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A B S T R A C T   

Pine wilt disease (PWD) is a very destructive forest disease that causes the mortality of pine. The infected trees 
usually die within three months, and the disease spreads fast with the long-horned beetle as the medium if the 
infected trees are not removed from the forest in time. Therefore, detecting the infected trees at different 
infection stage, especially the early infection, is crucial for preventing PWD spread. This study aims to exhibit the 
spectral differences of the pine needles between healthy pines and infected pines at different infection stages and 
reveal the diagnostic spectral bands for classifying the different infected stage trees. We collected needle samples 
from healthy, early-, middle-, late-stage infected trees in a Japanese pine (Pinus densiflora) forest and a Korean 
pine (Pinus koraiensis) forest in northern China to explore the spectral and biochemical properties differences of 
these four classes, and selected the sensitive bands combining competitive adaptive reweighted sampling (CARS) 
and successive projections algorithm (SPA). The selected bands were used for the four infection stages classifi-
cation by linear discriminant analysis (LDA) algorithm. The results show that Chlorophyll a, chlorophyll b, ca-
rotenoids, and moisture content decreases with the aggravation of infection. The green (510–530 nm), red-edge 
(680–760 nm), and short-wave infrared (1400–1420 nm and 1925–1965 nm) bands are the sensitive bands, and 
the overall accuracy is 77 % and 78 % for the Japanese pine and Korean pine respectively when using these bands 
for classifying healthy, early-, middle-, late-stage infected trees. The results demonstrate that physiological pa-
rameters including Chlorophyll a, chlorophyll b, carotenoids, and moisture content can be used as the diagnostic 
parameters of PWD, and the selected sensitive spectral bands are feasible for detecting the stress symptoms of the 
Japanese pine and Korean pine.   

1. Introduction 

Pine wilt disease (PWD) is a devastating disease caused by pinewood 
nematode (Bursaphelenchus xylophilus) (Futai, 2013; Kim et al., 2019). 
The disease causes rapid mortality with a high mortality rate, and is 
difficult to control and prevent from spreading, causing severe forest and 
ecological damage and serious economic losses (Tóth, 2011; Vicente 
et al., 2012). PWD is native to North America(Ikegami and Jenkins, 
2018), but is now widely distributed in Asia(Hyun et al., 2007; Mamiya, 
2004; Ye, 2019) and Europe(Abelleira et al., 2011; Fonseca et al., 2012; 
Mantas et al., 2022; Mota et al., 1999; Robertson et al., 2011). There are 
currently 52 countries that classify pinewood nematodes as quarantine 
pests (Escuer et al., 2004; Jones et al., 2008; Wu et al., 2020b). The first 
discovery of PWD in China was in the subtropical zone, but it has 

extended to the north of China and the damage has aggravated with 
global warming and the impact of human factors caused by global trade. 
According to the Chinese Forestry Administration’s No. 5 and No. 14 
National Pinewood Nematode Epidemic Area Announcement in 2021, 
the disease has spread to 19 provinces including the regions in the 
temperate zone (Cheng et al., 2015; He et al., 2012; Li and Zhang, 2018). 
Therefore, a feasible and accurate disease monitoring method must be 
developed to better control the spread of the disease. 

The nematode cannot be transmitted outside the wood indepen-
dently but is spread by the main insect vector, pine sawyer longhorn- 
beetles (Monochamus spp.) during feeding and oviposition (Kim et al., 
2019). Currently, there is no way to eradicate PWD, and timely felling of 
the infected trees and incineration or fumigation in situ is the most 
effective method for controlling its spread (Kim et al., 2011; Shin, 2008), 
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which requires detecting the infected trees in a timely and accurate 
manner. Previous studies have shown the potential of using remote 
sensing techniques for forest damage detection and monitoring. For 
example, Syifa et al. (Syifa et al., 2020) used drone RGB images to detect 
dead trees with an accuracy of 86 % to 94 %. Tao et al. (Tao et al., 2020) 
used the UAV RGB images to identify dead trees due to PWD in pure 
forest with an accuracy of 65 % to 80 %. Zhang et al. (Zhang et al., 
2021a) used revisited high-resolution satellite images of PlanetScope 
multispectral images with 3 m resolution to separate dead trees from 
PWD and other objects with an accuracy of 81.2 %. Mantas et al. 
(Mantas et al., 2022) used Sentinel-2 data to detect decline trees with an 
overall accuracy of 95 %. Zarco-Tejada et al. (Zarco-Tejada et al., 2019) 
used Sentinel-2A and hyperspectral imagery, tree decline was detected 
by chlorophyll content estimation. However, the above studies only 
detected the dead or declined trees, while detecting infected trees at the 
early stage with high accuracy to reduce the spread is still a challenge. 

In the early stage of disease, the spectral difference between healthy 
trees and infected trees is small, while hyperspectral technology can 
acquire spectral information in hundreds of narrow bands in the visible, 
near-infrared (NIR), red-edge, and short-wave infrared (SWIR) ranges 
(Ghamisi et al., 2017). These narrow bands are highly sensitive to the 
subtle changes in the vegetation damaged by pests and diseases (Zhang 
et al., 2020b) or other reasons, so hyperspectral technology shows its 
great potentials for early detection of vegetation pest and disease. It has 
been widely used in agriculture pest and disease monitoring. Liu et al. 
(Liu et al., 2018) used ASD FieldSpec data to discriminate asymptomatic 
and symptomatic rice leaves, and the overall accuracies were 91.3 % – 
93.1 %. Susič et al. (Susič et al., 2018) used hyperspectral images to 
discriminate abiotic and biotic drought stress of tomatoes, and the ac-
curacies were 90 % – 100 %. Couture et al. (Couture et al., 2018) used 
non-imaging hyperspectral data to detect the Potato virus Y infected 
leaves with the mean validation kappa of 0.73. Polder et al. (Polder 
et al., 2019) used hyperspectral images to detect Potato Virus Y with the 
accuracy of over 78 %. 

In recent years, PWD detection based on hyperspectral technology 
has attracted wide attention. Iordache et al. used airborne multispectral 
and hyperspectral images to identify suspicious infected trees with 83 % 
accuracy, demonstrating the feasibility of early identification of PWD 
(Iordache et al., 2020). Yu et al. used ground-based hyperspectral data 
and UAV hyperspectral data for early detection, with an accuracy of 
57.69 % – 73.91 % and 48.28 % – 57.69 %, respectively (Yu et al., 
2021c). And in another study, they used UAV hyperspectral images 
combined with LiDAR data for early detection with an accuracy of 50 % 
– 64.1 % (Yu et al., 2021b). Compared with the results of early detection 
using UAV-based multispectral imagery and RGB images with the ac-
curacy of 42.36 % – 48.88 % (Yu et al., 2021a) and 46.5 % – 50.8 % (Wu 
et al., 2021), hyperspectral detection has high accuracy. 

However, when using hyperspectral data for PWD monitoring, most 
studies directly use vegetation index or spectral characteristic parame-
ters for identification. There is a lack of analysis of the spectral changes 
after being stressed by pinewood nematode. In addition, according to 
the physiological and ecological mechanism of PWD, the physiological 
properties at the different infection stages will change(Huang, 2020), 
which could be the important characteristics for PWD early detection. 
Hyperspectral data contains rich spectral signals for disease damage 
detection, but it also has spectral redundancy, so spectral change anal-
ysis and diagnostic spectral bands screening are the basis for early 
identification. Therefore, the screening of the diagnostic spectrum and 
the joint analysis with the physiological parameters are of great signif-
icance for PWD infection stages classification. However, both space-
borne data and airborne data, are affected by environmental factors such 
as atmosphere and moisture when acquiring data, which leads to mea-
surement errors. Even if these errors can be corrected by pre-processing, 
the data will still be affected by canopy architecture and bidirectional 
reflectance distribution factor. Therefore, we use ground-based leaf 
hyperspectral data and physiological parameters to reveal the 

mechanism and process of leaf spectrum and biochemical property 
changes after infection, which is important for large-scale PWD moni-
toring and control based on airborne or spaceborne optical remote 
sensing technology. 

The objectives of this study can be formulated as the following:  

(1) Analyze the changes in spectral and physiological parameters of 
the pine needles following infection. 

(2) Obtain the diagnostic spectral bands and physiological parame-
ters through spectral dimensionality reduction and correlation 
analysis.  

(3) Construct the detection models to provide an effective method to 
identify different infection stages. 

2. Materials and methods 

2.1. Study area 

The two study areas were located in Weihai, Shandong province 
(37◦25 ’ – 37◦25′ N, 121◦58 ’ – 122◦17′ E) and Fushun, Liaoning 
province (41◦14́– 42◦28́N, 123◦39́– 125◦28́E), northeast China (Fig. 1). 
Weihai is located in the warm temperate zone and has a temperate 
monsoon climate with abundant rain and a moderate annual tempera-
ture. The average annual precipitation is 730.2 mm, and the average 
annual temperature is about 11.9℃. Fushun is located in the temperate 
zone and has a continental monsoon climate with hot summer and more 
rain, and a cold and long winter with a large temperature difference. The 
annual average precipitation is 804.2 mm, and the annual average 
temperature is about 6.6℃. The Japanese pine (Pinus densiflora) forest 
in Weihai and the Korean pine (Pinus koraiensis) forest in Fushun were 
largely attacked by PWD and caused substantial financial loss. 

2.2. Field data 

The field inventory was conducted in September 2019 in Weihai and 
August 2020 in Fushun. We selected the plots that have been verified 
being infected with pine wood nematode disease with the help of the 
local forestry staff. Ten plots in Weihai and five plots in Fushun were set 
up with a 25 m × 25 m size, containing pines at different infection 
stages. We randomly selected 10 – 20 sampling trees in each plot, and 
obtained samples from 106 Japanese pines and 83 Korean pines in 
Weihai and Fushun, respectively. Sampling is concentrated in 1–2 days 
to ensure that the trees do not decline over time. The Japanese pine 
dataset was randomly divided into a 70-sample training set and a 36- 
sample validation set, and the Korean pine dataset was randomly 
divided into a 55-sample training set and a 28-sample validation set. The 
training set was used for model training, and the validation set was used 
to test the accuracy of the model. 

We classified the pines as healthy or infected at three different stages 
according to the colors of the needles as:  

(1) Healthy, with all needles green.  
(2) Early-stage infection, with less than half of the sampling needles 

turning yellow, or<1/3 of the sampling needles turning red.  
(3) Middle-stage infection, with more than half of the needles yellow, 

or the proportion of red needles between 1/3 and 3/4.  
(4) Late-stage infection, with>3/4 needles red. 

We collected branches that roughly represent the average spectrum 
of each tree. Those branches of each sampled tree were cut from four 
directions from the upper, middle, and lower layers(Zhang et al., 2018). 
The numbers of healthy, early-stage, middle-stage, and late-stage 
infected trees were 33, 33, 18, and 22 in Weihai (Japanese pine) and 
33, 25, 10, and 15 in Fushun (Korean pine). 
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2.3. Physiological parameter measurements 

The measured physiological parameters includes chlorophyll a, 
chlorophyll b, carotenoids, and moisture content. We cut 0.1 g of nee-
dles, soaked them in 95 % ethanol until colorless, and then diluted them 
to 50 ml. We measured the absorption values at 663 nm, 645 nm, and 
470 nm using a spectrophotometer, and calculated the contents of 
chlorophyll a, chlorophyll b, and carotenoids by the Arnon formula 
(Duan, 1992). Each sample was measured three times, and the average 
value was used as the final result. In addition, to determine moisture 
content, the needles with a weight of m1 were dried in an oven dryer at 
105 ℃ for 30 min, then adjusted the temperature to 80 ℃ and dried to a 
constant weight. We measured the weight after drying, recorded it as 
m2, and used the following formula to calculate the moisture content: 

Moisture Content = (m1 − m2)/m2*100% (1)  

2.4. Spectrum data acquisition 

The spectral reflectance of the needles of sampling trees was 
measured indoors using a FiledSpec 4 HR NG spectrometer (Analytical 
Spectral Diveces, Inc. Boulder, Co, USA) ranging from 350 to 2500 nm 
(Table 1). The spectrum of each sampled tree is calculated from the 
average spectrum of collected branches. The needles were placed on a 
black cover and lighted only by the supporting light resource of the 
spectrometer. The spectrum values were averaged every ten scans as the 
spectrum of each sample to minimize the spectral signal noise. We 
calibrated the spectrometer using the white broad every ten minutes 
during the measurements. The measurements with spectral range < 400 

nm and > 2400 nm were removed due to noise. 

2.5. Sensitive bands selection 

Hyperspectral data contains rich spectral information, but at the 
same time, the huge amount of data also causes redundancy in the data 
processing. Not all the bands are sensitive to PWD infection monitoring, 
so we need to select the sensitive bands without losing important in-
formation by suitable dimensionality reduction methods. 

In this study, three algorithms are used for bands selection: 
competitive adaptive reweighted sampling (CARS), successive pro-
jections algorithm (SPA), and the CARS-SPA algorithm. CARS is a vari-
able selection method that combines Monte Carlo sampling with partial 
least squares (PLS) model regression coefficients over many sampling 
runs. In each sampling run, CARS performs four successive procedures, 
including Monte Carlo model sampling, exponentially decreasing func-
tion (EDF) forced variable removal, adaptive reweighted sampling 
(ARS) competing variable removal, and minimum root mean squared 
error of cross validation (RMSECV) calculation for each subset. Finally, 
the subset with the lowest RMSECV value is taken as the optimal 
wavelength subset (Li et al., 2009). 

SPA is a forward selection method. It starts with one wavelength, and 
then incorporates a new wavelength at each iteration, until a specified 
number of wavelengths are reached. The principle of variable selection 
by SPA is that the selected new variable is one of all the remaining 
variables, which has the maximum projection value on the orthogonal 
subspace of the previous selected variables. Root mean square error 
(RMSE) is used as the evaluation criterion to determine the optimal 
bands. The purpose of SPA is to select the wavelength with the minimum 

Fig. 1. Location of the study area (a), sample plots in Fushun City, Liaoning Province (b), sample plots in Weihai City, Shandong Province (c). The green squares 
represent the location of the sample plots. (d) is sampled using the high branch shear. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 1 
Main parameters of FiledSpec 4 HR NG spectrometer.  

Spectral Range 
(nm) 

Spectral resolution 
(nm) 

Spectral sampling (bandwidth) 
(nm) 

Wavelength reproducibility 
(nm) 

Wavelength accuracy 
(nm) 

Field of view 
(◦) 

350 nm-2500 nm 3@700 
6@1400/2100 

1.4@350–1000 
1.1@1001–2500  

0.1  0.5 25  
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redundancy of information content in order to solve collinearity prob-
lems. The detailed description of SPA can be found in previous studies 
(Araújo et al., 2001; Soares et al., 2013; Xiaobo et al., 2010). 

Combining two complementary band selection algorithms may 
achieve a superimposed effect (Su et al., 2018, 2019). The CARS algo-
rithm runs fast, but the number of selected bands is large and there is 
redundancy. The SPA algorithm is time-consuming, but the selected 
bands are all valid. Therefore, we combine these two algorithms and call 
it “CARS-SPA”. This joint algorithm not only shortens the running time 

of the algorithm, but also ensures that the selected bands are valid 
variables with minimum collinearity. This joint algorithm has been 
applied in crop growth monitoring and seed quality assessment(Wang 
et al., 2021; Zhang et al., 2021b). The results show that compared with 
using one algorithm alone, this joint algorithm can improve the band 
selection efficiency by 0.78 % − 20.23 %. Currently, this combined al-
gorithm has not been applied to the spectral selection of forest pests and 
diseases. The algorithm was implemented using MATLAB 2018a. 

Fig. 2. Physiological parameter content at different 
infection stages of Japanese pine (1), Korean pine 
(2), and (a) Chlorophyll a, (b) Chlorophyll b, (c) 
Carotenoids, (d) Moisture content. The black line in 
the figure is the average value. Statistical signifi-
cance differences with p > 0.05 were marked as null. 
Statistical significance differences with 0.01 ≤ p <
0.05 were marked as ‘*’. Statistical significance dif-
ferences with 0.001 ≤ p < 0.01 were marked as ‘**’. 
Statistical significance differences with p < 0.001 
were marked as ‘***’.   
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2.6. Classification and validation 

In this study, two algorithms are used for classification: linear 
discriminant analysis (LDA) and support vector machine (SVM). The 
LDA algorithm is used to model after band screening, and the SVM al-
gorithm is used to model in all bands. 

The LDA is a linear projection technique proposed by Fisher (Fisher, 
1936). Its principle is to project the training samples onto a straight line 
during training, which can make the projection points of the same type 
of sample as close as possible and the projection points of different types 
of samples as far away as possible. During prediction, the data to be 
predicted is projected onto the straight line learned above, and the 
category it belongs to is determined according to the position of the 
projection point (Tharwat et al., 2017). In order to eliminate the error 
caused by the division of the sample set as much as possible, when 
modeling with LDA, we conduct 10 experiments, and take the average 
accuracy as the final accuracy. In each experiment, the training set and 
the verification set were randomly assigned. 

The SVM is a supervised nonparametric statistical learning tech-
nique, which was introduced within the framework of statistical 
learning theory developed by Vapnik (Cortes and Vapnik, 1995; 
Mountrakis et al., 2011). SVM is effective for high-dimensional feature 
classification, even when the feature dimension is larger than the 
number of samples. Therefore, we used SVM for full-band classification. 
The SVM algorithm is implemented by LIBSVM 3.25 software (Chang 
and Lin, 2011). The division of training set and validation set was 
written in section 2.2. In this study, the SVM type is C-Support Vector 
Classification (C-SVC). The kernel functions used include linear kernel 
function, polynomial kernel function and radial basis function (RBF) 
kernel function. 

The accuracy of the model is evaluated using the correct identifica-
tion rate (CIR), which is the percentage of the number of correctly 
identified samples in the total number of samples. The larger the value, 
the better the recognition effect of the model. 

3. Results 

3.1. Physiological parameters at different infection stages 

With the development of infection, chlorophyll a, chlorophyll b, 
carotenoids, and moisture content tended to decrease (Fig. 2). All pa-
rameters showed statistically significant differences in early and middle, 

middle and late stages, so the spectral absorption related to chlorophyll 
and water would show some differences in the spectral curves of 
different infection stages. The moisture content showed significant dif-
ferences between healthy and early stage of the two tree species, so the 
parameters of spectral absorption related to water have the greatest 
potential for early identification. For the Japanese pine, chlorophyll a 
also showed good potential for early identification. 

3.2. Reflectance spectrum and sensitive bands 

The needles from healthy and early-stage infected trees showed a 
similar spectrum to the typical vegetation spectrum. With the develop-
ment of infection, the spectral curves gradually lost the following fea-
tures (Fig. 3):  

(1) The absorption spectrum around the green peak caused by 
Chlorophyll absorption at the green bands and red bands dis-
appeared (Zone A and B).  

(2) The slope at the red edge was gentler than the healthy samples.  
(3) The absorption valleys in the NIR bands weakened due to change 

of cell structure. (Zone C and D).  
(4) The reflectance at the SWIR bands was higher than in healthy 

samples due to low water absorption. The absorption valleys at 
zones E, F, and G were less obvious than in healthy samples. 

By comparing the two tree species, we found that the spectral 
reflectance values of Korean pine were higher than those of Japanese 
pine at all stages. In the NIR band, the average spectrum curve of Jap-
anese pine in the middle stage was higher than that in the late stage, 
while the average spectrum curve of Korean pine in the middle stage is 
almost the same as that in the late stage. Although there are some dif-
ferences in the spectra of the two species, the changes in each absorption 
valley and red edge at different susceptible stages are the same. 

The mean reflectance in the red, NIR and SWIR bands showed big 
differences among different stages. However, the reflectance at the NIR 
bands also showed high standard deviation (Fig. 4), i.e., large variance 
within groups, making classifying different stages challenging. The 
reflectance at the red-edge bands showed low differences among 
different stages, but also low standard deviation within stages, thus it 
could potentially contribute to the classification.Fig. 5.. 

In terms of tree species, we found that the spectrum of Japanese pine 
at various susceptible stages and healthy trees has little difference in the 

Fig. 3. The average reflectance spectrum of samples at different stages of infection: (a) Japanese pine, (b) Korean pine. Spectral absorption valleys are marked in grey 
(A-G). 
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NIR band, especially in the early stages, which may lead to a low early 
recognition rate. The spectrum of Korean pine at each susceptible stage 
was quite different from that of healthy trees. 

When using SPA to select the sensitive bands, six and twelve bands 
were selected for Japanese pine and Korean pine, respectively. The 
sensitive bands of Japanese pine corresponded to the chlorophyll ab-
sorption bands around the green peak, the red-edge bands, and the water 

absorption zones in the SWIR bands. In addition to the above bands, the 
sensitive band of Korean pine also has the absorption zones in the NIR 
bands. When using CARS to select the sensitive bands, fifteen and 
fourteen bands were selected for Japanese pine and Korean pine, 
respectively. The sensitive bands of Korean pine are the chlorophyll 
absorption bands, the red-edge bands, and the water absorption zones in 
the SWIR bands. In addition to the above bands, the sensitive bands of 

Fig. 4. The mean and standard deviation of the spectrum of Japanese pine (1) and Korean pine (2) needles from (a) healthy trees and early-stage infected trees, (b) 
healthy trees and middle-stage infected trees, and (c) healthy trees and late-stage infected trees. 
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Japanese pine also include the absorption bands in the NIR bands. In 
summary, all the above sensitive bands include the chlorophyll ab-
sorption bands around the green peak, the red-edge bands, the two ab-
sorption zones in the NIR bands, and the three water absorption zones in 
the SWIR bands. When using CARS-SPA for the band selection, three and 
two bands were sensitive to the Japanese pine and Korean pine, 
respectively. Compared to the SPA and CARS selections, the slopes of the 
spectrum curves caused by absorptions were judged to be more sensitive 

than the peak or valley values. 

3.3. Infection stage classification 

All bands were used for classification by the SVM algorithm, and the 
selected bands from SPA, CARS, and CARS-SPA were used for classifi-
cation by the LDA algorithm. The results showed that there was over- 
fitting when using the SVM algorithm in all bands, and the linear 

Fig. 5. The sensitive bands of Japanese pine (1), Korean pine (2) selected by (a) SPA, (b)CARS, (c) CARS-SPA.  
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kernel function showed the best classification accuracy, which was 0.78 
for Japanese pine and 0.79 for Korean pine. Among the three band se-
lection algorithms, CARS-SPA used the least number of bands but had 
the highest classification accuracy, with the accuracy of Japanese pine 
and Korean pine being 0.77 and 0.78, respectively (Table 2). Classifi-
cation using CARS-SPA selected bands (3 and 2 respectively for Japanese 
pine and Korean pine) were only 0.01 less accurate than classification 
using the full band, demonstrating the effectiveness of the selected 
bands. The CARS-SPA-LDA models separated middle- and late-stage 
infected samples with high accuracy, but yielded low accuracy in 
separating early-stage samples from the healthy ones. 

4. Discussion 

Hyperspectral data provides rich spectral information with a large 
number of narrow bands. It can capture the subtle changes in vegetation 
and is thus widely used for disease detection and monitoring in forestry 
and agriculture. Some of the bands respond earlier and more signifi-
cantly during the decrease in vitality. Therefore, selecting the most 
responsive bands and applying them to disease detection is crucial to 
decreasing data redundancy and avoiding overfitting. In this study, the 
SPA and CARS algorithms were used to select sensitive bands responding 
to different infection stages of PWD. We also used a CARS-SPA algorithm 
for the band selection, resulting in the least number of bands chosen and 
higher classification accuracy compared to when using CARS and SPA 
individually. This algorithm was also used to determine the fruit soluble 
solids content and cultivated soil moisture content (Wu et al., 2020; 
Zhang et al., 2019; Zhang et al., 2020a). 

This study illustrated that the red-edge bands were very sensitive to 
different infection stages of PWD, followed by the 510–530 nm band of 
green light, the 1 400–1 420 nm of SWIR bands and the 1 925–1 965 nm 
of SWIR bands. This result partially agrees with previous studies. For 
example, a study measured the spectra of trees inoculated with PWD 
using a GER-3700 spectrometer and observed the increased reflectance 
in the red and SWIR bands after 67 days of inoculation(Kim et al., 2018). 
Lee et al. (Lee et al., 2014) analyzed the spectral characteristics of 
different infection stages of PWD using a ground hyperspectral camera 
and the 688 nm band was found to be the optimal band, while in another 
study, the mid-infrared bands were shown to be the most sensitive bands 
for the early stage. 

During the infection of PWD, the water transportation is blocked by 
the PWD, which leads to a decrease of water content in the crowns, and 
gradually slows down the photosynthesis, which thus leads to a decrease 
in chlorophyll content (Fukuda, 1997; Kim et al., 2018; Wu et al., 
2020b). In this study, the same results were obtained by analyzing the 
differences in chlorophyll content and moisture content in different 
susceptible stages, that is, with the development of the susceptible stage, 
both chlorophyll and water content decreased. There is a significant 
difference in moisture content between healthy and early stages, so the 

related spectral parameters have good potential for early identification. 
This result was consistent with the research of other stem borers 
(Abdullah et al., 2018; Liu et al., 2021). The absorption spectrum around 
the green peak and the SWIR bands reflected the decreased water and 
chlorophyll content (Jones and Vaughan, 2010; Roberts et al., 2012). 
The NIR bands were sensitive to the cell structure, which thus showed 
considerable variation within the group and less depending on the 
infection stages. On the contrary, the red-edge bands showed little 
variation within the group and were thus more sensitive to the infection 
stages. The classification accuracy was similar when using the red-edge 
bands with or without NIR bands. Therefore, we considered the red-edge 
bands to respond better to the infection than the NIR bands. 

In this study, we classified healthy and infected trees at three stages 
with the selected bands. The classification performed well in dis-
tinguishing between healthy and infected trees at the middle and late 
stages, while separating healthy and early-stage infection was more 
challenging. Other studies have reached the same conclusion (Yu et al., 
2021b; Yu et al., 2021c). An infected tree usually turns red and dies 
within three months, while a study has shown that the spectra of the 
needles did not change significantly until 67 days after the PWD inoc-
ulation(Kim et al., 2018), which exhibited the difficulties of early 
detection. We used the LDA algorithm for the classification, considering 
many selected bands from the CARS-SPA algorithm as the variables. The 
result showed that compared with SVM using full-band classification, 
the classification using fewer selected bands also has similar accuracy. 
We assume using vegetation indices by the bands selected from the 
CARS-SPA algorithm (green, red, red-edge or SWIR bands) could also 
achieve the early classification which needs further studies. Since the 
focus of this study is revealing the spectra differences and exploring the 
accuracy differences between the models using different numbers of 
bands, we did not use other models than the LDA to reduce the influence 
caused by the model selection. 

One shortage in this study is that the infection was not verified by the 
presence of PWD in the lab for every tree, but we set up plots with 
infected trees verified in the past, and assumed the declined trees were 
infected by PWD based on the spreading characteristic of PWD. This 
might cause errors in the spectral analysis if other factors caused the 
discoloration, but we considered the probability very low. It has been 
shown that trees that decline for PWD and trees that decline for other 
reasons do not have unique traits in the spectrum(Mantas et al., 2022). 
Therefore, we hope this shortage is not so big to influence this study 
providing some insights on PWN. 

The needle spectra presented in this study could be a reference for 
further studies using hyperspectral or multispectral remote sensing data, 
such as drone and satellite images. The spectra in remote sensing im-
ages, particularly satellite images, may be influenced by the atmosphere, 
branches, canopy gaps, and surrounding trees; thus, the spectral dif-
ference between healthy and infected trees would be less dependent on 
their vitality. Therefore, the hyperspectral measurement from this study 

Table 2 
Classification accuracy of Japanese pine and Korean pine samples using different selected bands and all bands. H, E, M, L represent the classes of healthy, early-, 
middle-, and late-stage infected samples.  

Modeling method Band select 
Algorithm 

Modeling algorithm Number of bands selected Training set Validation set 
H E M L Total H E M L Total 

Japanese pine  All bands SVM-Linear 2001  0.95  0.81  1.00  1.00  0.93  0.82  0.58  1.00  0.89  0.78 
SVM- Polynomial 2001  0.95  1.00  1.00  1.00  0.99  0.73  0.83  1.00  0.56  0.75 
SVM- RBF 2001  0.95  0.90  1.00  1.00  0.96  0.27  0.42  1.00  0.78  0.53 

SPA LDA 6  0.84  0.68  0.90  0.92  0.82  0.73  0.63  0.85  0.83  0.75 
CARS LDA 15  0.90  0.87  0.95  0.97  0.91  0.70  0.63  0.79  0.79  0.72 
CARS-SPA LDA 3  0.80  0.62  0.87  0.93  0.78  0.85  0.58  0.83  0.90  0.77 

Korean pine All bands SVM-Linear 2001  0.82  0.76  1.00  1.00  0.85  0.91  0.75  0.40  1.00  0.79 
SVM- Polynomial 2001  0.86  1.00  1.00  1.00  0.95  0.27  0.88  0.40  1.00  0.57 
SVM- RBF 2001  0.86  0.82  0.60  1.00  0.85  0.82  0.63  0.00  1.00  0.64 

SPA LDA 12  0.87  0.81  0.96  0.88  0.87  0.85  0.60  0.73  0.71  0.74 
CARS LDA 14  0.91  0.81  0.88  0.92  0.88  0.75  0.67  0.76  0.88  0.74 
CARS-SPA LDA 2  0.84  0.73  0.91  0.79  0.81  0.86  0.65  0.82  0.87  0.78  
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could be a good reference to highlight the possible spectra changes due 
to infection rather than other factors. In the following research, we will 
compare the sensitive bands and the classification performance from the 
spectrometer and drone images, and explore which bands lost the 
sensitivity to infections on the remote sensing images. Achieving early 
detection with higher accuracy is another topic that needs further study. 
We consider the deviations of the spectra have the potential to perform 
better early detection based on the spectra we observed in this study. 

5. Conclusion 

This study analyzed the spectra and biochemical properties of nee-
dles from Japanese pines (Pinus densiflora) and Korean pines (Pinus 
koraiensis) with early, middle, and late stages of PWD infection. The 
results showed that chlorophyll a, chlorophyll b, carotenoids, and 
moisture content decreased during the infection, and water content had 
the most significant difference between healthy and early stage. The 
CARS-SPA spectral dimensionality reduction algorithm showed that the 
green (510–530 nm), red-edge (680–760 nm), and short-wave infrared 
(1400–1420 nm and 1925–1965 nm) bands were the diagnostic spectral 
bands. By using the LDA algorithm, the healthy, early-, middle-, and 
late-stage infected trees were classified with an overall accuracy of 77 % 
and 78 % for the Japanese pine and Korean pine respectively. This study 
provides an effective method to identify different infection stages, and 
the needle spectra presented in this study provide a reference for further 
studies using hyperspectral or multispectral remote sensing data, such as 
drone and satellite images. 
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