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A B S T R A C T   

Food waste is a significant problem within public catering establishments in any normal situation. During spring 
2020 the Covid-19 pandemic placed the public catering system under greater pressure, revealing weaknesses 
within the system and generation of food waste due to rapidly changing consumption patterns. In times of crisis, 
it is especially important to conserve resources and allocate existing resources to areas where they can be of most 
use, but this poses significant challenges. This study evaluated the potential of a forecasting model to predict 
guest attendance during the start and throughout the pandemic. This was done by collecting data on guest 
attendance in Swedish school and preschool catering establishments before and during the pandemic, and using a 
machine learning approach to predict future guest attendance based on historical data. Comparison of various 
learning methods revealed that random forest produced more accurate forecasts than a simple artificial neural 
network, with conditional mean absolute prediction error of <0.15 for the trained dataset. Economic savings 
were obtained by forecasting compared with a no-plan scenario, supporting selection of the random forest 
approach for effective forecasting of meal planning. Overall, the results obtained using forecasting models for 
meal planning in times of crisis confirmed their usefulness. Continuous use can improve estimates for the test 
period, due to the agile and flexible nature of these models. This is particularly important when guest attendance 
is unpredictable, so that production planning can be optimized to reduce food waste and contribute to a more 
sustainable and resilient food system.   

1. Introduction 

The Covid-19 pandemic revealed an urgent need to investigate how 
the food supply chain reacts during a crisis, when it is necessary to save 
resources and allocate them to where they are most needed [1]. The food 
system is currently under stress on all levels, from food service provider 
to farms. This requires the system to be quite robust and sufficiently 
flexible to allow swift changes due to rapidly changing consumption 
patterns, in order to avoid building large imbalances into the system that 
eventually generate shortage of food in some places and food waste in 
others. Only by reducing these imbalances can the food system develop 
in a sustainable way, ensuring food security without unnecessary 
resource consumption. 

The global food system is a major driver of land use change [2,3], 
depletion of freshwater resources [4,5], climate change [6,7], and 
pollution of aquatic and terrestrial ecosystems through excessive nitro-
gen and phosphorus inputs [8–10]. The current steep trajectories of 
population and consumption growth further increase the importance of 
finding solutions that can meet food demand in a sustainable fashion 
[11]. Five major areas have been identified as possible ways of achieving 
a sustainable food system by 2050 [12]. However, predicted climate 
change will alter the conditions for food production and future crises of 
different types that impact food supply and food consumption in one 
way or another are likely, so it is highly important to understand effects 
arising from disruptive events, like the Covid-19 pandemic. Unlike many 
other countries, Sweden did not close down preschools and primary 
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schools in the initial phase of the Covid-19 pandemic. This created a 
somewhat unique situation where schools were open but had to apply 
restrictions, e.g., forcing pupils with the slightest symptoms to remain at 
home for at least two days after becoming symptom-free. This created a 
situation with much lower rates of guest attendance in school canteens 
than usual, potentially leading to large volumes of overproduction un-
less the schools were agile enough to adjust their production swiftly. As 
the pandemic also led to illness among kitchen staff, the work envi-
ronment in canteens was likely to be more stressed than usual, making it 
unlikely that reducing food waste by saving and re-using leftovers was 
prioritized. However, in times of crisis the food system needs to be 
resilient and not waste resources, but allocate them to where they are 
most needed. Better forecasting of guest attendance has been suggested 
as a way to reduce food waste in normal situations [13], but knowledge 
is lacking on how feasible such forecasting is in abnormal situations. 

The aim of this study was therefore to assess the accuracy with which 
a machine learning model could predict guest attendance in Swedish 
primary school canteens during the initial phases of the Covid-19 
pandemic. The goal was to contribute to a more resilient and sustain-
able food system by developing knowledge on how to make production 
planning more resource-efficient in times of crisis. 

2. Consumption pattern and waste during crisis 

Previous food waste studies of the hospitality sector report that 
roughly 20% of food produced ends up as waste [14–20]. This should be 
considered the normal level, and could be expected to rise when con-
sumption patterns and guest attendance shift rapidly. Little is known of 
the situation during the initial phase of the Covid-19 pandemic, as sta-
tistics have not yet been compiled. However, in a normal situation 
public catering is a significant actor in Sweden, with approximately 50% 
of all midday meals in the food service sector served in the public sector 
[21], by catering establishments in hospitals, preschools, schools, and 
elderly care units. School kitchens are the most significant actor in the 
public catering segment, with almost 1.3 million meals served to 
Swedish pupils every day throughout the school year. School meals are 
provided free of charge, funded by taxes [22]. Similar approaches to 
school meals are used in Finland [23] and Estonia [24]. Other countries 
serve also school meals, although at a cost to the guest, so the concept of 
school meals is widespread. In Sweden, planning for the number of 
meals to serve is generally based on the number of pupils registered in 
the school, but despite these optimal conditions, fluctuations in canteen 
guest numbers still occur. This is one of the risk factors for food waste 
generation identified previously [25], since kitchen staff do not get 
timely information regarding the number of guests. 

Previous studies have also shown that kitchen staff and food service 
providers generally add an extra margin in meal production [25,26] in 
order to avoid running out of food, which is seen as a negative outcome 
in the eyes of the guests and a source of shame for kitchen staff. The 
problem is therefore two-fold; there is little knowledge about how many 
guests will turn up to a specific meal, and the kitchen needs to prepare 
an acceptable margin of food to avoid shortages and loss of goodwill. 
Reduced food waste is important to decrease the environmental impacts 
from the food system, as it reduces the overall amount of food that needs 
to be produced [27–29]. United Nations Sustainable Development Goal 
(UN-SDG) 12.3 is to halve per-capita consumer and retail food waste by 
2030, and to reduce food losses along production and supply chains. 
Several studies (e.g. Refs. [12,30]) cite significantly reduced food waste 
levels as a prerequisite for a sustainable food system in the future. 
However, such studies provide few suggestions on how exactly to ach-
ieve the transition to a more resource-efficient society. 

In times of crisis and associated changes in food consumption pat-
terns, the risk of food waste increases, since the food system is not agile 
enough to adapt to rapid changes. The current pandemic may not occur 
again, but society is likely to face future crises that impose stress on the 
food system. It is therefore important to gain as much knowledge as 

possible on consumption patterns during the current crisis, in order to be 
prepared for the next crisis. 

2.1. Food planning, management and forecasting: the integration with a 
statistical perspective 

The challenge of sustainable production and consumption can also 
act as a stimulus for enhancing the linkage between rational food 
planning and the use of statistical methods for obtaining accurate pre-
dictions of food production, therefore improving organization and 
management, and ultimately reducing food waste generation. 

Food production is a complex process where uncertainty is relevant, 
mainly due to stochastic supply and demand, and variability in raw 
materials and ingredients [31]. This results in differences between 
planned production and actual output, with important economic, social, 
and environmental impacts. 

Several statistical methods and approaches for forecasting food 
production have been proposed in the literature, some specifically 
referring to meal requirements in restaurants, catering services [32,33] 
and the overall food service sector [34]. The importance of accurately 
predicting expected meal consumption in the overall hospitality sector 
has been highlighted by the Covid-19 pandemic [35]. Use of known past 
data for estimating and forecasting one or more future values in the data 
series would allow private managers and public bodies to plan the right 
amount of food to buy and produce, and to adjust staff levels so that food 
can be prepared and served efficiently [36]. Time series forecasting 
through regression models [37], operation research and machine 
learning methods [31], and the Prophet algorithm [36,38] have proven 
to be useful for this purpose. 

The machine learning statistical framework of analysis has already 
been used for food waste management in the context of driver assess-
ment for household food waste [39]. In this study, we specifically 
focused on the potential of the random forest approach [40] for pre-
dicting guest attendance and meal planning in Swedish public catering, 
using an estimation strategy that first considered the overall available 
data and then data at kitchen level, as detailed in section 3. 

3. Material and methods 

The work was carried out in three steps: i) Collecting data on guest 
attendance before and during the initial phase of the Covid-19 
pandemic; ii) modeling number of guests using a machine learning 
approach; and iii) evaluating the model in relation to actual guest 
attendance. 

3.1. Data 

The complete dataset available for the analysis covered 18 primary 
school kitchens and 16 preschool kitchens in Sweden. These were 
selected as suitable test subjects for forecasting models because they 
were willing to share their data upon request and because most had data 
available for several years prior to the pandemic. Sixteen of the primary 
schools and all of the preschools belonged to one municipality, while the 
remaining two schools belonged to two other municipalities. Thus, no 
random selection of units was performed. All of the selected kitchens 
serve meals to pupils ranging in age from around 1 to 15 years. The 
analysis focused on lunch, as this is the most commonly served meal in 
the selected kitchens, although breakfast and snacks may also be served. 
A Swedish school year consists of at least 178 days between late August 
and early June [41]. The autumn semester includes one week of holiday 
in late October/early November. A winter holiday of around three weeks 
covers the Christmas and new year period. The spring semester has one 
holiday week in February and one week around Easter, plus scattered 
national holidays from early May to June. Schools do not provide 
teaching during holidays but often remain open to provide childcare for 
younger pupils, and therefore serve meals during these periods. The 
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number of meals served during holidays is therefore lower than during 
ordinary school time. Preschools are kept open during holidays, but 
guest attendance can still be influenced if families with older siblings use 
the school holidays for vacation. A typical school kitchen offers pupils 
two to three lunch options. The menu follows a five-to seven week cycle 
of menus agreed at meetings between the heads of catering and public 
catering managers. This study focused on the initial phase of the 
Covid-19 pandemic in Sweden, which was defined as starting on March 
18, 2020, when the Swedish government introduced a strategy for social 
distancing, including restrictions on school attendance, and ending on 
June 9, 2020, which marked the official end of the spring semester. 

Data on the number of guests eating school meals from 2010 to the 
beginning of June 2020 were collected by the municipalities themselves, 
by counting plates after every lunch. The reason for counting plates is 
that this number is used for internal accounting, where the public 
catering organization charges the school organization for the lunches. 
There are several methods for counting the number of plates. One in-
volves drawing tally marks on the dishwasher for each full tray, and then 
multiplying the total by the capacity of each tray (usually 18 plates). 
Another approach is to collect one plate from each full tray and all plates 
from the last incomplete tray and calculate the total number of plates. In 
this study, it was assumed that one plate was equal to one portion, which 
was equivalent to one guest. However, this might not necessarily be 
accurate, since guests are allowed to re-fill their plate or take several 
plates. Plate data are thus an approximation of the number of guests 
served, since no point-of-sale data are available to extract information 
regarding guest flow as the meals are free of charge to pupils. 

3.2. Machine learning-based models 

A strategy and methodology for forecasting guest attendance (por-
tions) for a given kitchen in Sweden were developed using a sub-set of 
the data covering the period August 2019–June 2020. The data collected 
by the kitchens were transformed into a standardized format similar to 
that proposed by Ref. [42]. Since all field trips and other extracurricular 
activities were canceled during the pandemic, all holidays and extreme 
values defined as falling outside the inter-quartile range per school and 
school semester were removed before entering the modeling step. This is 
because kitchens already have a good understanding of guest seasonality 
and of when guests will be missing due to upcoming holidays, but 
struggle with the variability arising on normal weekdays. The intention 
was for the filter to remove known features (such as holidays and known 
study visits in the period prior to the pandemic) from the dataset, in 
order to focus on the modeling aspects. 

With the filter in place, a strategy for estimation going from the 
pooled data set to the single kitchen data was applied. First, the models 
were calculated by considering all kitchens and an attempt was made to 
forecast number of portions using only school and kitchen features. 
Second, some features relating to the pandemic crisis in Sweden were 
added. Two kitchens were selected as examples, both serving food in 
primary schools, the first to children aged 6–12 years (Kitchen 1) and the 
second to children aged 6–9 years (Kitchen 2). The set of features can be 
denoted as inputs (predictors or independent variables), which are 
measured or pre-set and have some influence on one or more outputs 
(responses or dependent variables). The goal is generally to use the in-
puts to predict the values of the outputs. This type of approach is called 
supervised learning. The opposite is “unsupervised learning”, where 
there are only features and no measurement of outcome. The target in 
this step of the present work was to forecast guest attendance through 
number of portions, and therefore a machine learning approach was 
used. Machine learning approaches are designed to make the most ac-
curate predictions possible, whereas statistical approaches are designed 
to allow inferences about the relationships between variables to be 
drawn. 

3.2.1. Machine learning-based models: the random forest approach 
The classical machine learning approach is based on training and 

testing data. The training data are used to tune a prediction model that is 
able to correctly predict the test data. Here, the times series of data on 
portions served in school canteens over time were split into two parts. 
The first part of the time series was used as training data to tune a 
machine learning model that could effectively predict the “last” part of 
the series as accurately as possible. If the last part of the series was well 
fitted, this was taken as an indication of the capability of the model to 
forecast portions in future unobserved time. 

There are many different machine learning methods for forecasting 
time series. Those pre-tested in this study were artificial neural net-
works, Poisson auto-regressive models, and random forests. The best 
results in terms of accuracy of predictions were obtained with the 
random forest approach. 

Random forest is a tree-based method involving stratification or 
segmentation of the space of inputs into a number of simple regions. 
With the aim of making a prediction for a given observation, the mean of 
the training observations in the region to which it belongs is used. The 
set of splitting rules used to segment the predictor space can be sum-
marized in a tree, so these types of approaches are known as tree-based 
methods. Since simple tree-based methods have proven not to be 
completely effective for prediction purposes, bagging, boosting, and 
random forest have been introduced. Each of these approaches involves 
producing multiple trees, which are then combined to yield a single 
consensus prediction that is very effective [43]. A tree consists of a series 
of splitting rules, starting at the top of the tree. The necessary steps for 
building trees can be summarized as follows:  

1. Use recursive binary splitting to grow a large tree on the training 
data, stopping only when each terminal node has fewer than some 
minimum number of observations.  

2. Apply cost complexity pruning to the large tree in order to obtain a 
sequence of best sub-trees, as a function of α.  

3. Use K-fold cross-validation to choose α. That is, divide the training 
observations into K folds. For each k in 1 to K:  
(a) Repeat Steps 1 and 2 on all but the kth fold of the training data.  
(b) Evaluate the mean squared prediction error on the data in the 

left-out kth fold, as a function of α.  
(c) Average the results for each value of α, and pick to minimize the 

average error.  
4. Return the sub-tree from Step 2 that corresponds to the chosen value 

of α. 

The recursive binary splitting step (point 1) consists of selecting the 
input Xj and the cut-point s such that splitting the input space into the 
regions {X||Xj < s} and {X||Xj ≥ s} leads to the greatest possible reduc-
tion in the residual sum of squares (RSS) of the output. That is, all inputs 
X1,…,Xp and all possible values of the cut-point s for each of the inputs 
are considered, and then the input and cut-point giving the tree with the 
lowest RSS are chosen. Without loss of generality, for any j and s, the 
following pair of half-planes are defined: 

R1(j, s)=
{

X||Xj < s
}

and R2(j, s) =
{

X||Xj ≥ s
}

(1)  

by searching the value of j and s that minimize the following quantity: 

∑

i:xi⊆R1(j,s)

(

yi − ŷR1

)2

+
∑

i:xi⊆R2(j,s)

(

yi − ŷR2

)2

(2)  

where ŷRi is the mean output for the training observations in Ri(j,s). The 
last split regions are called terminal nodes. Let the large tree built as 
described above (point 1) be T0. This tree can over-fit the data, obtaining 
poor performance predicting in predicting the test data. Therefore, it is 
pruned back to obtain a sub-tree in such a way that minimizes the error 
in the test data. This procedure is carried out through the complexity 
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pruning step (point 2) described above. For a sequence of trees indexed 
by a non-negative tuning parameter α, each α has a sub-tree T⊂ T0 to 
minimize: 

∑|T |

m=1

∑

xi⊆Rm

(

yi − ŷRm

)2

+ α|T| (3)  

where |T| represents the absolute number of terminal nodes of the tree T 
and Rm is the region corresponding to the mth terminal node. 

Construction of trees following the procedure described above suf-
fers from a high level of variability. From the perspective of reducing 
dispersion, and therefore the uncertainty of the estimates, the use of 
bootstrap aggregation (also called bagging) leads to a consistent 
reduction in the variance through the basic rule that averaging a set of 
observations leads to a reduction in variability. As a result, a natural way 
to reduce the variance, and therefore increase the prediction accuracy of 
a statistical learning method, is to take a large number of samples from 
the training set, build separate prediction models using each sample, and 
average the resulting predictions. 

In addition to bagged trees, random forests provide an improvement 
by de-correlating the trees. Similarly to bagging, a number of decision 
trees is built on bootstrapped training samples, by considering each time 
a split in a tree, i.e., a random sample of l inputs chosen as split candi-
dates from the full set of p inputs. The split can be used only on those l 
inputs. A fresh sample of l predictors is taken at each split, typically 
setting l ≈ ̅̅̅p√ . This method, even though it sounds counter-intuitive, 
leads to construction of uncorrelated trees, thus greatly reducing the 
variance by averaging them. In contrast, the bagging method may build 
many correlated trees, which does not lead to a reduction in variance. 
Variance of the average of B identically distributed random variables is 
ρσ2 + B− 1(1 − ρ)σ2, where ρ is the pairwise correlation coefficient and 
σ2 is the variance of a variable. 

The algorithm for the random forest approach can be summarized in 
the following steps:  

1. For b = 1 to B:  
(a) Draw a bootstrap sample of size N from the training data.  
(b) Grow a random-forest tree Tb to the bootstrapped data, by 

recursively repeating the following steps for each terminal node 
of the tree, until the minimum node size is reached. Then:  

i. Select l inputs at random from the p inputs.  
ii. Pick the best input/split-point among the l.  

iii. Split the node into two daughter nodes.  
2. Output the ensemble of trees Tb, b = 1,…,B. 

As a result, a prediction for a given point x is obtained as f̂
B
rf (x) =

B− 1ΣB
b=1Tb(x). 

3.3. Selected measures and tools for forecasting statistical and economic 
validity 

To assess how well the test data were predicted through the trained 
random forest, we calculated mean squared error (MSE), defined as: 

MSE = T − 1
∑T

t=1

(

yt − ŷt

)2

(4)  

where yt is the number of portions served the tth day and ŷt its pre-
diction, and T is the number of days in the test dataset. The lower the 
MSE, the better the model. We also computed mean absolute prediction 
error for the test and training dataset as: 

MAPE =T − 1
∑T

t=1

⃒
⃒
⃒
⃒yt − ŷt

⃒
⃒
⃒
⃒

/
yt (5) 

For series which includes yt = 0 this measure cannot be used. An 
alternative approach is to compute conditional MAPE (cMAPE) for 
yt ∕= 0, 

cMAPE =T − 1
∑T

t=1

(⃒
⃒
⃒
⃒yt − ŷt

⃒
⃒
⃒
⃒

/

yt

)

I(yt ∕= 0) (6)  

where I(y∕= 0) is an indicator function equal to one when yt ∕= 0, and 
0 otherwise. To compare the prediction power of the random forest 
between the kitchens, the coefficient of variation (CV) was calculated as 
the ratio between the square root of MSE and mean number of portions 
served in the relevant period. 

With the aim of evaluating the practical implications and impact of 
our models and their usefulness in reducing economic, environmental 
(and social) impacts related to food waste, we estimated the economic 
costs (and the associated savings) for the individual kitchen in three 
different scenarios:  

i. A “no-plan” scenario, representing a situation in which each 
kitchen prepares every day a number of meals equal to the total 
number of pupils enrolled.  

ii. An “actual” scenario, representing the actual number of meals 
served, with the costs computed based on the daily information 
available in the dataset.  

iii. A “forecast” scenario, representing the number of meals forecast 
by our random forest model. 

By assigning to each meal a cost of 2 Euros (corresponding to 22 
Swedish krona, the average cost per meal in the municipalities in 2019), 
we computed the progressive cumulative sum of costs for preparation of 
meals on each of the days in the test period. This value represented a first 
measure of the total costs incurred by kitchens in the three different 
scenarios. We then compared the three daily series of costs both by 
analyzing the differences between the actual scenario and the forest 
scenario, and by comparing each of these two series with the no-plan 
scenario. The median Absolute Relative Bias (ARB) was used for this 
purpose and was calculated as the relative difference between the daily 
actual and predicted economic values. 

4. Results 

4.1. Guest attendance during the pandemic 

Fig. 1 displays changes over time in the number of guests in all school 
kitchens studied, and the deviation in the number of guests during the 
pandemic in contrast to before the pandemic. Three periods are shown 
in the diagram, the time before the pandemic, the initial stage of the 
pandemic between 18 March (indicated by the dashed vertical line in 
Fig. 1) and the Easter holidays, and the steady state of the first wave 
from the Easter holidays to the summer holidays. The number of pupils 
enrolled remained constant during the period, as this number normally 
does not change during the school year. However, the average attending 
school lunch was on average 181 pupils/day before the pandemic, 144 
pupils/day during the initial phase, and 185 pupils/day during the 
steady state. There was also a clear drop in guest attendance during the 
first day of the initial phase (i.e., 19 March), where the guest attendance 
was only 50% of that in previous weeks. However, this drop in guest 
attendance was short-lived; aggregated to weekly average, the drop in 
guest attendance in week 12 was only 25% compared with the previous 
week. However, this was still noticeable in comparison with the average 
during the years prior to 2020, where a drop in guest attendance during 
week 12 as not visible at all. 

In the school canteens studied, the guest attendance during the 
steady state period was almost back to normal, although fewer pupils 
than normal attended daycare in the Easter holiday (Fig. 1). This is in 
contrast to the preschools, where there was a clear drop in guest 
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attendance during both the initial phase and the steady state (Fig. 2). 
There were also fewer children attending preschool during the week 
before Easter holiday (even though this is not an actual Easter holiday in 
preschools, which is clear in the previous year). 

4.2. Model specification, estimation, and validation 

With the aim of showing the adequacy of the selected method and in 
order to achieve the objective of the present analysis, we first analyzed 
the “pooled” dataset (i.e., the dataset summarizing, for each day, the 
total number of meals served in the 18 kitchens considered in the 
analysis) and then focused on single kitchens, carrying out separate 
analyses, estimates, and forecasting. 

We started the estimation process by fitting a random forest with all 
the available inputs: Holiday (categorical with level Bank holiday, 
Vacation, Planning day, and None), Year (categorical, 2019, 2020), Year 

day (numerical, number of days in the year, e.g., 4 January is day 4, 28 
of December is day 362), Quarter (categorical), Month (categorical), 
Trend (numerical), Weekday (categorical, from Monday to Sunday), 
Weekend (categorical, yes, no), and Week (numerical, number of weeks 
in the year). The random forest model was fitted in the R environment 
[44], using the package randomForest [45]. Once we had estimated the 
model for the entire dataset, we concentrated on the two selected single 
kitchens with the aim of obtaining more accurate predictions. For the 
two individual kitchens, we selected the inputs Holiday, Year day, 
Month, Weekday, Weekend, and Week and assessed which were the 
most important in the final model. We drew a 500 bootstrap sample on 
which we grew random forest trees, selecting at random two inputs from 
among the six in the model. We then used the final random forest model 
to try to predict the test data. 

Fig. 1. Average number of primary school meal guests over time on a weekly basis before and during the pandemic. ( ) indicates data for the school year 2019/ 
2020 and ( ) indicates data from previous school years (2010–2018). The dashed line is the day (18 March) when Sweden introduced guidelines for estab-
lishments operating in the public catering sector. The shaded area ( ) indicates school breaks, with less activity. 

Fig. 2. Average number of preschool meal guests over time on a weekly basis before and during the pandemic. ( ) indicates data for the school year 2019/2020 
and ( ) indicates data from the previous school years (2010–2018). The dashed line is the day (18 March) when Sweden introduced guidelines for establishments 
operating in the public catering sector. The shaded area ( ) indicates school breaks, with less activity. 
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4.2.1. Definition of the training and testing datasets 
The results for the two individual kitchens, Kitchen 1 and Kitchen 2, 

are displayed in Figs. 3 and 4, respectively. During the period covered by 
the analysis, the schools were closed to some extent during 73 vacation 
days (where the school is open to provide childcare for some pupils), two 
planning days (where only teachers are present in the schools), 48 
weekends, and four bank holidays (where the school is completely 
closed). The dataset had 125 missing days (mainly weekends) for 
Kitchen 1 and 119 for Kitchen 2, which were assigned a value of zero 
school meal portions served. 

From Fig. 3, it can be seen that Kitchen 1 served zero portions during 
weekends and few portions in August, late October/early November, 
Christmas holidays, end of February, and middle of April. At the 
beginning of June, the number of portions served fell to zero (due to the 
kitchen closed down for summer holidays). On other days, the number of 
portions served varied between 154 and 209. 

The series of portions served by Kitchen 2 was similar to that for 
Kitchen 1. The main difference was zero portions served during Christ-
mas holidays and some portions served in June (Fig. 4) due to day care 
activities. In addition, Kitchen 2 served a lower number of daily por-
tions, ranging between 44 and 75 during the normal period. 

We divided the series into two parts (training set and test set). We 

tuned the random forest model for each kitchen using the training data 
and then used the model to predict the data in the test set. The test 
dataset for Kitchen 1 was set as 21 May-8 June 2020, since days after 8 
June had zero portions served. The test dataset for the Kitchen 2 covered 
the period 9–28 June 2020. The training dataset for Kitchen 1 covered 
the period 1 August 2019–20 May 2020, while that for Kitchen 2 
covered the period 1 August 2019–8 June 2020. 

4.2.2. Random forest estimation for the pooled data set and at kitchen level: 
statistical and economic validation 

For the pooled dataset for all kitchens studied, MSE was equal to 
59322 for the training data and 3036 for the test data. Conditional 
MAPE (cMAPE) was equal to 0.39 and 1.28 for training and test data, 
respectively. The random forest approach was applied at kitchen level to 
capture the characteristics and peculiarities of each series. This 
approach made it possible to analyze in depth the statistical and eco-
nomic validity of the estimated models and to compare model perfor-
mance for different daily series and kitchens. 

For the datasets at kitchen level, MSE for Kitchen 1 was around 609 
for the test data and 175 for the training data, and cMAPE was around 
0.448 and 0.137 and for the training and test data, respectively. Using a 
very simple neural network with one hidden layer, the MSE of the test 

Fig. 3. Time series of portions served by Kitchen 1 in the period 1 August 2019–30 June 2020.  

Fig. 4. Time series of school meal portions served by Kitchen 2 in the period 1 August 2019–30 June 2020.  
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data was around 11600 and cMAPE was around 4.104. 
Fig. 5 shows the time series from April 2020 to June 8, 2020 (black 

line) with the superimposed red line of the random forest predictions for 
the test data (21 May-8 June). As can be seen, the last 19 days of the 
series were rather well predicted by the model. Using more inputs 
related to socioeconomic contextual variables (such as characteristics of 
the pupils attending the school) could probably improve the prediction 
ability of the model. 

To assess whether older data improved the prediction power of the 
random forest model, we tried to predict the same test data using 
training data on the number of portions served from August 1, 2017. For 
Kitchen 1, the inputs Weekday and Weekend were initially the most 
important, followed by Holiday. Based on the relative importance of the 
metrics, we decided to build a final random forest model using the inputs 
Holiday, Year, Day of the year, Month, Weekday, and Weekend. Using a 
longer run (three years) changed the importance of the inputs, with 
Holiday being the most important input, followed by Weekdays and 
Weekend, while Month, Year and Day of the year were least important. 
The MSE of the test set was around 555, slightly better than obtained 
using the model trained on a shorter run (one year, MSE = 609). 

We also checked whether including information on the pandemic 
stages improved the prediction power. To do this, we added two inputs: 

number of daily new Covid-19 cases in the municipality where the 
kitchen was located and a dummy identifying days before or after March 
19, 2020, which corresponded to the beginning of the restrictions in 
Sweden. However, neither of these inputs improved the prediction 
power of the random forest model. 

In an economic assessment, we computed the cumulative sum of 
kitchen costs for serving meals in the three different scenarios presented 
in section 3.3. Fig. 6 shows the distribution of meal costs over the test 
period for Kitchen 1 (May 21-June 8) on comparing the daily progressive 
meal costs in the no-plan scenario (dashed red line in Fig. 6), the actual 
scenario (blue bars), and the forecast scenario (orange bars). Two 
different types of comparisons were carried between the three scenarios. 
The results confirmed the effectiveness of the forecasting method from 
an economic perspective. The expected cumulative costs for serving 
meals in the entire test period were found to be 4454 Euros for the actual 
(real) data and 4461 Euros for the forecast data. This demonstrated good 
accuracy of prediction and high levels of economic savings (and dis-
tance) compared with the total costs that the kitchen would have 
incurred if no planning (i.e. no-plan scenario) had been implemented 
(costs = 5382 Euros). 

The alignments between actual and forecast data also showed the 
economic value of avoiding waste. In Fig. 6, the distance for each day 

Fig. 5. Number of school meal portions served by Kitchen 1 from April 2020 to June 2020. Black line: observed data, red line: predicted data. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. Results of economic scenario analysis for Kitchen 1. ( ) Sum of meal costs based on actual data. ( ) Sum of meal costs based on forecasted data. ( ) Sum 
of meal costs based on total enrolled students. 
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between the dashed red line (no-plan scenario) and the forecast scenario 
(orange bars) represents the costs avoided by adopting a machine- 
learning approach to forecasting meals. The total saving for Kitchen 1 
was approximately 921 Euros, compared with approximately 928 Euros 
saved from using the series of actual (real) data (blue bars). Median ARB 
was equal to 0.0884%, thus confirming the potential of the machine 
learning model for food planning and management. 

Prediction using random-forest models was also performed for 
Kitchen 2 (Fig. 7). Based on availability of data, the test data period was 
9–28 June 2020,1 after which there was a sharp decrease in the actual 
number of meals served (see Fig. 4). The training set covered the period 
1 August 2019–8 June 2020. Other inputs in the initial random forest 
model were the same used for Kitchen 1, as were the inputs of the refined 
model (selected using the importance metric). 

The MSE was around 19 for the training data and 107 for the test 
data, while cMAPE was 0.095 for the training data and 0.487 for the test 
data. 

Economic validation of meal forecasting for Kitchen 2 (Fig. 8) also 
revealed the overall discrete adherence between the cumulative sum of 
kitchen costs incurred during the test period, which was approximately 
532 Euros based on the actual data (therefore the real costs of served 
meals) and approximately 774 Euros based on the estimated random- 
forest results. In contrast, the theoretical cost of meals in the no-plan 
scenario was 2072 Euros. 

Thus the total saving from predicting meals through the machine 
learning approach during the test data period (9–28 June 2020) was 
approximately 1298 Euros, compared with 1540 Euros based on 
observed data. It is worth noting that although we found greater over-
estimation of number of meals served on the last days of the test data 
period, the average daily deviation from the costs of the no-plan scenario 
(i.e., cooking meals for all pupils enrolled) amounted to 64 Euros for the 
forecast values and 77 Euros for the actual values. The median ARB 
value (0.296) confirmed the high level of variability in the estimates, 
with the first quarter of the differences having relative bias <0.15. 

The coefficient of variation (CV) for Kitchen 1 was 0.1186 and 
0.2106 for the training and test data, respectively, while for Kitchen 2 it 
was 0.1165 and 0.7773, respectively. Thus, the CV of the training set 
was quite similar and small for both kitchens, indicating that the random 
forest models were well trained. The CV of the test set was higher, 
particularly for Kitchen 2. The cMAPE values showed similar trends. As 
can be seen in Fig. 7, the prediction line (red) was lagged with respect to 
the actual data (black line), so the prediction was not so good. It was 
unclear whether this was related to pandemic-specific circumstances. 
Unfortunately, adding inputs related to the pandemic (number of daily 
new cases and the dummy) did not improve the prediction power of the 
model. 

5. Discussion 

Based on data on guest attendance for meals in school and preschool 
canteens, it is clear that the pandemic period started exactly after the 
press conference announcing restrictions in Sweden. The day after this 
press conference saw the lowest attendance of children during a normal 
week day in the schools and preschools studied. However, by the second 
day after the start of the restrictions guest attendance started rising 
again and in the weeks just after the start of the restrictions the atten-
dance in schools was almost back to normal, given that the time just 
before a holiday normally has a low level of guest attendance [13]. 
During the pandemic steady state phase between Easter holiday and 
summer holiday guest attendance went down, but it normally does so 
especially during the weeks including national holidays in May. Thus 

during this period the pattern of guest attendance was close to normal 
for the period, as if there were no pandemic going on at all. 

In preschools, it was more apparent that there was a pandemic going 
on, with guest attendance after the restrictions were announced down to 
around 70% of what would be expected based on the regular pattern 
during April–June. Thus preschools seemed to suffer more long-lasting 
effects of the pandemic or the restrictions, probably due to three fac-
tors. First, school attendance is compulsory and it is actually illegal for 
parents to keep pupils away from school if they are not sick, while there 
is no such legal obligation for preschool children. Second, younger 
children are well-known for catching other corona viruses causing reg-
ular colds and runny noses, which are normally not considered serious 
diseases, but affected children were restricted from attending preschool 
during this period. Third, many parents were asked to simply stay at 
home with their children if possible (e.g., if they were on parental leave 
with younger siblings), in order to prioritize preschool staff time for the 
children of key workers. 

It is probably impossible to predict changes in guest attendance 
during the initial phase of a pandemic, but guest attendance after just a 
few weeks of restrictions appeared to be fairly steady and predictable. In 
both the schools and preschools studied, guest attendance followed the 
pattern in the previous year, but with a slight shift downwards, espe-
cially in preschools. However, since this downshift seemed quite con-
stant over the period, it must be considered predictable given that the 
previous days set the level of the forecast. 

Introduction of a machine learning approach to predict guest 
attendance in Swedish public catering proved to be an effective tool for 
avoiding overcatering, and could therefore be used to reduce economic, 
environmental, and social impacts of wasting food. Machine learning 
techniques have been shown previously to improve demand estimation 
compared with conventional multiple linear regression methods [46]. 
Specifically, the random forest learning method was found to be able to 
predict number of portions that kitchens had to serve in schools, setting 
a “safety margin” to avoid insufficient portions. However, some meth-
odological consideration must be resolved in future research to enable 
deeper analysis. We found a good level of prediction power of the 
random forest models from a statistical perspective and considerable 
amounts of economic savings from a strict economic perspective. We 
also found quite a high level of uncertainty characterizing the test 
period, particularly for Kitchen 2, which was characterized by a less 
standard daily series. This suggests a need not only to assess various 
types of models, but also to collect “auxiliary” information on e.g., the 
school, pupils, and kitchen characteristics, to improve the accuracy of 
forecasting. 

The results could be viewed as very case-dependent, given that a 
future crisis would most likely not follow exactly the same pattern as the 
COVID-19 pandemic and that the Swedish public catering system is rare 
in a global perspective. However, certain aspects are general and should 
therefore make the results more generalizable. First, even though the 
next pandemic will probably take a different shape, societies will have 
experiences from the Covid-19 pandemic, and base restrictions and 
measures on these experiences. This happened already during the sec-
ond wave of the Covid-19 pandemic (autumn 2020), when countries all 
over Europe were trying to restrict the spread of the virus in society, but 
without closing down schools, a similar approach to that applied in 
Sweden during spring 2020. Second, even though the concept of free 
school meals is rather rare, meals are served in school canteens in many 
countries, and the forecasting techniques tested in this paper should be 
applicable to other settings to increase the precision of predicting future 
guest attendance. An interesting finding by Ref. [47] for the household 
sector was an observed reduction in levels of food waste during the 
pandemic in an Italian context, due to careful food planning and man-
agement. However, those authors stress the important role of contextual 
variables in reducing food waste during a lockdown scenario, and their 
findings are not easily transferable to other sectors of the food supply 
chain. 

1 Kitchen 2 served portions up to the end of June, so we attempted to predict 
the last 20 days of available data. Kitchen 1 served portions until 8 June, ac-
cording to our data. 
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Based on the results in this paper, policy recommendations can be 
formulated for a future situation where there are restrictions in society 
to contain a pandemic, but where schools and preschools are kept open. 
The main recommendation is use a forecasting tool before a crisis to 
avoid overproduction, but also to train the forecast on a normal situa-
tion. The situation in the first days of restrictions is difficult to predict, 
since it is highly dependent on people’s reactions and precautions, 
rather than the actual number of infected individuals. During this 
period, the best strategy would be to accept that too much food will be 
purchased and therefore shift the focus to handling this overproduction 
by re-using leftovers or preparing food in smaller batches, so as to adjust 
production more precisely, as recommended by the Swedish Food 
Agency in normal situations [48]. During this period, it would also be 
good to adjust the forecast so that recent days weigh higher in the 
predictions, or simply shift to a simple model using moving average or 
similar models, as exemplified in Refs. [13,49]. In the case of under-
prediction, shortages will occur and a sufficient margin needs to be in 
place. Optimization of this margin is something that is described by 
Ref. [13] who also proposes a system where a backup stock is used to 
handle days when the forecast delivers an underprediction to meet de-
mand. Such a system would need to be evaluated to see if it has the 
desired food waste reduction effect. 

For the remainder of the pandemic period, it is likely that the normal 
forecast could be applied with good precision. There might be a new 
slightly lower level, e.g., if some guests are prevented from attending the 
lunch servings, but since this would be a known factor it should be 
possible to adjust the forecast based on these numbers. In the random 
tree approach, pandemic or non-pandemic could be used as a parameter 
to better train the machine learning algorithm. In summary, a good 
forecasting tool is likely to predict guest attendance during a pandemic 
with good accuracy, but not during the initial phase, where production 
adjustments are also needed. One of the key aspects in implementing 
forecasting in kitchens is to achieve trust in the forecasts among the staff 
and have an acceptable margin in place. One major advantage that 
random forest or any other tree-based method provides is that they are 
easy to explain [50], which can be one way of establishing trust in the 
forecasts that they provide. Without trust in the information provided by 
the forecast, it is unlikely to be used by the kitchen staff and therefore 
potential benefits with a forecasting system are in vain. However, using 
a method that is explainable and not of a black box type might lower the 
trust threshold and increase the likelihood of implementation and usage 
among end-users. Accurate and trusted forecasting is therefore a tool 
that can be useful to prevent overproduction and increase sustainability 
both before and during a pandemic. 

Fig. 7. Number of school meal portions served by Kitchen 2 from April 2020 to June 2020. Black line: observed data, red line: predicted data. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. Results of economic scenario analysis for Kitchen 2. ( ) Sum of meal costs based on actual data. ( ) Sum of meal costs based on forecasted data. ( ) Sum 
of meal costs based on total enrolled students. 
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6. Conclusions 

It is impossible to forecast demand early during extreme events. 
Instead, the focus should be on dealing with surplus food or preparing 
smaller batches during the initial phase of a pandemic or other extreme 
event. However, after a short period into the Covid-19 pandemic a 
forecasting tool was able to predict guest attendance at preschool and 
primary school meals with accuracy. A random forest approach was 
found to predict guest attendance during the test period with a condi-
tional absolute mean error of 0.448–0.487 on kitchen level. The most 
important factors for the accuracy of the forecast were found to be 
weekday and weekend, while number of daily new Covid-19 cases had 
no prediction power in the model. The potential savings from use of 
random tree forecasting was found to be 921–1298 Euros compared with 
a situation where a meal is cooked for every pupil enrolled in schools. 
Random forest forecasting appears therefore to be a suitable tool for 
implementing in public catering in order to reduce food waste and 
contribute to a more sustainable food system. 
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