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Genetic control of tree growth and wood formation varies depending on

the age of the tree and the time of the year. Single-locus, multi-locus, and

multi-trait genome-wide association studies (GWAS) were conducted on 34

growth and wood property traits in 1,303 Norway spruce individuals using

exome capture to cover ∼130K single-nucleotide polymorphisms (SNPs).

GWAS identified associations to the di�erent wood traits in a total of 85 gene

models, and several of thesewere validated in a progenitor population. Amulti-

locus GWASmodel identifiedmore SNPs associated with the studied traits than

single-locus or multivariate models. Changes in tree age and annual season

influenced the genetic architecture of growth and wood properties in unique

ways, manifested by non-overlapping SNP loci. In addition to completely novel

candidate genes, SNPs were located in genes previously associated with wood

formation, such as cellulose synthases and a NAC transcription factor, but that

have not been earlier linked to seasonal or age-dependent regulation of wood

properties. Interestingly, SNPs associated with the width of the year rings were

identified in homologs of Arabidopsis thaliana BARELY ANY MERISTEM 1 and

rice BIG GRAIN 1, which have been previously shown to control cell division

and biomass production. The results provide tools for future Norway spruce

breeding and functional studies.

KEYWORDS
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Introduction

Forest trees, particularly conifers, produce wood with distinct properties depending

on their developmental stage (age) and the annual season (Li et al., 2011). At young

ages, conifer trees typically produce so-called juvenile wood (JW) that has lower wood

density and stiffness than mature wood (MW) formed at older ages (Zobel and Sprague,

1998). The seasonal variation,manifested by the formation of earlywood (EW), transition
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wood (TW), and latewood (LW), results in drastic changes in

wood density, cell size, and cell wall thickness (Olsson et al.,

1998; Park and Spiecker, 2005). Trees in the spring experience

fast growth with new needles and little environmental stress

except for short cold snaps, while trees in the autumn usually

experience slow growth associated with drought and short days,

with wood cells becoming smaller, but with thicker cell walls.

Conifer breeding has traditionally focused on growth traits

(Wu et al., 2007; Isik and McKeand, 2019), resulting often in

unfavorable effects on wood quality (Bouffier et al., 2008; Wu

et al., 2008) due to the negative genetic correlations between

growth rate and wood quality traits, such as wood density

(Baltunis et al., 2007; Lenz et al., 2010; Chen et al., 2014;

Hong et al., 2014; Hayatgheibi et al., 2017). During the last

two decades, considerable efforts have been made to improve

wood quality in several conifer species (Isik and Li, 2003; Chen

et al., 2015). Genetic variation in wood properties has been

quantified for many conifers (Wu et al., 2008), and new breeding

strategies including both growth and wood properties have been

developed (Wu and Sanchez, 2011; Hallingback et al., 2014).

Examples of the novel breeding targets include acceleration

of the transition from the JW to MW (Gapare et al., 2006;

Hayatgheibi et al., 2018) and improved quality of JW using

index selection (Ivković et al., 2010). However, breeding for these

properties is hampered by the poor knowledge of the effect of

tree age and seasonality on the genetic architecture of growth

and wood properties in conifers.

Genome-wide association studies (GWAS) have contributed

to substantial advances in human, animal, and plant genetic

research (Goddard and Hayes, 2009; Visscher et al., 2017;

Mills and Rahal, 2019). However, in conifers, the contribution

of GWAS has been more limited due to their large genome

size (∼15–40 Gb) that challenges the development of a

sufficient number of markers (Neale and Kremer, 2011) and

the insufficient numbers (commonly <500 individuals) of trees

genotyped (Hall et al., 2016; Chen et al., 2021). More recently,

several reference genomes and transcriptome assemblies have

been made available in tree species, such as Norway spruce

(Picea abies L. Karst) (Nystedt et al., 2013), loblolly pine (Pinus

taeda L.) (Neale et al., 2014), white spruce (Picea glauca)

(Warren et al., 2015), and sugar pine (Pinus lambertiana Doug)

(Stevens et al., 2016), which now allow GWAS based on exome

capture (Vidalis et al., 2018), genotyping-by-sequencing (GBS)

(Pan et al., 2015), SNP arrays from transcripts (Howe et al.,

2020), and re-sequencing (Wang et al., 2018; De La Torre et al.,

2019; Bernhardsson et al., 2021).

Norway spruce (Picea abies) is the most important

commercial tree species in Northern Europe. GWAS has been

conducted for several wood properties using 517 Norway spruce

individuals (Baison et al., 2019, 2020). SNPs have been identified

for the traits of wood density, stiffness, the number of cells,

and cell wall thickness. However, the genetic architecture of

wood traits measured at different seasons and ages has not been

systematically investigated by GWAS for Norway spruce or any

other forest tree species (Beaulieu et al., 2011). In this study,

we implemented GWAS to study how tree age and seasonal

variation influence the genetic architecture of growth and wood

traits in 1,303 trees of Norway spruce. The accuracy of the

GWAS analyses was the highest possible due to sufficient SNP

coverage and the availability of improved genome annotation.

The GWAS revealed genes that have earlier been implicated in

the seasonal and developmental control of growth and wood

properties but also novel genes that putatively shape the seasonal

and developmental changes in wood formation. In addition,

we examined whether multi-locus and multi-trait models could

improve the statistical accuracy of GWAS.

Materials and methods

Plant materials

Two large progeny trials, locally called Höreda (57◦ 37
′
N

and 15◦ 00
′
E) and Maltesholm (55◦ 53

′
N and 13◦ 55

′
E), were

established in 1990 in southern Sweden, using 1,375 open-

pollinated families (Chen et al., 2015). A randomized incomplete

block design with single-tree plots was used in the two trials.

Details on the field design, soil type, and climate condition can

be found in Chen et al. (2014). A total of 1,303 wood samples,

one tree per family, were taken in two different years from the

Höreda trial. The first batch of 505 increment cores (12mm) was

sampled in 2010 as part of an earlier project (5,618 increment

cores sampled from 524 open-pollinated families from both

trials) (Chen et al., 2014). In 2015, we sampled the second

batch of 798 wood disks cut at breast height from another 798

open-pollinated families. A diagram of the development of the

plant materials, including the samples used for analyses and

references to previous work using the same population, is shown

in Supplementary Figure S1.

The mothers of these 1,303 open-pollinated families had

been selected from forest stands in Sweden based on their

outstanding phenotypic values (e.g., height, diameter, and

branch quality) and grafted in two clonal common gardens

(Zhou et al., 2019). The geographical origin of the mother

trees covers the whole distribution range of Norway spruce,

except northern Scandinavia (Figure 1A). We also sampled one

increment core from each of the 476 mother trees.

Phenotyping

In this study, we phenotyped the second batch of 798 woody

disks for wood traits using the SilviScan technology (Lundqvist

and Evans, 2004) which combines X-ray, microscopy, and image

analysis at RISE (https://www.ri.se/en, Stockholm, Sweden). The
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FIGURE 1

The geographic origin and population structure of the Picea abies trees used for the genome-wide association study. (A) Geographic

distribution of the P. abies mother trees (1,080 mother trees genotyped), and the color and shape of the dots represent the genetic cluster

indicated in the PCA analysis, (B) Population structure of the 1,080 mother trees visualized by the first two principal components (PCs), and (C)

Population structure of the 1,303 progenies. A total of 1,080 mother trees cluster into seven genetic groups (Chen et al., 2021), but the genetic

group is unknown for 223 mother trees. The PCA analysis was performed by combining the parental and progeny datasets. The di�erent genetic

clusters were marked (Carpathian including Romania, forest green, ROM; Alpine, black, ALP; Central Europe, dark red, CEU; Northern Poland,

midnight blue, NPL; Russia-Baltic, dodgerblue, Rus-Bal; central and southern Sweden, dark orange, CSE; Fennoscandia, red, NFE; Unknown in

violet represents unknown progenies).

annual ring width, number of cells, radial and tangential tracheid

width, and cell-wall thickness were recorded from microscopy

images and image analysis from the pith to the bark for

consecutive radial intervals of 25µm. Wood density (WD) was

measured by X-ray absorption at a sampling interval of 25µm

and microfibril angle (MFA) by X-ray diffraction at a sampling

interval of 5mm as previously described (Lundqvist and Evans,

2004). Wood coarseness, number of cells, and wood stiffness

expressed as modulus of elasticity (MOE) were predicted based

on SilviScan measured traits (Supplementary Methods S1). We

combined SilviScan data from the two batches of woods (n =

1,303) for our GWAS analysis. The SilviScan data of 476 mother

trees were used for candidate SNP validation (Zhou et al., 2019).

Juvenile wood (JW), mature wood (MW), and
whole core wood (WCW)

The JW and MW were demarcated according to the age

curve of MFA for Norway spruce (Hayatgheibi et al., 2018). It

was observed that MFA was high (above 20◦) until age five, but

decreased after that and stabilized at around age 10 (ca. 10◦).

The distribution of the number of annual rings per sample for

our GWAS population is shown in Supplementary Figure S2. In

both datasets (n = 798 and n = 505), we defined the annual

rings 1–5 from pith as the JW and the rings 11–15 from pith

as the MW. We also defined the wood from the annual ring 1

to ring 15 as the whole core wood (WCW) (Figures 2A,B). In

this way, the phenotypic traits from annual rings of the same age

were analyzed for GWAS in the two different batches of trees. A

total of 34 traits, obtained from each of the JW,MW, andWCW,

are shown in Table 1.

Earlywood (EW), transition wood (TW), and
latewood (LW)

The annual ring wood (ARW) was divided into EW, TW,

and LW based on WD within the ring of each year (Figure 2C).

Ring area with WD <20%, between 20 and 80%, and more than

80% of the maximum WD was defined as EW, TW, and LW,

respectively (Lundqvist et al., 2018).

Genotypic data

DNA extraction, sequence capture, and SNP
calling

Buds and needles were collected from 1,303 progenies and

476 mother trees. Thereafter, total genomic DNA was extracted

using the Qiagen Plant DNA extraction protocol with DNA

quantification performed using the Qubit
R©

ds DNA Broad

Range Assay Kit (Qiagen, Oregon, USA). Exome sequence

capture was performed using the 40,018 probes previously

designed and evaluated for these materials (Vidalis et al.,

2018), and the samples were sequenced to an average depth

of 15x in an Illumina HiSeq 2500 platform. The probes were

designed to be located inside a coding region. Raw reads based

on 2 × 100 bp sequencing mode were mapped to the P.

abies reference genome v1.0 using BWA-mem (Langmead and

Salzberg, 2012). The details of the SNP calling are found in

Supplementary Methods S2.

Quality control of called SNPs

Several steps of quality control, such as removing indels and

sites with call rates < 70%, were performed using VCFtools

Frontiers in Plant Science 03 frontiersin.org

https://doi.org/10.3389/fpls.2022.927673
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2022.927673

FIGURE 2

Definition of di�erent wood sections in Picea abies. (A) The mean microfibril angle (MFA) for each annual ring at the breast height (1.3m). All the

SilviScan samples from Höreda trial were used to estimate the year ring mean value for MFA. (B) The juvenile wood (JW) and mature wood (MW)

were defined based on a previous study (Hayatgheibi et al., 2018); JW: rings 1–5, MW: rings 11–15. The whole core wood (WCW) was defined as

year rings from pith to bark (rings 1–15). (C) Each annual ring wood (ARW, e.g., rings 9 and 10) was demarcated into earlywood (EW), transition

wood (TW), and latewood (LW), based on a “20–80” wood density threshold definition according to the previously published paper (Lundqvist

et al., 2018).
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TABLE 1 List of the measured traits, their abbreviations, the number of independent SNPs detected, and the pedigree-based narrow-sense

heritability for three wood types (JW/MW/WCW) based on 524 half-sib families.

Trait (abbreviation) BLINK UV-GEMMA Heritability

JW/MW/WCW JW/MW/WCW JW/MW/WCW

Annual ring wood ring width (RW) 0/0/5 0/0/0 0.23/0.38/0.59

Earlywood ring width (ERW) 0/0/0 0/1/0 0.18/0.35/0.48

Transition wood ring width (TRW) 0/0/2 0/0/0 0.25/0.29/0.52

Latewood ring width (LRW) 0/2/0 0/6/0 0.13/0.26/0.49

Annual ring wood density (WD) 0/1/0 0/0/0 0.32/0.58/0.67

Earlywood density (EWD) 0/6/1 1/0/5 0.25/0.56/0.84

Transition wood density (TWD) 1/1/0 0/0/0 0.32/0.51/0.64

Latewood density (LWD) 5/1/0 0/0/0 0.30/0.53/0.67

Annual ring wood radial tracheid width (RTW) 0/0/0 0/0/0 0.41/0.43/0.57

Earlywood radial tracheid width (ERTW) 0/2/0 0/0/0 0.31/0.42/0.61

Transition wood density (TWD) 0/0/0 0/0/0 0.38/0.40/0.57

Latewood density (LWD) 0/0/0 0/0/0 0.26/0.26/0.49

Annual ring wood rangential tracheid width (TTW) 0/0/0 0/0/0 0.11/0.32/0.37

Earlywood tangential tracheid width (ETTW) 1/0/1 0/0/1 0.03/0.28/0.38

Transition wood tangential tracheid width (TTTW) 0/0/0 0/0/0 0.12/0.28/0.34

Latewood tangential tracheid width (LTTW) 0/0/0 0/0/0 0.11/0.25/0.28

Annual ring wood wall thickness (WT) 0/0/0 0/1/1 0.26/0.51/0.54

Earlywood wall thickness (EWT) 0/2/1 0/0/0 0.18/0.49/0.60

Transition wood wall thickness (TWT) 0/1/0 0/0/0 0.26/0.39/0.47

Latewood wall thickness (LWT) 0/0/0 1/0/0 0.25/0.41/0.51

Annual ring wood coarseness (C) 0/0/0 0/0/2 0.20/0.33/0.37

Earlywood coarseness (EC) 0/0/0 0/0/0 0.12/0.37/0.39

Transition wood coarseness (TC) 0/0/4 0/0/0 0.20/0.25/0.33

Latewood coarseness (LC) 0/2/0 3/0/0 0.17/0.22/0.29

Annual ring wood number of cells (NC) 0/0/7 0/0/0 0.27/0.38/0.50

Earlywood number of cells (ENC) 0/0/0 0/1/0 0.18/0.36/0.28

Transition wood number of cells (TNC) 0/0/1 0/3/0 0.28/0.27/0.36

Latewood number of cells (LNC) 0/0/1 0/0/0 0.14/0.26/0.14

Earlywood percentage (EP) 0/0/3 0/0/2 0.24/0.19/0.32

Transition wood percentage (TP) 0/0/1 0/0/0 0.15/0.09/0.29

Latewood percentage (LP) 0/0/0 0/0/0 0.06/0.17/0.20

Early/Latewood percentage (EP/LP) 0/0/0 0/0/0 0.02/0.25/0.26

Annual ring wood microfibrial angle (MFA) 1/0/0 0/0/0 0.27/0.13/0.16

Annual ring wood modulus of elasticity (MOE) 0/0/1 0/0/0 0.31/0.38/0.43

Total no. of SNPs or average heritability* 8(8)/18(16)/28(23) 5(4)/12(8)/11(9) 0.21/0.34/0.44

*The value is the sum of the total number of SNPs for each statistical method and each type of wood. The SNPs detected for different traits were counted as independent SNPs. The values

in parenthesis are the total number of independent SNPs/associations.

JW, juvenile wood; MW, mature wood; WCW, whole core wood. The traits in bold were from the annual ring wood (ARW).

(Danecek et al., 2011) (Supplementary Methods S3). After these

filtering steps, a total of∼300K SNPs withminor allele frequency

(MAF)>0.005 were left for population structure analysis. Beagle

v4.1 was used to impute the missing genotypes. The mean

accuracy of the imputed genotypes was 0.97 at both individual

and SNP levels based on a full dataset [ca. 8,000 individuals

including the dataset published in Chen et al. (2021)].

Statistical analysis

Adjusting phenotypic values

Tree height and diameter at breast height (DBH) were

measured for all the trees (n = 12,844) in the Höreda trial.

The wood quality traits were only measured for one to a few

individuals per family. Since a strong spatial effect was earlier
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observed in this trial (Chen et al., 2017), multivariate linear

mixed models were employed to adjust for the environmental

effects (Supplementary Methods S4).

Estimation of the variance components

Variance components were estimated by fitting a univariate

linear mixed model for the 1,303 unrelated progeny trees

y = Xβ + Za+ e (1)

where y is the vector of adjusted phenotypic trait, β is the

vector of fixed effect including an intercept as the grand mean,

and a is the vector of random additive effects, following a ∼

N(0, Gσ 2
a ). G is the genomic-based relationship matrix (GRM)

estimated based on the method “VanRaden” (VanRaden, 2008)

using AGHmatix package in R (Amadeu et al., 2016). σ 2
a is the

additive variance. X and Z are the related design matrices of β

and a, and e is the vector of residuals. All analyses were done

using ASReml R v4.0.

To compare pedigree-based narrow-sense heritability with

SNP-based narrow-sense heritability, we performed a pedigree-

based model fitting using SilviScan data from 5,618 increment

cores of the 524 half-sib families from the two sites in Horeda

and Maltesholm, as described and used in the previous paper

(Chen et al., 2014). Equations of estimating the pedigree-

based narrow-sense heritability and SNP-based narrow-sense

heritability are shown in Supplementary Methods S5.

Population structure

The population structure of the mother trees has been

described for a much larger population in a previous study

(Chen et al., 2021). Here, the population structure of themothers

and the progenies was visualized by principal component

analysis (PCA) using the prcomp function in R v3.6.1.

SNP-trait association

We performed GWAS by three methods. The first method

was BLINK which conducts two fixed-effect models and one

filtering process (Huang et al., 2019). The details of the method

are given in Supplementary Methods S6. The second method

was univariate GWAS (UV-GEMMA), which was performed

using genome-wide efficient mixed-model analysis (GEMMA).

The third method was multivariate GWAS (MV-GEMMA),

which was also performed using GEMMA (Zhou and Stephens,

2014). After filtering locus with MAF< 0.03, 131,131 SNPs were

used in GWAS. Univariate GWAS was run for the 34 traits

from each developmental stage of wood formation (Table 1). The

UV-GEMMA from GEMMA was as follows:

y = Wα + Xβ + Zu+ ǫ (2)

where y is the vector of adjusted phenotypic values, α is a vector

of corresponding fixed effects including the intercept and the

principal components/admixture Q matrix if it is fitted, β is a

vector of the marker effects, u is a vector of the polygenetic

additive effects, and ǫ is a vector of residuals.W, X, and Z are the

related design matrices. Population structure was considered if

the genomic inflation factor (IF), which expresses the deviation

of the distribution of the observed test statistic compared to

the distribution of the expected test statistic, is not within 1

± 0.05 (Yang et al., 2011). However, because the values of

IF were all within 1 ± 0.05 (Supplementary Figure S3), the

population structure in Equation (2) was excluded in the later

analysis. The details of the MV-GEMMA model are provided

in Supplementary Methods S7. The percentage of variation

explained (PVE) by each SNP was estimated using the formula

in Shim et al. (2015). The cumulative PVE of all candidate

SNPs for each trait was estimated using a genomic prediction

model within all candidate SNPs for each trait as fixed effects

(Supplementary Methods S8).

Trait selection for GEMMA multivariate
GWAS

Multivariate sets of traits were created based on phenotypic

or genetic correlations among the phenotypes, and structural

and functional relationships of the traits (Chen et al., 2014,

2016). A moderate phenotypic and/or genetic correlation

could be important for fitting multivariate GWAS (Stephens,

2013). Therefore, to obtain interesting multivariate sets,

we estimated pairwise phenotypic correlations. Finally, 21

multivariate sets (Table 2) for each type of wood (JW, MW,

and WCW) were selected as traits for multivariate GWAS.

Based on phenotypic correlation and different selection criteria,

we separated these multivariate sets into three types: (a)

multivariate set based on the same trait along with seasonal

change, such as ring width of earlywood (ERW), transition

wood (TRW), latewood (LRW), and annual wood ring wood

(ARW), named as RW(ARW_EW_TW_LW); (b) multivariate

set based on the phenotypic correlation among traits from

ARW, e.g., ring width, WD, coarseness, and number of

cells, named as ARW(RW_WD_C_NC); and (c) multivariate

set based on the mathematical relationship among traits

from ARW, such as modulus of elasticity = WD × MFA,

called ARW(MOE_WD_MFA).
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TABLE 2 List of 21 multivariate sets used for multivariate GEMMA (MV-GEMMA), their abbreviations, and the number of independent SNPs detected

using MV-GEMMA.

Phenotypic trait No. of SNPs

1) Multivariate set based on the seasonal variation Abbreviation JW/MW/WCW

Ring width (ARW, EW, TW, LW) RW(ARW_EW_TW_LW) 0/0/0

Wood density (ARW, EW, TW, LW) WD(ARW_EW_TW_LW) 1/1/5

Radial tracheid width (ARW, EW, TW, LW) RTW(ARW_EW_TW_LW) 0/0/0

Tangential tracheid width (ARW, EW, TW, LW) TTW(ARW_EW_TW_LW) 0/0/2

Wall thickness (ARW, EW, TW, LW) WT(ARW_EW_TW_LW) 0/0/2

Coarseness (ARW, EW, TW, LW) C(ARW_EW_TW_LW) 0/0/0

Number of cells (ARW, EW, TW, LW) NC(ARW_EW_TW_LW) 0/0/5

Percentage (AEW, TW, LW, EP/LP) P(EW_TW_LW_EP/LP) 0/0/0

2) Multivariate set based on the phenotypic correlation

ARW (Ring width, wood density, coarseness, number of cells) ARW(RW_WD_C_NC) 0/0/0

EW (Ring width, wood density, coarseness, number of cells) EW(RW_WD_C_NC) 0/1/1

TW (Ring width, wood density, coarseness, number of cells) TW(RW_WD_C_NC) 0/1/2

LW (Ring width, wood density, coarseness, number of cells) LW(RW_WD_C_NC) 0/0/0

3) Multivariate set based on the predicted trait

ARW (Coarseness# , wood density, radial tracheid width, tangential tracheid width) ARW(C_WD_RTW_TTW) 0/2/1

EW (Coarseness# , wood density, radial tracheid width, tangential tracheid width) EW(C_WD_RTW_TTW) 0/3/3

TW (Coarseness# , wood density, radial tracheid width, tangential tracheid width) TW(C_WD_RTW_TTW) 0/0/0

LW (Coarseness# , wood density, radial tracheid width, tangential tracheid width) LW(C_WD_RTW_TTW) 0/0/0

ARW (Number of cells# , ring width, radial tracheid width) ARW(NC_W_RTW) 1/0/0

EW (Number of cells# , ring width, radial tracheid width) EW(NC_W_RTW) 0/1/0

TW (Number of cells# , ring width, radial tracheid width) TW(NC_W_RTW) 0/0/1

LW (Number of cells# , ring width, radial tracheid width) LW(NC_W_RTW) 0/0/0

ARW (Modulus of elasticity # , wood density, mirofibril angle) ARW(MOE_WD_MFA) 1/0/0

Total no. of SNPs* 3(3)/9(5)/22(11)

EW, earlywood; TW, transition wood; LW, latewood; ARW, annual ring wood; JW, juvenile wood; MW, mature wood; WCW, whole core wood.
#Presents that the trait was predicted by predictor traits. For example, MOE=WD×MFA, in whichMOE,WD, andMFA represent the modulus of elasticity, wood density, andmicrofibril

angle, respectively. Number of cells represents ring width divided by radial tracheid width.

*Represents that the value is the sum of the total number of SNPs for traits from each of three wood types (JW, MW, and WCW) and also the same SNPs here detected by different traits

were counted as different SNPs, and the values in the parenthesis are the total number of independent associations (SNPs) for each wood type.

Spatial and temporal expression pattern
of the associated candidate genes

Data for the spatial and seasonal expression patterns of

the identified candidate genes were retrieved from previously

published RNA-seq analyses in Norway spruce (Jokipii-Lukkari

et al., 2017, 2018), downloaded from plantgenie.org. The

heatmaps are visualized by the pheatmap function in the

pheatmap R package (Kolde and Kolde, 2015).

Validation of the GWAS signals using
parental population

Finally, we performed validation tests using a randomly

selected part (n= 476) of the 1,303 mother trees. A mixed linear

model (MLM) with a genomic-based relationship matrix (GRM)

was used to test whether an SNP was associated with a trait

(Supplementary Methods S9) (Zan and Carlborg, 2018).

Variant annotation for significant
associations

Significantly associated SNPs at a 5% false discovery rate

(FDR) were annotated using SnpEff 4.3 with default parameters

(Cingolani et al., 2012). The general transfer format (GTF) from

Ensembl was utilized to build the P. abies SnpEff database. To

summarize the results, significant SNPs within a gene model

were merged and counted as a single significant locus. To assess

the variant effect of the associated SNPs, annotation of the

putative genes, genome ontology (GO), and their associated

Arabidopsis and Populus orthologs were performed using the P.

abies v1.0 genome on ConGenIE database (Sundell et al., 2015).

All genes within a contig harboring the associated SNPs were

extracted fromConGenIE. Due to the repetitive nature of conifer

genomes (Niu et al., 2022), the candidate genes located in the

same contig harboring an associated SNP and annotated with a

similar biological function were also extracted in this study.
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Results

In this study, 1,303 Norway spruce progenies were analyzed

for growth and wood properties to investigate the effect of tree

age and seasonal cycle on the underlying genetic architecture. A

large amount of variation in these properties was expected due

to the rather wide geographic distribution of the mother trees

(Figure 1A). In a previous study (Chen et al., 2021), the mother

trees of these progenies were clustered into seven genetic groups

(Figure 1B). The clustering of the progenies that were obtained

by open pollination was slightly different from that of themother

trees (Figure 1C). These results suggest that population structure

is very important in F1 generation/progeny and should be fitted

in Norway spruce traditional genetic analysis, genomic selection,

and GWAS.

Estimates of heritabilities for tree growth
and wood properties

We estimated both pedigree- and SNP-based narrow-

sense heritabilities of 34 traits for each developmental stage

of wood formation (Supplementary Table S1). Overall, SNP-

based heritabilities were much lower than the pedigree-based

heritabilities, except for tangential tracheid width (TTW) from

JW. As we expected, SNP-based heritability (based on a single

tree per family) had a larger standard error than that of pedigree-

based heritability (based on 12 trees per family). Thus, we

focused only on the results from the pedigree-based heritability

in the following sections (Table 1). On average, traits from JW

had significantly lower heritability (0.21 ± 0.02) than those

obtained from the MW (0.34 ± 0.02) and WCW (0.44 ± 0.03)

(Figure 3A). Traits from EW, TW, and ARW had higher average

heritability than those obtained from LW in JW, MW, and

WCW (Figure 3B) and in all three kinds of wood (Figure 3C),

but the difference was non-significant. In general, the traits

related to wood density (WD) showed higher heritabilities

than most other traits (Table 1). Taken together, the range of

heritabilities suggests that the environment shapes the wood

traits more in the JW than in the MW or WCW, and more in

the LW than in the EW, TW, or ARW.

Phenotypic correlation between traits

Phenotypic correlations were analyzed between all the

measured traits in the whole wood (whole core wood,

WCW) (Figure 3D) by Pearson pairwise correlation analysis.

As expected, growth-related traits, such as ring width,

number of cells, and tracheid number, correlated positively

with each other. Wood density (WD) also showed an

expected positive correlation with cell wall thickness and a

negative correlation with the ring width. Similar correlations

were observed in JW (Supplementary Figure S4) and MW

(Supplementary Figure S5). The seasonal effect was represented

by the earlywood/latewood ratio that correlated positively with

the ring width but negatively with wood density and cell wall

thickness (Figure 3D).

Genetic association analyses can be done for either single

traits or simultaneously formultiple traits. As several of the traits

analyzed here had moderate to high correlations with each other

(Figure 3D), multivariate sets of traits were identified that could

be utilized in our genetic studies. For each developmental stage

(JW, MW, and WCW), 21 sets of traits (Table 2) were identified

based on moderate to high phenotypic correlations (Figure 3D).

In group 1, eight multivariate sets were selected based on a

high positive pairwise correlation of traits within EW, TW, and

LW. In group 2, four multivariate sets were selected based on a

moderate phenotypic correlation between traits within the same

seasonal and developmental stage of the wood within the rings

(for instance, all traits from EW of JW). In group 3, each set

was selected from the SilviScan data for a predicted trait and

its predictor traits within the same part of the wood (Table 2).

These predicted traits, including coarseness, number of cells,

and modulus of elasticity (MOE), also showed moderate to high

phenotypic correlations with the predictor traits (Figure 3D).

Genome-wide association between
growth and wood traits

We conducted GWAS using univariate BLINK and

GEMMA (UV-GEMMA) for 34 traits andmultivariate GEMMA

(MV-GEMMA) for 21 multivariate sets from each of JW, MW,

and WCW. We found that all the associated SNPs within a

contig were in strong LD (r2 > 0.2, Supplementary Table S2).

Thus, we considered the SNPs that occurred within the same

genomic contig as one independent association. We also

considered the SNPs simultaneously detected by two or more

traits as one independent association. In total, we identified 74

independent SNPs that were significantly associated with 63

of the altogether 102 traits after multiple testing corrections

with the FDR-adjusted p < 0.05 (Supplementary Tables S2, S3,

and Table 1). These SNPs were located within 74 gene models

(Supplementary Table S4). In addition, there were another 11

gene models located nearby these SNPs (±20 kb) within the

same contigs, amounting to a total of 85 gene models derived

from the GWAS analysis (Supplementary Table S4). A subset

of the important genes based on possible biological meaning

is presented in Table 3. The proportion of phenotypic variance

explained (PVE) by each candidate SNP ranged from ca. 0 to

4.23%. Cumulative PVEs of all candidate SNPs for each trait

ranged from 0 to 9.8% (Supplementary Table S5). We also tested

the associated SNPs in a subset of the mother population (n =
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FIGURE 3

Estimated narrow-sense heritabilities of growth and wood quality traits and pairwise Pearson phenotypic correlations among all wood traits

from the whole core wood (WCW). (A) Boxplots of pedigree-based narrow-sense heritabilities of 34 traits from juvenile (JW), mature (MW), and

WCW using 505 half-sib families. (B) Boxplots of pedigree-based heritabilities of 34 traits from earlywood (EW), transition wood (TW), latewood

(LW), and annual ring wood (ARW) using 505 half-sib families. (C) Boxplots of pedigree-based heritabilities for growth and wood quality traits

produced at di�erent seasons in JW, MW, and WCW using 505 half-sib families. (D) Pairwise Pearson phenotypic correlations among all wood

traits from the whole core wood (WCW). The color spectrum indicates highly positive (red) to highly negative (blue) correlations, and the

number indicates the correlation values. The blank indicates a lack of significant correlation (P > 0.01). In (A), the di�erent letters between mean

heritabilities in JW, MW, and WCW represent significant di�erences (P > 0.01).
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476) and found that nine independent SNPs were significantly

associated with the respective traits also in this population (P <

0.05) (Supplementary Table S6).

The e�ect of tree age on the genetic
architecture of growth and wood
properties

Tree aging is concomitant with the transition from JW to

MW formation.We found in the current population that JWwas

formed typically until the annual ring 5 at breast height andMW

after the annual ring 10 (Figure 2). To estimate the effect of these

developmental changes on the genetic architecture of growth

and wood properties, we surveyed the SNPs identified by GWAS

for traits in JW,MW, andWCW (Figure 4A). Among them, only

one SNP from contig MA_12842 was shared by the different age

classes. These results suggest that the genetic architecture of the

wood traits is largely dependent on the age of the trees.

As an example of an association specific to JW, an SNP in

the gene model MA_77420g0010, encoding a putative member

of the ethylene response factor family, was associated with the

multi-traits composed of the number of cells, ring width, and

tangential ring width (Table 3). The homologous Arabidopsis

thaliana gene AT1G24590 controls organogenesis and is also

linked to provasculature development (Glowa et al., 2021).

An SNP in another gene model MA_14038g0010, encoding a

member of the GATA transcription factor family, was associated

with latewood density in JW (Table 3).

In MW, an SNP in MA_95898g0010 was associated with

LW coarseness (LC). MA_95898g0010 is a member of the NAC

transcription factor family. The expression of MA_95898g0010

varies according to different developmental zones (Figure 5A)

and the season (Figure 5B) and is strictly coregulated with

secondary cell wall CesAs in Norway spruce wood (Jokipii-

Lukkari et al., 2017). Another interesting SNP was located in

the gene model MA_8964699g0010, which, similar to the SNP

in MA_95898g0010, was associated with the LW coarseness

in MW. MA_8964699g0010 is annotated in Norway spruce as

MOTHER OF FT AND TFL1-like and validated in the mother

population (Table 3).

When considering the whole core wood (WCW),

associations were found between ring width and SNPs

in two gene models that on the basis of the functional

characterization of the Arabidopsis thaliana (hereafter

“Arabidopsis”) homologs putatively promote growth or

biomass production. MA_64117g0010 encodes a homolog of

Arabidopsis BARELY ANY MERISTEM 1 (BAM1), which is

a CLAVATA1-related receptor kinase-like protein required

for formative cell divisions and xylem patterning in the root

(Crook et al., 2020; Fan et al., 2021). MA_464588g0010, on

the other hand, encodes a homolog of rice BIG GRAIN 1,

which stimulated biomass accumulation when overexpressed

in rice (Liu et al., 2015). These two genes could possibly act

to control cell divisions and biomass production from the

vascular cambium, which is supported for MA_64117g0010

by its specific expression pattern in the vascular cambium of

Norway spruce stem (Figure 5A; see also the Norwood data in

https://plantgenie.org; Jokipii-Lukkari et al., 2017).

The e�ect of the annual season on the
genetic architecture of growth and wood
properties

The seasonality of cambial growth is manifested by the

transition from EW to LW formation along with the shortening

of the day length. GWAS detected a total of 23, 11, 20, and 19

SNPs associated with the traits of EW, TW, LW, and ARW,

respectively (Figure 4B). There were no common SNPs between

EW and LW, showing contrasting genetic architecture of growth

and wood properties not only in response to tree age but also to

the seasonal changes.

In EW, GWAS detected two candidate genes

(MA_10117117g0010 and MA_29357g0010, annotated as

mitogen-activated protein kinase kinase kinase, MAP3K) that

were associated with earlywood density and also validated in

the mother population (Table 3 and Supplementary Table S6).

Three other MAP3Ks (MA_12842g0010, MA_12842g0020, and

MA_12842g0030) were also identified in the GWAS analysis.

They were associated with several traits, including ring width

and WD, and were also validated in the mother population

(Table 3 and Supplementary Table S6). All these MAP3K

gene models correspond to the Arabidopsis gene AT5G55090

which has been linked to drought resistance (Pieczynski

et al., 2018). Increased expression of MA_12842g0030 was

observed in early spring and July throughout the season in

the woody tissues (Figure 5B), as well as in buds between

the early bud stage and late bud stage, of Norway spruce

(Chen et al., 2021).

In TW, it was interesting to identify SNPs in a secondary cell

wall cellulose synthase (CesA) gene model MA_183130g0010

that associated with a multivariate set of traits (ring

width, WD, coarseness, and number of cells) (Table 3;

Supplementary Table S7). Also, enhanced expression of

MA_183130g0010 was found during the formation of the

secondary cell wall (Figure 5A) in the growing season and less

in autumn and winter seasons (Figures 5B,C; Jokipii-Lukkari

et al., 2018), which together with the GWAS data suggests

that transition from earlywood to latewood is associated with

increased activity of cellulose synthesis mediated by changes in

the expression of these CesAs.

In LW, SNPs were identified in the earlier mentioned

MOTHER OF FT AND TFL1-like gene (MA_8964699g0010)
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TABLE 3 A selection of genes with significant SNPs associated with di�erent traits in juvenile, mature, and whole core wood in the three di�erent

types of GWAS analyses.

Gene model Method Wood type Abbreviation of trait P-value Description

MA_10117117g0010* UV_GEMMA WCW EWD 3.77E-07 Mitogen-activated kinase kinase kinase NPK1-like

MA_10277463g0010* BLINK JW TWD 9.66E-08 3-phosphoinositide-dependent kinase-1

MA_10428113g0010 BLINK MW EWD 5.97E-07 Cysteine synthase-like

MA_10428864g0010* MV-GEMMA WCW NC(ARW_EW_TW_LW) 2.21E-06 Anaphase-promoting complex subunit 1

MA_106297g0010* UV_GEMMA WCW EWD 3.77E-07 Mitogen-activated kinase kinase kinase NPK1-like

MA_12842g0010/20/30*# UV_GEMMA# WCW# EWD# 3.77E-07 Mitogen-activated kinase kinase kinase NPK1-like

MA_436199g0010* MV-GEMMA WCW LW(C_WD_RTW_TTW) 2.02E-08 Chloroplast beta-amylase (AtBAM3)

MA_879701g0010* MV-GEMMA JW WD(ARW_EW_TW_LW) 6.45E-07 Unknown

MA_14038g0010 BLINK JW LWD 5.37E-07 GATA transcription factor 12-like

MA_464588g0010 BLINK WCW RW 5.77E-08 BIG GRAIN 1-like A

MA_8964699g0010* BLINK MW LC 6.07E-09 MOTHER of FT and TFL1-like isoform X2

MA_95898g0010 BLINK MW LC 9.81E-08 No apical meristem

MA_183130g0010* MV_GEMMA WCW TW(RW_WD_C_NC) 5.21E-07 Cellulose synthase A7 (AtCesA7)

MA_183130g0020 MV_GEMMA WCW TW(RW_WD_C_NC) 5.21E-07 Cellulose synthase A4 (AtCesA4)

MA_29357g0010 UV_GEMMA WCW EW(WD_RTW_TTW_C),

WD(ARW_EW_TW_LW),

WT(ARW_EW_TW_LW)

9.95E-08 Mitogen-activated kinase kinase kinase NPK1-like

MA_5468g0010 BLINK WCW EP,

TTW(ARW_EW_TW_LW)

1.41E-10 Nascent polypeptide-associated complex subunit

alpha 1

MA_64117g0010 BLINK WCW RW 3.42E-07 Leucine-rich repeat receptor-like serine threonine-

kinase BAM1

MA_77420g0010 MV_GEMMA JW ARW(NC_RW_RTW) 1.39E-07 Ethylene-responsive transcription factor ESR2-like

Gene model is annotated using v1.0 of the Picea abies genome. JW, juvenile wood; MW, mature wood; WCW, whole core wood. *Represents that the gene with validated SNPs under p <

0.05 in the mother population. #Represents that there are three genes: MA_12842g0010, MA_12842g0020, and MA_12842g0030. The three genes were detected by all three methods, and

also in JW, MW, and WCW, and many other traits, as shown in Supplementary Table S6. Please refer to Tables 1, 2 for full name of the abbreviation of traits.

FIGURE 4

Venn diagrams of associated single-nucleotide polymorphisms (SNPs) detected for all traits. (A) Juvenile wood (JW), mature wood (MW), and

whole core wood (WCW). (B) Earlywood (EW), transition wood (TW), latewood (LW), and annual ring wood (ARW). (C) Comparison of the

univariate GEMMA (UV-GEMMA), multivariate GEMMA (MV-GEMMA), and univariate BLINK (BLINK) GWAS methods. The value inside the

parenthesis is the number of associated SNPs.

in association with LW coarseness in MW (Table 3;

Supplementary Table S7). Interestingly, this gene belongs

to the same gene family as the TERMINAL FLOWER genes

TFL1 and TFL2 that have been linked earlier to seasonality

in Norway spruce (Klintenäs et al., 2012; Karlgren et al.,

2013). A latewood multi-trait LW(C_WD_RTW_TTW) was

associated with an SNP in a β-amylase (MA_436199g0010 in

Table 3; Supplementary Table S7), which is homologous to an

Arabidopsis BAM3 with a proposed function in cold response

(Monroe et al., 2014).

Frontiers in Plant Science 11 frontiersin.org

https://doi.org/10.3389/fpls.2022.927673
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2022.927673

FIGURE 5

Spatial and temporal expression pattern of the identified candidate genes in Norway spruce. (A) Heatmap of RNA-seq data from the di�erent

wood developmental zones of Norway spruce stem (tree 1; Jokipii-Lukkari et al., 2017); (B) Heatmap of RNA-seq data in a whole seasonal cycle

for the xylem of Norway spruce; (C) The expression of the candidate gene MA_183130g0010 in Norway spruce (tree 1; Jokipii-Lukkari et al.,

2017). Vst means variance-stabilizing transformation. The data used in (A–C) can be downloaded from the website (https://plantgenie.org). SCW

is the secondary cell wall.

Comparison of results detected by three
GWAS methods

The GWAS method BLINK detected higher number

(46) of independent SNPs as compared to UV-GEMMA

(20) and MV-GEMMA (17) (Figure 4C). To facilitate the

presentation of characters of association with the three

statistical methods, we divided the association results into

the following three categories. First, adjusted p-values of a

few SNPs in the MV-GEMMA and BLINK models became

significant (i.e., FDR-adjusted p-value of the few SNPs

became <0.05) compared with being non-significant in

the univariate UV-GEMMA model (e.g., Figures 6A–C). For

example, MV-GEMMA increased the significance level to detect

SNP MA_183130_3773 (Figure 6A, dot with blue circle), but

with a different contig position than UV-GEMMA and BLINK

(Figure 6B). Second, adjusted p-values of a few SNPs became

significant only in BLINK when compared with UV-GEMMA

and MV-GEMMA (e.g., Figures 6D–F). Third, the number

of associated and independent SNPs in all three methods

were the same (e.g., Supplementary Figures S6A–C). QQ plots

(Supplementary Figures S7, S8) matching the Manhattan plots

in Figure 6 showed a clear improvement in detecting the

number of significant SNPs using MV-GEMMA and/or

BLINK compared with the UV-GEMMA. QQ plots in

Supplementary Figure S9 matching the Manhattan plots for all
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methods in Supplementary Figure S6 were similar due to an

equivalent ability to detect the same number of independent

SNPs among the three methods (Supplementary Figure S6).

Discussion

Di�erent core genes were involved in the
di�erent wood developmental stages

In the present study, we found that the genetic architecture

differed significantly between the two developmental stages of

juvenile and mature wood formation, as they only shared a

single SNP in the GWAS analysis (Supplementary Table S3).

Several transcription factors, such as annotated as homologs

of AtCesA4, AtCesA7, and AtESR2-like, were among the gene

models carrying the SNPs identified by GWAS in the JW or

the MW (Table 3). Since the transition from juvenile to mature

wood formation dramatically influences the growth and wood

properties (Zobel and Jett, 1995), these transcription factors

provide interesting tools for future breeding approaches. For

instance, improved wood quality is one of the main breeding

targets in conifers. For such approaches, it is beneficial that

juvenile and mature wood have distinct genetic architectures,

and that targeted breeding of juvenile wood does not necessarily

affect the properties of the mature wood.

Similar to the tree developmental stage (age), different

seasons also influenced the genetic architecture of growth and

wood properties in unique ways, as no SNPs were shared

between the earlywood and latewood in the GWAS (Figure 4B).

Five candidate genes, annotated as mitogen-activated protein

kinase kinase kinase (MAP3K) and putatively involved in

drought resistance (Pieczynski et al., 2018), were detected only

in EW, indicating that abiotic stress tolerance shapes wood

formation in spring. Interestingly, MAP3K was associated with

spring budburst, frost damage, and stem diameter in an earlier

study on Norway spruce (Chen et al., 2021). Specific association

of earlywood with SNPs of another gene, the cysteine synthase

(MA_10428113g0010) (Table 3), was also reported in an earlier

study in white spruce (Beaulieu et al., 2011). The latter parts of

the season seemed to be involved in the changes associated with

the synthesis of cellulose. A secondary cell wall cellulose synthase

(CesA) was identified as a candidate gene in the transition wood,

and a NAC transcription factor family MA_95898g0010 which

is strictly coregulated in Norway spruce with secondary cell wall

CesAs (Jokipii-Lukkari et al., 2018) in the mature wood. These

results suggest that secondary cell wall deposition that occurs

along with the shortening of the day lengthmight involve unique

variants of CesAs and their regulation by the NAC transcription

factor MA_95898g0010. Latewood properties were also linked

to variation in a β-amylase gene (MA_436199g0010), which is

homologous to Arabidopsis cold-induced BAM3. Therefore, our

work provides substantial evidence for the seasonal control of

wood properties by abiotic factors, such as drought in the spring

and cold in the late season.

More putative associations detected by
multi-locus BLINK

Many empirical and simulation studies have shown that

multi-locus GWAS methodologies, such as FASTmrEMMA

(Wen et al., 2017), FarmCPU (Liu et al., 2016), and BLINK

(Huang et al., 2019), have more power than single-locus

methods, such as standard univariate GEMMA (Xu et al., 2018;

Zhang et al., 2019). Also, the multivariate model (e.g., MV-

GEMMA) has more power than the standard univariate models

(e.g., UV-GEMMA) (Korte et al., 2012; Zhou and Stephens,

2014). Even though the power and Type I errors of the single-

locus and multi-locus GWAS methods were not estimated in

this study, we did detect more SNPs using the multi-locus and

multivariate models. We found that more SNPs were detected

by BLINK than by UV-GEMMA and MV-GEMMA. BLINK

theoretically selects a set of pseudo-QTNs that are not in LD

with each other as covariates, thus only the independent SNPs

would be detected in GWAS (Huang et al., 2019). Theoretically,

the multivariate model has more power than these standard

univariate models because missing data in one of the phenotypic

traits could be complemented by other phenotypes based on

population correlation (Porter and O’Reilly, 2017). In the

present study, however, there is only a slight difference between

the number of associations for the two methods. The fact that

there was no missing data for the phenotypic traits could be the

main reason.

E�ect of population size and heritability
on GWAS

One of the main issues for GWAS is the validation of

detected QTLs. Most of the GWAS in crops and tree species

used ∼500 individuals/genotypes (Huang et al., 2010; Hall

et al., 2016; Fang et al., 2017; Chhetri et al., 2019; Chen et al.,

2021). Few, if any, of the SNPs were validated or repeated in

similar or even smaller population size (McKown et al., 2014a,b;

Chhetri et al., 2019). For example, Elfstrand et al. (2020),

performing GWAS for disease resistance traits in Norway spruce

using 466 genotypes, did not find any overlapped SNPs with

another previous study using 66 genotypes/clones (Mukrimin

et al., 2018). We also did not observe the same QTLs detected

in two previous studies of Norway spruce using a smaller

population (517 trees) (Baison et al., 2019, 2020). In this study,

we performed GWAS analysis in a parental population (476

trees) and identified nine SNPs with p < 0.05 that overlapped

with the associated SNPs in the GWAS of their progenies
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FIGURE 6

Manhattan plots comparing GEMMA univariate (UV-GEMMA), multivariate (MV-GEMMA), and BLINK GWAS for wood traits measured in Picea

abies. P-values are converted to –log10 (P-value). Single-nucleotide polymorphisms (SNPs) above the red lines passed the Bonferroni

correction test (P < 3.7 × 10−7). SNPs above the blue line passed false discovery rate (FDR) (P < 0.05) for the multivariate set in (A), transition

wood of coarseness in (B), and the number of cells in (E) (blue line was only shown for the interesting traits and there is SNP passing FDR P <

0.05). Only SNPs with P < 1 × 10−2 are plotted. (A) Manhattan plot based on multivariate (MV-GEMMA) and univariate (UV-GEMMA) analysis of

four traits in the transition wood [ring width, wood density, coarseness, and the number of cells, labeled as TW(RW_WD_C_NC)]. (B) Manhattan

plot based on univariate model BLINK only for the same four traits in the transition wood. (C) Allelic e�ects of SNP MA_183130_3773 on the four

traits in the transition wood. CC, CT, and TT are genotypes of the associated SNP. The number in parenthesis is the number of individuals for

each of genotypes CC, CT, or TT. (D) Manhattan plot based on multivariate (MV-GEMMA) and univariate (UV-GEMMA) analysis of three traits in

the annual ring wood [number of cells, ring width, and radial tracheid width, labeled as ARW(NC_RW_RTW)]. (E) Manhattan plot based on

univariate model BLINK only for the same three traits

(Continued)
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FIGURE 6

in the annual ring wood. (F) The allelic e�ects of SNP MA_15508_8004 on the three traits of the annual ring wood. SNPs depicted in (C,F) are

eclipsed in the corresponding Manhattan plot, and the error bar represents ±standard deviation for phenotypic values. Di�erent letters represent

a significant di�erence (P < 0.05) between the mean values of di�erent genotypes. Phenotypic values are scaled by their mean value. The

dashed lines linking (A,B), and linking (D,E) are drawn to identify if MV-GEMMA or BLINK increases the power in the same contig as UV-GEMMA.

(Table 3). We find that three candidate genes annotated as

MAP3K for ring width (i.e., diameter) and located in the same

contig MA_12842 were observed in a previous study using

a larger population (∼5,000 trees) (Chen et al., 2021). This

finding indicates the importance of a large sample size for

effectively detecting and subsequently validating the discovered

QTLs. Heritability is also one of the most important factors

determining the efficiency of GWAS, with higher heritability

usually detecting more SNPs for the same trait (Korte and

Farlow, 2013; Wray et al., 2013). In this study, GWAS detected

and validated more associated SNPs in WCW than in JW and

MW, which may be related to the generally higher heritabilities

of traits fromWCW than from JW andMW (Figure 3A). GWAS

also detected the largest number of associations with traits

from EW and the lowest number of associations with traits

from LW. This is consistent with the results reported in white

spruce (Wray et al., 2013).
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