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At northern latitudes (>45° N), air temperatures are increasing 
rapidly, with winter temperatures rising faster than summer 
temperatures1. Warming is not spatially and seasonally uni-

form, with some areas of North America and Eurasia even experi-
encing cooling trends in the fall since the early 2000s despite annual 
warming2. Peatlands at northern latitudes store large amounts of 
organic carbon3 and are long-term carbon dioxide (CO2) sinks4,5 
exerting a global climate cooling effect6. However, the current peat-
land net CO2 sink strength is sensitive to warming7. Changes in net 
ecosystem exchange (NEE) of CO2 result from changes in photo-
synthesis and respiration. Rising air temperatures can enhance or 
decrease photosynthesis and respiration differently through direct 
temperature effects and through indirect effects on, for example, 
phenology, vegetation structure and water-table depth8–14. After 
snowmelt, low subsurface peat temperatures limit microbial activity 
and thus soil respiration15 while high light levels and water avail-
ability together with increasing air temperatures induce rapid onset 
of photosynthetic activity, particularly in Sphagnum mosses16,17. In 
the summer, ecosystem respiration in peatlands has been found 

to be dominated by autotrophic (plant) rather than heterotrophic 
(soil) respiration14, with the former probably being more sensitive 
to air temperature than to soil temperature variations. At the same 
time, increasing water-table depth can affect photosynthetic activ-
ity and respiration in peatlands18. Lower water tables probably have 
a negative effect on Sphagnum moss productivity and a negligible 
or positive effect on shrub productivity19 while warmer soils and 
enhanced oxygen availability in the peat profile can increase soil 
respiration20,21. Compared with spring, fall subsurface peat tem-
peratures are warmer22, contributing to enhanced soil respiration23 
while reduced light levels limit the positive effect of temperature on 
photosynthesis8. The resulting warming impact of combined pho-
tosynthesis and respiration responses on the peatland net CO2 sink 
strength and thus on globally important carbon-cycle feedbacks still 
remains elusive7,24.

Findings from a whole-ecosystem experiment suggest that peat-
land CO2 loss through respiration increases linearly with uniform 
year-round warming relative to ambient temperatures across a 
broad range of warming up to +9 °C, turning the peatland into a net 
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Peatlands have acted as net CO2 sinks over millennia, exerting a global climate cooling effect. Rapid warming at northern lati-
tudes, where peatlands are abundant, can disturb their CO2 sink function. Here we show that sensitivity of peatland net CO2 
exchange to warming changes in sign and magnitude across seasons, resulting in complex net CO2 sink responses. We use 
multiannual net CO2 exchange observations from 20 northern peatlands to show that warmer early summers are linked to 
increased net CO2 uptake, while warmer late summers lead to decreased net CO2 uptake. Thus, net CO2 sinks of peatlands in 
regions experiencing early summer warming, such as central Siberia, are more likely to persist under warmer climate conditions 
than are those in other regions. Our results will be useful to improve the design of future warming experiments and to better 
interpret large-scale trends in peatland net CO2 uptake over the coming few decades.
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CO2 source in response to even a moderate warming treatment25. 
By contrast, historical air-temperature records reveal seasonal dif-
ferences in warming trends2,26 (Extended Data Fig. 1) that are not 
mimicked in most warming experiments27. In the field, 12 years of 
in situ observations have shown that annual and growing-season 
means of meteorological variables are only weak predictors of inter-
annual variability of peatland NEE28. The weak relationships might 
be caused by small interannual temperature variability compared 
with warming experiments25, by seasonally varying and compensat-
ing effects of peatland NEE sensitivity to temperature29 or by com-
plex interactions with other environmental drivers (for example, 
water table influencing phenology)14. For example, increased net 
CO2 uptake in response to earlier snowmelt30–32 and to warmer air 
temperatures in the early growing season has been observed in some 
peatlands29,33,34. Other studies report decreased net CO2 uptake or 
even net CO2 loss during periods of drier conditions with lower 
water-table positions, particularly in the late growing season34–37. 
During these periods, warmer air temperatures and increased atmo-
spheric water demand38 often coincide with below-normal precipi-
tation inputs39. The highest net CO2 losses have been found during 
periods when low peatland water-table positions co-occurred with 
warm air temperatures and increased evapotranspiration38,40,41. 
Despite their crucial importance for vegetation productivity and 
ecosystem respiration, indirect evapotranspiration, precipitation 
and water-table impacts are often poorly captured in warming 
experiments37,42,43. In natural peatlands, the sensitivity of the CO2 
sink strength to warming results from the combined effects of direct 
and indirect warming responses. Their contributions to NEE varia-
tion are expected to vary between seasons and when combined with 
seasonally varying warming trends can lead to diverging changes 
in CO2 sink strength8,29. Thus, to better understand how seasonal 
warming responses contribute to peatland CO2 sink changes on 
decadal timescales, we require long-term, multiannual, in situ field 
observations at the ecosystem scale. The results of long-term studies 
can help to advance our understanding of peatland carbon-cycle–
climate feedbacks and can complement warming and water-table 
manipulation experimental plot-scale studies12.

This study aims to better understand how spatially and season-
ally heterogeneous warming affects the annual peatland net CO2 
sink. Our findings will help to determine whether peatlands will 
continue to exert a cooling impact on climate or will start exert-
ing a warming impact on the global climate system over the next 
few decades. To quantify the effect of warmer air temperatures on 
interannual variability in annual and seasonal NEE, we analyse 
in situ, multiannual (≥5 years), ecosystem-scale NEE observations 
obtained with the eddy covariance technique from 20 northern 
peatland sites (194 site-years; Fig. 1 and Supplementary Table 1). 
First, we compare sensitivity of annual NEE anomalies (differ-
ence from mean annual NEE during observation period) with 
annual air-temperature anomalies derived from field observations 
and from a whole-ecosystem warming experiment with uniform 
year-round warming treatments between +2.25 °C and +9 °C rela-
tive to ambient conditions. Second, we empirically derive mean 
temperature sensitivities of peatland NEE anomalies for six differ-
ent periods (early and late winter, spring, early and late summer, 
and fall classified on the basis of site-specific air-temperature sea-
sonality; Supplementary Fig. 1) using linear mixed-effect models 
and relate temperature sensitivities to underlying drivers, includ-
ing Enhanced Vegetation Index [EVI] as a proxy for vegetation 
productivity, water-table depth as a proxy for water availability 
and incoming short-wave radiation as a proxy for light availability/
photosynthetically active radiation. Third, we combine empirical 
monthly temperature sensitivities of NEE with monthly resolved 
observation-based air temperature change estimates (1981–2020 
versus 1951–1980) across northern latitudes (>45° N) to quantify 
the effect of seasonal differences in warming on decadal changes in 
the peatland net CO2 sink.

Weakly linked interannual NEE and temperature anomalies
Mean annual NEE across all sites was −52 ± 15 gC m−2 yr−1 (± stan-
dard error; n = 20; net CO2 uptake), which is similar to mean C 
accumulation rates over the past millennium derived from north-
ern peatland profiles (ranging between 3 and 80 gC m−2 yr−1) (ref. 4).  
Mean interannual variability in NEE (mean standard deviation) 
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Fig. 1 | Spatial distribution and climatic conditions of studied peatland sites. a, Map of northern peatland extent (>45° N; data from ref. 3) and location of 
multiannual (≥5 years) eddy covariance flux tower sites in northern peatlands (circles, squares and triangles). b, Mean annual air temperature and annual 
precipitation (1981–2010) across the 20 study sites (data from Climatic Research Unit (CRU) time series (TS) v.4.04). Squares, circles and triangles show 
sites in North America, Europe and Asia, respectively. Letters in a and b refer to sites listed in Supplementary Table 1.
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was 40 ± 5 gC m−2 yr−1 (± standard error; n = 20) and amounted to 
77% of mean annual NEE. Site means of annual net CO2 uptake 
decreased with increasing latitude (n = 20, r2 = 0.41, P < 0.01) with 
a slope of 5.4 gC m−2 yr−1 per degree latitude. However, site means 
of annual NEE were not related to mean annual air temperature 
(P = 0.42) or annual precipitation (P = 0.33). Instead, site means 
of annual net CO2 uptake increased with increasing mean annual 
short-wave incoming radiation (n = 20, r2 = 0.46, P < 0.01, slope = 
−2.2 gC m−2 yr−1 W−1 m2; radiation data from ref. 44), indicating light 
availability as an important control on latitudinal gradients in peat-
land net CO2 uptake as already found in palaeoecological studies4. 
Mean annual air temperature across the observation sites ranged 
between −3.3 °C and 9.8 °C, and mean annual precipitation ranged 
between 296 mm and 1,584 mm (Fig. 1 and Supplementary Table 1).  
Peak mean monthly net CO2 uptake was observed in June at 7 sites 
and in July at 13 sites. The timing of the largest mean monthly net 
CO2 loss occurred between October and May, with the majority 
of the sites experiencing maximum net CO2 loss in October and 
November (n = 11).

The largest interannual variability of monthly NEE was observed 
in July while the largest interannual variability in monthly air tem-
peratures was observed in December (Extended Data Fig. 2). Annual 
NEE anomalies across all sites and years were only weakly related to 
annual air-temperature anomalies (r2 = 0.09; P < 0.001; slope = 17.0 
(95% confidence interval (CI): 8.0–26.0) gC m−2 yr−1 °C−1; n = 142), 
indicating a slight decrease in net CO2 uptake with higher mean 
annual air temperatures (Fig. 2). By contrast, about 80% of the 
variance in annual NEE anomalies at a whole-ecosystem warming  

experiment in northern Minnesota25 (n = 15; P < 0.0001) was 
explained by mean annual air-temperature anomalies across 
years and warming treatments (slope = 24.6 (95% CI: 17.6–
33.5) gC m−2 yr−1 °C−1). At the warming experiment, the warming 
treatments resulted in a range of annual air-temperature anomalies 
more than twice as large (10.4 °C) than the natural interannual vari-
ability at the observation sites in this study (4.6 °C).

Seasonally asymmetric temperature responses of NEE
Relationships between monthly NEE and air-temperature anomalies 
changed over the course of the summer, with warmer early summers 
increasing net CO2 uptake and warmer late summers decreasing net 
CO2 uptake (Fig. 3a). During early and late winter, NEE response 
to warming was positive and small (<0.3 gC m−2 month−1 °C−1; that 
is, decreasing uptake with warming). Similarly, the shoulder sea-
sons (spring and fall) showed decreasing uptake with warming with 
larger intersite variability than during the winter (as indicated by 
the 95% CI of the fixed-effects coefficient estimates). By contrast, 
increased net CO2 uptake (negative regression slope) was observed 
for early summer months with –1.6 gC m−2 month−1 °C−1. The 
largest decrease in net CO2 uptake with positive air-temperature 
anomalies was observed for the late summer months, with 
+1.3 gC m−2 month−1 °C−1. NEE sensitivity to near-surface 
soil-temperature (<10 cm) anomalies showed similar seasonal pat-
terns as sensitivity to air-temperature anomalies (Supplementary 
Fig. 2), indicating that months with warmer air temperatures 
usually coincide with warmer near-surface soil temperatures 
(Supplementary Fig. 3). Differences in the magnitude of NEE 
responses could be explained by lower interannual soil-temperature 
variability compared with air temperature (Extended Data Fig. 3).  
For example, when warm air temperatures coincide with deep water 
tables, drier near-surface peat results in decreased soil thermal con-
ductivity45 and can attenuate heat transfer from the soil surface into 
the peat profile. The decreased heat transfer could explain lower 
interannual variability of soil temperature during the warmest 
months. The seasonal changes in NEE sensitivity highlight the con-
trasting responses across seasons, with warmer early summer con-
ditions favouring mainly increased net CO2 uptake, while warmer 
late summer conditions favour decreased net CO2 uptake.

NEE sensitivity to EVI and water-table-depth anomalies
Increasing net CO2 uptake with positive air-temperature anomalies 
in the early summer months coincided with the largest increase in 
net CO2 uptake with positive EVI anomalies (higher vegetation pro-
ductivity; Fig. 3b) while, in the later summer months, decreasing 
net CO2 uptake with positive air-temperature anomalies was related 
to decreasing uptake with deeper water-table positions (drier condi-
tions; Fig. 3c). At the same time, positive EVI anomalies still contrib-
uted to enhanced net CO2 uptake. This pattern indicates enhanced 
vegetation productivity with warming (Supplementary Fig. 6b) is 
probably contributing to increased net CO2 uptake in the early sum-
mer months while lower water tables are related to warmer air tem-
peratures (Supplementary Fig. 6c) and decreased CO2 uptake (Fig. 
3c) in the late summer months. The shift in controls is further sup-
ported by the lower EVI sensitivity to air-temperature anomalies in 
the late compared with the early summer months (Supplementary 
Fig. 6b). Monthly water-table depth was positively correlated with 
air temperature for the late summer months but not for the early 
summer months, indicating deeper water tables in warmer years 
later in the summer (Supplementary Fig. 6c). The decreasing net 
CO2 uptake with deepening water-table positions and with warmer 
air temperatures in the late summer months suggests that deeper 
water-table positions, and consequently a deeper oxic layer, lead to 
larger respiration rates and reduce the positive effect of warmer air 
temperatures on net CO2 uptake. Net CO2 uptake increased with 
positive incoming short-wave-radiation anomalies only in the fall 
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Fig. 2 | Relationship between annual air-temperature anomalies and 
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ref. 25). Solid lines show ordinary least squares regressions, and the dotted 
lines indicate 95% CIs.
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(Supplementary Fig. 4), indicating an enhanced net CO2 sink dur-
ing warm and cloudless fall periods, similar to previous findings for 
a peatland in northern Sweden46. However, NEE was not sensitive to 
incoming short-wave-radiation anomalies during spring and sum-
mer (absolute sensitivities of <0.03 gC m−2 month−1 (W m−2)−1 com-
pared with –0.14 gC m−2 month−1 (W m−2)−1 in the fall). Similarly, 
reduced terrestrial CO2 uptake during periods with reduced light 
availability in the late growing season has also been shown for other 
northern ecosystems47. Overall, we show that EVI, water-table 
depth and incoming short-wave radiation probably contribute to 
a large fraction of the observed NEE sensitivity to air-temperature 
anomalies. Their contributions vary throughout the seasons,  
with water-table depth being more important during the late sum-
mer months when vegetation productivity is usually light limited 
and warmer and drier soils favour high ecosystem respiration 
rates8,48. During the early summer months, EVI represents a major 
control on interannual NEE variability, probably due to enhanced 
gross primary productivity with warming-induced earlier vegeta-
tion greening9.

Seasonal warming differences and peatland NEE responses
Seasonal warming trends have a substantial impact on estimated 
peatland NEE changes across northern latitudes (Fig. 4). We linked 
the monthly resolved temperature sensitivity of NEE (Extended 
Data Fig. 4) to monthly resolved observed warming between the 
periods 2001–2020 and 1951–1970 (Extended Data Fig. 1). NEE 
sensitivity to air-temperature anomalies shows a seasonal hysteresis, 
indicating differing peatland NEE responses to early summer warm-
ing compared with late summer warming (Extended Data Fig. 4 and 
Fig. 3a). When assuming seasonally uniform warming (same warm-
ing rate across all seasons), estimated changes in NEE scale linearly 
with warming rates, indicating a small decrease in peatland net CO2 
uptake between 1 and 12 gC m−2 yr−1 (or 2–23% of current net CO2 
uptake) across the entire study area (Fig. 4b,d). When accounting 
for seasonally varying warming, the relationship between estimated 
change in annual peatland NEE and mean annual air-temperature 
change is more complex. The average decrease in net CO2 uptake 
is approximately 30% smaller (with 4.6 gC m−2 yr−1) than for sea-
sonally uniform warming (with 6.6 gC m−2 yr−1; Figs. 4a,c and 5). 
In some regions, such as central Siberia, where the largest early 
summer and smallest late summer warming is observed (Extended 

Data Fig. 1), our simulation suggests the smallest NEE changes 
(<0.5 gC m−2 yr−1) despite annual warming rates of about 2 °C  
(Fig. 4c). There, increased net CO2 uptake occurring with warming 
in early summer months approximately balances losses occurring 
with warming in late summer and winter months, which is sup-
ported by in situ NEE observations32. The largest differences were 
observed for regions experiencing more than 2 °C of June (early 
summer) warming (Extended Data Fig. 5) where the decrease in net 
CO2 uptake was about 60% lower for seasonally varying warming 
(with 3.6 gC m−2 yr−1) than for seasonally uniform warming (with 
9.1 gC m−2 yr−1). By contrast, in areas with less than 1 °C of June 
warming, the decrease in net CO2 uptake is similar between season-
ally varying warming (with 4.6 gC m−2 yr−1) and seasonally uniform 
warming (with 4.2 gC m−2 yr−1). Accounting for seasonally varying 
warming is therefore crucial to accurately estimate future changes 
in peatland NEE.

Our results highlight how seasonally varying warming interacts 
with seasonally varying peatland NEE responses to temperature and 
how it contributes to interannual variability in peatland CO2 sink 
strength under current climate conditions. Understanding peatland 
CO2 sink responses to warmer air temperatures now and in more 
extreme futures is crucial to assess the efficacy of peatland restora-
tion and conservation efforts and their potential to mitigate anthro-
pogenic CO2 emissions49,50. Peatland restoration can be an effective 
climate mitigation strategy only if their net CO2 sink function can be 
maintained in the future under the pressure of climate change. On 
decadal timescales, regions in the northern latitudes that experience 
pronounced early summer warming (for example, Central Siberia) 
appear to be more resilient to climate warming regarding their peat-
land net CO2 uptake function (Fig. 4c). At the same time, peatlands 
in regions that are susceptible to increasing aridity during the late 
summer months may experience decreasing net CO2 uptake or even 
net CO2 loss (Fig. 3c). However, on longer timescales from decades 
to centuries, when temperatures are expected to exceed the current 
historical records, changes in the net CO2 sink strength may be non-
linear due to slower changes in ecosystem processes and structure 
such as plant and microbial species and trait composition adjust-
ing to new climate conditions4. Contemporary NEE observations or 
short-term manipulation experiments (<10 years) probably cannot 
capture these slow changes51. Similar to peatlands, other boreal and 
temperate ecosystems have been found to experience increased net 
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Fig. 3 | Sensitivities (regression slopes) between (ΔNEE) and environmental drivers in different seasons. a–c, Slopes of ΔNEE versus air-temperature 
anomalies (ΔTa) (a), ΔNEE versus EVI anomalies (ΔEVI) (b) and ΔNEE versus water-table-depth anomalies (ΔWTD; positive ΔWTD indicates a deeper 
water table) (c) as derived from a linear mixed-effects regression model for six periods. Error bars show 95% CIs of estimated slope parameters, and bold 
circles indicate statistical significance at ɑ ≤ 0.05. Mean NEE values are represented by the grey scale.

Nature Climate Change | VOL 12 | August 2022 | 743–749 | www.nature.com/natureclimatechange746

http://www.nature.com/natureclimatechange


ArticlesNaTuRE ClimaTE CHangE

CO2 uptake in response to warmer spring and early-growing-season 
temperatures and decreased uptake with warming in the late grow-
ing season and the related reductions in water availability and 
enhanced water stress52–58. In addition, atmospheric CO2 concen-
tration records have shown that since the late 1990s peak grow-
ing season, net CO2 uptake across northern latitudes is increasing 

with warmer air temperatures in the region59. We demonstrate 
that peatland NEE responses to interannual temperature variabil-
ity show similar seasonal patterns. The results may partly explain 
why Siberia contributes more strongly to the increasing seasonal-
ity of atmospheric CO2 concentration than North America over 
recent decades60. To better understand net CO2 uptake responses of 
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northern peatland ecosystems, a concerted effort to continue exist-
ing observations of peatland NEE and to expand current coverage 
in regions of enhanced spring and early summer warming, such as 
central Siberia, is urgently needed. To conclude, we show that in 
addition to seasonal variations in peatland NEE response to warm-
ing, seasonal differences in warming itself play an important role for 
future changes in the northern peatland net CO2 sink.
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Methods
Field- and satellite-based observations. In this study, we analysed multiannual 
(≥5 years) monthly NEE observations obtained with the eddy covariance technique 
at 20 northern peatland sites (n = 2171 site-months; Supplementary Table 1  
(ref. 61)). Gap-filled NEE time series were synthesised from the literature and from 
open-access eddy covariance flux databases and were directly provided by flux 
tower principal investigators (Supplementary Table 1). NEE observations were 
aggregated to monthly totals for this study. Here we use the micrometeorological 
sign convention that negative NEE indicates net ecosystem CO2 uptake and 
positive NEE indicates net ecosystem CO2 loss to the atmosphere.

Air temperature (n = 2,166 site-months) and water-table depth (n = 1,325 
site-months) were measured at the flux tower sites and were aggregated into 
monthly means. Monthly NEE, air-temperature and water-table-depth data 
from the literature were either directly extracted from tables or extracted 
using the online platform WebPlotDigitizer, version 4.1 (https://automeris.io/
WebPlotDigitizer). In addition, we extracted mean annual air temperature and 
precipitation (1981–2010) from the gridded CRU TS v.4.05 climate database 
(0.5° x 0.5°) (ref. 62) for each flux tower location (Supplementary Table 1 and Fig. 1).

Satellite-based monthly EVI (n = 2,159 site-months) was taken from the 
MODIS (moderate-resolution spectroradiometer) vegetation indices 16-day 
MOD13Q1 product (250 m resolution63) and used as a proxy for vegetation 
productivity64. The MOD13Q1 product covers the period 2000–2020, overlapping 
with most (>99%) of the NEE observation periods.

NEE responses to experimental warming and interannual variability. We 
compared the relationship between annual NEE and annual mean air-temperature 
anomalies from 16 northern peatland sites with ≥5 years of year-round 
observations (n = 142 site-years) with the relationship between annual NEE 
and annual mean air-temperature anomalies (n = 15) from a whole-ecosystem 
warming experiment in a forested bog in Minnesota, USA (data from ref. 25). 
NEE anomalies for each peatland site were derived by subtracting the mean of the 
entire observation period at the specific site from the annual NEE values. At the 
warming experiment site, net ecosystem productivity was calculated by subtracting 
heterotrophic respiration from the sum of above-ground net primary productivity 
of trees, shrubs and Sphagnum mosses and below-ground net primary productivity. 
NEE was then taken as minus net ecosystem productivity in accordance with the 
micrometeorological sign convention. The warming experiment dataset covered 
the years 2016–2018 (1–3 years after warming began) for five different temperature 
treatments. Air- and soil-temperature treatments included +0 °C, +2.25 °C, 
+4.5 °C, +6.75 °C and +9 °C, and temperature differentials were applied uniformly 
throughout the year relative to ambient temperatures. Only data from treatments 
with ambient CO2 concentrations were used in this study. Air-temperature and 
NEE anomalies were derived by subtracting the mean air temperature and NEE of 
the +0 °C treatment for the years 2016–2018, respectively.

NEE sensitivity to environmental drivers. We estimated NEE sensitivities to air 
temperature, water-table depth, vegetation productivity and incoming short-wave 
radiation anomalies for six different periods. Here we define sensitivities as the 
relationship between anomalies of monthly NEE sums and anomalies in the 
monthly mean of the respective explanatory variable. Periods were defined on 
the basis of standardized mean monthly air-temperature seasonality. For each 
site, the mean annual air temperature was subtracted from the mean monthly 
air temperatures and then divided by the standard deviation of monthly air 
temperatures to make seasonality comparable between sites with different 
temperature amplitudes (Supplementary Fig. 1). Spring and fall were defined for 
each site as the first and last months with a standardized air temperature above 
0 °C, respectively. Early and later winter were defined as the months between fall 
and the month before minimum air temperature was reached and between the 
month with minimum air temperature and spring, respectively. Similarly, early 
and late summer were defined as the months between spring and the month before 
maximum air temperature was reached and between the month with maximum 
air temperature and fall, respectively. Snowmelt and snow onset dates could not 
be used to define periods since sites in Ireland and the United Kingdom did not 
experience an extended snow-cover period. To estimate NEE sensitivities for each 
period, we applied linear mixed-effects models using the fitlme and fixedEffects 
functions in Matlab (R2016a, TheMathWorks). The models were fitted to each 
response variable separately to characterize seasonal changes in NEE sensitivity 
to different driver variables. First, for each variable, monthly anomalies were 
derived by subtracting for each site the mean variable value for the corresponding 
month from the respective variable values. Second, the anomalies dataset was 
divided into the six different periods as described in the preceding. Last, for each 
period, a linear mixed-effects model was separately fitted for NEE anomalies, with 
fixed effects for monthly air temperature, water-table depth, EVI or incoming 
short-wave radiation anomalies and uncorrelated random effect for intercept 
and air temperature, water-table depth, EVI or incoming short-wave radiation 
anomalies grouped by site (similar to ref. 65). Uncertainty intervals shown in  
Fig. 3 represent lower and upper 95% CIs for the respective fixed-effect coefficients. 
Water-table depth was available only for 18 sites, and water-table-depth time series 
for most sites were discontinuous, due mainly to winter soil frost.

Northern-latitude warming and simulated NEE responses. We used a historical 
gridded climate dataset to characterize seasonal differences in air-temperature 
warming rates across northern latitudes. Only areas with estimated peatland 
coverage of more than 5% were analysed (peatland extent data from ref. 3). 
Monthly warming rates were calculated as the difference between mean monthly 
air temperatures for the periods 1951–1970 and 2001–2020 (data from CRU 
TS v.4.061). Spatial resolution of the dataset was 0.5° × 0.5° and covered all land 
areas north of 45° N for this study. Mean monthly NEE temperature sensitivities 
across all peatland sites were derived by fitting linear mixed-effects models (see 
the preceding) to each month (Extended Data Fig. 4). To quantify the effect 
of seasonally varying warming on peatland NEE responses, the monthly NEE 
temperature sensitivity was multiplied by the warming rate for each month and 
grid cell. Annual NEE changes were then derived by summing monthly NEE 
changes from January to December. To quantify the effect of seasonally uniform 
warming, the monthly NEE temperature sensitivity was multiplied by the mean 
annual warming rate for each month and grid cell and then summed to annual 
NEE changes. To account for uncertainties in NEE sensitivity estimates, we ran a 
Monte Carlo simulation 1,000 times, randomly sampling for each run and for each 
month from a normal distribution around the mean monthly NEE sensitivities 
with a standard deviation equal to the standard error of the sensitivity estimate 
(derived using the fixedEffects function in Matlab (R2016a, TheMathWorks)). 
Then we took the median of the 1,000 NEE change estimates and compared 
median estimates from seasonally uniform and seasonally varying warming rates.

We note that this study analyses interannual variability over periods between 5 
and 20 years. Decadal to centennial peatland NEE responses to continued warming 
are expected to be driven by long-term changes in vegetation structure and 
composition66,67, which might not be fully captured by our analysis of interannual 
variability51. In addition, we tested whether the derived monthly NEE sensitivities 
to air-temperature anomalies are sensitive to the length of the observational 
time series. We found that seasonal patterns in NEE sensitivity are similar when 
comparing sensitivities derived only from sites with time series longer than 7 years 
(n = 11; Supplementary Table 1), derived from 5 yr subsets from all sites and 
derived from the full dataset (Supplementary Fig. 5).

Data availability
Monthly data used in this study can be accessed through the corresponding 
author’s GitHub repository61 (https://github.com/manuelhelbig/PeatlandNEE) and 
is available from the corresponding author upon request.

Code availability
All MATLAB code used in this study is made available through the corresponding 
author’s GitHub repository61 (https://github.com/manuelhelbig/PeatlandNEE). The 
software used to generate all results in this study is MATLAB 2016a.
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Extended Data Fig. 1 | Seasonal air temperature changes across northern latitudes. Warming rates across northern latitudes between 1951-1970 and 
2001-2020 for (a) winter [January to March], (b) spring [April to June], (c) summer [July to September], and (d) fall [October to December] (data: CRU 
TS v4.061).
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Extended Data Fig. 2 | Interannual variability of net ecosystem CO2 exchange and air and soil temperature. Mean interannual variability in (a) net 
ecosystem CO2 exchange (NEE) and (b) air and soil temperature across 20 peatland sites. Interannual variability is shown as the standard deviation of 
monthly NEE and air and soil temperature. Shaded areas show the standard error of the interannual variability across all sites.
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Extended Data Fig. 3 | Seasonal relationships between environmental drivers and air temperature. Estimated fixed effect (that is, monthly air 
temperature) slopes in linear mixed-effects regression models of (a) incoming shortwave radiation, (b) enhanced vegetation index [EVI], and (c) water 
table depth with sites as random effect. Linear mixed effect models are fitted separately to each period. Error bars show 95% confidence intervals of 
estimated slope parameters and black circles indicate statistical significance at ɑ ≤ 0.05.
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Extended Data Fig. 4 | Monthly relationships between air temperature and net ecosystem CO2 exchange. Monthly estimated fixed effect (that is, 
monthly air temperature [Ta]) slopes in linear mixed-effects regression models of monthly net ecosystem CO2 exchange (NEE) with sites considered as 
random effect. Asterisks indicate the level of statistical significance (* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001). The error bars represent the 95% confidence 
intervals of the estimated slope parameters.
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Extended Data Fig. 5 | Differences between seasonally varying and uniform warming impacts on net ecosystem CO2 exchange. Differences in estimated 
change in annual peatland net ecosystem exchange (ΔNEE) between the period 1951 to 1970 and 2001 to 2020 resulting from seasonally varying and 
seasonally uniform warming for areas with ≥ 5% peatland extent. Green areas indicate larger net CO2 loss for seasonally uniform warming and brown 
areas indicate smaller net CO2 loss for seasonally uniform warming.
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