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A B S T R A C T   

Microbial communities are a critical component of the soil carbon (C) cycle as they are responsible for the 
decomposition of both organic inputs from plants and of soil organic C. However, there is still no consensus about 
how to explicitly represent their role in terrestrial C cycling. The objective of the study was to determine how the 
molecular and energetic properties of readily available organic matter affect the metabolic activity of the resi-
dent microbial communities in soils. This was achieved by cross-amending six soils, taken from woodland and 
grassland sites along an urban pressure gradient, with organic matter extracted from the same six soils and 
measuring heat dissipated due to the increase in microbial metabolic activity. The energetic properties of the 
organic matter were used to estimate a potential energetic return on investment (ROI) that microbial commu-
nities could obtain from the transformation of the organic matter. Specifically, the ROI was calculated as the ratio 
between the total net energy available (ΔE) and the weighted average standard state Gibbs energies of oxidation 
half reactions of organic C (ΔG◦

Cox). ΔE was measured as the heat of combustion using bomb calorimetry. ΔG◦
Cox 

was estimated using the average nominal oxidation state of C (NOSC) of the molecular species in the organic 
matter. The overall metabolic activity of microbial communities was positively related to the potential energetic 
return on investment but no significant relationship was found with the molecular diversity of organic matter. 
The temporal differences in metabolism across soils indicate that bacterial communities do not exploit the po-
tential energetic return on investment in the same way: the suburban grassland communities responded more 
rapidly and the suburban woodland communities more slowly to the organic matter additions than the other 
communities. The urban gradient did not affect the properties of the molecular or energetic properties of the 
organic matter nor the response of the microbial communities to the organic matter additions. However, the 
organic matter from the grassland soils caused soils to dissipate 36.4% more heat than organic matter from the 
woodland soils. The metabolic response was also more rapid after the addition of grassland organic matter: the 
time taken for half the heat to be dissipated was 6.4 h after the addition of grassland organic matter and 6.1 h 
after the addition of woodland organic matter. Overall, our results suggest that microbial communities prefer-
entially use organic matter with a high potential energetic return on investment, i.e. organic molecules that do 
not require high cost associated with catalysis whilst yielding a high net energetic benefit.   

1. Introduction 

The mineralisation of soil organic C by microbial decomposers 

releases approximately 6 times the amount of CO2 to the atmosphere 
than do anthropogenic emissions (Ballantyne et al., 2017). Therefore, 
even small changes in this flux can have significant effects on future 

Abbreviations: ROI, Energetic return on investment; ΔE, Heat of combustion; NOSC, Nominal oxidation state of carbon; ΔG◦
Cox, Standard state Gibbs energies of 

oxidation half reactions of organic carbon. 
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atmospheric CO2 levels. There is a general consensus that microbial 
access to substrate, organic matter association with mineral surfaces and 
anaerobic conditions all constrain microbial decomposition of soil 
organic matter and contribute to organic C persistence in soil (von 
Lützow et al., 2006; Dignac et al., 2017; Keiluweit et al., 2017). The 
hierarchy of involvement of these mechanisms in regulating organic C 
persistence is also believed to change as a function of soil physico-
chemical properties (Rasmussen et al., 2018). However, whilst these 
mechanisms explain why organic C remains in soil over the longer term, 
they are less useful for understanding decomposition rates in microbial 
activity hotspots, which have been estimated to account for the majority 
of CO2 emissions from soils (Kuzyakov and Blagodatskaya, 2015). 

Microbial hotspots are sites with significantly higher microbial ac-
tivity than the surrounding bulk soil, examples of which are the rhizo-
sphere or the detritusphere (Kuzyakov and Blagodatskaya, 2015). They 
differ from the bulk soil in that there is a non-limiting supply of organic 
substrate for the period of existence of the hotspot (Kuzyakov and Bla-
godatskaya, 2015). When there is ample supply of substrate, the abiotic 
constraints on microbial activity are negligible and the decomposition of 
organic C is more likely to be related to the intrinsic properties of the 
microbial decomposers and the properties of the available organic 
matter. Carbon processing by microbial communities depends on the 
type of microbial metabolism and the energetic requirements of the 
cellular processes present (LaRowe and Amend, 2015; Smeaton and Van 
Cappellen, 2018). This affects both CO2 emissions and the production of 
different forms of organic C, which might result in different levels of C 
persistence in soil (Sokol and Bradford, 2019). Recent evidence also 
suggests that the taxonomic composition and diversity of the microbial 
communities affect how substrate C is processed in soil (Saifuddin et al., 
2019; Domeignoz-Horta et al., 2020). For example, the energetic re-
quirements for synthesizing cellular biomass can vary by up to four 
orders of magnitude, depending on cell size and environmental condi-
tions (LaRowe and Amend, 2016). Therefore, there may be thermody-
namic constraints on microbial metabolic activity. 

The nature of the organic C being consumed also has some bearing on 
how, and the rates at which, it is processed. It has generally been 
assumed that the thermodynamic properties of substrate (i.e. the energy 
required to activate the oxidation of electron donors) do not influence 
microbial respiration under aerobic conditions because the availability 
of oxygen as a terminal electron acceptor means that sufficient energy is 
produced for ATP generation. However, in sediments it has been shown 
that microbial respiration can indeed be related to the thermodynamic 
properties of organic matter under certain conditions (Garayburu-Car-
uso et al., 2020). In soils, it has long been established that organic 
substrates stimulate microbial activity to a greater or lesser extent, 
depending on their nature (Enwall et al., 2007) and concentration 
(German et al., 2011). The microbial carbon use efficiency (i.e. the 
amount of microbial biomass-C produced per unit organic C consumed) 
is similarly related to the molecular nature of the substrate (Bölscher 
et al., 2017; Jones et al., 2018). However, the organic matter that is 
available to decomposers in soil displays a high degree of molecular 
heterogeneity (Swenson et al., 2015) and the effects of heterogeneous 
substrate on microbial activity is, as yet, unclear (Jones et al., 2018). 
Microorganisms acquire resources from outside the cell and, in doing so, 
incur an energetic cost associated with the production of extracellular 
enzymes and membrane transport proteins (Nunan et al., 2020). There 
is, therefore, a greater metabolic cost associated with the acquisition of 
heterogeneous resources due to the necessary production of a broader 
range of enzymes and uptake apparatuses, which would be expected to 
lower the cellular biomass yield and increase CO2 emissions (Allison 
et al., 2014). However, individual microorganisms have a limited sub-
strate range (Nunan et al., 2020) and increases in substrate heteroge-
neity are therefore likely to lead to increases in the diversity of 
community members consuming the substrates. The metabolic cost is 
shared by a greater proportion of the community and the cost incurred 
by individual microorganisms does not necessarily increase. 

The ultimate outcome of microbial processing of heterogeneous 
organic substrate depends upon the return on investment that microbial 
decomposers obtain when acquiring resources in soil (Lehmann et al., 
2020). The idea that the return on investment plays a significant role in 
the dynamics of C in soil has been proposed on repeated occasions in the 
literature (Schimel and Weintraub, 2003; Rovira et al., 2008; Allison 
et al., 2010; Barré et al., 2016; Wutzler et al., 2017; Williams and Plante, 
2018). Whilst this is conceptually appealing, there is no empirical evi-
dence of energetic return on investment being related to the microbial 
decomposition of organic substrate in soils. The energetic return on 
investment can be defined as the efficiency of energetic investments and 
can be calculated by dividing the net energetic benefit by the direct cost 
of metabolic pathways involved in the transformation of organic sub-
strates by microorganisms. Therefore, it should be possible to estimate 
the energetic return on investment using empirical thermodynamic, 
kinetic and physiological data in metabolic network models (Jin and 
Bethke, 2003; Niebel et al., 2019). However, the empirical data required 
to parametrise such models are not available for the large diversity of 
organic compounds (Noor et al., 2012), enzymes (Davidi and Milo, 
2017) and microorganisms found in soil (Cavalier-Smith, 2010; Henry 
et al., 2016). This explains why the empirical evidence about the dy-
namics of C response to soil microbial energetics has been rather thin on 
the ground. 

Heterotrophic microbial cells derive energy to produce ATP from the 
oxidation of organic matter. Soil organic matter containing carbon 
atoms that are more reduced on average tend to require a higher energy 
for their electrons to be removed and their carbon-carbon bonds to be 
cleaved (Weber, 2002; Bar-Even et al., 2012a, b; Jinich et al., 2018). 
They have higher Gibbs free energy for the oxidation half reactions of 
organic carbon, on a C-mole basis (ΔG◦

Cox) (LaRowe and Van Cappellen, 
2011). The ΔG◦

Cox therefore indicates an approximation of the actual 
energy that microbial communities must invest in order to oxidize the 
organic matter. 

Based on this rational, we propose an experimental approach to es-
timate a potential energetic return on investment that microbial de-
composers can acquire from the transformation of organic matter. The 
metric is determined as the ratio between the total energy available in 
the organic substrate (ΔЕ) and the ΔG◦

Cox of the molecular species 
contained in the organic matter. We estimated the ΔG◦

Cox using the 
nominal oxidation state of carbon (NOSC), which was deduced from the 
elemental composition of the molecular species (LaRowe and Van 
Cappellen, 2011; Willems et al., 2013). We determined the ΔЕ by bomb 
calorimetry (Harvey et al., 2016). 

The objective of the study was to determine how the potential return 
on investment available to microbial communities is related to their 
metabolic activity in response to added organic matter. We also aimed to 
determine how properties of the organic matter (composition, molecular 
or energetic heterogeneity) and of the resident soil microbial commu-
nities (community structure) affect this relationship. In order to achieve 
this we used six soils, taken from woodland and grassland sites along an 
urban pressure gradient. The soluble organic matter of woodland soils is 
known to contain larger molecules than that arable or grassland soils, 
whereas grassland soluble organic matter contains more smaller mole-
cules, such as amino acids and carbohydrates (Chantigny, 2003). 
Furthermore, urban pressure has been shown to affect microbial 
decomposition of organic matter, with labile organic material being 
decomposed more rapidly and more recalcitrant material more slowly in 
urban environments (Kotze and Setälä, 2022). This difference may be 
due to the fact that urban management practices select for copiotrophic 
organisms (Thompson and Kao-Kniffin, 2019). 

Our hypotheses were that: i) the organic matter from the woodland 
soils is less decomposed than the organic matter from the grassland soils 
because it is composed of larger molecules that require a greater in-
vestment from microbial decomposers; ii) the urban pressure gradient is 
positively related to microbial processing of the organic matter due to 
more copiotrophic microbial communities; iii) the molecular 
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heterogeneity of the added organic matter is negatively related to mi-
crobial activity, due to the higher cost involved in metabolizing more 
heterogeneous organic matter; iv) the greater the estimated potential 
energetic return on investment available to microbial decomposers in 
organic matter, the greater the metabolic activity. 

2. Materials and methods 

2.1. Experimental design 

Our experiment was achieved by cross-amending six soils with excess 
soluble organic matter extracted from the same six soils and measuring 
the heat dissipated due to the increase in microbial metabolic activity 
(Fig. 1). The excess organic matter was added in order to create condi-
tions that were similar to what might be found in activity hotspots. The 
composition of the organic matter amendments was determined using 
ultra high resolution mass spectrometry and the elemental composition 
of each molecular species in the organic matter amendments was used to 
estimate the nominal oxidation state of carbon (NOSC) of the molecular 
species, from which the ΔG◦

Cox were calculated (LaRowe and Van 
Cappellen, 2011). The organic matter heterogeneity was estimated as 
the diversity of molecular compounds and as the diversity of NOSC 
present in the organic matter. In order to determine how different mi-
crobial communities affect the relationship between energetic return on 
investment and microbial activity, we also measured the taxonomic 
composition of the communities in each of the six soils (Fig. 1). 

2.2. Soil and soluble organic matter 

Soils were sampled in June 2016 from six sites (Table S1), associated 
with two land-use types (woodland or grassland), along an urban pres-
sure gradient (rural, suburban and urban areas) (Foti et al., 2017). Here, 
woodland is used to describe wooded areas and grassland is used to 
describe public parks with grass cover. These soils were chosen based on 
the results from a previous study (Foti et al., 2017) on the same sites 
where variations in soil texture, pH and total phosphorus content were 
observed (Table S1). Therefore, we expected them to harbor a range of 

soluble organic matter compositions and microbial communities. Three 
subsamples were taken from the surface 10 cm after removal of the litter 
layer. The inter-subsample distance was at least 5 m. The soil was then 
sieved (< 2 mm), mixed and one portion was stored at 4 ◦C until water 
soluble OM was extracted (within two weeks of sampling) and 
freeze-dried. The freeze-dried material was then analysed for total C and 
N. The remainder of the freeze dried material was stored in sealed, dark 
containers until analysis by ultra high resolution mass spectrome-
try/bomb calorimetry or re-solubilised and used to amend the soils in 
the isothermal calorimetric experiment (see below). Another portion of 
soil was stored at − 20 ◦C for up to 10 weeks. The frozen soil was used for 
characterizing the bacterial communities and the isothermal calori-
metric experiment (see below). 

Water-soluble organic matter was extracted in triplicate by shaking 
soil samples with H2OmQ (1:10 soil:water) at 60 ◦C for 30 min and 
subsequently centrifuging the soil suspension (5250×g) for 10 min at 
4 ◦C (Nkhili et al., 2012). The supernatant was filtered through glass 
fiber filters (pore size 0.7 μm, Sartorius). The filtrate was freeze-dried 
and the resulting material was stored at room temperature in the dark. 
The total organic C and total N content of the soluble organic matter and 
of the soils were determined using an elemental analyser that had been 
calibrated with tyrosine (Tables S1 and S2). Prior to analysis, the inor-
ganic carbon of the soluble organic matter was removed by acid fumi-
gation (Harris et al., 2001). 

2.3. Molecular and energetic analysis of soluble organic matter 

The total energy available in the soluble organic matter was 
measured as the heat of combustion with bomb calorimetry (Harvey 
et al., 2016). The instrument was a Parr Oxygen Bomb Calorimeter 6300 
M20609 (Parr instruments Moline, Illinois, USA). Calibration samples 
were always measured first with Benzoic Acid standardized for bomb 
calorimetry (Parr no. 3415, CAS.reg 65-85-0). Measurements were not 
replicated because the maximum variation that has been previously 
observed when duplicates were analysed was found to be 1.5% (data not 
shown). Values for heat of combustion (ΔE) were converted into J 
mmol− 1 C. There was insufficient sample to reliably measure the ΔE for 

Fig. 1. Conceptual representation of the experi-
mental design. (a) Six soil organic matter solutions 
containing different molecular profiles but the same 
quantity of organic C were added cross-wise to 6 soils 
(central panel). The soils harboured distinct bacterial 
communities (top left panel). The metabolic re-
sponses of microbial communities to the addition of 
soluble organic matter were determined as heat 
dissipation (wavy arrows) dynamics during a 24 h 
period (top right panel). The total energy content 
(ΔE) was measured by bomb calorimetry (bottom left 
panel) and ΔG◦

Cox was estimated from the molecular 
composition of substrates determined using Fourier 
transform ion cyclotron resonance mass spectrometry 
(bottom right panel). (b) The potential energetic re-
turn on investment (ROI) was calculated as the ratio 
between ΔE and the weighted average ΔG◦

Cox.   
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the soluble organic matter of rural woodland soil. 
The molecular composition and diversity of the soluble organic 

matter was measured by ultra high resolution mass spectrometry prior to 
the heat dissipation experiment. These data were then used to derive the 
NOSC of the molecular species contained in the different soluble organic 
matter (LaRowe and Van Cappellen, 2011). 

Ultra high resolution electrospray ionization Fourier-transform ion 
cyclotron resonance (ESI FT-ICR) mass spectra were acquired on a 
Bruker SolariX XR hybrid quadrupole-ICR mass spectrometer (Bruker 
Daltonics, Bremen, Germany). ESI FT-ICR is equipped with Paracell™ 
dynamic harmonization, an actively shielded 7 T superconducting 
magnet and an electrospray ionization (ESI) source (Bruker). Freeze- 
dried soluble organic matter was first solubilised in 25% MeOH, and 
75% high quality grade and ultrapure water in order to prevent reaction 
of compounds in solution (McIntyre and McRae, 2005). The samples 
were diluted 30 fold in water/methanol (50/50 v:v) and infused 
continuously at a flow rate of 2 μl min− 1 in positive ionization mode at 4 
kV. Nitrogen was used both as drying gas at a flow rate of 4 l min− 1 and 
nebulizing gas at a pressure of 1 bar. The temperature of the source was 
kept at 200 ◦C. Mass spectra were recorded over a mass range of m/z 
50–1000 targeting a resolution of 0.5–2M according to m/z. External 
calibration was always performed prior to sample analysis using the 
G24221A Tuning Mix calibration standard from Agilent Technologies 
(Santa Clara, CA). This was done by setting a signal-to-noise ratio equal 
to 3, reaching accuracy values lower or equal to 700 ppb. The spectra 
were acquired with a time domain of 16 megawords and twenty scans 
for fifty ms were accumulated for each mass spectrum. A control sample 
containing only the solvent mixture (water/methanol (50/50 v:v) was 
systematically analysed and the resulting spectrum was subtracted from 
the spectra of the subsequent sample analysed. Data processing was 
done using Compass Data Analysis 4.1 (Bruker). 

The assignment of molecular formulae from the detected mass-to- 
charge ratio (m/z) was performed using the TRFu algorithms (Fu 
et al., 2020) (version: TRFuFTMSopen07122020). The following for-
mula assigning parameters were employed: the maximum mass error 
(Δmc = 1010 ppb), 0.3 = H/C ≤ 2.5, 0 < O/C ≤ 1.25, 4 = C ≤ 50, 0 ≤
13C ≤ 1, N ≤ 5, P ≤ 1, S ≤ 3, singly charged ions in positive mode 
(max_charge = 1), - 0.5 < double bond equivalent (min_DBE), the 
maximum intensity derivation of 13C isotopic peak compared with the 
theoretical value is 30% (tol_br = 30), no execution of the DBE-O rule 
(AquaDOM = 0). The resulting neutral molecular formulae were clas-
sified into biochemical categories using a multidimentional stoichio-
metric compound classification approach (Rivas-Ubach et al., 2018). 

The NOSC was calculated from the neutral molecular formula esti-
mated from each mass-to-charge ratio detected according to LaRowe 
and Van Cappellen (2011).  

NOSC = 4 – [(4C + H − 3N − 2O + 5P − 2S) / C]                            (1) 

where C, H, N, O, P and S refer to the stoichiometric number of carbon, 
hydrogen, nitrogen, oxygen, phosphorus and sulphur atoms per molec-
ular formula. This equation assumes the oxidation states of the atoms (C 
= + 4, H = + 1, N = - 3, O = - 2, N = - 3, P = + 5 and S = - 2) and the 
neutrality of organic molecules. 

Based on the molecular composition and diversity of the soluble 
organic matter, we deduced the composition and diversity of the NOSC 
from the elemental composition of the molecular species present in the 
soluble organic matter (LaRowe and Van Cappellen, 2011). Diversity 
indices of soluble organic matter were estimated using the richness and 
the effective Simpon index of the molecular formulae and NOSC (Jost, 
2007; Lagkouvardos et al., 2017). 

The sum of the intensity weighted NOSC of each soluble organic 
matter was calculated as follows:  

Sum of the intensity weighted NOSC = Σ (NOSC × RINOSC)                 (2) 

where RINOSC is the relative intensity of each NOSC in the mass spectra. 

It has been shown that the NOSC is correlated with the standard state 
Gibbs energies of oxidation half reactions of organic compounds 
(ΔG◦

Cox) (LaRowe and Van Cappellen, 2011). As the ΔG◦
Cox of each 

molecular formula is additive, the bulk ΔG◦
Cox of each soluble organic 

matter was calculated in J mmol− 1 of C at 25 ◦C, 100 kPa as follows:  

ΔG◦
Cox = 60.3–28.5 × Sum of the intensity weighted NOSC                 (3) 

The energetic return on investment (ROI) that microbial de-
composers can potentially extract in aerobic condition during the 
transformation of the soluble organic matter was calculated as follows:  

ROI = ΔE / ΔG◦
Cox                                                                         (4) 

where ΔE is the total net energy available (determined by bomb calo-
rimetry) and ΔG◦

Cox is the standard state Gibbs energy of oxidation half 
reaction of organic C (determined using ESI FT-ICR-MS); both entities 
are in J mmol− 1 of C. We assume that ΔG◦

Cox is proportional to the 
change in Gibbs energy associated with the oxidation of organic mole-
cules in non standard conditions (where the actual activities of all re-
actants, the pH and the ionic strength in soils that have received the 
different soluble organic matter are taken into account) (Amend and 
LaRowe, 2019). 

2.4. Soil microbial metabolic response to additions of soluble organic C 

In order to determine the metabolic response of different microbial 
communities to a range of heterogeneous organic matter, we cross 
amended the six soils with re-solubilised organic matter from each of the 
soils and measured microbial metabolic activity by isothermal calo-
rimetry for 24h (Fig. 1). All treatment combinations were carried out in 
quadruplicate (n = 6 soils × 7 treatments × 4 replicates = 168 samples) 
and they were analysed in a random sequence. Prior to the calorimetric 
experiment the soils were incubated for 4 days at 25 ◦C and at a matric 
potential of − 0.033 MPa in order to standardise the conditions in the 
soils. The experiment was setup by placing aliquots of soil (5 g dry 
weight equivalent) into 22 ml glass reaction vessels. The organic matter 
solutions (0.1 ml; 0.3 mg Corg g− 1 soil dry weight) or H2OmQ (control 
condition) were then added drop-wise. The reaction vessels were sealed 
with a lid (acid proof stainless steel with O-ring seal) and set carefully 
inside a TAM Air isothermal calorimeter (TA Instruments Sollentuna, 
Sweden) with a thermostat set to 25 ◦C. Heat dissipation (μW g− 1 soil dry 
weight) was measured continuously for 24 h. Heat dissipation data was 
chosen as a measurement of the microbial metabolic response because it 
gives a more complete and robust measurement of microbial activity 
than do CO2 emissions (Herrmann et al., 2014). Heat dissipation mea-
surements during the first hour were discarded as the signal was affected 
by the disturbance of the experimental setup. The heat dissipation due to 
microbial metabolism of the added organic matter was determined by 
subtracting the heat dissipation in the H2OmQ treatment. 

2.5. Soil bacterial community analysis 

The bacterial community structure was analysed after extraction of 
soil DNA, amplification and sequencing of the V3–V4 region encoding 
for the 16S rRNA sequences. Prior to the heat dissipation experiment, 
the initial bacterial communities in the six soil samples were analysed in 
triplicate. However, the sequencing quality was insufficient to reliably 
measure the bacterial community composition for one of the replicates 
of the suburban grassland soil. 

Total DNA was extracted from the 0.5 g soil samples (wet weight) of 
each site with a FastPrep-24 bead beating system (MP Biomedicals, 
Solon, OH, USA) in combination with a FastDNA Spin kit (MP Bio-
medicals, Solon, OH, USA) according to the manufacturer’s instructions. 
Total DNA was purified by elution through a GeneClean Turbo column 
(MP Biomedicals, Solon, OH, USA) according to the manufacturer’s in-
structions. Concentration of the resulting cleaned DNA was determined 
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Fig. 2. Heat dissipation patterns from soils after the addition of 0.3 mg soil organic carbon. (a) Rural woodland, (b) suburban woodland, (c) urban woodland, (d) 
rural grassland, (e) suburban grassland, and (f) urban grassland soils. Each curve depicts the mean (n = 4) heat dissipation after subtraction of the mean heat 
dissipation in control soils that only received water. The grey envelopes around the curves are the standard deviations. 
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using a fluorometer (Qubit®dsDNA HS) (data not shown). 
The sequencing was carried out by MrDNA-Molecular Research 

(www.mrdnalab.com, Shallowater, TX, USA) as follows. First, the 
V3–V4 variable region encoding for the 16S rRNA sequences was 
amplified using the primers 341F-785R (with barcode on the forward 
primer), using the HotStarTaq Plus Master Mix Kit (Qiagen, USA) under 
the following conditions: 94 ◦C for 3 min, followed by 28 cycles of 94 ◦C 
for 30 s, 53 ◦C for 40 s and 72 ◦C for 1 min, after which a final elongation 
step at 72 ◦C for 5 min was performed. After amplification, PCR products 
were checked in 2% agarose gel to determine the success of amplifica-
tion and the relative intensity of bands. After library preparation, Illu-
mina Miseq sequencing (2*250 bp) was performed following the 
manufacturer’s guidelines. The raw sequence data were processed using 
MR DNA analysis pipeline. In summary, reads were merged and barc-
odes were removed after trimming. Sequences <150bp and sequences 
with ambiguous base calls were then removed. The sequence data were 
then processed using the DADA2 package (Callahan et al., 2016) 
(version 1.16.0). Sequences were filtered using the function filter-
AndTrim() with default parameters and the maximum number of ex-
pected errors allowed in a read (maxEE) equal to 2. Amplicon sequence 
variants (ASVs) were generated with default settings and chimeras were 
removed. Final ASVs were taxonomically classified using the function 
assignTaxonomy() against the reference dataset Silva version 138.1 (htt 
ps://www.arb-silva.de/documentation/release-1381/). Nucleotide se-
quences of ASVs were aligned with MAFFT (Katoh and Standley, 2013) 
(version 7.48) and a phylogenetic tree was inferred using FastTree (Price 
et al., 2010) (version 2.1.3) with the GTR + CAT model and the gamma 
option. ASVs that matched the kingdom of Archaea and Eukaryotes 
(Chloroplast and Mitochondria) were removed. A total of 783,187 reads 
were thus obtained. 

To account for variable sequencing depths, the abundance table was 
rarefied to the minimum sequencing depth (27,929 reads) among all 
samples using the rarefy_even_depth() function in phyloseq package 
(McMurdie and Holmes, 2013) (version 1.32.0). The differences in the 
bacterial community composition among soils were determined using 
weighted UniFrac distance matrices with the UniFrac() function. The 
weighted UniFrac distance takes into account both the phylogenetic 
relationship of ASVs and their respective number of reads. Bacterial 
communities were compared by hierarchical clustering of weighted 
UniFrac distances using the Unweighted Pair Group Method with 
Arithmetic mean (UPGMA) with the hclust() function. 

The web-based server MicFunPred (http://micfunpred.microdm.net. 
in/) was used to estimate the functional profiles of the bacterial com-
munities. MicFunPred minimizes false-positive results in comparison to 
other approaches (Mongad et al., 2021). As a result 5994 KEGG 
Orthologues (KO) were predicted based on the bacterial ASV sequences 
and the non-rarefied ASV abundance table. A KO abundance table was 
then used as input to the web-server MicrobiomeAnalyst in the section 
shotgun data profiling (Chong et al., 2020). The default options for low 
count and low variance filters were used: KO identifiers with at least 4 
counts in 20% of samples were kept. KO identifiers with variances based 
on an inter-quantile range below 10% were filtered out. The remaining 
5004 KO were scaled using total sum scaling. In order to identify the 
more abundant KO between soils bacterial communities, differential 
abundance analysis of KO identifier, using a classical univariate anal-
ysis, was followed by an enrichment analysis based on the globaltest 
algorithm (Goeman et al., 2004). The average number of 16S rRNA gene 
copies within each of the soil bacterial communities was estimated using 
the predicted number per genus in MicFunPred and calculating the 
weighted average based on the samples’ relative abundance table. 
Where there were no predicted 16S rRNA gene copy number, a value of 1 
was assumed. 

2.6. Statistical analyses 

Rstudio (Version 1.3.1073 - © 2009–2020 Rstudio, Inc) (RStudio 

Team, 2015. RStudio: Integrated Development for R. RStudio, Inc., 
Boston, MA, USA) was used for all statistical analysis and plots. Data 
were transformed to ensure normality and homogeneity of variances 
where necessary. Non-parametric tests were carried out with the ARTool 
package (Wobbrock et al., 2011) (version 0.10.7) when transformations 
did not result in normality. Differences between groups were determined 
when relevant by pairwise comparisons of the least-square means using 
adjusted P-values (Tukey - implementated in the “emmeans” library 
(Lenth, 2016) version 1.5.0). 

The relationships between heat dissipation profiles and the molec-
ular formulae composition of organic matter or the microbial commu-
nity composition were assessed using Mantel tests on the respective 

Fig. 3. Variables describing the heat dissipation curves. (a) Time elapsed for 
half the total amount of heat to be dissipated, and (b) total heat dissipation. 
Each symbol depicts the mean ± one standard deviation (n = 4) after sub-
traction of the mean heat dissipation in control soils that only received water. 
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distance matrix with the package vegan (Oksanen et al., 2014) (version 
2.6–6) and ade4 (Chessel et al., 2004) (version 1.7–15). 

3. Results 

3.1. Temporal and hierarchical pattern of microbial activity in soils 

There were clear differences in the dynamics of heat dissipation due 
to microbial activity among soils and organic matter (Fig. 2). The shape 
of the curves (i.e. the heat dissipation dynamics) tended to depend on 
the soil and there was a hierarchy of heat dissipation that depended on 
the organic matter added. The heat dissipation was generally highest 
when soils received urban or rural grassland organic matter and lowest 
when soils received rural or suburban woodland organic matter. 

We further characterised the heat dissipation profiles using a com-
bination of two variables: the time elapsed for half the total amount of 
heat to be dissipated and the total heat dissipation, describing, respec-
tively, the dynamics of heat dissipation and the overall soil microbial 
activity (Fig. 3). There were significant differences (P < 0.001) in the 
time elapsed for half the total amount of heat to be dissipated (Fig. 3a), 
with the suburban woodland soil showing relatively late heat dissipation 
and the suburban and rural grassland soils showing early heat dissipa-
tion. The variations in dynamics were also dependent on the organic 
matter added (P < 0.001), but to a lesser extent. Furthermore, there was 
an interaction between soils and organic matter (P < 0.001), suggesting 
that the changes in metabolic response to the organic matter additions 
were not constant across soils (Table 1). The grassland organic C stim-
ulated significantly (P = 0.011; Student’s t-test) more rapid microbial 
activity than the woodland organic matter (Fig. 3a), but there was no 
effect of the urban pressure gradient. 

No significant differences in the overall microbial activity were 
apparent between soils (Fig. 3b). However, within each soil, there was a 
significant hierarchy related to the origin of the organic matter added. 
The hierarchy was consistent across soils, with the urban grassland 
organic matter always resulting in higher total heat dissipation (P <
0.001) and the rural woodland organic matter producing the lowest 
dissipation of heat (P < 0.001) (Figs. 2 and 3). Furthermore, the total 
heat dissipation in response to grassland OM additions was significantly 
greater than that after the addition of woodland OM (Fig. 3b). This 
suggests that the composition of the organic matter affected the overall 
metabolic response, regardless of the properties of the soils or of the 
resident microbial decomposers. 

None of the abiotic soil properties (e.g. pH, texture, phosphate 
content) were significantly linearly correlated with microbial activity 
after the addition of organic matter. 

3.2. Composition of microbial communities and organic matter 

The composition of the soil microbial communities with the most 
rapid metabolic response to the organic matter addition (suburban 
grassland) contained the highest proportion of Bacteroidia, while the 

communities with the slowest response (suburban woodland) had the 
lowest proportion of Bacteroidia (Fig. 4). The relative abundances of 
Alphaproteobacteria and Actinobacteria were highest in the suburban 
woodland, while the proportion of Gammaproteobacteria was highest in 
soils in which heat dissipation occurred rapidly after OM additions. 
There was a significant negative relationship between the time elapsed 
for half the total amount of heat to be dissipated and the predicted 
average 16 rRNA gene copy number within the community (Fig. S1). 
Furthermore, the prediction of the functional profiles (KEGG 

Table 1 
Results of statistical analyses of the two variables that characterised the heat dissipation profiles. Abbreviation: organic matter (OM).  

Variables Test Parameter Degree of 
freedom 

Test 
Statistic 

P-value 

Time elapsed for half the total amount of heat 
to be dissipated 

Analysis of Variance of Aligned Rank 
Transformed Data 

Soil 5 F =
186.4989 

<2.22 ×
10− 16 

OM 5 F = 18.1379 4.9705 ×
10− 13 

interaction OM: Soil 25 F = 6.3925 3.2681 ×
10− 12 

Total heat dissipation Two-way analysis of variance (ANOVA) OM (log-transformed data) 5 F = 273.271 <2 × 10− 16 

Soil (log-transformed data) 5 F = 15.734 1.29 × 10− 11 

interaction OM: Soil (log- 
transformed data) 

25 F = 2.003 0.00774  

Fig. 4. Differences in bacterial community composition between soils. (a) Hi-
erarchical clustering of weighted UniFrac distances of rarefied ASVs data using 
the Unweighted Pair Group Method with Arithmetic mean (UPGMA), and (b) 
taxonomic profiles (at the class level) labeled by soil were ordered based on 
their position in the UPGMA phenogram. 
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orthologues) based on the taxonomic composition indicated that the 
microbial communities that had the earliest heat dissipation phase (the 
suburban and rural grassland soils; Fig. 3a) were enriched in pathways 
for the degradation of aromatic compounds (Fig. S2), whereas the soil 
with the slowest heat dissipation dynamics (the suburban woodland) 
was enriched in starch and sucrose metabolism (Fig. S3). 

The organic matter from each of the soils was composed of the same 
compound classes in roughly the same proportions (Fig. S4), but the 
compositional profiles (Fig. S5) and diversities of molecular formulae 
(Table 2) were different. The number of molecular formulae in each 
organic matter ranged from 1896 in the urban woodland to 2147 in the 
suburban woodland. There were no significant differences in the number 
of molecular formulae between woodland and grassland organic matter. 
This translated into different NOSC profiles (Fig. 5) and diversities of 
molecular formulae and NOSC (Table 2). The median NOSC values of the 
organic C from all the soils were negative, ranging between − 0.35 in the 
urban woodland and − 0.14 in the rural grassland. The NOSC profiles of 
the organic C from the urban woodland and the rural grassland were 
significantly different (P = 0.015; Kolmogorov-Smirnov test). The 
richness of NOSC ranged from 534 in the urban woodland to 699 in the 
suburban woodland and the suburban grassland (Table 2). There were 
no significant differences in NOSC richness between woodland and 
grassland soil organic matter and NOSC richness was not affected by 
urban pressure (data not shown). None of the soil properties measured 
were related to NOSC richness, with the exception of total P content, 
which showed a significant negative relationship (Fig. S6). 

3.3. Relationships between heat dissipation, microbial and organic matter 
profiles 

We then determined the extent of the relationship between the heat 
dissipation dynamics with either the composition of soil bacterial 
communities or with the composition of the added organic matter, using 
Mantel tests. These showed that dynamics of heat dissipation were more 
closely related to bacterial community composition than to the 
composition of the organic matter (Table 3). The suburban woodland 
soil not only had the slowest heat dissipation dynamics, but also showed 
the most divergent bacterial community composition (Fig. 4). 

None of the metrics used to describe the organic matter (molecular or 
NOSC profiles and diversities) were related to the heat dissipation dy-
namics nor to the overall heat dissipation. The organic matter energy 
contents was significantly positively related to the total heat dissipated 
in three of the soils (Fig. S7) and the intensity weighted average mo-
lecular formulae C:N ratios was significantly negatively related to the 
total heat dissipation in five of the soils (Fig. S8). The intensity weighted 
average molecular formulae C:N ratios of the grassland organic were 
significantly lower than those of the woodland organic matter (Fig. S8; 
Table 2). 

3.4. Energetic return on investment (ROI) of water-soluble organic matter 

There were strong, significant positive relationships between the 
potential energetic return on investment that soil microorganisms can 
obtain when processing the organic matter and the overall heat dissi-
pation, across all the six soils (Fig. 6). The potential ROI that could be 
obtained from grassland OM was always higher than in the woodland 
OM. 

4. Discussion 

4.1. Factors controlling microbial transformation of organic matter 

It has been suggested that microbial decomposition of available 
organic matter is controlled by the quality (composition, energy con-
tent) of the organic matter (Kallenbach et al., 2015; Takriti et al., 2018) 
or by the properties of the microbial communities themselves (Strick-
land et al., 2009; Fraser et al., 2016; Nunan et al., 2017). This study 
suggests that total decomposition is dependent on the energetic prop-
erties of the available organic matter and that the decomposition dy-
namics depend on the properties of the microbial communities. In view 
of the effects that soil properties have on microbial communities (Liu 
et al., 2018; Rasmussen et al., 2018; Suriyavirun et al., 2019), they might 
be expected to also affect the decomposition of the added organic 
matter. This was not the case however. None of soil properties measured 
(pH, texture, P content, total organic C content, total N content) were 
significantly correlated with the indices of heat dissipation. The lack of 
relationship may be due to the fact that the soil properties did not vary 
widely and therefore would not have had differential effects on micro-
bial responses to organic matter additions. 

The grassland soil organic matter tended to be decomposed more 
rapidly by microbial communities across soils and resulted in higher 
total activity, meaning that the first hypothesis was accepted. The results 
confirm what is known from the literature which suggests that grassland 
organic matter contains more labile forms than woodland soil organic 
matter (Chantigny, 2003). Furthermore, the C:N ratios of the grassland 
organic matter were lower than those of the woodland organic matter, 
suggesting that soils receiving woodland organic matter may have been 
N limited. However, the total heat dissipation was always more closely 
related to the potential ROI (Fig. 6) than to the intensity weighted 
average molecular formulae C:N ratios of the organic matter additions 
(Fig. S8), suggesting that it is the energetic properties of the organic 
matter additions that determined total heat dissipation rather than the N 
content. 

4.2. Temporal pattern of microbial activity in soil 

The data presented here suggest that the dynamics of organic matter 
consumption is more related to the taxonomic composition of bacterial 
communities than to the composition of the substrate, at least in the case 
of short-term dynamics where abiotic constraints are reduced. 

Table 2 
Diversity and energetic return on investment indices of water-soluble organic matter. Abbreviations: nominal oxidation state of carbon (NOSC), heat of 
combustion (ΔE), standard state Gibbs energies of oxidation half reactions of organic compounds (ΔG◦

Cox), potential energetic return on investment (ROI).  

Soluble Organic 
matter 

Molecular formulae NOSC ΔE (J mmol− 1 of 
C) 

Sum of the intensity weighted 
NOSC 

ΔG◦
Cox (J mmol− 1 

of C) 
ROI (ΔE/ 
ΔG◦

Cox) Richness Simpson 
effective 

Richness Simpson 
effective 

Rural Woodland 2007 139 641 52 NA - 0.30 68.75 NA 
Suburban 

Woodland 
2147 82 699 34 542.41 - 0.44 72.88 7.44 

Urban Woodland 1896 57 534 27 567.46 - 0.47 73.65 7.70 
Rural Grassland 1978 119 682 44 572.25 - 0.16 64.99 8.81 
Suburban 

Grassland 
1914 75 632 38 555.20 - 0.33 69.80 7.95 

Urban Grassland 2011 136 699 55 672.46 - 0.23 66.91 10.05  
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Furthermore, the urban pressure gradient did not influence the dy-
namics of heat dissipation which led us to reject the second hypothesis. 
It should be noted that the range of soil properties in this study was 
limited. Had it been greater, then microbial activity might have been 
differentially constrained by some of these properties (e.g. soil pH, 
nutrient availability), thus changing the relationships observed here. 

There are a number of possible explanations for the differences in 
metabolic dynamics displayed by the microbial communities. 

The first possible explanation is that the microbial communities in 
soils that responded rapidly to the addition of organic matter had 
different life history strategies (i.e. the tradeoffs between growth, sur-
vival and reproduction) from those in soils that responded more slowly. 

Fig. 5. Distribution of the relative intensities of nominal oxidation state of carbon (NOSC) in water-soluble organic matter (OM). (a) Rural woodland, (b) suburban 
woodland, (c) urban woodland, (d) rural grassland, (e) suburban grassland, and (f) urban grassland soluble OM. A Kolmogorov-Smirnov test on the NOSC data of 
each soluble organic matter indicated that the distribution of NOSC from the urban woodland was significantly different from that of the rural grassland (D = 0.090, 
P = 0.015). 
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The soils with more rapid heat dissipation dynamics harboured higher 
relative abundances of Bacteroidia and Gammaproteobacteria, both of 
which are recognised to contain many copiotrophs (Fierer et al., 2007; 
Shrestha et al., 2007). Copiotrophs generally contain a greater number 
of rRNA operon copies than oligotrophs (Fierer et al., 2007), which al-
lows them to respond rapidly to resource pulses and to thrive under 
resource replete conditions (Li et al., 2019; Langer et al., 2004). 
Alphaproteobacteria and Actinobacteria, both of which were relatively 
abundant in the soil with the slowest heat dissipation dynamics, are 
known to be dominated by phylotypes with low 16S rRNA operon copy 
numbers (DeAngelis et al., 2015; Shrestha et al., 2007). Lower 16S rRNA 
operon copy numbers in cells tends to lead to a slower microbial growth 
rates in response to pulses of resources (Li et al., 2019). 

The second possible explanation is that metabolic pathways (i.e. the 
sequence of chemical reactions catalyzed by enzymes) are distinct at the 
community level. Here, the prediction of the functional profiles (KEGG 
orthologues) based on the taxonomic composition suggested that there 
were indeed contrasting metabolic pathway profiles. Metabolic path-
ways associated with lower enzyme demand can allocate free energy to 
other cellular processes (Flamholz et al., 2013; Wortel et al., 2018), such 
as growth, thus driving the observed temporal variation in microbial 
activity across soils in our study. However, this avenue would have to be 
investigated further. 

A third possible explanation is that the size of the microbial biomass 
was greater in the soils that responded more rapidly to the additions of 
organic matter. The size of the soil microbial biomass has been previ-
ously shown to impact the dynamics of soil respiratory responses (Fraser 
et al., 2016). Although we did not measure the microbial biomass, the 
lack of relationship between heat dissipation and the organic C content 
of the soils suggests that the size of the microbial biomass was not a 
factor in determining the temporal patterns of microbial activity. The 
microbial biomass of soil is generally closely related to the organic C 
content (Anderson and Domsch, 1989). 

4.3. Hierarchical pattern of microbial activity in soils 

Our data suggest that neither the composition of the organic matter, 
the overall energy availability, nor the diversity of molecular com-
pounds and NOSC, directly determine the overall metabolic response of 
microbial communities when consuming organic matter. This may be 
viewed as a surprising conclusion to come to, as the oxidation of 

molecular species with higher NOSC is more favorable from a thermo-
dynamic point of view (LaRowe and Van Cappellen, 2011). However, 
microbial communities have to make metabolic investments (e.g. pro-
duction of enzymes and transport proteins) in order to acquire resources 
(Smith and Chapman, 2010; Malik et al., 2020) and the magnitude of 
these investments depends on both the composition of the organic 
matter that is available (Allison and Vitousek, 2005; LaRowe and 
Amend, 2016) and the composition of the microbial biomass (LaRowe 
and Amend, 2016). The metabolic response of microbial decomposers is 
therefore likely to be related to the energetic return on investment that 
they get from the available organic resources rather than the overall 
energy availability or the molecular diversity. This implies that the 
metabolic response is more likely to be related to a combination of the 
overall energy availability and the ease with which it can be used by 
microbial communities. 

The absence of a correlation between microbial heat dissipation and 
molecular diversity or NOSC (Fig. 3 and Table 3) led us to reject the third 
hypothesis, namely that the molecular heterogeneity of the added 
organic matter would be negatively related to microbial metabolism. 
This suggests that microbial communities did not incur additional costs 
associated with substrate diversity. This may be because the microbial 
communities were able to maintain a sufficiently large range of catabolic 
pathways to consume the diverse substrate available. The lack of a 
relationship tends to contradict the suggestion by Lehmann et al. (2020) 
that the persistence of soil organic matter can be explained by its mo-
lecular heterogeneity. These authors suggest however, that it is low 
concentrations of heterogeneous organic matter that limit decomposi-
tion. The concentrations used in this experiment were likely much 
higher than those that were proposed to lead to organic C persistence. 

4.4. Energetic return on investment (ROI) 

The highly significant relationships between the potential energetic 
return on investment and the actual heat dissipation across all of the 
soils confirms the results of Garayburu-Caruso et al. (2020) and allows 
us to accept the fourth hypothesis of the study, namely that the greater 
the estimated potential energetic return on investment available to mi-
crobial decomposers in organic matter, the greater the metabolic ac-
tivity. What might the biological mechanisms underlying this 
relationship be? In order to acquire energy during the mineralisation of 
organic C, decomposers must first remove electrons from the substrates 
and, the higher the ΔG◦

Cox of the organic matter, the more energy is 
required to remove them (LaRowe and Van Cappellen, 2011). We sug-
gest that the higher energetic costs associated with removing such 
electrons translate into higher metabolic costs for microbial de-
composers (Fig. 1). The extra metabolic costs may be due to the need to 
produce enzymes in greater quantity (Noor et al., 2016), to make use of 
additional cofactors (Sousa et al., 2020) or to produce enzymes with 
larger catalytic domains (Arcus et al., 2016). Arcus et al. (2016) sur-
veyed a range of enzymes (hydrolases, esterases, decarboxylases, 
isomerases) and found that, within each enzyme group, larger enzyme 
catalytic domains were required to catalyse more difficult reactions (i.e. 
slower reactions when not in the presence of enzymes). Protein syn-
thesis, including the synthesis of enzymes, is a major component of 
microbial cells’ energy expenditure (Lane and Martin, 2010). Therefore, 
any increase in the number or size of enzymes required to catalyse a 
reaction is likely to lead to increased metabolic costs to microbial cells. 

It is interesting to note that although there was a relationship be-
tween the thermodynamic favorability of organic substrate and micro-
bial respiration in sediments under C limiting conditions, this was not 
the case when C was not limiting (Garayburu-Caruso et al., 2020). The 
authors suggested that N limitation regulated respiration under these 
conditions. Although the availability of N may have affected microbial 
activity here, their was no relationship between the total N availability 
in the added organic matter, measured as the C:N ratio by an elemental 
analyser (Table S2), and the overall heat dissipation suggesting that N 

Table 3 
Mantel tests of heat dissipation profiles with soil bacterial taxonomic composi-
tion or with water-soluble organic matter molecular composition. Abbrevia-
tions: organic matter (OM).  

Dissimilarity indices Dissimilarity indices of heat 
dissipation profilesc 

Mantel 
R 

P- 
value 

Soil bacterial taxonomic 
compositiona 

Rural woodland OM 0.9180 0.01 
Suburban woodland OM 0.8671 0.07 
Urban woodland OM 0.9068 0.02 
Rural grassland OM 0.8881 0.07 
Suburban grassland OM 0.8864 0.11 
Urban grassland OM 0.8972 0.07 

Soluble OM molecular 
compositionb 

Rural woodland soil 0.5174 0.13 
Suburban woodland soil 0.2879 0.22 
Urban woodland soil 0.5515 0.08 
Rural grassland soil 0.4398 0.12 
Suburban grassland soil 0.6014 0.08 
Urban grassland soil 0.5959 0.09  

a Weighted UniFrac dissimilarity index calculated with rarefied ASVs data 
between each soil. 

b Bray-Curtis dissimilarity index calculated with normalised FT-ICR-MS data 
between each organic matter. 

c Bray-Curtis dissimilarity indices calculated with normalised heat dissipation 
rates data for either from one organic matter between each soil or from one soil 
between each organic matter. 
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Fig. 6. Relationships between the total heat dissipation and the potential energetic return on investment of water-soluble organic matter. (a) Rural woodland, (b) 
suburban woodland, (c) urban woodland, (d) rural grassland, (e) suburban grassland, and (f) urban grassland soils. Each symbol represents the mean ± one standard 
deviation of the total heat dissipated (n = 4). Differences were determined using a two-way ANOVA and pairwise comparisons of the least-squares means using 
adjusted P-values (Tukey). 
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limitation was not a major factor. 
The data suggest that, when microbial activity is not constrained by 

other factors (e.g. N availability, physical access to substrate), then it is 
related to the amount of energy available in substrate and the ease with 
which the energy can be extracted by microbial decomposers. In other 
words, the overall microbial activity is related to the forms of energy 
available to microbial communities. 

4.5. Potential contribution to modelling C dynamics 

The metabolic cost associated with the consumption of different 
types of organic substrate is implicitly represented in the continuum of C 
qualities model (Bosatta and Ågren, 1999). The model assumes that 
more energy dense organic substrates, or high-energy compounds, are 
processed through longer metabolic pathways. As each additional step 
in a metabolic pathway requires additional enzymes, the metabolic cost 
is increased (Niebel et al., 2019). However, the model is empirical rather 
than explicit and therefore cannot account for the interactions between 
organic substrate and decomposer. By incorporating the concept, using 
metrics such as those proposed here, it may be possible to better account 
for the effects of both microbial and organic matter changes on soil C 
dynamics. 

4.6. Potential limits of the study 

One of the underlying assumptions of the study is that there were 
aerobic conditions throughout incubations, thus ensuring that oxygen 
was the terminal electron acceptor. Were the conditions anaerobic, then 
other terminal electron acceptors (e.g. nitrate, pyrolusite (MnO2), 
goethite (FeOOH), sulfate) would have been used and the net energy 
available to the microbial communities from the oxidation of the organic 
matter would have been lower than the maximum potential energy 
resulting from aerobic respiration (ΔE) estimated by bomb calorimetry. 
This is due to the fact that lower amounts of energy are released during 
the reduction of terminal electron acceptors others than oxygen (Amend 
and LaRowe, 2019). Although oxygen levels were not measured during 
the incubation, it is safe to assume that the conditions remained aerobic. 
The incubations were quite short and the soil moisture levels were 
optimal for aerobic activity. 

5. Conclusion 

The major conclusion to be drawn from this study is that soil C dy-
namics can only be fully understood through the prism of interactions 
between organic substrate and microbial decomposers. Contrasting 
microbial communities displayed relatively large variations in heat 
dissipation dynamics, while the energetic properties of the organic 
substrate affected the total metabolic response. We therefore propose 
that the potential energetic return on investment microbial community 
can achieve when transforming soil organic matter is a relevant indi-
cator for predicting total microbial activity in hotspots. The potential 
energetic return on investment that microbial communities could ach-
ieve when consuming the added organic matter did not depend on the 
urban pressure gradient or on the land-use type. As a result, neither the 
urban pressure gradient nor the land-use type affected the total micro-
bial activity in response to the organic matter amendments. However, 
these results would need to be confirmed with a broader set of soils. 
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Saifuddin, M., Bhatnagar, J.M., Segrè, D., Finzi, A.C., 2019. Microbial carbon use 
efficiency predicted from genome-scale metabolic models. Nature Communications 
10, 3568. https://doi.org/10.1038/s41467-019-11488-z. 

Schimel, J.P., Weintraub, M.N., 2003. The implications of exoenzyme activity on 
microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology 
and Biochemistry 35, 549–563. https://doi.org/10.1016/S0038-0717(03)00015-4. 

Shrestha, P.M., Noll, M., Liesack, W., 2007. Phylogenetic identity, growth-response time 
and rRNA operon copy number of soil bacteria indicate different stages of 
community succession. Environmental Microbiology 9, 2464–2474. https://doi.org/ 
10.1111/j.1462-2920.2007.01364.x. 

Smeaton, C.M., Van Cappellen, P., 2018. Gibbs energy dynamic yield method (GEDYM): 
predicting microbial growth yields under energy-limiting conditions. Geochimica et 
Cosmochimica Acta 241, 1–16. https://doi.org/10.1016/j.gca.2018.08.023. 

Smith, D.R., Chapman, M.R., 2010. Economical evolution: microbes reduce the synthetic 
cost of extracellular proteins. mBio 1. https://doi.org/10.1128/mBio.00131-10 
e00131-00110.  

Sokol, N.W., Bradford, M.A., 2019. Microbial formation of stable soil carbon is more 
efficient from belowground than aboveground input. Nature Geoscience 12, 46–53. 
https://doi.org/10.1038/s41561-018-0258-6. 

Sousa, S.F., Calixto, A.R., Ferreira, P., Ramos, M.J., Lim, C., Fernandes, P.A., 2020. 
Activation free energy, substrate binding free energy, and enzyme efficiency fall in a 
very narrow range of values for most enzymes. ACS Catalysis 10, 8444–8453. 
https://doi.org/10.1021/acscatal.0c01947. 

Strickland, M.S., Lauber, C., Fierer, N., Bradford, M.A., 2009. Testing the functional 
significance of microbial community composition. Ecology 90, 441–451. https://doi. 
org/10.1890/08-0296.1. 

Suriyavirun, N., Krichels, A.H., Kent, A.D., Yang, W.H., 2019. Microtopographic 
differences in soil properties and microbial community composition at the field 
scale. Soil Biology and Biochemistry 131, 71–80. https://doi.org/10.1016/j. 
soilbio.2018.12.024. 

Swenson, T.L., Jenkins, S., Bowen, B.P., Northen, T.R., 2015. Untargeted soil 
metabolomics methods for analysis of extractable organic matter. Soil Biology and 
Biochemistry 80, 189–198. https://doi.org/10.1016/j.soilbio.2014.10.007. 

Takriti, M., Wild, B., Schnecker, J., Mooshammer, M., Knoltsch, A., Lashchinskiy, N., 
Eloy Alves, R.J., Gentsch, N., Gittel, A., Mikutta, R., Wanek, W., Richter, A., 2018. 
Soil organic matter quality exerts a stronger control than stoichiometry on microbial 
substrate use efficiency along a latitudinal transect. Soil Biology and Biochemistry 
121, 212–220. https://doi.org/10.1016/j.soilbio.2018.02.022. 

Thompson, G.L., Kao-Kniffin, J., 2019. Urban grassland management implications for soil 
C and N dynamics: a microbial perspective. Frontiers in Ecology and Evolution 7, 
315. https://doi.org/10.3389/fevo.2019.00315. 
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