
Citation: Vaudour, E.; Gholizadeh,

A.; Castaldi, F.; Saberioon, M.;
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Abstract: There is a need to update soil maps and monitor soil organic carbon (SOC) in the upper
horizons or plough layer for enabling decision support and land management, while complying with
several policies, especially those favoring soil carbon storage. This review paper is dedicated to the
satellite-based spectral approaches for SOC assessment that have been achieved from several satellite
sensors, study scales and geographical contexts in the past decade. Most approaches relying on pure
spectral models have been carried out since 2019 and have dealt with temperate croplands in Europe,
China and North America at the scale of small regions, of some hundreds of km2: dry combustion
and wet oxidation were the analytical determination methods used for 50% and 35% of the satellite-
derived SOC studies, for which measured topsoil SOC contents mainly referred to mineral soils,
typically cambisols and luvisols and to a lesser extent, regosols, leptosols, stagnosols and chernozems,
with annual cropping systems with a SOC value of ~15 g·kg−1 and a range of 30 g·kg−1 in median.
Most satellite-derived SOC spectral prediction models used limited preprocessing and were based on
bare soil pixel retrieval after Normalized Difference Vegetation Index (NDVI) thresholding. About one
third of these models used partial least squares regression (PLSR), while another third used random
forest (RF), and the remaining included machine learning methods such as support vector machine
(SVM). We did not find any studies either on deep learning methods or on all-performance evaluations
and uncertainty analysis of spatial model predictions. Nevertheless, the literature examined here
identifies satellite-based spectral information, especially derived under bare soil conditions, as an
interesting approach that deserves further investigations. Future research includes considering the
simultaneous analysis of imagery acquired at several dates i.e., temporal mosaicking, testing the
influence of possible disturbing factors and mitigating their effects fusing mixed models incorporating
non-spectral ancillary information.
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1. Introduction

Conventional high-resolution soil maps are static and often based on obsolete data in
relation to their current application [1–3]. Hence, there is an urgent need to update soil map
information and monitor soil properties regularly for enabling decision support and land
management, while complying with global policies such as the sustainable development
goals of United Nations (UN), land neutrality target of the UN Framework Convention
on Climate Change—Intergovernmental Panel on Climate Change (UNFCC-IPCC), or
the “Caring for Soil” mission of the European Commission [1]. Such monitoring can
be carried out either temporally or spatially. This holds especially true in the context
of the “4 per 1000” initiative, which necessitates quantifying soil organic carbon (SOC)
storage over territories and, hence, spatially estimating and mapping SOC content [2,3].
Indeed, SOC stocks and SOC content display spatial structure at several scales: national
scales, e.g., [4,5], as well at the scale of large regions of thousands of km2, e.g., [6,7], small
regions of hundreds of km2, e.g., [8], or even at a farm or field scale, e.g., [9,10]. In the
last decades, digital soil mapping (DSM) has been carried out, starting from a number
of geo-referenced soil samples analyzed using standard chemical laboratory protocols to
construct spatial or geostatistical models, e.g., [11,12]. Multivariate analysis techniques are
then used to calibrate a spatial soil property model using geo-referenced soil data available
for a limited number of sites and a continuous spatial coverage of covariates including
morphometric data, such as elevation and slope, in conjunction with covariates derived
from Earth observation such as vegetation indices, especially the Normalized Difference
Vegetation Index (NDVI). However, collecting soil samples is time consuming and labor
intensive. An alternative approach to gathering SOC information while limiting the number
of soil samples collected can rely on Earth observation and proximal measurements [13].

In addition to having spatial structure, soil properties, and particularly SOC, have
spectral features in a number of wavelength bands in the visible, near-infrared and short-
wave infrared (VNIR-SWIR; 400–2500 nm) [14–16]. Such features enable the construction of
spectral models, which are models relating soil reflectance with the considered soil property,
as already proposed by Huete and Escadafal [17], following earlier studies relating soil
colour, soil reflectance and soil properties by Girard [18], Baumgardner et al. [19], Dalal and
Henry [20], Escadafal et al. [21] and Henderson et al. [22]. Particularly since the emergence
of satellite remote sensing, soil scientists have related the Landsat Thematic Mapper (TM)
radiance values to soil properties [21,23]. Since the 1980s, until the advent of satellite
time-series with a weekly revisit, relatively few studies related image reflectance values to
topsoil SOC content. This domain has increasingly received attention in the last decade.

In the framework of the projects WorldSoils (http://www.world-soils.com/, accessed
on 18 May 2022) of the European Space Agency (ESA) and STEROPES of the Euro-
pean Joint H2020 Program SOIL (https://ejpsoil.eu/soil-research/steropes/, accessed
on 18 May 2022), both aiming to update SOC maps through pushing forward the use of
Sentinel satellite time-series, we aim to review the potential and capabilities as well as the
limitations and issues of satellite imagery to map topsoil SOC content over cultivated areas.
This review paper is dedicated to the spectrally based approaches that have been achieved
from several satellite sensors, study scales and geographical contexts in the past decade.

2. Satellites Spectral Information and Overall Characteristics of Soil Data

To comply with the aim of providing a thorough overview of the literature, we
conducted a literature review using the Web of Science database, by applying the query
(“soil organic carbon”) AND (“satellite”) searching the field “topic” for all possible years
(i.e., from 1991 to early 2022). This query resulted in 632 references. Studies dedicated to
grasslands, forests or alpine grasslands were considered non-relevant and removed. The
publications dating back to before 1991 were searched through examining the literature
cited in the papers older than 1995, and through our own expert knowledge. In all,
62 references were found about satellite-based SOC content prediction, with most of them
published in the last three years (Figure 1).

http://www.world-soils.com/
https://ejpsoil.eu/soil-research/steropes/
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Figure 1. Histogram of publications of satellite-derived SOC studies according to year.

2.1. Satellites Spectral Information

Since 1972, i.e., the very beginning of the civilian satellite remote sensing, until the mid-
2010s, satellite data available in the optical domain were mostly acquired from multispectral
sensors, i.e., sensors with a discrete number of spectral bands. Most historical data were
obtained over wide swaths by the Landsat satellites equipped with Thematic Mapper
(TM), Enhanced Thematic Mapper (ETM+), and, more recently, Landsat 8 Operational
Land Imager (OLI) sensors with 30 m resolution. Additionally, data from the Satellite Pour
l’Observation de la Terre (SPOT) equipped with the sensor Haute Résolution Visible (HRV) with
20 m resolution were found dating back to 1986. Some pioneering studies about topsoil
SOC content detection from satellite data have been carried out, for instance, considering
SPOT HRV bands [24–26] or Landsat bands [27–29].

Since 2000, hyperspectral satellite images have been made available from the Hyperion
sensor with 30 m resolution onboard the satellite Earth Observing 1 (2000–2017), and from
the Compact High-Resolution Imaging Spectrometer (CHRIS) with 17 m resolution onboard
the Project for On-Board Autonomy (PROBA-1) micro-satellite (2001–ongoing). Since 2019,
the PRecursore IperSpettrale della Missione Applicativa (PRISMA) with 239 spectral bands
between 400 and 2505 nm has delivered images with 30 m resolution [30]. Approaches
of satellite-based SOC modeling have been carried out from Hyperion [31–33], CHRIS-
PROBA [34], simulated PRISMA [35] and PRISMA [36]. As the Environmental Mapping and
Analysis Program (EnMAP) [37] was just launched on 1 April 2022 and is currently in the
commissioning phase, some studies have considered simulated EnMAP for the assessment
of SOC content [38,39] till actual EnMAP data becomes available. To our knowledge, no
reference was found about simulated spectra for other forthcoming hyperspectral satellites
such as CHIME, SHALOM or HypXim. Some recent Chinese studies used the hyperspectral
data of the Gaofen-5 satellite with a 30 m resolution and bandwidth of 60 km [40–42]. In
parallel, with the emerging of precision agriculture, field-scale approaches to SOC modeling
have also been developed from satellite sensors with higher spatial resolution: IKONOS
with 4 m resolution [43], PlanetScope with 3 m resolution [44] and Worldview 2 with 2.5 m
resolution [45,46].

Since 2015 and then 2017, when Sentinel-2A, followed by Sentinel-2B were launched,
the Sentinel-2 (S2) time-series equipped with the MultiSpectral Instrument (MSI, 13 spectral
bands) provided not only wide spatial coverage over swaths of 290 km, but also 10 to 20 m
resolution (10 spectral bands) and a 5-day revisit. The advent of such time-series favored
the renewal of the satellite-derived spectral models and particularly for SOC, using either
single date acquisitions [44,47–55] or multi-date approaches [36,56–59]. In addition, some
authors used Sentinel-1 synthetic aperture radar (SAR) images in their approach, either
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separately [50,55,58] or directly as covariates within their modeling [55,60]. Over very large
areas or at national scales, other authors used coarse resolution satellite series, being either
MODIS with 250 or 500 m resolution [61,62] or Sentinel-3 equipped with the Ocean and
Land Colour Instrument (OLCI) with 300 m resolution [63].

2.2. Overall Characteristics of Soil Data
2.2.1. Soil Types and Agroecosystems under Study

Most approaches relying on pure spectral models have been carried out since 2019 and
have dealt with temperate croplands in Europe, China and North America, with few in
Mediterranean [34,35,49,64] and arid environments [29,65,66] and even fewer in tropical
ecosystems [27,59,67,68] (Figure 2).
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Figure 2. World map of satellite-derived SOC studies and the dominant soil types of the FAO-
UNESCO Digital Soil Map of the World at 1:5.000.000 scale [69]. Time spans are split according to the
first year of Sentinel-2 based SOC studies, i.e., 2018.

Most studies were in rainfed annual cropping systems with very few studies in
vineyards and even fewer in orchards. It should be noted that information on management
practices or soil surface conditions was scarce.

Soil types refer to the World Reference Base (WRB) [70] in most cases, although the US
Soil Taxonomy [71] was also used. The soils are typically cambisols and luvisols and, to a
lesser extent, regosols, leptosols, stagnosols, chernozems and the so-called “inceptisols” of
the US Soil Taxonomy (mostly equivalent to cambisols) (Figure 3). The most frequent quali-
fier is “haplic”. The “calcaric” qualifier is not dominant, and therefore calcium carbonate
contents can be assumed to be low.
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2.2.2. Spatial Scales, Sample Size and Density

Most studies were carried out at the scale of small regions, of some hundreds of
km2: study areas covered a median of 118 km2 (Figure 4). The sample density for small
regions ranged between 0.1 and 16.1 samples per km2, with a mean value of 2.7 samples
per km2. For large regions (up to 10,000 km2) and very large regions (>10,000 km2 and up
to 150,000 km2), the mean sample density was lower than or equal to 0.1 samples per km2,
while it was higher than or equal to 201 for farm- or field-scale studies. The total sample
size ranged from 32 to 1753 topsoil samples, most of them being collected from the 0–10 cm
or 0–20 cm topsoil. The median sample size varies from 85 for field and farm, to 100 for
small regions, 264 for large regions and reaches 625 samples for very large regions.
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2.2.3. Ranges of SOC Considered and the Issue of Standard Lab Determinations

Table 1 sheds light on the basic statistics of topsoil SOC considered in the selected
studies. The datasets of measured topsoil SOC contents refer to mineral soils with annual
crop systems with an average value of ~15 g·kg−1 and a range of 30 g·kg−1 in median.
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Table 1. Basics stats of topsoil SOC content values (top SOC, g·kg−1) across 46 study areas with full
description of measured sampled sets [18,26,31,34–36,41,44,47–50,52,54,55,57,58,61,64,67,72–82], q1,
first quartile; µ, mean; q3; third quartile; σ, standard deviation.

Statistic Min q1 µ q3 Max σ Median

Minimum top SOC 0.0 2.7 5.8 6.9 26.1 4.7 6.0
Maximum top SOC 10.0 21.8 82.7 115.8 439.0 102.0 37.3

Top SOC range 4.6 17.8 76.9 110.7 438.4 103.0 30.0
Average top SOC 1.7 12.6 17.4 19.6 50.0 9.5 15.1

Mineral and organic soils are usually processed separately, but the threshold between
these categories is not uniform: at the scale of the USA, Wang et al. [83] chose to discriminate
between mineral and organic soils using the threshold of 120 g·kg−1.

As the analytical methods used for SOC measurements are far from being homoge-
neous among laboratories and countries, and specifically in the context of the satellite-
derived SOC studies, the basic stats displayed in Table 1 should be considered with caution.
Dry combustion was used for 50% of the studies and wet oxidation for 30%, while analyti-
cal methods were simply not specified for the remaining studies. Historically, one of the
most-used methods has been the Walkley–Black method [84] using wet oxidation. This
method is still being used in numerous countries, and several modified methods based
on the same principles have also been proposed, e.g., [85–88]. The underestimation of the
total SOC content caused by a reduced wet oxidation of the more stable or “recalcitrant”
fractions of SOC is the major limitation of this method.

The modern standard method, supposed to be the reference, is dry combustion cou-
pled with an automated CHN analyzer. Automated dry combustion (ADC) involves
measurements of SOC based on CO2 released from thermally oxidized soil [89]. Therefore,
a recovery factor must be used to convert the results from the wet oxidation to the dry
combustion method. The most frequently used correction factor is 1.33 [90]. However, a
careful look at the literature [90–94] shows that the recovery factors cover a wide range
(1 to 1.8) depending on climate, soil types, depth, texture, and the relative proportion of
various SOC constituents. Moreover, CN analyzers determine total carbon, i.e., SOC and
carbonates. Thus, the SOC content of calcareous samples is determined by subtracting
carbon content from carbonates to total carbon content, e.g., [95].

Other standard methods that were not found among the satellite-derived SOC studies
include various adaptations of the Mehlich method [96] that aim at extracting humic
substances, or loss-on-ignition [89,97], the latter being mainly used for the organic horizons.

All methods have some drawbacks, and the less biased one is ADC, with some
exceptions for very organic soils. One consequence is that when using SOC data, and
especially when compiling legacy SOC data, metadata should include the laboratory
method. Another consequence is that there is no universal factor to convert the results from
one method to another, and that such a conversion needs to be locally adapted. Finally, any
change of method between two dates may lead to false conclusions about SOC changes.

Moreover, over the past decade, laboratory spectroscopic measurements have been
successfully tested to predict SOC contents over the visible near-infrared and short-
wave infrared ranges [98–101], in combination with UV-visible fluorescence measure-
ments [102] or restricted to the visible range only [103], or over the mid-infrared only
(4000–400 cm−1) [104]. An emergent technology is also laser-induced breakdown spec-
troscopy, e.g., [105]. These low-cost technologies are good candidates to provide numerous
training information for digital soil mapping (DSM). However, the uncertainty of these
measurements often remains a limitation, if the aim is to detect small changes in SOC with
time. One emerging promising method is analyzing SOC with Rock-Eval analyses [106],
which would pave the way to both estimating total SOC and indicators of its sensibility to
mineralization and its potential for long-term sequestration in soils.
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3. Approaches Conducted and Their Performances

Studies about SOC prediction from satellites categorize according to four main groups:

(i) Using spectral information from satellite imagery only, being mostly optical (SPOT,
Landsat TM, Hyperion, Landsat 8, Sentinel-2, Pléiades, ASTER); rarely thermal (ASTER);

(ii) Using spectral information from optical satellite imagery in combination with SAR
imagery (e.g., Sentinel-1) or its derived products, such as soil moisture maps;

(iii) Studies using spectral information from optical satellite imagery in combination
with available soil spectral libraries (SSLs) (e.g., open libraries, Land Use and Cov-
erage Area Frame Survey (LUCAS, [107]) for the European Union or the GEOCRA-
DLE (http://datahub.geocradle.eu/dataset/regional-soil-spectral-library, accessed
on 18 May 2022) for some Western Mediterranean and Middle Eastern countries), or
a local database;

(iv) Studies using spectral information from optical satellite imagery in combination with
non-spectral covariates, such as digital elevation models (DEM).

Group “i” was the most represented, while group “ii” is just emerging [55]. Group
“iii“, referred to as a “bottom up” approach by Castaldi et al. [108,109], was developed at
the regional scale (e.g., in a loam belt region in Belgium and in the Gutland–Oesling region
in Luxembourg [48] and Bavaria (Germany) [74]), at the national scale (e.g., Spain [75]),
and then at the supranational, continental scales (e.g., European scale [57,76]) using the
LUCAS alone [57,75,76] or in combination with a local database [74,77] and also at the scale
of Canada using the CanSYS National Pedon Database [78]. As they are directly derived
from the spectral features, we focus on the first three groups.

3.1. Spectral Models Using Spectral Information Only, Combined or Not with Radar
3.1.1. Pretreatments of Image Spectra

So far, various pretreatment methods have been suggested for application to surface
reflectance in order to reduce noise and improve the quality of the spectra, i.e., to enhance
possible spectral features connected to SOC [110]. In other words, the pretreatment of
soil spectra before calibration is needed to diminish the interference or any inappropriate
information that cannot be handled correctly by the modeling algorithms [111]. Averaging,
centering, smoothing, standardization, normalization and transformation are standard
pretreatment practices. For instance, the normalization of the data ensures that the spectral
input and the dependent variable have a similar data range [64]. Transformation can be
applied to each spectrum individually by subtracting the spectrum mean and scaling with
spectrum standard deviation. Almost none of the satellite approaches carried out so far
underwent preprocessing, except for those handling hyperspectral images, such as the
denoising of PRISMA images [34] or fractional order derivatives (FOD) or discrete wavelet
transform (DWT) of Gaofen-5 images [41]. For Gaofen-5 images, Meng et al. [41] used DWT
to denoise the original reflectance and derive optimal FOD reflectance. They found that
DWT was the optimal technique for denoising spectra prior to predicting soil organic matter.
For multispectral satellite images, no pretreatment was carried out except for the spatial
filtering of Landsat 5 spectra [74,78]. The centering of a Sentinel-2 reflectance spectrum
was preferred, but in the case of a single-date approach only [49]. However, neither log
transform nor spectra centering improved prediction performances when several other
dates were considered [50].

Another preprocessing method consists of searching and removing outliers from
image spectra. An outlier can be defined as an individual that is not consistent with the
majority of the data. Therefore, spectral outliers (i.e., samples spectrally different from
other samples) in the dataset should be identified and removed. Usually, the Mahalanobis
distance [112,113] or Cook’s distance [114,115] can be used for identifying outliers in a
dataset. In fact, very few satellite approaches carried out outlier search, and even fewer
outlier removal [47,49,55], prior to constructing the SOC prediction models. The main
reason for this is the scarcity of samples: even though the initial sample set is large, it might
be dramatically reduced after masking in order to only retain the bare soil pixels.

http://datahub.geocradle.eu/dataset/regional-soil-spectral-library
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3.1.2. Modeling Approaches and Algorithms

Choosing the most robust calibration method can help to obtain a more reliable
prediction model. For satellites with a limited number of spectral bands such as IKONOS,
Landsat 1–7, SPOT 1–7 and MODIS, some studies have used means of multiple linear
regression (MLR) analysis based on the assumption of a linear relationship between the
dependent and independent variables [26,28,43,61,116]. However, most studies have
applied multivariate calibration techniques or machine learning algorithms to extract the
relevant part of the information for large datasets. Amongst the several multivariate
algorithms, partial least squares regression (PLSR) [25,26,31,35,48–50,57,58,74] is most
widely used and offers the advantage of enabling the understanding of the influence of
spectral bands on the SOC prediction. PLSR also has the advantage of being less prone
to overfitting when using small sample sets. About one-third of the satellite-derived
SOC studies used PLSR, while another third used random forest (RF), and the remaining
included MLR, support vector machine (SVM), regression trees such as cubist, and/or
kriging. By fitting a PLSR model, one seeks a few PLSR factors that explain most of the
variation in both predictors and responses.

RF is another widely-used machine learning technique for SOC modeling [40,48,52,62,75,78].
According to Diaz-Uriarte and de Andrés [117], the most important advantage of RF,
which makes it a quite popular choice, is resistance to overfitting and irrelevant features
removal. However, this ought to be taken with caution: Wadoux et al. [118] put perfectly
irrelevant layers such as the photographs of soil scientists into RF and obtained good
overall performances of SOC content prediction. SVM, which is a kernel-based learning
algorithm, is another promising method that was successfully used for SOC modeling
with satellite-driven data [40,47,52,53]. SVM has been reported by Diaz-Uriarte and de
Andrés [117] to return comparable results to RF models. The cubist technique was also
applied to satellite images in some recent studies predicting SOC [36,57,59,81]. It is a
form of the piecewise linear decision tree that partitions the response data into subsets
with which their characteristics are similar with respect to the prediction [101]. Boosting
techniques were also considered for modeling purposes. For instance, Zhou et al. [79]
used boosted regression tree (BRT), which produces an additive regression model or a
tensor product-based approximation, to model SOC using the Sentinel-2 images for the
central Alps. In addition, artificial neural network (ANN) has been employed in SOC
modeling [64] due to its capability to minimize the learning error in the inverse direction
from the output layer towards the input layer.

Currently, deep learning algorithms are increasingly used in image analysis including
soil property prediction from satellite images. Deep learning has the capability of processing
large-scale and large-dimensional image data [119]. Its advantages over common machine
learning techniques are that it supports more sophisticated modeling and permits the easy
use of large amounts of computational resources for training such models [120,121]. While
common machine learning algorithms tend to plateau in performance after training with a
large dataset, deep learning models are expected not only to perform better as the training
dataset increases in volume, but also to automatically perform the feature extraction. In a
study by Tziolas et al. [64], the convolutional neural network (CNN), as a common deep
learning algorithm, was effectively used to combine the complementary information in the
pool of both Sentinel-2 and Sentinel-1 over a three-year period and those from auxiliary
geographical coordinates to model soil clay. However, literature using deep learning to
assess SOC out of satellite data is still scarce, and the techniques often need large datasets
(number of samples) to produce stable results not prone to overfitting.

3.1.3. Validation Approaches

Prior to constructing satellite-based SOC spectral models, bare soil pixels must be iden-
tified, commonly based on vegetation index thresholding using the Normalized Difference
Vegetation Index or NDVI. According to expert knowledge about land use, and sometimes
with joint information layers such land use maps, land parcel registers, pixels with NDVI
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values lower than 0.35 to 0.27, 0.25 or even 0.20 may be retained as bare. While the level of
such NDVI threshold does not appear to have a great impact on the SOC prediction perfor-
mance [50,58], the crucial step of the selection of samples sets vs. validation/evaluation
sets depends on such selection process, conditioning their sizes. The sample size decreases
in particular when several other indices, such as the NBR2 meant to reduce the effect of dry
vegetation residues [77], are used in addition to NDVI. This effect is even stronger in the
case of multi-date approaches aiming to produce a temporal mosaic [56,58,122,123].

Provided the bare soil samples are identified, the main series of questions for the
selection of samples sets vs. validation/evaluation sets should be:

- Do you want a global estimate of the performance of your predictions?
- Do you want an estimate of a global mean or stock in a given area?
- Do you want to map the uncertainties, and at which spatial resolution?
- Do you want to know the domain of validity of your predictive model, in the feature

and/or in the spatial space?
- Do you want to address some or all of the above questions?

These questions are generic to all performance evaluations of spatial model predic-
tions. Most of these questions have been discussed in some reference books and papers,
e.g., [124–129], and there are still debates about the best way to select sample sets for train-
ing and/or validation. However, most of the authors agree on the main bad practices
that should be avoided, e.g., randomly splitting into a single training and validation set
(k-fold splitting should be preferred), using leave-one-out validation when there is a high
spatial auto-correlation between observations, not taking clustering of data into account,
or applying a model outside of its validity domain [130]. One good practice is to try to
cover the feature and spatial spaces as much as possible, both for calibration and validation.
Another good practice could be to perform an independent and unbiased sampling, but
this practice is often too costly to put in place. A pragmatic trade-off is often “do the best
with what you have”. Going further into this discussion is out of the scope of this paper,
and would need a dedicated and comprehensive review.

3.1.4. Performances of Purely Spectral Models

Most studies only provided a global estimate of the performance of their predictions,
and did not address the above-raised questions. The validation approach was mainly
cross-validation, being either leave-one-out or ten-fold, most of the time without prior
analysis of the spatial auto-correlation. The most popular performance figures-of-merit for
evaluating the quality of model fit were the root mean squared error of cross-validation
(RMSE) and the residual prediction deviation (RPD), i.e., the ratio between the standard
deviation of the calibration dataset to the RMSE, and/or in some publications, the ratio of
performance to interquartile distance (RPIQCV) [131], recommended when the distribution
of SOC contents is highly skewed. Whatever the model, the magnitude of error increases
with the range of SOC contents (Figures 5 and 6), whereas this is not the case for RPD.
The magnitude of error also increases with the standard deviation of SOC contents, which
confirms a previously observed relationship for proximal sensing [132], although such a
relation is weaker here for all models.

The magnitude of error is the highest for national to continental scales, where it
typically reaches 15 g·kg−1 or even more, exceeding the observed range of values for single
fields or some small homogeneous regions. For a given range of measured SOC contents, the
prediction results (e.g., RPD) may vary according to acquisition and soil surface conditions
over several dates [50,55,56]. Hence, the temporal variation adds up to the spatial variation.
It is worth mentioning that the overwhelming majority of authors used Sentinel-2 images,
particularly at the scale of small regions or even smaller pilot zones. For a similarly
considered regional area, such as the Versailles Plain, France, with Luvisols from loess and
calcic cambisols, Sentinel-2 yielded higher performance than SPOT 4, SPOT 5 with RMSE
of c. 3–4 g·kg−1 for Sentinel-2 [49,50,58] compared to >4.5 g·kg−1 for SPOT [26], likely due
to greater spectral resolution of Sentinel-2. At the continental scale of Europe, likely due
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to the greater spatial resolution of the bands in the visible region, a comparison between
Sentinel-2 and Landsat 8 results demonstrated the higher capability of the Sentinel-2 sensor
in terms of SOC prediction accuracy [57]. In the Chernozem region of Sardice in Southern
Moravia (Czech Republic), at a local scale of 1.45 km2, very similar prediction accuracy
was obtained from Landsat 8 (2.8 g·kg−1) on the one hand, and Sentinel-2 and PlanetScope
(2.6 g·kg−1) on the other hand [44].
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When the intraregional variance of the measured SOC contents is small, with a range
of measured SOC contents of c. 15 g·kg−1, models may not be reliable whatever the
acquisition date, with very low RPD values, close to 1 or even less: this was observed for
Mediterranean soils in the vineyards of the La Peyne Valley region, France [49], but also for
luvisols in Northern Wallonia, Belgium [48], or for paddy soils in Lanxi County, China [80].
In such situations, the spatial structure of the data may be of particular relevance to improve
the prediction performance, through mixed models incorporating spectral information into
spatial models (see Section 3.3).

3.2. “Bottom-Up” SOC Approaches to Satellite Developed from Soil Spectral Libraries

The so-called “bottom-up” approach [108,109] consists of calibrating spectral models
from the laboratory spectra of an SSL at a number of sampling locations; then, the predicted
values obtained are used to construct an image-derived spectral model from the satellite
pixels being bare at the time of the acquisition. It hence benefits from large datasets
obtained in laboratory conditions collected in an SSL. The “spiked bottom-up” approach is
a refinement, consisting of considering both an SSL and a local SSL [64], taking advantage
of the previously observed benefit of the spiking approach in spectroscopy [98,133]. The
bottom-up approach to SOC prediction was initially developed for hyperspectral airborne
imagery, such as APEX [109] or AisaFenix [64], and was only recently applied to satellite
imagery, Sentinel-2 [57,77], Landsat TM plus ALOS PALSAR [75], Landsat archive [74,76],
Landsat 8 [57].

Developed at the scale of the Demmin [77] and Bavaria regions in Germany [74],
at the national scale of Spain [75] then at the European scale [57,76], the bottom-up ap-
proaches to SOC prediction only used the LUCAS SSL [57,75,76] or spiked with a local
database [74,77]. At the scale of Canada, a similar approach relied on the CanSYS National
Pedon Database [78], while for the Ha-Ogen plain in Israel, it relied on the GEOCRADLE
spectral library [64], the spectra of which were simulated into MSI spectra of Sentinel-2.

According to Castaldi et al. [109], the group “I” (“traditional”) and group “iii” (“bottom-
up”) approaches provided very similar estimation accuracy on the independent validation
datasets in the case of the Belgium loam belt and Gutland–Oesling region in Luxembourg,
but whether such results can be extrapolated to other agro-pedological contexts remains
largely unknown.

3.3. Mixed Models Incorporating Spectral Information into Spatial Models

Conventional univariate geostatistical techniques, such as ordinary kriging (OK),
generally provide high prediction accuracy for soil properties when a spatial autocorrelation
between samples exists for the target variable, thus, if the spatial variability can be explained
by a geostatistical model [134]. However, in order to fit valuable spatial models, many
samples need to be collected and this aspect makes this kind of approach not always
economically feasible, especially for very large areas. In this regard, auxiliary variables (or
covariates) strongly correlated to the target variable and available at finer spatial resolution
than the average distance between target variable samples can be exploited in geostatistical
or mixed (hybrid) models, such as the linear mixed effect model (LMEM), regression
kriging (RK), kriging with external drift (KED) or co-kriging (CK). These hybrid models
pool two kinds of approaches: deterministic and stochastic, thus combining regression
models and the spatial structure of the regression residuals [135]. The deterministic part
allows the estimation of the coefficients of the covariates by ordinary least squares, as in the
case of RK [34,136], or using other regression or machine learning approaches [82,137,138].
However, contrary to RK, LMEMs with correlated error allow the consideration of the
spatial correlation, at the same time estimating the fixed-effect coefficients and the error
covariance function parameters by a restricted maximum likelihood (REML) method [139].

Optical sensors on board satellites potentially offer a source of auxiliary variables
for soil property estimation. For example, Simbahan et al. [140] estimated soil organic
carbon stock using RK, CK and KED models, where IKONOS spectral data were included
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as covariates combined with other auxiliary variables. In their approach, the spectral data
consisted of a single grayscale image computed as the weighted average of the visible
bands of a single-date image. Their results showed the advantage of using mixed models
including such grayscale image data compared to OK. Other authors successfully applied
mixed models, mainly including vegetation indices retrieved from Sentinel-2 [138] or
Landsat 7 [82,141]. The primary constraint for applying mixed models is the presence of
a spatial structure of the model residuals. Indeed, Aïchi et al. [142], in their attempt to
spatialize the soil total carbon (STC) content of their arid study site, showed that the PLS
model residuals had a spatial structure and that the approach relying on the RK hybrid
method led to more accurate STC content mapping using ASTER satellite images. In
contrast, Castaldi et al. [139] did not run the LMEM for SOC estimation due to a lack of
a spatial structure of the ordinary least square residuals using Hyperion hyperspectral
data. One may easily understand that the presence of spatial autocorrelation may strongly
depend on the pixels’ area, the number of field calibration points, the landscape structure
and the overall extent of the study area. For instance, if the landscape is composed of
very small fields with contrasted soil management practices, a spatial autocorrelation is
not plausible. On the contrary, if the fields are very large and include variations in some
SOC controlling factors such as, for instance, clay content, a spatial autocorrelation is much
more likely to occur. Moreover, in order to observe a real improvement in terms of accuracy
compared to non-spatial and univariate geostatistical models, the target variable should
be strongly correlated to satellite covariates. On this subject, Li [143] observed how RK
models using vegetation indices, retrieved from Landsat 5 imagery, combined with terrain
variables did not improve the organic matter estimation compared to OK, and this was
probably due to the weak correlation between satellite data and SOC. Because many other
factors, not only content variability, affect crop vigor, the correlation strength between soil
properties and satellite optical data can be considerably improved using bare soil data
instead of vegetation images or indices. It is worth noting that while satellite spatial layers
have been used for several years, the overwhelming majority of such layers consisted of
single layers of spectral indices calculated on vegetated pixels, or on whatever pixel without
any consideration of their soil surface condition. Nevertheless, the physical link between
SOC abundance and spectral responses across the electromagnetic spectrum can be fully
exploited using bare soil images; thus, the pixels not affected by green or dry vegetation.
In this regard, the scarcity of bare soil pixels that may occur at some dates within annual
cropping systems [58] might be an issue for capturing the specific spectral influence of bare
soils. Another possible issue might be due to the large number of bands of multispectral and
hyperspectral sensors that suggest a reduction of the dimensionality before including them
in mixed models. This step is strongly advised to avoid multicollinearity and reduce the
noise. For this purpose, minimum noise fraction (MNF) and PCA were successfully used
respectively for Hyperion bands [139] and for Landsat 7 bands combined with indices [82].
Avoiding multicollinearity and choosing relevant covariates with parsimony for spatial
modeling are generic issues, which are not only related to SOC and remote sensing, but to
all digital soil mapping (DSM) techniques, e.g., [128,144].

4. Discussion
4.1. Limitations of the Literature Dataset

Regardless of the approach, the literature examined here suggests the large interest
of satellite-based spectral information, especially when the soils are bare, and enables
the identification of the hot topics to be further addressed and developed using such
information (Figure 7).

The accuracy that is yielded through multispectral satellites such as Sentinel-2 can
be considered a valuable trade-off compared to hyperspectral airborne acquisitions [44],
even more so as Sentinel-2 images are available at no cost. However, only very few papers
provided details about surface condition, and even the area extent of bare soil, soil types,
date of collection, crop types or crop rotations, management practices, were sometimes
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not mentioned, making general comparisons difficult. Moreover, as some authors tested
one, two or more algorithms on their datasets, the reviewed literature did not enable the
comparison of their performances in a systematic manner. For instance, the performance
of SOC content prediction, as compared between PLSR and RF, gave similar results for
the Demmin sandy region of Germany [48]. It was higher for PLSR compared to RF, with
higher RPD values and lower RMSE values for Sardice (Czech Republic) [44], Oesling
and Gutland (Luxemburg) [48], and was poorer for the clayey region of Demmin [48] and
Bavaria [74] in Germany, as well as for the Guanzhong Plain in China [54]. The reasons
why the algorithms perform differently according to regions need to be further examined.
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Moreover, the overwhelming majority of satellite-based SOC studies focused on a
single acquisition date, yet the performance that may be yielded varies with date [50],
and the sample size that can potentially be used increases through a temporal mosaicking
considering several dates [58]. In accordance with those needs, computational facilities
might be required more often, and all the more when it comes to upscaling from tile to
national, and then continental and global scales.

Bottom-up approaches appear very straightforward, as they can benefit from a large
SSL, especially at continental scales. However, at the European scale, the models ob-
tained from lab spectra yielded a higher RMSE of ~20.3 g·kg−1 compared to those ob-
tained from the median reflectance value of a three-year time-series of image spectra
(RMSE = 16.3 g·kg−1; [57]). This suggests that image reflectance is likely to deliver more
realistic information about the pure soil signal. It should be emphasized that small regions,
such as Versailles Plain, France (221 km2), have a median SOC content of ~15 g·kg−1 [58]
smaller than errors of continental or global SSL-derived models, and very few point loca-
tions are represented in such large SSLs (e.g., LUCAS). Hence, another issue referring to
spectral model elaboration is rather the availability of soil analyses dating back to a “rea-
sonably recent” period [55], with sufficient spatial density, in the order of one sample per
km2 or higher. This leads to the questioning of the spatial and spectral representativeness
of the soil sample locations, i.e., the sampling design in terms of crop system, crop rotation,
soil types and, finally, for a given soil type, in terms of soil management.

Soil management practices are most often not described. For most satellite-based SOC
studies, the soil sampling depth relies on an arbitrary cut-off without explicit mention of
the assumption of the homogenizing effect by plowing. Nevertheless, crop rotation, fertil-
ization level, organic amendment, conservation tillage practices (no-till or reduced tillage),
plowing depth and plowing frequency, in addition to residue input rates and former land
use, may influence the vertical gradient of measured SOC content [145–151]. All such
soil management practices impact soil roughness, the presence of dry or green vegetation,
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and the presence of coarse fragments on the surface. As estimated from Sentinel-1, soil
roughness due to plowing at a 30 cm depth was found to have a disturbing impact on
Sentinel-2-derived SOC prediction performance, with unpredictable models for autumn
and winter dates in the Versailles Plain, France [49]. For the same study region, the highest
SOC prediction residuals were observed for the largest coarse fragment percentages [49].
The NBR2 index, also defined by van Deventer et al. [152] as the “Normalized Difference
Tillage index” (NDTI) for the Landsat TM, is likely to exclude the spectra of soil cov-
ered by straw or crop residues [122] and, because of the proximity between mid-infrared
bands and soil moisture absorptions, may also exclude spectra affected by high soil mois-
ture [77]. Minimizing NBR2 values can lead to improved Sentinel-2-based SOC content
predictions [56,58,77]. Even finding bare soils is challenging, especially in perennially
cropping systems and with an increasing proportion of crop land using conservation or
no-tillage systems.

In addition, the consistency between survey area and pixel size or ground sampling
distance (GSD) should be examined according to the magnitude of the geometric error and
whether topsoil SOC content has a large short-range spatial variability. For the LUCAS
survey, a composite topsoil sample is collected within a circle with a 2 m radius, while GSD
is as large as 10 or 20 m for Sentinel-2 and 30 m for Landsat 8/9 or many hyperspectral
satellites; such discrepancies might explain the lower performance for Landsat [57].

Lastly, as spectral disturbances might be due to the presence of clouds and cloud
shadows, the efficiency of atmospheric correction should be accounted for in satellite-based
SOC studies. The atmospheric correction has rarely been carried out using synchronous
bare soil reflectance measurements in the field [153,154]; however, atmospheric correction
models such as ATCOR (the base for the Sen2Cor processor made available by Copernicus
for Sentinel-2) are prone to errors, especially in the infrared and SWIR domains [153]. The
most frequently used atmospheric correction methods in satellite-based SOC studies were
Sen2Cor, MAJA and LaSRC. Gomez et al. [155] carried out such evaluations for clay content
and found that the impact of date on model performance was higher than the impact of
atmospheric correction models. However, we did not come across a systematic study to
assess the impact of these methods on SOC content prediction.

4.2. Future Research Directions

Two critical issues regarding SOC changes in soil are their accounting and their
verifiability. The Kyoto Protocol states that sinks and sources of carbon should be accounted
for considering uncertainties, transparency in reporting and verifiability. Related to these
issues, there are also the incentives or mandatory policies that could favor agricultural
practices increasing SOC sequestration at the field or farm level. Further research is to be
conducted about the aforementioned disturbing factors that impact the performance of the
SOC predictions and, amongst them, soil moisture, the presence of dry and green residues,
soil texture and soil salinity are dealt with in the ongoing STEROPES project of the EJP
SOIL H2020 program.

Several studies demonstrated that it might be cost-prohibitive to implement systematic
sampling to monitor SOC at all farms, e.g., [13,156,157]. This has led to advocating for
favoring and monitoring practices that increase SOC, and to use either modeling or IPCC
default values, e.g., [158–160], to estimate SOC dynamics. However, this option with
modeling or using default values to estimate changes is highly questionable, as these
default values come from estimates mainly based on the literature, and often on field trials
or long-term experiments, the results of which can hardly be extrapolated to farmer fields
in different agro-pedo-climatic contexts.

Therefore, it seems reasonable to undertake some real measurements, at least in
a subset of representative farms. Stratified design-based sampling, e.g., [161], allows
obtaining unbiased estimates of mean values over a given area, together with an estimate
of the associated errors. The main questions are how to optimize the location and the areas
of the strata and the sampling within each stratum to increase the accuracy of the mean, as
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well as minimizing the sampling and analytical costs. Several recent studies have shown
that using an existing map, even if not perfect, or a sampling strategy based on feature
space, allows the optimization of the accuracy of field of farm-scale soil carbon auditing
and at the same time decreasing sampling and analysis costs [161–164].

High-resolution remote sensing predictions have, thus, the potential to help delineate
efficient strata, and associated design-based sampling, to conduct low-cost farm-scale
carbon auditing on a set of representative farms. This farm-scale carbon auditing would
provide objective estimates of changes in order to assess model predictions and/or to
locally adapt the IPCC default values.

Together with the facilitation of in situ sampling, satellite-based SOC studies would
benefit from considering longer time series in order to (i) retrieve pixels that are temporally
representative of the best soil surface conditions for SOC prediction and (ii) increase the
bare soil area in optimal condition for SOC prediction. The further handling of ever-longer
series should give rise to refined spatio-temporal approaches and the development of
groundbreaking approaches such as implying deep learning.

5. Conclusions

The updating of digital soil maps is time consuming and labor intensive. Whatever
approach is used, the satellite-based SOC studies that have been published so far suggest
significant interest in satellite-based spectral information for such updates, especially
for soils that are bare during the acquisition of the satellite image. The accuracy that is
yielded through multispectral satellites such as Sentinel-2 can be considered a valuable
trade-off compared to hyperspectral airborne acquisitions. The issues that need to be
addressed refer to the adequacy of approaches according to agroecosystems and their
management practices, in accordance with adequate analytical methods, sampling methods
and sampling sizes. The capability to detect SOC changes that are likely to occur due to
agricultural management is key for implementing satellite-derived approaches. i.e., for
defining the adequate bracket of prediction accuracy and uncertainties. Further studies
should better specify such management practices, and in particular those referring to soil
cultivation methods.

A careful examination of the possible factors impacting satellite-based SOC mod-
els is ongoing and will be implemented together with spatial approaches to sampling,
with the possible incorporation of ancillary layers derived from proximal sensing and
an intense effort to further promote next-generation hyperspectral satellites, as well as
spatio-temporal approaches.
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