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Abstract 

Background: Compared to national evaluations, international collaboration projects further improve accuracies of 
estimated breeding values (EBV) by building larger reference populations or performing a joint evaluation using data 
(or proxy of them) from different countries. Genomic selection is increasingly adopted in beef cattle, but, to date, the 
benefits of including genomic information in international evaluations have not been explored. Our objective was to 
develop an international beef cattle single-step genomic evaluation and investigate its impact on the accuracy and 
bias of genomic evaluations compared to current pedigree-based evaluations.

Methods: Weaning weight records were available for 331,593 animals from seven European countries. The pedigree 
included 519,740 animals. After imputation and quality control, 17,607 genotypes at a density of 57,899 single nucleo-
tide polymorphisms (SNPs) from four countries were available. We implemented two international scenarios where 
countries were modelled as different correlated traits: an international genomic single-step SNP best linear unbiased 
prediction (SNPBLUP) evaluation  (ssSNPBLUPINT) and an international pedigree-based BLUP evaluation  (PBLUPINT). Two 
national scenarios were implemented for pedigree and genomic evaluations using only nationally submitted pheno-
types and genotypes. Accuracies, level and dispersion bias of EBV of animals born from 2014 onwards, and increases 
in population accuracies were estimated using the linear regression method.

Results: On average across countries, 39 and 17% of sires and maternal-grand-sires with recorded (grand-)off-
spring across two countries were genotyped.  ssSNPBLUPINT showed the highest accuracies of EBV and, compared 
to  PBLUPINT, led to increases in population accuracy of 13.7% for direct EBV, and 25.8% for maternal EBV, on average 
across countries. Increases in population accuracies when moving from national scenarios to  ssSNPBLUPINT were 
observed for all countries. Overall,  ssSNPBLUPINT level and dispersion bias remained similar or slightly reduced com-
pared to  PBLUPINT and national scenarios.

Conclusions: International single-step SNPBLUP evaluations are feasible and lead to higher population accuracies for 
both large and small countries compared to current international pedigree-based evaluations and national evalua-
tions. These results are likely related to the larger multi-country reference population and the inclusion of phenotypes 
from relatives recorded in other countries via single-step international evaluations. The proposed international single-
step approach can be applied to other traits and breeds.
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Background
In livestock species, genomic selection [1] has become 
increasingly important for driving selection deci-
sions of both economically and socially relevant traits 
[2–4]. In animal breeding programs, the inclusion of 
genomic data in addition to conventional sources of 
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information (pedigree and phenotypes) leads to an 
increase in prediction accuracy of estimated breed-
ing values (EBV) and to reduced generation intervals 
which, in turn, allows to achieve higher genetic gains 
[5]. National genomic evaluations make use of pheno-
typic, genomic and pedigree information either based 
on multi-step approaches [6] or single-step approaches 
[7, 8]. Although genotyping is becoming cheaper and 
the availability of individual genomic data is increasing 
[3], accurate genomic predictions often require large 
and representative reference populations [2, 9–11], 
which can be expensive and time-consuming to build 
and maintain, especially for difficult-to-measure traits 
[12, 13]. Moreover, with small livestock populations, 
building a reference population using only national 
resources can be challenging or even unfeasible. For 
such small national populations, a combined interna-
tional genomic evaluation is appealing, especially when 
genomic predictions are performed within-breed [14, 
15].

In cattle, the aim of international collaborations pro-
jects is to pull together genomic data from different 
countries and build large reference populations within 
the same breed [16]. These projects allow to either (1) 
share genotypes and breeding values as pseudo-phe-
notypes among national breeding organizations and, in 
turn, enlarge existing national reference populations, 
or (2) perform an international genomic evaluation 
for which raw national data or a proxy of them (e.g. de-
regressed proofs [17]) are used. Examples of interna-
tional collaboration projects in dairy cattle are the “North 
America Consortium” [18], “EuroGenomics” [19], and 
“InterGenomics” [20].

Genomic selection has also been increasingly adopted 
in beef cattle national evaluations [21–24], however, 
compared to dairy cattle [22, 25] some additional difficul-
ties exist. In particular, the lower use of artificial insemi-
nation (which results in lower connectedness between 
herds and smaller sire families) and the lower systematic 
recording of phenotypes compared to dairy breeding pro-
grams contribute to smaller benefits of genomic selection 
in beef cattle. These difficulties also make international 
evaluations more challenging in beef cattle compared 
to dairy, especially due to low pedigree connectedness 
between countries [22, 26]. International genomic evalu-
ations may contribute to increase connectedness among 
countries by using genomic data along with pedigree and 
phenotypic data [27]. Moreover, genomic data would help 
to combine (small) national reference populations into an 
international one and, in turn, result in an increase in the 
accuracies of genetic evaluations. However, to date, the 
current international beef cattle evaluations led by Inter-
beef [28] do not yet consider genomic information.

When properly parametrized, it is expected that the 
optimal approach for international genomic evaluations 
would be to implement a single-step evaluation because 
it allows combining phenotypic, genomic and pedigree 
national information simultaneously [29], using raw 
national phenotypes and genotypes without the need to 
approximate them. Moreover, such a model would need 
to be easily scalable to efficiently handle a large number 
of traits and a large amount of  (genomic) data. To date, 
the feasibility and the benefits of joint single-step beef 
cattle international evaluations have not been explored. 
Therefore, the aim of our study was to develop a joint 
international single-step genomic evaluation for beef cat-
tle using Limousin weaning weight data, and to investi-
gate its benefits for both the increase in accuracies of 
EBV and genetic connectedness among countries over 
the current pedigree-based Interbeef evaluations. More-
over, we evaluated whether moving towards interna-
tional single-step genomic evaluations would affect level 
and dispersion bias of EBV compared to both current 
international pedigree-based evaluations and national 
evaluations.

Methods
Hereafter, we first describe the available data and its 
preparations steps, followed by the implemented sce-
narios and a description of the international models used. 
Finally, we describe the assessment of connections among 
countries and the validation methodology implemented.

Phenotypes
In total, 333,333 Limousin male and female age-adjusted 
weaning weight (AWW) phenotypes were available. 
Phenotypes were available from five Limousin popula-
tions, representing seven European countries joining the 
2020 January Interbeef evaluation. These countries were: 
Czech Republic (CZE), Denmark, Finland and Sweden 
(DFS, modelled as one population), Ireland (IRL), Ger-
many (DEU), and Switzerland (CHE). Weaning weight 
was age-adjusted to 210  days in CZE and to 200  days 
in the remaining countries. For further details on data 
recording and adjustment factors at the national level 
see Additional file 1 Table S3 in Bonifazi et al. [30], and 
Interbeef National Genetic Evaluations forms [31]. Phe-
notypes above or below three phenotypic standard devia-
tions from the phenotypic mean of each population-sex 
combination were discarded to remove possible outliers. 
In total, 331,593 individual phenotypic records remained 
and were distributed across 19,051 herds. The number 
of phenotypes available in each population is reported 
in Table 1. DEU represented the largest population with 
35% of the observations, followed by DFS (29%), IRL 
(21%), CHE (11%), and CZE (4%). Recorded animals were 



Page 3 of 18Bonifazi et al. Genetics Selection Evolution           (2022) 54:57  

born between 1975 and 2019. Descriptive statistics per 
population of the available phenotypes are in Additional 
file  1: Table  S1. Hereafter, although the DFS population 
is composed of more than one country, for simplicity, we 
will refer to populations as “countries”.

Pedigree
The pedigree was extracted from the Interbeef interna-
tional pedigree database and the following quality con-
trols were performed. The pedigree was checked for 
absence of pedigree loops (an animal being its own ances-
tor), duplicates, and conflicts between the sex reported in 
the international identification number and its sex as a 
parent (e.g. a female reported in the pedigree as a sire). 
Finally, using the RelaX2 software v1.73 [32], the checked 
pedigree was pruned to include animals with pheno-
types, genotypes, or both, and all their ancestors, with-
out any limit on the number of generations retained. The 
final pedigree included 519,740 animals, born between 
1927 and 2019, with a maximum depth of 17 generations.

Genotypes
Genotypes were available for 17,733 animals from four 
countries: CZE, DEU, IRL, and CHE. Genotypes were 
available from single nucleotide polymorphism (SNP) 
panels with different SNP densities: 467 DEU animals at 
41,913 SNPs (42K), 11,354 IRL animals at 52,690 SNPs 
(52K), 1004 CZE animals at 53,218 SNPs (53K), 278 DEU 
animals at 54,609 SNPs (55K), and 648 CZE and 3982 
CHE animals at 139,480 SNPs (139K). SNPs were coded 
as 0 and 2 for the two homozygotes, and as 1 for the het-
erozygote. Genotypes originating from different sources 
were merged using the unambiguous A/B Illumina allele 
coding [33].

Imputation to a selected panel of SNPs
Genotypes sent by various countries were imputed to 
a selected panel of SNPs as described in the following 
sections.

Pre‑imputation genomic data edits Only autosomal 
SNPs with a known name and chromosome position for 
the Bos taurus UMD 3.1 bovine genome assembly [34] 
were retained from each SNP panel. Duplicated SNPs 
that were at the same physical position within a genotyp-
ing SNP panel were discarded. The selected panel of SNPs 
consisted of 147,511 autosomal SNPs. Before imputation, 
22 genotypes (8 sent by CHE and 14 sent by IRL) were 
removed due to duplication, and the following edits were 
applied to the available genotypes.

1. SNPs in common with the selected panel were 
retained from each country genotype; the remain-
ing SNPs were discarded. Table 2 reports the number 
of retained SNPs from each panel, together with the 
number of SNPs in common between panels.

Table 1 Summary of available data per country

CZE Czech Republic; DFS Denmark, Finland and Sweden; IRL Ireland; DEU Germany; CHE Switzerland; AWW  Age-adjusted weaning weight
a Genotypes with an associated phenotype in the country
b 49 and 1 genotypes with associated phenotypes in DEU were sent from CHE and IRL, respectively

Country AWW AWW % Herds Year of birth 
(min–max)

Genotypes % genotypes Genotypes with 
 phenotypesa

% genotypes 
with 
 phenotypesa

CZE 13,892 4 172 1991–2019 1625 9 1207 74

DFS 96,671 29 9548 1980–2019 – – – –

IRL 68,086 21 8218 1975–2019 11,300 64 5237 46

DEU 117,249 35 866 1981–2019 742 4 640b 86

CHE 35,695 11 247 1992–2018 3940 22 3516 89

Total 331,593 100 19,051 1975–2019 17,607 100 10,600 60

Table 2 Number of autosomal SNPs retained in each panel 
(diagonal), across panels (off-diagonal), and between each panel 
and the selected panel of SNP (i.e. 147,511 SNPs) (diagonal)

42K = 41,913 SNPs, 52K = 52,690 SNPs, 53K = 53,218 SNPs, 55K = 54,609 SNPs, 
139K = 139,480 SNPs

Panel 42K 52K 53K 55K 139K

42K 40,367

52K 36,519 44,181

53K 39,907 40,283 51,250

55K 39,465 39,779 48,744 52,352

139K 36,270 37,665 40,550 39,990 131,584
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2. SNPs with too many Mendelian conflicts were 
removed. A SNP was removed from the selected 
panel if the number of parent–offspring genotype 
conflicts exceeded 1% of the parent–offspring pairs 
that both have their genotype called for this SNP. In 
total, 1411 SNPs were removed.

3. Detection of parent–offspring conflicts. A parent–
offspring conflict was detected when the number 
of conflicting autosomal SNPs between the parent–
offspring pair exceeded 1% of the number of SNPs 
shared between the SNP panel used for the parent 
and the offspring (as in Table 2). For each parent–off-
spring conflict detected, the pedigree link between 
the parent and the offspring was removed by setting 
the offspring’s parent to missing. Nineteen parent–
offspring pedigree links were removed.

After the above edits, 146,100 SNPs and 17,711 
genotypes (out of the initial 17,733) were used for 
imputation.

Imputation and  quality control All the genotypes 
were imputed to the selected panel using Findhap v3 
[35] (applied settings are in Additional file  2: File S1). 
After imputation, the following quality controls were 
performed using Plink v1.9 [36]: (1) call rates per SNP 
across animals ≥ 95%; (2) SNPs with a p‑value for 
Hardy–Weinberg equilibrium Chi-square test higher 
than  10–15; (3) SNPs with a minor allele frequency 
higher than 0.01; and (4) call rates per animal across 
SNPs ≥ 90%. SNPs and genotypes that did not match 
these criteria were removed and thus 17,688 genotypes 
and 57,899 SNPs remained. The percentage of autoso-
mal SNPs retained after quality control relative to the 
original panels were 89%, 94%, 77%, 74%, and 40%, for 
the 42K, 52K, 53K, 55K, and 139K panel, respectively. 
In addition, genotypes with less than 87.5% pedigree-
based breed composition for the Limousin breed were 
removed (32 genotypes excluded), and genotypes 
with pedigree incompatibilities (observed from plot-
ting genomic against pedigree-based relationships; see 
Additional file 3: Fig. S1) were also removed (41 geno-
types excluded). Finally, genotypes of animals without 
phenotypic records, progeny and known parents were 
removed (8 genotypes excluded). The final number of 
genotypes was 17,607 and their distribution per country 
is in Table  1; the majority were from IRL (64% of the 
total), followed by CHE (22%), CZE (9%) and DEU (4%). 
Principal component analysis (PCA) was performed 
on the genomic relationship matrix of all genotypes to 
further investigate connectedness between countries 
for genotyped animals. The program calc_grm [37] was 
used to build the genomic relationship matrix following 

VanRaden’s method 2 [6] and to perform the PCA fol-
lowing Patterson et al. [38].

Scenarios
To investigate the benefits of including genomic infor-
mation in international evaluations compared to the 
current international pedigree-based evaluation, we 
implemented the following two scenarios, hereafter 
referred to as “international scenarios”.

• Scenario  PBLUPINT: international pedigree-based 
best linear unbiased prediction (BLUP) evaluation 
(as described below) using all available phenotypes. 
This scenario represents the current Interbeef 
international evaluations.

• Scenario  ssSNPBLUPINT: international single-step 
SNPBLUP evaluation (as described below) using all 
available phenotypes and genotypes.

In both international scenarios, the complete interna-
tional pedigree was used.

To investigate the benefits of international evalua-
tions compared to national evaluations, we also imple-
mented the following two scenarios, hereafter referred 
to as “national scenarios”, which aim at representing 
national single trait evaluations.

• Scenario  PBLUPNAT: national pedigree-based BLUP 
evaluation, performed separately for each coun-
try using only national submitted phenotypes (as 
reported in Table 1).

• Scenario  ssSNPBLUPNAT: national single-step 
SNPBLUP evaluation, performed separately for 
each country using only national submitted pheno-
types and genotypes (as reported in Table  1). DFS 
was excluded for this scenario as no genotypes were 
available.

In both national scenarios, the complete international 
pedigree was used for the estimation of both pedigree 
and single-step EBV. In each national scenario, the EBV 
of animals that appear in a pseudo-national pedigree 
were used. Pseudo-national pedigrees were obtained 
by pruning the international pedigree to include all 
national animals with phenotypes, genotypes, or both, 
and all their ancestors, without any limit on the num-
ber of generations retained. National scenarios used the 
same within-country variance components as the inter-
national scenarios. Table  3 presents a summary of the 
sources of information included in both international 
and national scenarios and Table 4 reports the number 
of phenotypes, genotypes and size of the pedigree in 
each scenario.
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Models
International pedigree‑based BLUP
The current Interbeef model for breeding value estima-
tion without genomic information is the AMACI model 
(Animal Model accounting for Across-Country Inter-
action) [39], which accounts for country-specific fixed 
and random effects by fitting the national model of 
each country. The AMACI model is a multi-trait animal 
model with maternal effects, in which each country is 
modelled as a different trait:

where yi is the vector of observations for country i ; bi 
is the vector of fixed effects for country i ; ri is the vec-
tor of random environmental effects for country i ; ui is 
the vector of random additive genetic (direct) effects for 
country i ; mi is the vector of random maternal additive 
genetic effects for country i ; pi is the vector of random 

yi = Xibi + Ciri + Ziui +Wimi + Pipi + ei,

maternal permanent environmental effects (provided by 
the dam) for country i ; ei is the vector of random resid-
ual effects for country i . Xi and Ci are incidence matri-
ces linking records to fixed, and random environmental 
effects, respectively. Zi , Wi , and Pi are incidence matri-
ces linking records to the animal, maternal genetic and 
maternal permanent environmental effects, respectively. 
National fixed and random effects for each country are in 
Additional file 1: Table S2. Random environmental effects 
were modelled for three countries: CZE (herd-year-sea-
son), DEU (herd-year), and CHE (herd-year). Following 
the national model, the maternal permanent environ-
mental effect was not fitted for the DEU population. It 
was assumed that:

Var

[

u

m

]

= G⊗ A =
[

Gd,d Gd,m

Gm,d Gm,m

]

⊗ A,

Table 3 Sources of information included (•) in implemented scenarios

PBLUPNAT pedigree-based BLUP national, ssSNPBLUPNAT single-step SNP-BLUP national, PBLUPINT pedigree-based BLUP international, ssSNPBLUPINT single-step SNP-BLUP 
international
a Within-country national pedigree is a pseudo-national pedigree obtained by pruning the international pedigree to include all national animals with phenotypes, 
genotypes, or both, and all their ancestors, without any limit on the number of generations retained

Sources of information National scenarios International scenarios

PBLUPNAT ssSNPBLUPNAT PBLUPINT ssSNPBLUPINT

Within-country national  pedigreea • • • •

Within-country national phenotypes • • • •

Within-country national genotypes • •

Across-country international pedigree • •

Across-country international phenotypes • •

Across-country international genotypes •

Table 4 Number of phenotypes, genotypes, and size of the pedigree in whole and partial evaluations of international and national 
scenarios, and number of animals in the focal group for each country

Partial: is the same as whole evaluation but with phenotypes of animals born from 2014 onwards excluded

International scenarios: PBLUPINT pedigree-based BLUP international and ssSNPBLUPINT single-step SNP-BLUP international

National scenarios: PBLUPNAT pedigree-based BLUP national and ssSNPBLUPNAT single-step SNP-BLUP national

Focal group: animals with phenotypes and genotypes born from 2014 onwards

CZE Czech Republic; DFS Denmark, Finland and Sweden; IRL Ireland; DEU Germany; CHE Switzerland

Evaluation Scenarios

International National

CZE DFS IRL DEU CHE

Whole Pedigree 519,740 44,130 125,743 186,080 165,318 67,567

Genotypes 17,607 1625 – 11,300 742 3940

Phenotypes 331,593 13,892 96,671 68,086 117,249 35,695

Partial Phenotypes 243,109 7104 78,730 49,579 82,876 24,820

Focal group – 1057 – 3869 407 1191
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where u is the vector of random direct additive genetic 
effects for all countries; m is the vector of random 
maternal additive genetic effects for all countries; G is 
the across-country genetic co-variance matrix of order 
10 × 10, in which Gd,d is the across-country direct 
( d ) additive genetic co-variance matrix; Gm,m is the 
across-country maternal ( m ) additive genetic co-vari-
ance matrix; and Gd,m ( Gm,d) contains additive genetic 
covariances between direct and maternal effect within 
countries (diagonal elements) and additive genetic co-
variances between direct and maternal effect across 
countries (off-diagonal elements); A is the numerator 
relationship matrix; ⊗ indicates the Kronecker product. 
Random environmental effects, random maternal per-
manent environmental effects, and residuals were fitted 
using block-diagonal variance matrices.

The genetic co-variance matrix with additive direct and 
maternal genetic effects ( G ) was built as:

where, S is the diagonal matrix with national genetic 
standard deviations for direct and maternal genetic 
effects, and � is the across-country estimated genetic 
correlation matrix (of order 10 × 10 with diagonal val-
ues of 1). The across-country � matrix was constructed 
by combining the genetic correlations between countries 
previously estimated by Interbeef using a series of bi-var-
iate analyses. The resulting combined across-country � 
matrix was not positive definite and a bending procedure 
was applied using the R package “mbend” [40] (method 
“hj” [41], unweighted, with a threshold value of  10–4). 
The final across-country genetic correlation matrix � and 
G co-variance matrix are reported in Additional file  1: 
Table S3. Both within-country genetic and environmen-
tal variances were the same as those used in the national 
genetic evaluations of participating countries and are in 
Additional file 1: Table S4. Interbeef uses this procedure 
to compute the genetic co-variance matrix under the 
assumption that the national estimates of genetic vari-
ances are more accurate (e.g. when not all national data 
are submitted for international evaluations) [42]. Pos-
sible differences in trait and model definition between 
countries, as well as genotype-by-environment interac-
tions, are accounted for in the AMACI model by model-
ling each country as a different correlated trait and with 
genetic correlations between countries lower than 1 [30, 
43].

International single‑step SNPBLUP
Genomic data was included in the AMACI model using 
a single-step SNP BLUP (ssSNPBLUP) approach as pro-
posed by Liu et al. [44] and later applied by Vandenplas 
et  al. [45] to multi-trait models with maternal genetic 

G = S�S,

effects. Following Vandenplas et  al. [45], observed allele 
frequencies were used to center the SNP genotypes. The 
estimated co-variance components used for the ssSN-
PBLUP evaluation were the same as the estimated co-
variance components used for the pedigree-based BLUP 
evaluation. The proportion of variance (due to additive 
genetic effects) considered as due to residual polygenetic 
effects was assumed to be 5%. For further details on the 
ssSNPBLUP evaluation applied to a multi-trait model 
with a maternal effect, see Vandenplas et al. [45].

The compatibility between pedigree and genomic 
information was guaranteed by fitting two J covariates 
(corresponding to the additive and maternal genetic 
effects) as fixed effects in the model [46]. Such compat-
ibility is required to account for allele frequencies being 
computed from the observed genotypes rather than from 
the unknown base population [46, 47]. In short, J covari-
ates model the genetic level of genotyped animals ensur-
ing the compatibility of genomic information with that 
of animals without genotypes in single-step approaches. 
J covariates are computed as follows [48]. First, entries 
of J corresponding to genotyped animals ( g ) are set to 
− 1, i.e. Jg = −1 . Second, covariate values for non-geno-
typed ancestors of genotyped individuals ( anc ) are com-
puted as Janc = Aanc,g

(

Ag ,g

)−1
Jg , where Aanc,g and Ag ,g 

are the partitions of the pedigree-relationship matrix A 
relating non-genotyped ancestors of genotyped animals 
and genotyped animals, and among genotyped animals, 
respectively. Finally, using Jg and Janc , ungenotyped ani-
mals that are not ancestors of genotyped animals receive 
a covariate value corresponding to the average of their 
parents’ covariate. After computing the covariates for all 
animals, the J covariates were fitted in the model as fol-
lows. The J covariate for the additive genetic effect corre-
sponded to that of the animal itself, while the J covariate 
for the maternal genetic effect corresponded to that of its 
dam. Following Fernando et al. [49] and Hsu et al. [46], 
the product of an animal’s J covariate and the estimated 
regression coefficient was added to its estimated genetic 
value to compute the animal’s genomic EBV.

Genetic and genomic connections among countries
In international evaluations, genetic connections among 
countries are mainly provided by common bulls (CB), 
i.e. sires that have recorded offspring in two or more 
countries. Therefore, we quantified the number of CB 
and common maternal grand-sires (CMGS, i.e. maternal 
grand-sires with recorded grand-offspring in two or more 
countries). Furthermore, we quantified the number of 
sires and dams with recorded offspring in each national 
pedigree. Then, for all these groups of animals, we also 
quantified whether a genotype was provided by the same 
country or provided by other countries. This shows the 
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potential increases in genetic connectedness among 
countries over national evaluations and pedigree-based 
international evaluation due to the inclusion of geno-
types provided by other countries in a  ssSNPBLUPINT 
evaluation.

Validation
We used the linear regression (LR) method [50] to evalu-
ate level and dispersion bias, as well as the population 
accuracy of the EBV to investigate the benefits of using 
genomic and international data over current interna-
tional pedigree-based evaluations and national evalu-
ations. Hereafter, we describe the LR method and its 
estimators that we used, and how these were applied in 
the above scenarios.

Linear regression method and estimators
The LR method [50] compares EBV for a group of indi-
viduals (called “focal group”) obtained in two evaluations: 
a partial evaluation (hereafter denoted by subscript p ) 
and a whole evaluation (hereafter denoted by subscript 
w ). In the partial evaluation, EBV ( ̂up ) are estimated using 
less information, while in the whole evaluation, EBV ( ̂uw ) 
are estimated using more information. The following esti-
mators from the LR method were calculated:

• Level bias ( ̂�p ): defined as the difference between 
the mean EBV under the evaluation p and w 
( ̂�p = ûp − ûw ). The expectation of ̂�p is 0 in 
absence of level bias. Level bias was expressed in 
national genetic standard deviations ( ̂σu ) for easier 
interpretation, i.e. as ̂�p/σ̂u.

• Dispersion bias ( ̂bp ): defined as the slope of the 
regression of ûw on ûp and computed as 
̂bp = cov(ûw ,ûp)

var(ûp)
 . The expectation of ̂bp is 1 in the 

absence of dispersion bias, while deviations from 1 
indicate dispersion bias. We assumed that considera-
ble under-dispersion was present when ̂bp > 1.15 
while considerable over-dispersion was present when 
̂bp < 0.85. We assumed that values within 15% from 
the optimal value of 1 were acceptable, similarly to 
Tsuruta et al. [51] and the Interbull genomic valida-
tion test [52].

• Accuracy of partial EBV ( ̂accp ): based on the covari-
ance of ûw and ûp and computed as 
̂accp =

√

cov(ûw ,ûp)

(1−F)σ̂ 2
u

 , where F  is the mean inbreeding 

coefficient of the focal group computed from the 
international pedigree. ̂accp is an estimator of the 
accuracy of the partial EBV ( ̂up).

• Increases in population accuracies ( inc_accp,w ): the 
ratio of accuracy ρ̂p,w is defined as the Pearson corre-
lation between ûp and ûw and computed as ρ̂p,w = 

cov(ûw ,ûp)√
var(ûp)var(ûw)

 . ρ̂p,w has expectation equal to the ratio 

of the accuracies in the two evaluations ( accpaccw
 ), where 

acc is defined as the correlation between the true 
breeding values (TBV) and the EBV across individu-
als in a population [50]. Consequently, 1/ρ̂p,w repre-
sents the increase in accuracy obtained with evalua-
tion w [53]. We expressed the increase in accuracy 
relative to evaluation p in percentage, i.e. 
inc_accp,w = (1/ρ̂p,w − 1) · 100% . For example, if 
ρ̂p,w is 0.80, the relative increase in population accu-
racy when moving from evaluation p to w is 25%.

The LR estimates were obtained using R statistical soft-
ware [54] and their standard errors (SE) were obtained 
using bootstrapping (R “boot” package [55]) of individu-
als within each focal group. In total, 10,000 bootstrap 
samples were generated, where each sample was obtained 
by randomly drawing with replacement N  animals from 
the focal group, with N  being the number of animals in 
the focal group.

Application of the LR method
Focal group The LR method can be applied to any focal 
group, defined as a homogenous group of individuals in 
a population, i.e. with prediction at the time of selection 
based on the same sources and amount of information 
[56]. For each country, we defined the focal group as the 
group of animals with both phenotypes and genotypes 
(irrespectively of which country provided the geno-
type) born from 2014 onwards. Animals born from 2014 
onwards are assumed to be part of the last generation of 
the pedigree (up to 2019), with the generation interval 
estimated to be Lm+Lf

2
 = 4.6 years, where Lm and Lf  is the 

average generation interval for males and females, respec-
tively. Table 4 reports the number of animals in each focal 
group for each country.

Figure 1 shows a schematic overview of the application 
of the LR method within-scenario and between scenarios.

Within‑scenario level and  dispersion bias, and  accuracy 
of  partial EBV LR estimators of level bias, dispersion 
bias, and accuracy of partial EBV were computed within-
scenario for both the international and national scenarios. 
These estimators were computed by carrying out a whole 
and a partial evaluation for each scenario (Fig. 1). In the 
whole evaluation of each scenario all available data was 
used, whereas in the partial evaluation phenotypes of ani-
mals born from 2014 onwards were set to missing (Fig. 1). 
Pedigree and genomic data remained the same in both 
whole and partial evaluations. Thus, in both whole and 
partial evaluations, the same observed allele frequencies 
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were used in the single-step models. Table 4 presents the 
number of phenotypes in the whole and partial evalua-
tions of each scenario. Knowing the expected unbiased 
values described above, level and dispersion bias can 
be compared in each scenario to evaluate whether any 
changes in bias were introduced when moving from the 
current  PBLUPINT scenario to  ssSNPBLUPINT scenario 
and, in a similar way, whether the observed level and dis-
persion bias of international scenarios were already pre-
sent in the national scenarios. Finally, the ̂accp provides an 
estimate of the changes of the accuracy of partial EBV in 
each scenario given the different sources of information 
used.

Increases in population accuracies between scenarios To 
evaluate the benefits of using genomic information at the 
international level, we compared the increases in popula-
tion accuracies ( inc_accp,w ) obtained when moving from 
either  PBLUPNAT,  ssSNPBLUPNAT, or  PBLUPINT scenarios 
to the  ssSNPBLUPINT scenario (Fig. 1). Following Legarra 
and Reverter [50], adding genotypes to pedigree-based 
models can be considered as additional information. 
Similarly, national scenarios can be viewed as evalua-
tions with partial information, and international scenar-

ios as evaluations with additional information which is 
represented by phenotypes and genotypes of relatives 
recorded in another country. The inc_accp,w when moving 
towards  ssSNPBLUPINT were computed using the EBV 
from the whole evaluations ( ̂uw ) of each scenario (Fig. 1). 
Thus, inc_accPNAT ,SSINT estimates the increase in popula-
tion accuracy from  PBLUPNAT towards  ssSNPBLUPINT; 
inc_accSSNAT ,SSINT estimates the increase from 
 ssSNPBLUPNAT to  ssSNPBLUPINT; and inc_accPINT ,SSINT 
estimates the increase from  PBLUPINT to  ssSNPBLUPINT. 
Differences in observed allele frequencies that could be 
present between  ssSNPBLUPNAT and  ssSNPBLUPINT 
whole evaluations are accounted for by the two J covari-
ates [46] (for additive and maternal genetic effects).

Software and settings
EBV were computed using the MiXBLUP software [57] 
instruction files for  PBLUPINT and  ssSNPBLUPINT are 
reported in Additional file 2: Files S2 and S3, respectively. 
The convergence criterion for the preconditioned conju-
gate gradient (PCG) algorithm for iteratively solving the 
mixed model equations was defined as the square root of 
the relative difference between solutions of two consecu-
tive PCG iterations and was set to  10–5. To ensure that 

Fig. 1 Schematic overview of the validation. Scenarios: PBLUPNAT pedigree BLUP national, ssSNPBLUPNAT single-step SNP-BLUP national, PBLUPINT 
pedigree BLUP international, ssSNPBLUPINT single-step SNP-BLUP international. For each scenario, a partial and a whole evaluation was carried out 
(timelines). National scenarios used only national data (grey timelines), while international scenarios used data from all countries (yellow timelines). 
In the partial evaluation, partial estimated breeding values (EBV) were obtained by masking the phenotypes of animals born from 2014 onwards 
(striped timeline). In the whole evaluation, whole EBV were obtained using all phenotypes. Within-scenario estimators of level bias ( ̂�p ), dispersion 
bias ( ̂bp ), and accuracy of partial EBV ( ̂accp ) were obtained from the partial and whole EBV of each scenario (blue solid lines and boxes). Between 
scenarios increases in population accuracies ( inc_acc ) of moving towards  ssSNPBLUPINT scenario were computed using the whole EBV of each 
scenario (green dotted lines and boxes)
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all EBV were expressed against the same base, EBV were 
scaled relative to a base generation common to all sce-
narios, which was defined in each country as the group 
of national animals born in 2002 with an available AWW 
phenotype. All validation results were computed using 
these scaled EBV.

Results
Hereafter, we first present the results on genetic and 
genomic connections among countries, followed 
by the LR estimates computed within-scenario for 
 ssSNPBLUPINT, and the differences with those estimates 
computed for the other scenarios implemented. Finally, 
we present the results on the increases in population 
accuracies between scenarios.

Genetic and genomic connections among countries
The distribution of genotyped animals varied between 
countries. Most of the genotyped animals were born after 
2000, with an overall increasing genotyping trend during 
more recent years (Fig. 2). In particular, in CZE and DEU, 
88 and 60% of the genotyped animals were born from 
2014 onwards. Overall, genotyped animals were 51.5% 

males and 48.5% females. The sex ratio of the genotyped 
animals differed between countries, with 45%, 31%, 77%, 
and 95% of the genotypes being males in CZE, IRL, DEU, 
and CHE, respectively. Finally, PCA shows that the popu-
lations were genetically close and no specific population 
clusters were observed (Fig. 3).

The number of genotyped sires ranged from 57 for DFS 
to 1166 for IRL, and the number of genotyped dams from 
68 for DEU to 4190 for IRL with DFS having no geno-
typed dams (Table 5). In IRL, DEU and CHE the majority 
of genotyped sires in the national pedigree were geno-
typed by the country itself. Nonetheless, the number of 
sires with a genotype provided by another country ranged 
from 24 of IRL to 110 of CZE (equal to 83% of the total 
genotyped sires in CZE). Interestingly, DFS, which did 
not provide genotypes, was associated with 57 genotyped 
sires, thanks to genotypes provided by other countries. 
The proportion of genotyped sires that had recorded off-
spring was 57% for CZE, 79% for DFS and > 90% for IRL, 
DEU and CHE. Except for IRL, genotyped sires had a 
larger average number of recorded offspring compared to 
that of all sires with records. The number of genotyped 
sires with more than 100 recorded offspring in at least 
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five herds (which provides an indication of the sires that 
may be used in artificial insemination) was small in all 
countries (< 15 sires). Finally, almost all genotyped dams 
in the national pedigree were genotyped by the country 
itself and only a small number was genotyped by another 
country (2, 8 and 3 for CZE, DEU and CHE, respectively).

We quantified the total number of CB and CMGS 
that had recorded offspring in two or more coun-
tries. In total, there were 422 CB, of which 106 were 

genotyped, and 642 CMGS of which 72 were geno-
typed. The average number of CB between countries 
was 95, ranging from 38 for CZE-CHE to 155 for 
DFS-DEU (Table 6). On average across pairs of coun-
tries, 33 CB were also genotyped, ranging from 20 for 
CZE-CHE to 49 for IRL-DEU. The average number 
of CMGS between countries was 124 ranging from 
58 for DFS-CHE and IRL-CHE to 235 for DEU-CHE 
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(Table  6). On average across pairs of countries, 19 
CMGS were genotyped, ranging from 11 for CZE-CHE 
to 36 for DEU-CHE.

Within‑scenario bias and accuracy of EBV
Bias and accuracy of EBV were calculated compar-
ing partial and whole EBV of each scenario. Overall, 
 ssSNPBLUPINT showed negative level bias ( ̂�p ) for direct 
EBV and small ̂�p for maternal EBV (Table 7). For direct 
EBV, the average ̂�p across countries was − 0.17 genetic 
standard deviations (GSD), ranging from −  0.22 GSD 
for CZE to −  0.10 GSD for IRL. For maternal EBV, the 
average ̂�p across countries was 0.02 GSD, ranging from 
− 0.02 GSD for DEU to 0.06 GSD for CHE. Overall, direct 
EBV were considerably over-dispersed in all countries 
except for IRL: ̂bp was on average 0.83 across countries, 
ranging from 0.79 for CZE to 0.87 for IRL. For maternal 
EBV, ̂bp was on average 0.88 across countries and showed 
considerable over-dispersion only for DEU, while other 
countries showed over-dispersion but remained within 
the 0.85–1.15 interval. The average ̂accp across countries 
for  ssSNPBLUPINT was 0.36 (ranging from 0.35 for CZE, 
IRL and DEU to 0.40 for CHE) and 0.25 (ranging from 
0.23 for CZE and DEU to 0.29 for CHE), for direct and 
maternal EBV, respectively.

Overall,  ssSNPBLUPINT performed better than 
 PBLUPNAT based on level bias, dispersion bias, and 
accuracy. Indeed, for direct EBV,  ssSNPBLUPINT 
showed less level bias and less over-dispersion (albeit 

Table 5 Overview of recorded offspring per sires and dams, and number of genotyped sires and dams in each national pedigree

CZE Czech Republic; DFS Denmark Finland and Sweden; IRL Ireland; DEU Germany; CHE Switzerland

CZE DFS IRL DEU CHE

Sires

 With recorded offspring 720 4591 9341 5283 1892

 Average recorded offspring 19.3 21.1 7.3 22.2 18.9

 ≥ 20 recorded offspring 220 1399 600 1855 518

  ≥ 100 recorded offspring 15 162 59 163 63

  ≥ 100 recorded offspring (in at least 5 herds) 11 157 57 43 38

Sires with genotype

 Number 132 57 1166 368 956

 Genotyped by the country itself 22 – 1142 273 863

 Genotyped by another country 110 57 24 95 93

 With recorded offspring 75 45 1100 350 856

 Average recorded offspring 28.1 30.7 6.3 48.0 22.1

   ≥ 20 recorded offspring 34 23 51 273 295

  ≥ 100 recorded offspring 4 4 7 35 32

  ≥ 100 recorded offspring (in at least 5 herds) 4 4 7 10 14

Dams

 With recorded offspring 4457 30,212 47,334 35,340 9785

 Average recorded offspring 3.1 3.2 1.4 3.3 3.6

Dams with genotype

 Number 375 – 4190 68 185

 With recorded offspring 355 – 3311 58 181

 Average recorded offspring 2.9 – 1.4 2.9 6.5

Table 6 Number of (genotyped) common bulls (CB) and 
(genotyped) common maternal grand-sires (CMGS) connecting 
each pair of countries

Details on countries sending the genotype for CB or CMGS are in Additional 
file 1: Table S7

CZE Czech Republic; DFS Denmark, Finland and Sweden; IRL Ireland; DEU 
Germany; CHE Switzerland

Pair of 
countries

CB CMGS

Number With 
genotype

Number With 
genotype

CZE DFS 77 24 92 17

CZE IRL 87 43 82 16

CZE DEU 133 38 189 30

CZE CHE 38 20 72 11

DFS IRL 102 32 114 15

DFS DEU 155 37 190 21

DFS CHE 40 21 58 13

IRL DEU 142 49 149 22

IRL CHE 41 22 58 12

DEU CHE 131 47 235 36
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not statistically significant) compared to  PBLUPNAT, 
with values of ̂�p improving by 0.03 GSD on average 
across countries, and ̂bp being closer to 1 in all coun-
tries (except for IRL) (Table  7). For maternal EBV, 
 ssSNPBLUPINT showed similar level bias compared 
to  PBLUPNAT: difference in ̂�p of 0.00 GSD on aver-
age across countries. However, maternal EBV were 
more over-dispersed in  ssSNPBLUPINT compared to 
 PBLUPNAT: average difference in ̂bp of −  0.07. In CZE 
and CHE, ̂bp went from small under-dispersion of 
 PBLUPNAT to small over-dispersion of  ssSNPBLUPINT. 
Finally, in all countries the accuracy of partial EBV was 
greater in  ssSNPBLUPINT than in  PBLUPNAT: on aver-
age across countries, the difference in ̂accp between sce-
narios was 0.10 and 0.06 for direct and maternal EBV, 
respectively.

Overall, on average across countries,  ssSNPBLUPINT 
showed similar level bias and dispersion bias for both 
direct and maternal EBV compared to  ssSNPBLUPNAT, 
but  ssSNPBLUPINT did have a higher accuracy (Table 7). 
In all countries, the accuracy of partial EBV was greater 
with  ssSNPBLUPINT compared to  ssSNPBLUPNAT: on 

average across countries, the difference in ̂accp between 
scenarios was 0.06 and 0.03 for direct and maternal EBV, 
respectively.

Overall, on average across countries,  ssSNPBLUPINT 
resulted in similar or less level bias, similar dispersion 
bias, and higher accuracy than  PBLUPINT. Indeed, for 
direct EBV,  ssSNPBLUPINT showed similar or less level 
bias compared to  PBLUPINT: ̂�p improved by 0.02 GSD 
on average across countries, with the largest improve-
ment observed for DEU (0.06 GSD) (Table  7). For 
maternal EBV,  ssSNPBLUPINT showed a similar level 
bias as  PBLUPINT. In all countries except for IRL, direct 
EBV showed less over-dispersion in  ssSNPBLUPINT 
compared to  PBLUPINT with values of ̂bp being closer 
to 1. In IRL more over-dispersion of direct EBV was 
observed in  ssSNPBLUPINT compared to  PBLUPINT 
although ̂bp remained within the 0.85–1.15 interval. 
Maternal EBV showed similar or more over-dispersion 
in  ssSNPBLUPINT compared to  PBLUPINT. In CZE, ̂bp 
for maternal EBV went from small under-dispersion of 
 PBLUPINT to small over-dispersion of  ssSNPBLUPINT. 
Finally, in all countries, the accuracy of partial EBV was 

Table 7 Level bias ( ̂�p ), dispersion bias ( ̂bp ) and accuracy of partial EBV ( ̂accp ) of direct and maternal EBV for the focal group, in each 
scenario and for each country

Level bias is expressed in genetic standard deviations (GSD)

Focal group: animals with phenotypes and genotypes born from 2014 onwards

Range of SE: minimum and maximum Standard Error across countries in each scenario (all standard errors are reported in Additional file 1: Table S8)

PBLUPNAT pedigree-based BLUP national, ssSNPBLUPNAT single-step SNP-BLUP national, PBLUPINT pedigree-based BLUP international, ssSNPBLUPINT single-step SNP-BLUP 
international

CZE Czech Republic; DFS Denmark, Finland and Sweden; IRL Ireland; DEU Germany; CHE Switzerland

Country Direct Maternal

PBLUPNAT ssSNPBLUPNAT PBLUPINT ssSNPBLUPINT PBLUPNAT ssSNPBLUPNAT PBLUPINT ssSNPBLUPINT

̂�p(GSD)

 CZE − 0.25 − 0.23 − 0.23 − 0.22 − 0.01 − 0.03 0.00 0.01

 IRL − 0.08 − 0.10 − 0.10 − 0.10 − 0.02 0.01 − 0.01 0.02

 DEU − 0.19 − 0.10 − 0.21 − 0.15 − 0.06 − 0.02 − 0.05 − 0.02

 CHE − 0.28 − 0.27 − 0.23 − 0.21 0.04 0.03 0.04 0.06

Range of SE 0.01–0.02 0.01–0.02 0.01–0.02 0.01–0.02 0.00–0.01 0.00–0.01 0.00–0.01 0.00–0.01

̂bp

 CZE 0.72 0.76 0.65 0.79 1.04 0.94 1.06 0.96

 IRL 0.96 0.87 1.00 0.87 0.92 0.87 0.91 0.85

 DEU 0.79 0.85 0.77 0.82 0.78 0.79 0.79 0.79

 CHE 0.80 0.79 0.80 0.82 1.06 0.98 0.99 0.93

Range of SE 0.02–0.07 0.02–0.06 0.02–0.06 0.02–0.04 0.02–0.07 0.02–0.07 0.02–0.07 0.02–0.05

̂accp

 CZE 0.23 0.25 0.25 0.35 0.17 0.17 0.19 0.23

 IRL 0.23 0.29 0.26 0.35 0.17 0.22 0.18 0.24

 DEU 0.26 0.31 0.27 0.35 0.18 0.20 0.18 0.23

 CHE 0.34 0.38 0.35 0.40 0.22 0.27 0.24 0.29

Range of SE 0.00–0.02 0.00–0.02 0.00–0.02 0.01–0.02 0.00–0.01 0.00–0.01 0.00–0.01 0.00–0.01
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higher with  ssSNPBLUPINT compared to  PBLUPINT: on 
average across countries, the difference in ̂accp between 
scenarios was 0.08 and 0.05 for direct and maternal EBV, 
respectively.

Increases in population accuracies between scenarios
Increases in population accuracies ( inc_acc ) were 
observed in all countries when moving from any scenario 
to the  ssSNPBLUPINT scenario (Table  8). When mov-
ing from  PBLUPNAT to  ssSNPBLUPINT, inc_accPNAT ,SSINT 
was 14.9% (ranging from 9.2% for CZE to 27.2% for IRL) 
and 33.0% (ranging from 19.0% for DEU to 47.8% for 
IRL) on average across countries for direct and maternal 
EBV, respectively. When moving from  ssSNPBLUPNAT 
to  ssSNPBLUPINT, inc_accSSNAT ,SSINT was 6.2% (ranging 
from 3.4% for CHE to 9.3% for DEU) and 16.8% (rang-
ing from 12.4% for DEU to 25.6% for CZE) on average 
across countries for direct and maternal EBV, respec-
tively. Finally, when moving from the current  PBLUPINT 
to  ssSNPBLUPINT, inc_accPINT ,SSINT was 13.7% (ranging 
from 8.5% for CZE to 25.0% for IRL) and 25.8% (ranging 
from 16.5% for DEU to 41.8% for IRL) on average across 
countries for direct and maternal EBV, respectively.

Discussion
In this study, we developed an international single-
step SNPBLUP genomic evaluation for beef cattle and 
investigated the benefits of including genomic data 
in the current pedigree-based international evalua-
tions. Hereafter, we first discuss the possible benefits 
of single-step evaluations to increase the existing pedi-
gree genetic connectedness among countries. Then, 
we discuss the increases in accuracies of EBV due to 
the inclusion of genomic data in international evalu-
ations, followed by its impact on level and dispersion 

bias compared to both current pedigree-based interna-
tional evaluations and national evaluations. Finally, we 
discuss the possible implications of this study for beef 
cattle international evaluations.

Connectedness among countries
In international evaluations, straightforward measures 
are used to quantify genetic connectedness between 
countries, such as the number of CB and CMGS [30, 58, 
59]. Table 6 shows that an average of 39 and 17% of CB 
and CMGS among country pairs were also genotyped. 
In addition, Table 5 shows an increase of genotyped sires 
within each country when combining genomic data in 
international genomic evaluations, especially for DFS and 
CZE that have no or a small number of genotyped sires at 
the national level. Genomic data can help to reveal exist-
ing relationships between animals that would otherwise 
appear as disconnected according to pedigree data, but 
also by refining relationships that are observed in the 
pedigree based on the captured Mendelian sampling 
[10, 27]. Additional file  3: Fig. S1 shows that genomic 
data help to differentiate existing pedigree relationships 
among genotyped animals, which are also extended to 
ungenotyped animals in single-step approaches [29]. 
Sophisticated measures of genetic connectedness require 
the direct inverse of the left-hand side of mixed models 
equations or its approximation [60, 61], making them 
computationally very demanding and possibly not appli-
cable to large datasets. Nonetheless, it is expected that 
genotyping CB and CMGS and using genomic data in 
international evaluations would increase connectedness 
between countries. For instance, Yu et  al. [27] showed 
that genomic data increase connectedness between man-
agement units (e.g. herds) compared to pedigree data.

Table 8 Increases in population accuracy ( inc_acc)a of moving from each scenario to  ssSNPBLUPINT, for direct and maternal estimated 
breeding values (EBV) in the focal group for each country

Focal group: animals with phenotypes and genotypes born from 2014 onwards

Range of SE: minimum and maximum standard error across countries in each scenario

PBLUPNAT pedigree-based BLUP national, ssSNPBLUPNAT single-step SNP-BLUP national, PBLUPINT pedigree-based BLUP international, ssSNPBLUPINT single-step SNP-BLUP 
international

CZE Czech Republic; DFS Denmark, Finland and Sweden; IRL Ireland; DEU Germany; CHE Switzerland
a Increases in population accuracies are expressed in % relative to each scenario whole EBV

Country Direct Maternal

PBLUPNAT ssSNPBLUPNAT PBLUPINT PBLUPNAT ssSNPBLUPNAT PBLUPINT

CZE 9.2 5.6 8.5 32.8 25.6 19.5

IRL 27.2 6.8 25.0 47.8 14.1 41.8

DEU 13.1 9.3 11.4 19.0 12.4 16.5

CHE 10.3 3.4 9.8 32.3 14.9 25.3

Range of SE 0.6–1.5 0.2–1.0 0.6–1.3 2.0–2.8 0.6–2.1 1.5–2.1
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Benefits of international single‑step genomic evaluations
We used the LR method to validate results within and 
between scenarios as it presents several advantages com-
pared to other validation methods. The LR method can 
be applied to multi-trait models and traits where the ani-
mals’ phenotype is not available for all environments [50, 
53, 62]. One of the main advantages of the LR method 
is that it does not require pre-correction of phenotypes, 
which are particularly difficult to define for maternally-
affected traits [23], allowing for validation of both direct 
and maternal effects [50, 53].

Our results showed that  ssSNPBLUPINT improved 
accuracies relative to  PBLUPINT, which is in line with 
the results of VanRaden and Sullivan [63] and Jorjani 
et  al. [20], and also relative to  ssSNPBLUPNAT, which 
is in line with the results of Lund et  al. [19]. Even for 
countries with the largest number of genotyped animals 
with phenotypes at the national level, such as IRL and 
CHE in this study, we observed increases in population 
accuracies (Table  8). Increases in population accura-
cies for IRL and CHE may be related to two factors: (1) 
a larger multi-country reference population compared to 
national ones (e.g. in international single-step evaluations 
the number of genotyped animals with phenotypes for 
IRL increased by 102% relative to national evaluations; 
Table  1), and (2) the inclusion via single-step interna-
tional evaluations of phenotypic information on relatives 
recorded in other countries and connected via sires, CB 
and CMGS (Tables  5 and 6). The observed benefits of 
sharing genotypes across countries were also confirmed 
by the accuracy of partial EBV (which, unlike inc_acc , 
does not consider the phenotypes of animals in the 
focal group) with values of ̂accp being the highest under 
 ssSNPBLUPINT: on average across countries 0.36 and 
0.25, for direct and maternal EBV, respectively (Table 7). 
Overall, ̂accp of  ssSNPBLUPINT were closer to those of 
 ssSNPBLUPNAT than to those of  PBLUPINT, showing that 
genomic information should be considered in interna-
tional evaluations.

Genomic information is expected to increase the 
accuracy for genotyped animals due to increases in the 
variation in relationships between animals and by better 
capturing variation in Mendelian sampling. Using a sin-
gle-step approach, the benefits of genomic information 
are also propagated to ungenotyped animals [29]. This 
was reflected in higher ̂accp under  ssSNPBLUPINT com-
pared to other scenarios for animals with phenotypes but 
no genotypes born from 2014 onwards, and in increases 
in population accuracies (albeit small) for these animals 
when moving from any other scenarios to  ssSNPBLUPINT 
(see Additional file  1: Tables S5 and S6). The increases 
in accuracies for DFS, which did not provide genotypes, 
show the potential benefits of international single-step 

evaluations for countries with no genomic data available 
yet at the national level.

To our knowledge, this is the first published study that 
investigates bias in Interbeef evaluations. We evaluated 
whether moving towards genomic international mod-
els may introduce any level and dispersion bias com-
pared to either international pedigree-based evaluation 
or national evaluations. Overall,  ssSNPBLUPINT had 
a similar level and dispersion bias compared to either 
 PBLUPINT or national scenarios. Across countries and 
scenarios, direct EBV showed negative level bias and 
considerable over-dispersion ( ̂bp < 0.85) (except for IRL), 
while maternal EBV showed level bias close to 0 GSD 
and dispersion within the 0.85–1.15 interval (except for 
DEU). As expected, the largest SE of the LR estimates 
were observed for DEU that has the smallest number of 
animals in the focal group among countries (see Addi-
tional file 1: Table S8). Across scenarios, IRL showed the 
lowest level and dispersion bias compared to other coun-
tries; this result could be related to IRL having the larg-
est number of genotypes among countries. These results 
also underline the importance of formal validation proce-
dures for current Interbeef international evaluations. We 
further investigated possible differences in genetic level 
between  ssSNPBLUPINT and  PBLUPINT using genetic 
trends of sires with at least 10 recorded offspring in a 
country and including at least five sires per year, simi-
larly to Venot et al. [64] (see Additional file 3: Fig. S2). If 
selective genotyping is present, genetic trends between 
 ssSNPBLUPINT and  PBLUPINT can differ [65]. Overall, 
genetic trends overlapped between  ssSNPBLUPINT and 
 PBLUPINT for all countries except for a systematic dif-
ference in DEU for direct effects, and in CHE for both 
direct and maternal effects. CHE had almost 55% of the 
sires with at least 10 recorded offspring genotyped, while 
in other countries this number ranged from about 1% 
(DFS) to 15% (CZE). Differences for DEU and CHE could 
be related to selective genotyping. Differences in genetic 
trends between pedigree-based and single-step evalu-
ations were already present for national scenarios and 
reduced for international scenarios (results not shown). 
Overall, the results of this study suggest that level and 
dispersion bias of national evaluations will remain simi-
lar or slightly decrease with international single-step 
genomic evaluations.

So far, only few national studies reported LR estimates 
in beef cattle, in particular for weaning weight. Over-
all, we observed improvements in ̂accp when including 
genomic information in national scenarios. On aver-
age across countries, the ̂accp of  PBLUPNAT scenarios 
was 0.26 (ranging from 0.23 for CZE to 0.34 for CHE) 
for direct EBV and 0.19 for maternal EBV (ranging from 
0.17 for CZE to 0.22 for CHE). In  ssSNPBLUPNAT, ̂accp 
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was on average 0.31 for direct EBV (ranging from 0.25 
for CZE to 0.38 for CHE) and 0.21 for maternal EBV 
(ranging from 0.17 for CZE to 0.27 for CHE) (Table  7). 
In Brazilian Angus, Campos et  al. [66] conducted pedi-
gree and genomic evaluations for growth traits using 
ssGBLUP [7, 8] with about 1600 genotyped animals. For 
weaning weight gain, the average ̂accp across validation 
groups was 0.39 for direct effect and 0.30 for total mater-
nal (weaning weight and tick count) for PBLUP, and 0.45 
for direct effect and 0.37 for total maternal for ssGBLUP. 
These values are in agreement with our results for coun-
tries such as CHE and smaller for other countries such 
as CZE. These differences could be due to the use of a 
multi-variate model in combination with other growth 
traits (birth weight and post-weaning weight) in Campos 
et  al. [66] as well as differences in population structure 
and trait definition. Recently, Jang et al. [67] reported LR 
estimates for genomic predictions of weaning weight in 
American Angus using a large reference population of 
about 180,000 genotyped animals and over 2,4 million 
weaning weight phenotypes. Using ssGBLUP with simi-
lar modelling as that used here (“M1” in their study), they 
found high values of ̂accp of 0.72 for direct EBV and 0.62 
for maternal EBV. These results confirm that the use of 
large reference populations enables to achieve high wean-
ing weight accuracies for both direct and maternal EBV in 
young animals. In contrast with the results of our study, 
both Jang et al. [67] and Campos et al. [66] reported val-
ues of dispersion for weaning weight that were mostly 
within the 0.85–1.15 interval, except for pedigree evalu-
ations of total maternal in Campos et al. [66].

The negative level bias for direct EBV and its associ-
ated over-dispersion may be related to selective geno-
typing for animals composing the focal group [46, 47]. 
Negative values of ̂�p indicate a higher mean EBV under 
whole evaluations compared to partial evaluations. This 
could be related to the low genotyping rate of animals 
born from 2014 onwards, i.e. 15%, 17%, 1% and 10% in 
CZE, IRL, DEU and CHE, respectively. Thus, genotyped 
animals used in the focal group could be a group of 
selected individuals with higher EBV for weaning weight 
compared to those born in the same generation and with 
no genotype. When the focal group was composed of 
animals born from 2014 onwards with phenotypes but 
no genotypes, level and dispersion bias were on average 
closer to the unbiased values of 0 and 1, respectively (see 
Additional file  1: Table  S5). We further investigated the 
possible presence of selective genotyping using the coun-
tries’ realized Mendelian sampling (RMS) trends under 
both  PBLUPINT and  ssSNPBLUPINT scenarios (see Addi-
tional file 4: Fig. S3) for genotyped animals (with or with-
out phenotypes) and ungenotyped animals (animals with 
phenotype in the country). Overall, the RMS trends of 

genotyped and ungenotyped animals of  ssSNPBLUPINT 
followed those of  PBLUPINT (see Additional file  4: Fig. 
S3). Following Abdollahi-Arpanahi et al. [65], the expec-
tation of RMS is 0 when genotyped animals are a random 
sample of the population. Instead, RMS deviates from 0 
with selective genotyping, i.e. when genotyped animals 
are selected based on information collected on the ani-
mal itself or its progeny. In this study, the RMS trends of 
all countries except for IRL showed that genotyped ani-
mals had non-zero and often positive RMS compared 
to ungenotyped animals, which generally had zero RMS 
(see Additional file  4: Fig. S3). This could be related to 
CZE, DEU and CHE starting to genotype animals more 
recently and potentially focussing on genotyping elite 
animals first. On the other hand, in IRL, genotyped ani-
mals overall showed almost no deviation in RMS trends, 
which suggests the absence of selective genotyping. This 
could be explained by IRL having a large number of 
genotyped animals and that the majority of them were 
females. Thus, results on the RMS trends seem to con-
firm the presence of selective genotyping in all countries 
except for IRL, and indeed suggest that the observed level 
and dispersion bias are due to selective genotyping.

Implications
All countries in this study, except for IRL, do not have a 
national genomic evaluation in place for Limousin AWW 
and therefore scenario  PBLUPNAT represents their cur-
rent national evaluations. In practice, deviations between 
national evaluations and pseudo-national scenarios are 
expected as pseudo-national scenarios used a subset of 
the international pedigree, which likely is more com-
plete than the pedigree used in national evaluations, 
and because national evaluations are usually multi-trait. 
Another possible difference between pseudo-national 
scenarios and national evaluations is that the latter may 
use genetic groups to model missing pedigree informa-
tion by fitting unknown parent groups (UPG, [68, 69]). 
Similarly to the current Interbeef pedigree-based inter-
national evaluations, both international and national 
scenarios in this study did not use genetic groups. Fur-
ther research could investigate how UPG or metafound-
ers [70] should optimally be defined to be used in (inter)
national evaluations and whether or not fitting them in 
PBLUP or ssSNPBLUP helps to reduce the observed level 
and dispersion bias [71].

The increasing genotyping trend observed at the 
national level (Fig.  2) implies the need for the current 
Interbeef evaluation to consider also genomic data in 
the near future. In this study, we showed the feasibility 
of implementing a single-step evaluation at the interna-
tional level using Limousin weaning weight data. The 
proposed international single-step evaluation approach is 
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feasible also for other traits and breeds currently evalu-
ated, i.e. Limousin, Charolais, Angus, Hereford and 
Simmental, provided that genotypes are available. The 
AWW is a representative trait for those that are currently 
evaluated traits in Interbeef, which are all maternally-
affected traits, i.e. weight traits (composed by AWW 
[59]) and calving traits (composed by calving ease and 
birth weight [72]). Thus, we expect that similar ben-
efits of implementing a single-step international evalua-
tion could be observed for other breeds and traits, with 
larger benefits expected for traits with a low heritability 
[9, 16]. Moreover, we expect that increases in accuracies 
for  ssSNPBLUPINT could be further improved by includ-
ing more genomic data, e.g. by increasing the number of 
participating countries. The ssSNPBLUP approach used 
in this study was shown to be applicable to large amounts 
of data while being computationally attractive [45, 73]. 
In this study,  ssSNPBLUPINT took 568 iterations and 
23 min to converge using 10 CPUs Intel Xeon E5-1650v4 
(3.60 GHz) and 4 GB of RAM, and an appropriate two-
level PCG method [74].

The proposed international single-step approach 
requires sharing genotypes and phenotypes at the inter-
national level, which is subject to some limitations. For 
instance, in the Genomic MACE Service released by 
Interbull Centre for the Holstein breed, the international 
genomic EBV of young bulls are computed from national 
genomic EBV provided by participating countries [63] to 
avoid sharing raw data. To overcome such limitations and 
sensitivities around genotype data exchange, platforms 
have been developed to efficiently and safely share geno-
types at the international level, e.g. GenoEX [75]. When 
sharing genotypes is not possible due to political or pri-
vacy limitations, an approximate single-step method 
could be used in which SNP effects and summary statis-
tics are shared across countries and used jointly with raw 
pedigree and phenotype. Similar approaches have been 
proposed for international dairy cattle evaluations, e.g. 
[76–78].

Conclusions
We developed an international single-step SNPBLUP 
genomic evaluation for beef cattle using Limousin wean-
ing weight data and investigated the benefits of using 
genomic data compared to current pedigree-based evalu-
ations. Combining multi-country genomic data in a sin-
gle-step approach has the potential to increase existing 
pedigree-based genetic connectedness among countries 
via genotyped animals. Single-step international evalu-
ations showed to increase accuracies of EBV compared 
to current pedigree-based international evaluations for 
both large and small countries as well as for countries 
with different amounts of genotypes at the national level. 

In this study, the increase in population accuracy when 
moving from current pedigree-based international evalu-
ations to single-step genomic evaluation was on average 
across countries 13.7% and 25.8% for direct and mater-
nal EBV, respectively. Moreover, increases in accuracies 
were observed for non-genotyped animals and countries 
without genotypes at the national level. Level and disper-
sion bias of international single-step genomic evaluations 
were similar or slightly reduced compared to current 
pedigree-based international and national (genomic) 
evaluations. The proposed international single-step 
approach can be applied to other traits and breeds allow-
ing countries to improve the accuracies of their genetic 
evaluations.
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