
1. Introduction
McCarter et al. (2022) have provided a carefully planned and executed study of how forest harvest influences 
the mobility and bioaccumulation of mercury. This is a valuable addition to the knowledge of how one can adapt 
forestry to reduce the risks of releasing more mercury (Hg) into the environment. Given how ubiquitous the 
legacy of Hg pollution is in forest soils, and the extensive disturbance that forest management entails, this study 
is a valuable step on the long path to learning how to better blunt the threat from past atmospheric pollution when 
conducting forestry operations.

Unlike many of the environmental toxins currently being focused on in research and the public debate, Hg is not 
an “emerging threat”. Its devastating toxicity is well documented, and it is all too commonly present in food at 
levels above what are considered safe for consumption by people or wildlife (UN Environment Program, 2019). 
The fact that Hg is the single largest cause of waters in the European Union (27 countries with 450 million inhab-
itants) failing to live up to the goals of the EU Water Framework Directive illustrates just how widespread Hg 
contamination is (Kristensen et al., 2018). The threats posed by Hg pollution unite 137 countries in the UNEP 
Minamata Convention to reduce human and wildlife exposure to Hg. But simply reducing Hg emissions will not 
remove the need to manage the problem of the Hg already spread around the globe. This is especially true for the 
forest landscape where atmospheric deposition of Hg continues to increase concentrations of Hg in forest soils, 
even where atmospheric concentrations of Hg pollution have declined from peak levels in the latter half of the 
twentieth century (Shanley & Bishop, 2012). Since runoff concentrations from forest landscapes are large enough 
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to start biomagnification to harmful levels in aquatic biota, but too small to drain the forest soil pool, the “legacy” 
of atmospheric Hg pollution accumulated in the forest soils will persist.

This creates a “wicked problem,” that is one that is resistant to solution due to the combination of complexities in 
both the science and the societal setting (Lidskog et al., 2018). It is not the forest owners who created the pollu-
tion. Nonetheless, harvest and other management activities can increase loadings to aquatic ecosystems. Climate 
change may exacerbate this problem by either destabilizing some terrestrial Hg pools in ways that increase Hg 
fluxes from the landscape into surface waters or by changing trophic interactions in ways that can increase the 
vulnerability of ecosystems to mercury bioaccumulation (Bishop et al., 2020). And while there are recommenda-
tions for best management practices in forestry that aim at reducing the risks, the evidence base for these manage-
ment practices remains weak due in part to the large range in how Hg in runoff responds to forest management 
(Hsu-Kim et al., 2018).

Ideally there will be validated biogeochemical models that can simulate the effect of different harvest meth-
ods on Hg. Catchment scale chemical transport models (CTMs) for Hg exist, for example, INCA-Hg (Futter 
et al., 2012), RIM-Hg (Eklöf et al., 2015), and those included in the ensemble modeling of Golden et al. (2012). 
These may someday provide a basis for recommendations about best management practices that are differenti-
ated enough to account for the wide range of soil, climate and vegetation settings where forestry is practiced. 
But so far applications of catchment CTMs have generally focused on reproducing observed behavior and not 
been tested as predictors of Hg responses to forest harvest or other perturbations. This is understandable given 
that the response to forest harvest ranges from manifold increases in fluxes and/or concentrations of different Hg 
species, to no response (Eklöf et al., 2016). There are hypotheses about why these differences occur after harvest, 
such as whether reductions in evapotranspiration after harvest lead to inundation of previously well drained soils 
or simply making wet areas wetter (Kronberg et al., 2016). These hypotheses, however, remain to be tested and 
quantified in the predictions of CTMs.

2. The Need for Field Studies
Previous reviews of the state of Hg modeling have pointed to the need for a dialog between observation, experi-
mentation and modeling (Sonke et al., 2013; Zhu et al., 2018). However, an increase in modeling studies relative 
to field studies over recent decades has been noted in the hydrological literature (Blume et al., 2017; Burt & 
McDonnell, 2015; Kirkby, 2004). Part of this change in publication patterns is driven by the expense and risk of 
experimental field studies in relation to modeling This puts a premium on field studies of Hg cycling under differ-
ent kinds of perturbation where the studies are rigorously executed and designed to look beyond the response at a 
single point (often a catchment outlet) into what is happening within the soils, and ideally even the biota.

McCarter et al. (2022) is thus a welcome addition to the literature with its thorough analysis of results from an 
exceptionally comprehensive experiment on responses to forest harvest using before-after-control-impact (BACI) 
design. Two years of pre-treatment data were collected from three instrumented hillslopes and the wetland which 
those hillslopes drained into. This was followed by two more years of observations after the forest was harvested 
on two of the hillslopes. The logging brash was removed on one of these, and left on the other.

The major findings of the paper were that after harvest, total Hg and dissolved organic carbon (DOC) concentra-
tions in water leaving the hillslope decreased, but the total mass of Hg and DOC reaching the wetland increased 
due to increases in the flux of water moving downslope. In the soils of the down-gradient peatland, the concentra-
tions of methylmercury decreased, while methylation rates and bioaccumulation in invertebrates did not change. 
That places this site at the minimal impact end of the range of Hg responses to forest harvest reported in the 
literature reviewed by Eklöf et al. (2016) and commented on earlier.

A major take-home from the field study is the importance of hydrology for harvest-related changes in Hg concen-
tration and fluxes. One needs to consult the previously published paper on the hydrological effects of forest 
harvest at this site (McCarter et  al.,  2020) to fully appreciate the hydrological influence on both the harvest 
treatments and between year variations. The general picture is that increased hillslope water yields after harvest 
(especially when brash was left on the forest floor) diluted the Hg and DOC, while at the same time increasing 
downslope export of these dissolved constituents from the hillslopes. The analysis goes on to examine intriguing 
differences between solutes and treatments, as well as the situation in the receiving peatland. A companion paper 
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uses Hg isotope tracers to reap further insights from the field experiment (McCarter et al., 2021). These tracers 
showed the overall dominance of previously accumulated legacy Hg in the Hg moving downslope with the water, 
but also the larger relative mobility of recently added Hg when comparing the small mass of the added Hg in 
comparison to the large store of Hg already in the soil.

3. The Value of Crossing Environmental System Boundaries
The comprehensive follow-up of this forest harvest on the Marcell Experimental Forest earns it a prominent 
place among the studies that comprise the empirical evidence base about forestry's impacts on Hg. But what most 
distinguishes this study is that it follows the fate of Hg across several system boundaries. Almost all studies that 
evaluate the effects of land use on Hg have only measured Hg at a single point in the disturbed landscape, in a 
stream that defines the outlet to a catchment. Few have looked into the landscape, and those that do have tended 
to stay within the boundaries of a single system: a soil profile, a hillslope, a wetland or an indicator species 
(Figure 1). This study looks at all of these, linking them together across system boundaries and thereby adding 
insight into knowledge gaps about forestry effects on Hg.

Figure 1. A schematic of environmental system boundaries that are of particular relevance to the fate and transport of 
mercury pollution deposited from the atmosphere on a forest landscape with both peatlands and a network of watercourses. 
The high-latitude areas where climate and physiography interact to create such landscapes are characterized by mercury 
bioaccumulation to levels that are harmful to humans and wildlife. Scientific studies that cross these boundaries improve the 
understanding of forest harvest effects on the mobilization and subsequent bioaccumulation of mercury in these landscapes. 
Highlighted in yellow are the environmental system boundaries crossed in a 4 year long forest harvest Before-After-Control-
Impact experiment conducted at the Marcel Experimental Forest (North-central USA) that are reported by McCarter 
et al. (2022) and companion studies. Two more boundaries that warrant consideration are highlighted in blue.
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The first boundary crossed is that between soil and atmosphere, by means of tracer additions that approximated 
newly added Hg from the atmosphere (McCarter et al., 2021) and flux chamber measurements that looked at Hg 
returning to the atmosphere from the soil (Mazur et al., 2014, 2015). These identified a loss of Hg from the forest 
floor after harvest, with Hg mobilized by the harvest moving both down the hillslope as well as up to the atmos-
phere. Catchment scale studies have generally found undisturbed forest soil to retain over 90% of atmospheric Hg 
inputs to catchments (Bishop et al., 2020). Crossing this system boundary thereby helps highlight the importance 
of forest harvest in mobilizing Hg pollution from distant Hg emission sources that is deposited on forests from 
the atmosphere.

The second system boundary crossed is from the hillslope into a downslope peatland. The instrumented hillslopes 
are isolated with transverse trenches where the slopes enter into the peatland, and the sectors of the peatland 
receiving water flow from the upslope harvested areas are sampled separately from peatland sectors below undis-
turbed hillslopes. It is helpful to know that the rate at which Hg is methylated (which makes Hg more bioavaila-
ble) went down in the peatland sectors below the harvested slopes, and that the total amount of Hg in the peatland 
below the upslope harvest did not measurably change.

By crossing a third system boundary, from the peatland into the biota, an answer was provided to the key ques-
tion of how bioaccumulation is affected by the forest harvest. This is especially important to look at in the biota 
itself, since the forest harvest may not only change the amount of MeHg present, but also the food web structure, 
and thus the vulnerability of that food web to Hg bioaccumulation. McCarter et al. are also to be commended for 
sampling at the base of the food web, a critical link between water and biota that is often overlooked due to the 
focus on upper levels of the food web where biomagnification has already raised Hg to levels that are known to 
be harmful (Wu et al., 2019).

The crossing of a fourth system boundary can even be inferred: from the terrestrial environment to receiving 
waters. Even though this study itself did not go up to the catchment scale, references to other studies indicate that 
the mass of Hg moving down the hillslope was several times larger relative to what is found leaving catchments 
in studies from areas with similar annual water balances. The fact that the hillslope is mobilizing more Hg than 
is usually seen leaving catchments in runoff suggests that much of the Hg moving down the hillslopes is being 
sequestered somewhere between the hillslope and the nearest stream. The organic-rich soils of the wetland (or 
riparian soils in areas without extensive wetlands) are obvious candidates for this sequestering function. The fact 
that an increase in peatland Hg was not observed in this study does not rule out that possibility for ongoing Hg 
sequestration in the peatland due to the difficulty of discerning such sequestration given the large size of the Hg 
store in the peatland relative to the inputs from the hillslope over the course of the study.

To say that studies which cross system boundaries are of special value should not be taken to mean that system 
boundaries are a hinder. In environmental science, boundaries are of tremendous value since they create a basis 
for quantification of mass balances (Zhu et al., 2018). The very existence of catchment science, for instance, is 
predicated on the water divide as a system boundary within which mass balances are established. Useful as it 
is to have boundaries, many environmental processes manifest themselves most clearly in the transformations 
occurring at ecotones—system boundaries such as the riparian zone between terrestrial and aquatic systems, cell 
walls between abiotic and biotic systems, or the base of the food web between organisms and their environment, 
to say nothing of the boundary between “natural” and human systems.

To understand the cross-boundary transitions entails knowing something of both systems on their respective sides 
of that boundary. Thus, however, appealing it is in principle to study what happens across system boundaries, 
the resources required for a study rapidly escalate when attempting to cross a boundary. To compare “before and 
after” management interventions adds a temporal dimension that studies need to capture as well. This means 
either long term studies at selected sites, or substituting “space for time” with observations at many sites. It is 
also not just the required financial resources that escalate when crossing boundaries, there is also a need for more 
expertise as one moves between disciplinary boundaries in the study of soils, hydrology and ecology.

Unfortunately, in the competition for funds with other environmental threats, Hg research does not have the 
privilege of being counted among substances of “emerging” concern that have dedicated funding streams. None-
theless, despite the challenges, McCarter et al.  (2022), were able to show that it is possible to cross multiple 
system boundaries with a study of a management intervention (forest harvest) that spans 4 years (2 years of both 
pre- and post-treatment). The research infrastructure of the Marcell Experimental Forest was undoubtedly a key 
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ingredient in making this possible, which is also important to bear in mind as one prioritizes between research 
infrastructure investment and funding for research projects that require research infrastructures. Given the chal-
lenges, it is particularly important to take note of boundary-crossing studies like the subject of this commentary. 
McCarter et al. (2022) helps build the critical mass of studies needed to provide syntheses and model tests that 
have a chance of revealing the fundamental ecosystem processes that give the widely varying Hg responses to 
forest harvest observed at different sites.

4. Conclusions
When a critical mass of field studies is achieved, it should be synthesized into validated biogeochemical models 
that provide a sound basis for guiding management. On the way to that critical mass, there is a need to keep testing 
hypotheses with more boundary-crossing studies that distinguish the effect of a management intervention from 
the variation due to weather, season and local site differences. We plead particularly for studies that consider 
the waterscape as well as the landscape by following the local impact of land-use on aquatic ecosystems further 
downstream from the first point of stream measurement. The need to consider how a land-use impact on aquatic 
biota propagates downstream is due to the possibility of land use effects being attenuated downstream. This 
can be due either to dilution with runoff from unimpacted parts of the landscape (e.g., Schelker et al., 2014), 
or in-stream processes such as demethylation that might be favored in a well-oxygenated stream environment. 
These new studies can be purpose built on long-term research infrastructures or exploit operational management 
interventions.

Since much remains to be done to achieve a better understanding of how to manage Hg in the forest landscape, 
we think it is particularly important to acknowledge McCarter et al., 2022 for their paper which sets a standard for 
careful design, execution and analysis of comprehensive, boundary-crossing field studies.

Data Availability Statement
In writing this commentary no data were involved.

References
Bishop, K., Shanley, J. B., Riscassi, A., de Wit, H. A., Eklöf, K., Meng, B., et  al. (2020). Recent advances in understanding and measure-

ment of mercury in the environment: Terrestrial Hg cycling. Science of the Total Environment, 721, 137647. https://doi.org/10.1016/j.
scitotenv.2020.137647

Blume, T., van Meerveld, I., & Weiler, M. (2017). The role of experimental work in hydrological sciences–insights from a community survey. 
Hydrological Sciences Journal, 62(3), 334–337.

Burt, T. P., & McDonnell, J. J. (2015). Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses. Water 
Resources Research, 51(8), 5919–5928. https://doi.org/10.1002/2014wr016839

Eklof, K., Kraus, A., Futter, M., Schelker, J., Meili, M., Boyer, E. W., & Bishop, K. (2015). Parsimonious model for simulating total mercury and 
methylmercury in boreal streams based on riparian flow paths and seasonality. Environmental Science and Technology, 49(13), 7851–7859. 
https://doi.org/10.1021/acs.est.5b00852

Eklöf, K., Lidskog, R., & Bishop, K. (2016). Managing Swedish forestry’s impact on mercury in fish: Defining the impact and mitigation meas-
ures. Ambio, 45(2), 163–174. https://doi.org/10.1007/s13280-015-0752-7

Environment. U. N. (2019). Global mercury assessment 2018. UN Environment Programme, Chemicals and Health Branch Geneva (ISBN: 
978-92-807-3744-8).

Futter, M. N., Poste, A. E., Butterfield, D., Dillon, P. J., Whitehead, P. G., Dastoor, A. P., & Lean, D. R. S. (2012). Using the INCA-Hg model of 
mercury cycling to simulate total and methyl mercury concentrations in forest streams and catchments. Science of the Total Environment, 424, 
219–231. https://doi.org/10.1016/j.scitotenv.2012.02.048

Golden, H. E., Knightes, C. D., Conrads, P. A., Davis, G. M., Feaster, T. D., Journey, C. A., et al. (2012). Characterizing mercury concentrations 
and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data. Journal of Geophysical Research, 117(G1). https://doi.
org/10.1029/2011jg001806

Hsu-Kim, H., Eckley, C. S., Achá, D., Feng, X., Gilmour, C. C., Jonsson, S., & Mitchell, C. P. (2018). Challenges and opportunities for managing 
aquatic mercury pollution in altered landscapes. Ambio, 47(2), 141–169. https://doi.org/10.1007/s13280-017-1006-7

Kirkby, M. J. (2004). Geomorphology: Critical concepts in geography. In Hillslope geomorphology, 16.
Kristensen, P., Whalley, C., Zal, F. N. N., & Christiansen, T. (2018). European waters assessment of status and pressures 2018. EEA Report, 

(7/2018).
Kronberg, R. M., Jiskra, M., Wiederhold, J. G., Björn, E., & Skyllberg, U. (2016). Methyl mercury formation in hillslope soils of boreal forests: 

The role of forest harvest and anaerobic microbes. Environmental Science and Technology, 50(17), 9177–9186. https://doi.org/10.1021/acs.
est.6b00762

Lidskog, R., Bishop, K., Eklöf, K., Ring, E., Åkerblom, S., & Sandström, C. (2018). From wicked problem to governable entity? The effects of 
forestry on mercury in aquatic ecosystems. Forest Policy and Economics, 90, 90–96. https://doi.org/10.1016/j.forpol.2018.02.001

Acknowledgments
The authors would like to thank the many 
colleagues and students who have made 
it possible for us to conduct field studies. 
We also appreciate the artistic assistance 
of Alberto Zanella with the representation 
of trees in Figure 1.

https://doi.org/10.1016/j.scitotenv.2020.137647
https://doi.org/10.1016/j.scitotenv.2020.137647
https://doi.org/10.1002/2014wr016839
https://doi.org/10.1021/acs.est.5b00852
https://doi.org/10.1007/s13280-015-0752-7
https://doi.org/10.1016/j.scitotenv.2012.02.048
https://doi.org/10.1029/2011jg001806
https://doi.org/10.1029/2011jg001806
https://doi.org/10.1007/s13280-017-1006-7
https://doi.org/10.1021/acs.est.6b00762
https://doi.org/10.1021/acs.est.6b00762
https://doi.org/10.1016/j.forpol.2018.02.001


Journal of Geophysical Research: Biogeosciences

BISHOP AND EKLÖF

10.1029/2022JG007065

6 of 6

Mazur, M., Mitchell, C. P. J., Eckley, C. S., Eggert, S. L., Kolka, R. K., Sebestyen, S. D., & Swain, E. B. (2014). Gaseous mercury fluxes from 
forest soils in response to forest harvesting intensity: A field manipulation experiment. Science of the Total Environment, 496, 678–687. https://
doi.org/10.1016/j.scitotenv.2014.06.058

Mazur, M. E., Eckley, C. S., & Mitchell, C. P. (2015). Susceptibility of soil bound mercury to gaseous emission as a function of source depth: 
An enriched isotope tracer investigation. Environmental Science and Technology, 49(15), 9143–9149. https://doi.org/10.1021/acs.est.5b01747

McCarter, C. P., Eggert, S. L., Sebestyen, S. D., Kolka, R. K., & Mitchell, C. P. (2022). Effects of clearcutting and residual biomass harvest-
ing on hillslope mercury mobilization and downgradient mercury accumulation. Journal of Geophysical Research: Biogeosciences, 127(4), 
e2022JG006826. https://doi.org/10.1029/2022jg006826

McCarter, C. P., Sebestyen, S. D., Eggert, S. L., Kolka, R. K., & Mitchell, C. P. (2020). Changes in hillslope hydrology in a perched, shallow 
soil system due to clearcutting and residual biomass removal. Hydrological Processes, 34(26), 5354–5369. https://doi.org/10.1002/hyp.13948

McCarter, C. P., Sebestyen, S. D., Eggert, S. L., Kolka, R. K., & Mitchell, C. P. (2021). Differential subsurface mobilization of ambient mercury 
and isotopically enriched mercury tracers in a harvested and residue harvested hardwood forest in northern Minnesota. Biogeochemistry, 
154(1), 119–138. https://doi.org/10.1007/s10533-021-00801-y

Schelker, J., Öhman, K., Löfgren, S., & Laudon, H. (2014). Scaling of increased dissolved organic carbon inputs by forest clear-cutting–What 
arrives downstream? Journal of Hydrology, 508, 299–306. https://doi.org/10.1016/j.jhydrol.2013.09.056

Shanley, J. B., & Bishop, K. (2012). Mercury cycling in terrestrial watersheds. In Mercury in the environment: Pattern and process (pp. 119–141).
Sonke, J. E., Heimbürger, L. E., & Dommergue, A. (2013). Mercury biogeochemistry: Paradigm shifts, outstanding issues and research needs. 

Comptes Rendus Geoscience, 345(5–6), 213–224. https://doi.org/10.1016/j.crte.2013.05.002
Wu, P., Kainz, M. J., Bravo, A. G., Åkerblom, S., Sonesten, L., & Bishop, K. (2019). The importance of bioconcentration into the pelagic food 

web base for methylmercury biomagnification: A meta-analysis. Science of the Total Environment, 646, 357–367. https://doi.org/10.1016/j.
scitotenv.2018.07.328

Zhu, S., Zhang, Z., & Žagar, D. (2018). Mercury transport and fate models in aquatic systems: A review and synthesis. Science of the Total Envi-
ronment, 639, 538–549. https://doi.org/10.1016/j.scitotenv.2018.04.397

https://doi.org/10.1016/j.scitotenv.2014.06.058
https://doi.org/10.1016/j.scitotenv.2014.06.058
https://doi.org/10.1021/acs.est.5b01747
https://doi.org/10.1029/2022jg006826
https://doi.org/10.1002/hyp.13948
https://doi.org/10.1007/s10533-021-00801-y
https://doi.org/10.1016/j.jhydrol.2013.09.056
https://doi.org/10.1016/j.crte.2013.05.002
https://doi.org/10.1016/j.scitotenv.2018.07.328
https://doi.org/10.1016/j.scitotenv.2018.07.328
https://doi.org/10.1016/j.scitotenv.2018.04.397

	
          Boundary-Crossing Field Research Marks the Way to Evidence-Based Management of Mercury in Forest Landscapes
	Abstract
	Plain Language Summary
	1. Introduction
	2. The Need for Field Studies
	3. The Value of Crossing Environmental System Boundaries
	4. Conclusions
	[DummyTitle]
	Data Availability Statement
	References


