Langley Research Center (LaRC)).

Leaf litter traits are a big part of the database and are some-
times poorly reported in publications. A general source of
litter traits data can be obtained upon request from the TRY
database (Kattge et al., 2020). Another more specific source
of information is NODdb, where nodulating-N-fixing plant
genera are detailed (Tedersoo et al., 2018).

4.2 Model fitting within aridec

Based on our collinearity analyses (Figs. 5 and 6), we suggest
that before fitting any models to our data, it is crucial to check
the identifiability of the parameters with each database entry.
We assume that all entries can be fitted to a one-pool model,
since there is only one parameter to estimate. As for the more
complex models, the situation is highly dependent on which
data entry is being used. For instance, although most entries
could be used to fit two-pool models with parallel and se-
ries structures, there are some exceptions. Another example
can be seen in Fig. 5b, where one dataset of more than eight
points was not identifiable for a model with all four parame-
ters. Besides collinearity, the number of degrees of freedom
will restrict which models can be fitted to the data so that
these two aspects should be considered together. As mod-
els get more complex, we had to progressively exclude en-
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Figure 7. Comparison of three different decomposition model structures fitted with time series of organic matter loss from the Day2018
entry: one-pool model (a), two-pool model with a parallel structure (b), two-pool model with a series structure (c). AICc: Akaike Information
Criteria, Bias Corrected.

tries with less time points because they did not have enough
degrees of freedom. As a concluding remark, the results in
Figs. 5 and 6 are not to be interpreted as how those models
perform in general but how they perform with the specific
data in aridec. That is why we provide an R script in the
database to test collinearity for individual datasets.

Moreover, in most cases, fitting these models is only pos-
sible by restricting the parameters estimated to only decom-
position constants and transfer coefficients. We suggest re-
stricting models to these parameters because it is more likely
to find data on initial proportion of lignin or cellulose to be
used as proxies for parameters p1 or p2. Not only might
they be more difficult to find in the literature but estimating
values for decomposition constants and transfer coefficients
might altogether be a better use of this database. Further, we
recognize that for some specific combinations of parameters
and datasets, the more complex models might be identifiable
(data points below the log10(γ = 20); Fig. 5).

Again, interconnection between datasets like aridec and
others like TRY (Kattge et al., 2020) is a key workaround
to the collinearity problem by providing data for parame-

ter restriction (Sierra et al., 2015). We recognize that lim-
itations in data available from field studies ultimately re-
strict our capability to fit more complex models (Brun et
al., 2001). This limitation can have further implications if we
consider the proportion of identifiable datasets per ecosystem
type or level of aridity. For example, semi-arid and dry sub-
humid ecosystems show the lowest proportion of identifiable
datasets for a two-pool parallel model with all parameters
(data not shown). This would lead to an under-representation
of some aridlands because of a lack of suitable data available.
Moving forward, new decomposition studies should consider
making more measurements and including data on litter ini-
tial chemical quality, as well as expanding studies to less
represented climates and ecosystems. This will allow for the
detection and modeling of finer scaled dynamics of organic
matter (see Appendix A).

The applied example in Fig. 7 serves as a glimpse of the
potential of this database. Choosing which model to fit with
decomposition data is not a minor task. For instance, none
of the three models were supported as the best model from
their AICc, which suggests that they must all be considered
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when making conclusions from this simulation (Anderson
and Burnham, 2004). Whether a time series has a better fit
with one model or another depends mostly on mass loss dy-
namics that were captured by the experimental design. While
longer datasets can generally be fitted with more complex
models, if the overall mass loss dynamics fit better for a one-
pool model, higher model complexity will not be chosen us-
ing AIC. It is also to be considered that ecological theory may
come into play here instead of applying purely statistical rea-
soning. As was pointed out recently, litter decomposition is
not as much a process of “what is lost” but more of “what
is left” (Prescott and Vesterdal, 2021). A balance between
statistical fit and theoretical support should be found when
choosing which model is best for each study case.

The aridec database is available for open access and down-
load at http://github.com/AgustinSarquis/aridec (last access:
31 May 2022; Sarquis et al., 2022). Our hope is that newer
studies on dryland litter decomposition will be added to the
database by new collaborators (see Appendix A). It is impor-
tant to follow our user guidelines to ensure consistency, all
of which are available in the database itself. File templates
for uploading new entries to the database are given, and fur-
ther details can be found in them. Additionally, users will
find in the database a README file, scripts to test file con-
sistency and many examples on how to apply functions and
to fit models using R code.

To our knowledge, the aridec database is unique. Other
databases that focus on land C studies include the Soil Incu-
bation Database (SIDb; Schädel et al., 2020), a peatland pro-
ductivity and decomposition parameter database compiled
by Natural Resources Canada (Bona et al., 2018), and the
Chilean Soil Organic Carbon Database (CHLSOC; Pfeiffer
et al., 2020). Although they all intend to assess questions re-
lated to C budgets in terrestrial ecosystems to some extent,
not all of them present decomposition data (i.e., Pfeiffer et
al., 2020). Moreover, only SIDb (Schädel et al., 2020) and
aridec contain time series of organic matter loss. This is a
unique asset that allows for future studies to make new as-
sessments of decomposition without having to worry about
inconsistencies in the calculation of k parameters. Finally,
none of these other databases are centered around plant litter
decomposition in aridlands like aridec.

The extent of the information included in aridec in addi-
tion to its open-science approach makes it a great platform
for future collaborative efforts in the field of aridland biogeo-
chemistry. In this sense, the main purpose of this database is
to further our understanding of C dynamics at the earth sys-
tem level. Complete datasets like aridec are necessary to test
which model structures and parameters best explain decom-
position processes and to help develop more realistic repre-
sentations of the global C cycle in drylands (Luo et al., 2016).
Further, additional parameters could be used to test the im-
portance of mechanisms that are relevant in aridlands but are
under-represented in the literature. Studies on processes like
photodegradation (Adair et al., 2017) could be expanded to

a wider geographical range and to soil processes thanks to
the representation of sites in aridec using the SoilR frame-
work (Sierra et al., 2012). Another potential application of
our database is to combine ecological data with climatic data
in earth system models, which is a promising framework to
assess future global change stresses and their effects on the
biosphere (Bonan and Doney, 2018).

5 Code availability

All scripts necessary to obtain figures in this publication are
included in the database inside the “scripts” folder.

6 Data availability

Version 1.0.2 of aridec is publicly available at
https://doi.org/10.5281/zenodo.6600345 (Sarquis et
al., 2022). Documentation of the project and the
R package are presented on the project’s website
(https://github.com/AgustinSarquis/aridec, last ac-
cess: 31 May 2022). The database is open for reuse,
and the usage license follows the GPL-3 license
(https://opensource.org/licenses/GPL-3.0, last access:
9 February 2022). When using the database or R package,
users should cite this definition publication and consider
citing individual studies (publication or dataset).

7 Conclusions

The aridec database is a comprehensive database with a wide
range of information on decomposition studies from arid-
lands worldwide. Study sites included in aridec cover most
of the main aridlands of the world and represent well the
range of climatic conditions that characterize aridlands. We
found that although many studies have been conducted in
aridlands, there is low representativity in cold arid regions,
where new studies should be performed to obtain a more
comprehensive understanding of decomposition in aridlands
worldwide.

Our identifiability analysis showed that the information
content in litter decomposition studies can only inform sim-
ple models with one or two pools. More complex models can
be obtained for datasets with multiple data points, and a well
characterized initial litter mass quality (such as lignin or cel-
lulose content), which will result in low collinearity index
values and allow for enough degrees of freedom.

One of the best assets of the aridec database is that its
files are compatible with R and the SoilR package, making
collaborative work more direct and approachable. Although
our application suggestions are based on the use of the SoilR
package, we recognize that other approaches might be suit-
able for the use of this database.

To our knowledge, the aridec database is unique, and the
extent of the information included here in addition to its
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open-science approach makes it a great platform for future
collaborative efforts in the field of aridland biogeochemistry.

Appendix A: Recommendations for future
decomposition field studies

Compiling published studies for the database led us to come
up with a set of recommendations that scientists working on
field decomposition studies may take into consideration in
order to incorporate future entries in aridec.

– Coordinates: from the database, 7.6 % of entries had er-
rors in their site coordinates, and 8.7 % had no coordi-
nates at all. This means that for 16.3 % of entries, we
had to either look for coordinates in other publications
or search for the approximate location on Google Earth.
Exact coordinates are a must for a study to be incor-
porated in geospatially explicit databases. Since nearly
half of the problematic entries corresponded to typo-
graphic errors, we recommend that authors and review-
ers check for the correctness of coordinates. Further, we
suggest providing coordinates as exact as possible and
to avoid using vaguely broad coordinates (e.g., report-
ing coordinates of the closest town to the study site).

– Soil classification: out of all entries only 29.3 % re-
ported soil taxonomy from the study site correctly. An
additional 7.1 % of entries provided a classification for
the soil, but they did not specify the classification sys-
tem they used (i.e., FAO, WRB, or USDA). This is im-
portant because names of soil taxa are not always exclu-
sive to a single classification system, and their defini-
tions are most unlikely interchangeable (Hughes et al.,
2017). For most studies this information might not be
available, but for those where it is, we suggest reporting
it. Otherwise, making inference from soil types would
be impossible.

– Mesh transmittance: only 13.6 % of entries in aridec
had measured the light transmittance of the mesh that
they used to construct litter bags. Light interception by
mesh can be very high: as much as 50 % of total radia-
tion, photosynthetically active radiation, or ultra-violet
radiation, as seen in our database. Considering the es-
tablished importance of sunlight as a decomposition
driver in aridland ecosystems (Austin et al., 2016), stud-
ies with mesh materials that block a significant propor-
tion of light might be inducing unwanted effects and un-
derestimating effects of photodegradation. We recom-
mend, if possible, choosing high-transmittance materi-
als (the highest in our database has 95 % transmittance
of total radiation), measuring mesh transmittance and
reporting these values in the corresponding publication.

– Sampling dates: the matter of choosing when to pick
up samples from the field is complex. Ideally, the to-
tal amount of sampling dates and the amount of time

between those dates should only depend on the hypoth-
esis. The reality is that logistics has a huge impact on
what scientists do, especially for field ecological stud-
ies. How researchers chose to set their sampling dates
will determine the scale of the patterns that they will
be able to detect from their experiments. For example,
in some aridlands, where decomposition is very slow,
litter might take years to fully decompose, and short ex-
periments are not able to capture this part of the process.
Most of the studies in aridec lasted around a year, with
only a few studies lasting longer (Fig. 4b). Further, in
some systems, leaching can have a big impact during
the first days to weeks of decomposition, and more fre-
quent sampling at the beginning of the experiment may
allow us to detect this. In our database, most studies
made measurements less than once a month (Fig. 4d),
meaning that only monthly to yearly processes could
be detected. These limitations extrapolate to modeling
challenges; it is not possible to fit data to models that
represent patterns that went undetected due to the study
design. To accurately estimate decomposition rates (k)
it is thought that litter at the last sampling date needs to
have lost at least 50 % of mass. As such, this suggests
that the number of samplings and extension in time of
the study should reflect these goals. We suggest that re-
searchers be aware of all these issues and also that they
have enough pickups to actually be able to calculate the
slopes of the relationships, which increases the power
of inference enormously.

– Corrections of mass loss measurements: after collection
from the field, in most cases, samples carry with them
moisture and inorganic matter from the site. This can, of
course, underestimate measurements of litter mass loss.
Once in the laboratory, samples should be cleaned of
any extraneous material and their moisture content mea-
sured. After this, a portion of each sample should be
used to quantify the proportion of ashes (Harmon et al.,
1999). This should also be done for samples that were
not taken to the field and are used for measurements of
initial litter traits. All mass loss analysis should be done
on an oven-dried, ash-free basis.

– Time series: a large number of studies could not be in-
cluded in aridec because they only published decom-
position rates. As much as this is common practice, it
limits the possibilities for incorporation into databases
like ours and further analysis that might need temporal
dynamics data as input. We suggest not only providing
averaged values of mass loss over time, but also raw
data as supplemental material. This helps bridge the re-
producibility gap in ecological studies and represents a
step forward to an open-science approach (Hampton et
al., 2015).
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– Initial litter quality: the characterization of litter chemi-
cal and physical traits at the beginning of experiments is
an important tool for answering research-specific ques-
tions of decomposition studies. However, from our re-
sults, it was evident that these initial litter traits are also
useful to decrease model collinearity (Fig. 6). Particu-
larly, the initial content of litter components that consti-
tute a big part of total mass like cellulose, acid detergent
lignin, or water-soluble sugars can be used as proxies
for the initial proportion of litter mass in pools of differ-
ent decomposition rates. Unfortunately, not even half of
the studies in aridec reported initial lignin content for
each litter type. We managed to complete up to 48 % of
lignin content data by averaging across database entries
of the same species and by requesting data from TRY
database. To our surprise, we only found lignin values
for three out of the 236 litter types that we searched in
the TRY database. This leads us to suggest that not only
should authors measure and report these characteristics
of interest, but they should also contribute their data to
open-access databases from which other scientists can
benefit.
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