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Abstract 

Nitrogen (N) fertilisation in crops can be made more efficient by moving 

from uniform application to meeting variable crop requirements within 

fields. Within field variable rate N fertilisation of winter wheat (Triticum 

aestivum L.) is practically feasible using information from web-based 

decision support systems (DSS). Data from different source platforms, such 

as satellite, unmanned aerial vehicle (UAV) or weather stations can be used 

for fertilisation planning. System output offers information that can be used  

to instruct variable rate fertilizer spreaders to increase or decrease fertilizer 

application rate on-the-go. In Sweden, satellite-based variable rate N 

fertilisation was available for winter wheat via a DSS, however, the existing 

module could be improved in different ways. In this thesis work, a new N-

uptake model was estimated and opportunities using UAV-based modelling 

of grain quality were tested. Transferability of UAV-based models to a 

satellite data scale improved understanding of the complexity of data transfer 

from UAV-scale to a satellite scale for use in a DSS. Furthermore, it was 

possible to model crop phenology from historical data, which can improve 

accuracy of current implemented models, by taking timing of field operations 

in to account.  

Keywords: phenology, precision agriculture, remote sensing, Sentinel-2, unmanned 

aerial vehicle 
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Abstract 

Gödsling av kväve (N) kan göras mer effektiv om man övergår från jämna 

gödslingsgivor inom fält. Varierad tilldelning av N till höstvete (Triticum 

aestivum L.) inom fält är praktiskt möjligt genom att man använder 

information från webbaserade beslutsstödsystem (DSS). I sådana system kan 

data från olika källor, som till exempel satelliter, obemannade flygfarkoster 

(drönare; UAV) eller väderdata, användas som hjälpmedel för bedömning av 

tilldelningsbehovet. Informationen från ett DSS kan utgöras av 

tilldelningsfiler (VRA-filer), vilka kan innehålla instruktioner till 

gödningsspridare så att utmatningen ökas eller minskas allteftersom 

utrustningens position ändras på fältet. Utgångspunkten i föreliggande arbete 

har varit ett satellitdatabaserat DSS som används i Sverige där man bland 

annat kan generera VRA-filer för komplettering av N-behov i höstvete. 

Målsättningen var att utveckla olika empiriska modeller som kan användas 

för att förbättra N-behovsbedömning i ett sådant system. En ny modell för 

uppskattning av N-upptag i höstvete från satellitdata togs fram. Även en 

modell för beräkning av proteinhalten i höstvete i den kommande skörden 

med hjälp av spektrala data insamlade med UAV togs fram. I det arbetet 

testades möjligheten att överföra en UAV-data-modell till satellitdata, vilket 

ledde till en ökad förståelse för komplexiteten i att överföra modeller mellan 

sensorplattformar när man avser att skala upp modeller för användning i ett 

DSS. Dessutom undersöktes möjligheten att koppla samman historiska 

väderdata med ett omfattande dataset bestående av observationer av 

utvecklingsstadier i höstvete, för att ta fram en modell för skattning av 

höstvetets fenologiska utveckling under säsongen. En sådan modell skulle 

kunna förbättra tillämpningen av andra modeller i ett DSS. 

Nyckelord: drönare, fenologi, precisonsodling, fjärranalys, Sentinel-2 

Author’s address: Sandra Wolters, Swedish University of Agricultural Sciences, 

Department of Soil and Environment, Skara, Sweden 
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Fertiliser prices commonly fluctuate and at the time of writing of this thesis 

prices are skyrocketting, as a consequence of the political situation in 

Europe. This situation, together with global climate change and a growing 

world population make the considerate use of nitrogen (N) fertiliser a topical 

issue.  

Nitrogen (N) fertilisation in winter wheat can be made more efficient by 

moving from uniform application to meeting variable crop requirements 

within fields. Taking within field variations in crop growth and timing in to 

account could result in a more strategic N fertilisation plan that more closely 

meets N-uptake (N in aboveground biomass) requirement. This facilitates 

stress-free crop growth and can help mitigate negative environmental effects 

caused by N losses to the natural environment (e.g. Carpenter et al. 1998; 

Sawyer 1994). Hence, variable rate application (VRA) of N fertiliser is 

proposed as good practise for more precise, and therefore more efficient use 

of N fertiliser. In production fields, methods using sensing technology make 

VRA feasible in practice, as sensing data can be used for retrieval of a vast 

amount of information on crops and soil status, with smaller effort compared 

to manual field observation (e.g. Zhang 2002; Stafford 2000).  

Nitrogen fertilisation in winter wheat is commonly scheduled to occur on 

several occasions during the cropping season, with split doses timed 

carefully to achieve economically optimal fertilisation and a desirable 

protein content in the harvested grain (Diacono et al. 2013; Efretuei et al. 

2016). Estimation of fertiliser requirements by predictive models generates 

information on variations in growing conditions within or between fields. 

Models using spatial and temporal information and/or resulting prescription 

maps (a map containing target rate information) are effortlessly 

communicated to users via information technology based systems, called 

1. Introduction 



20 

decision support systems (DSS). A comprehensive definition of decision 

support systems for agriculture was formulated in the research project called 

internet of food and farm:  

“DSS are software-based systems that gather and analyse data from a variety of 

sources. Their purpose is to smoothen the decision-making process for 

management, operations, planning, or optimal solution path recommendation.” 

(IoF horizon 2019) 

Web-based DSS can be expected to be powerful tools, bringing ease in 

communication with a large number of farm managers. Prediction models in 

DSS fascilitate description of relevant crop characterics and can result in 

advice aimed at fertilisation effort to be undertaken during cropping seasons. 

The expectation is that DSS can advance fertilisation of winter wheat in 

practice, by integrating both efficiency and product quality aspects.    

1.1 Aim and objectives 

The main aim of this thesis work was to develop and evaluate empirical 

models of crop properties pertinent to N fertilisation of winter wheat. The 

hypothesis is that various existing datasets can be used in this process, and 

that the results can be used to improve related functionality in decision 

support systems. Specific research objectives were as follows:  

 

 To develop a prediction model for crop N-uptake, thereby providing 

potential upscaling of hand-held sensing measurements (Paper I).  

 

 To explore possibilities of reflectance data by an unmanned aerial 

vehicle (UAV)-mounted instrument for protein estimation, as well as 

testing of possibilities for model transfer from UAV- to satellite data 

scale (Paper II).  

 

 To investigate options for modelling winter wheat crop phenology for 

systematic timing of fertilisation using weather data (Paper III).  
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Research questions were as follows:  

 

Q1. Can variable-rate N-uptake be estimated and upscaled using 

proximal- and remote sensing measurements in winter wheat? 

 

Q2. Can pre-harvest protein content in winter wheat be 

determined using spectral reflectance data sensed by 

unmanned aerial vehicle (UAV)-mounted instruments, and 

can a resulting model be transferred to satellite scale? 

 

Q3.  Can winter wheat crop phenology from weather information 

be predicted for timing of in-season fertilisation? 
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2.1 Precision agriculture  

Precision agriculture is the technology driven practise of agricultural science 

that allows for spatial variability and timing to be taken into account, while 

planning farm operations (Pierce & Nowak 1999; Stafford 2000). Through 

co-operation, the international society of precision agriculture (ISPA) 

strengthens exchange of knowledge between scientists, industry and those 

working with precision agriculture in practice (ISPA 2022). The ISPA 

currently uses the following definition of precision agriculture: 

 

“Precision Agriculture is a management strategy that gathers, processes and analyzes 

temporal, spatial and individual data and combines it with other information to support 

management decisions according to estimated variability for improved resource use 

efficiency, productivity, quality, profitability and sustainability of agricultural 

production.” (ISPA 2019) 

2.1.1 Spatial variation  

Nitrogen content in crop biomass varies spatially within fields, mainly due 

to variations in soil conditions (Carr et al. 1991; Robert 1982). For example, 

differences in N mineralisation from soil during a growing season can vary 

over 100 kg N ha-1 within a single field (Delin & Lindén 2002). In order to 

manage the addition of N site specifically, the spatial variability in crop N 

content within fields needs to be measured and understood.  

Fundamental research exploring whether reflectance data could be of 

value in assessing crop canopy characteristics for agricultural management 

was conducted in the late 1960s and 1970s, thereby laying the foundations 

2. Background 
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for precision agriculture (e.g. Knipling 1970; Myers & Allen 1968). 

Precision agriculture and VRA of N fertiliser have been the subject of active 

research since the mid-1980s (Diacono 2013; Pierce & Nowak 1999; Mulla 

2013; Mulla & Khosla 2015; Robert 1982).  

2.1.2 Challenges for precision agriculture  

Positioning has been a major challenge in precision agriculture. Data in 

precision agriculture only make sense in relation to the spatial location to 

which they apply. In the early development of precision agriculture, accurate 

position recording was an important limiting factor for technical progress. 

Currently positioning is optimised to such extent that this is no longer 

considered of concern for precision agriculture research and implementation, 

when ground positioning equipment is used (Heege 2013; Pierce & Nowak 

1999).  

An ongoing major challenge is the adoption of precision agriculture. 

While adoption rates are generally not well known, apart from in a few 

countries (e.g. Australia, Denmark, United States of America), adoption in 

practice is frequently perceived as slower than initially expected by early 

advocates (Diacono et al. 2013; Lowenberg-DeBoer & Erickson 2019; 

McBratney et al. 2005; Nowak 2021; Robert 2002). Together with financial 

aspects, practical adoption of precision agriculture appears to be partly 

governed by developments on the implementation side (Fountas et al. 2005; 

McBratney et al. 2005; Thenkabail et al. 2019). Implementation of precision 

agriculture principles via DSS in on-farm practice could improve adoption 

rates of precision agriculture. 

2.2 The importance of decision support systems  

Producers, farm advisors and other public agencies continuously seek precise 

information for crop management. Before any knowledge from research can 

be applied, software-based tools are frequently required to make the 

translation of scientific knowledge to practice, and to do this efficiently 

during cropping seasons with local input-data. In Sweden, cereal cropping 

fields are often large and therefore much potential for optimisation is in the  

use of satellite-based DSS, which can support VRA on a larger scale, while 

using local information.  
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Local development context  

In Sweden,  for achieving improved production quantity as well as quality in 

a multitude of crops a web-based system, called CropSAT, was developed 

(CropSAT 2022). Scientific knowledge available through the winter wheat 

(Triticum aestivum L.) fertilisation module in CropSAT can help to improve 

harvest quantity and product quality (e.g. protein content in grain kernels) 

and offers farm managers the possibility to systematise and improve the 

timing of fertilisation during cropping seasons. 

The objectives addressed in this thesis were part of this collaborative 

effort to improve web-based based decision support for precision agriculture 

in Sweden. In previous work, DSS for fertilisation were put in place and used 

to provide basic satellite-based decision support for VRA. Apart from the 

work described in this thesis, other (related) research has been conducted in 

Sweden in the past five years. Some examples of recent research aimed at 

facilitating practical implementation of VRA crop fertilisation in Sweden is 

summarised in Table 1. 
 

 

Table 1. Local context references (not exhaustive) for research and development of 

variable rate crop fertilisation. 

 

Primary work Reference 

Testing use of a combination of Sentinel-2 and 

DMC satellite data for  N-uptake prediction in 

winter wheat. 

Söderström et al. 2017 

N-uptake modelling in winter wheat using hand-

held N-sensor and Sentinel-2 satellite data. 

Wolters et al. 2019 

Satellite data-based modelling of protein content in 

barley.  

Börjesson et al. 2019 

Satellite data- and experiment -based predictions 

prediction of in-season N fertilisation rates in 

winter wheat.  

Piikki et al. 2022 

2.3 Fertilisation of winter wheat  

Fertilisation of winter wheat impacts both grain quantity and quality of 

harvest (e.g. Triboi et al. 2000; Sinclair & Rufty 2012). In developed 

countries, nitrogen is therefore often applied in abundance. This can be 
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improved with VRA, as well as improved timing of application (e.g. Efretuei  

et al.; Raun et al. 2002).  

2.3.1 Winter wheat  

Winter wheat are cultivars of wheat sown in autumn which remain in a 

vegetative state in the winter to resume growth in early spring. In Sweden, 

in 2022, 472 200 ha (of total arable 2 551 500 ha) were cropped with winter 

wheat, which has increased substantially since 2010 when 400 000 ha (of 

total arable 2 633 500 ha) were cropped with winter wheat (SCB 2022). 

Wheat is densely sown, forming a relatively “closed” canopy, late season. In 

Sweden, winter wheat is usually sown in the period September-November 

and harvested in summer or early autumn the following year (July-August in 

southern Sweden).  

2.3.2 Crop chlorophyll content and N-uptake  

Sufficient availability of N in soil is crucial for crop biochemistry and 

therefore for grain quality, since N is an important element in proteins (e.g. 

the enzyme RuBisCo, a key enzyme in photosynthesis), nucleic acids and 

chlorophyll (Stern et al., 2010; Triboi et al. 2000). Nitrogen uptake is 

estimated as the N-concentration in aboveground plant tissues multiplied by 

above-ground dry matter mass (Lemaire & Gastal 1997). Environmental 

stressors, such as a lack of water or nutrients result in non-optimal uptake, 

which often leads to reduced yields (Delin & Stenberg 2014; Schils et al. 

2018). An excess of N, on the other hand, could increase risk for lodging 

(Gooding & Davies 1997). The rate of accumulation of N in plant tissues is 

highly variable during different stages of crop development and between 

sites and years, as N-uptake is strongly related to growth rate and biomass 

accumulation (Gastal & Lemaire 2002; Robertson & Vitousek 2009). 

Information on crop nutrient status at the time of fertilisation is important for 

management towards harvest quantities close to yield potential, which is the 

maximum possible yield for an area (Bingham 1967).  

2.3.3 Determination of grain seed quality 

Besides affecting yield quantity, N fertilisation has significant effects on 

grain quality of winter wheat. Physiological processes throughout winter 

wheat development affect the quality of the harvested grain, and thereby the 
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efficiency of production in industrial wheat grain processing (Gooding & 

Davies 1997; Salgó et al. 2005). The crude protein content (CP %) 

concentration in grain is an important quality indicator for the bread wheat 

industry and is generally taken as a good indicator of quality in a grain batch. 

Gliadin and glutenin together represent about 80% of total protein in wheat 

flour and are the most important indicators of the functional properties of 

wheat flour (Tatham & Shewry 1985; Uthayakumaran & Wrigley 2007). In 

Sweden, CP concentration is determined on all grain deliveries, using near- 

infrared transmittance (NIT) sensing. A wheat protein content exceeding 

11.5% is desirable for providing bread dough with sufficient gluten to meet 

quality requirements. Nitrogen is bound in proteins and early-season N 

availability can have a strong influence on N partitioning at maturity (Curran 

1989; Kokaly 2009; Triboi et al. 2000; Wuest & Cassman 1998). Overall 

winter wheat response to N varies between cultivars (Fowler, 2003; Triboi 

et al. 2000).  

Pre-harvest protein prediction is potentially useful for late-season 

supplementary nitrogen (N) fertilisation to reach CP targets, or for field 

partitioning in harvest zones with different expected CP, even within the 

same season, for different grain qualities. Yield maps from monitors on 

combine harvesters and combine harvesters equipped with NIT sensors for 

CP mapping during harvest are available. With the possibility for CP 

estimation before harvest, there is the option to split fields into harvesting 

zones, with different expected CP, in the current season.  

According to Freeman et al. (2003), the ability to use remotely sensed 

data to determine the N status of wheat and relate it to N accumulation in the 

grain opens up the possibility for indirect prediction of wheat grain protein 

content. This is supported by, Basnet et al. (2003), who demonstrated that 

several Landsat satellite bands could be related to crop quality indicators, 

such as protein content. Bastos et al. (2021) reviewed CP predictions, 

including remote and proximal sensing as well as on-combine sensors, 

stating that while on-combine sensors outperform remote-sensing methods, 

there is potential for CP modelling, even pre-harvest. 

2.3.4 Phenology and timing of fertilisation 

Crop variability has both a spatial and temporal component (Raun et al. 

2002). Crop phenology, defined as the different physiological development 

stages of crop growth from planting to harvest, is an important factor 
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influencing fertiliser requirement in cereals. Nitrogen fertilisation could thus 

be targeted to specific cereal crop development stages in order to meet grain 

quantity and quality goals more precisely. For example, Petterson (2007) 

suggested adjustment of N application rate at a specific development stage 

to control grain CP content at harvest in malting barley and also winter 

wheat. Descriptive scales, e.g. those developed by Feekes (1941), Zadoks et 

al. (1974), Witzenberger (1989) and Lancashire (1991), are commonly used 

to describe crop development stages. Including crop phenology in a DSS 

helps schedule N fertilisation with increased precision, and in Sweden this is 

commonly done using the Zadoks winter wheat decimal code (DC) 

development scale (Zadoks et al. 1974). This numerical ordinal scale 

(ranging 0-100) is accompanied by qualitative description of observable crop 

developmental appearance (Figure 1). Fertilisation in Swedish winter wheat 

production can be timed using different strategies (examples in Table 2).  

 

 

 

 

Figure 1. Simplified and schematic illustration of Zadoks scale stages for winter wheat. 

Reproduced and adjusted after Fowler (2018).  

 

 

A. emergence, B. one shoot, C. tillering, D. stem extension, E. head visible 

F. heading, G. ripening 
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Table 2. Examples of fertilisation strategies. Zadoks stage in decimal scale (DC). 

Examples of potential N fertilisation strategies are reproduced from the advisory 

document by the Swedish board of agriculture (2020). 

 

 Nitrogen dose % of total / Zadoks developmental stage 

(DC) 

Strategy 1  2 3 

I 70%   / 24 30% / 39  

II 60%   / 24 20% / 39 20% / 39 

III 25%   / 22 50% / 30 25% / 39 

IV 25%   / 22 75% / 30  

V 100% / 24   

 

Temperature is a main factor for the general rate of phenological 

development of a plant (Crauford & Wheeler 2009; Went 1953). The 

photoperiod is another factor of relevance for modelling crop development, 

with increasing day length accelerating the rate of development (Garner & 

Allard 1920; Giese 2013; Jamieson 1995).  

2.4 Sensing instruments, data and platforms 

Data for VRA is gathered via a wide range of instruments, from which optical 

sensing instruments are common. Optical instruments van be mounted on 

different platforms and can gather reflectance data, which holds valuable 

information on crop health and vigour (Taylor et al. 2021). 

2.4.1 Reflectance  

Chlorophyll in crop leaves provides valuable information on the 

physiological status of plants and can be measured indirectly based on 

reflectance of light (Gitelson 2003). Crops absorb, reflect, or transmit 

incoming light (irradiance). Crop chlorophyll absorbs much light in the 

visible part of the electromagnetic spectrum. Canopy reflectance is expressed 

as the fraction of incident radiation reflected back, with 0 denoting total 

absorption and 1 denoting total reflectance (Gates et al. 1965). In an image, 

each pixel is constructed from different segments in the electromagnetic 

spectrum (Figure 2).  
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Figure 2. Schematic illustration of spectral data retrieval from image pixels.  

 

 

 

 
 

Figure 3. Example of spectral signature for different nitrogen (N) rates (kg ha -1) in winter 

wheat. Values derived and interpolated from multispectral dataset presented in Paper II.     
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Light reflected from a crop is represented in its spectral signature. The 

spectral signature indicates health status and stresses in plant development, 

as can easily be observed by overlooking the signatures of winter wheat 

subjected to different fertiliser rates (Figure 3). Note that Figure 3 also can 

be interpreted to indicate the wavelengths in which plant responses are most 

different or similar.  

2.4.2 Composites and vegetation indices  

Data from different wavelengths can be used for calculations by taking data 

from wider (multispectral) or finer (hyperspectral) width (spectral range in 

section, i.e. bands) across the spectrum. Composites can be calculated by 

selecting bands from the electromagnetic spectrum, which can help to 

highlight or suppress crop characteristics for (pre-)analysis. Figure 4 shows 

an example of three different composites created from different data. Using 

visible light (a) different N-levels in a field-trial can be detected, however, 

using a false colour composite replacing red with near-infrared reflectance 

(b; NIR) will highlight vegetation from background (vegetation gets 

highlighted in a red color). Variations in field reflectance values are usually 

caused not only by crop characteristics, but also by atmospheric and soil 

effects (e.g. Gebbers et al. 2013). Including NIR as well as red-edge 

reflectance (c) can help highlight information on crop health and N-status 

(Guo et al. 2018; Hatfield et al. 2008).  

Use of a vegetation index is another way of highlighting crop or canopy 

properties. Several studies have therefore attempted to calculate refined 

ratios in order to minimise the disturbances from such effects (Clevers 1986; 

Huete & Jackson 1988). Vegetation indices (VIs) are mathematical 

composits from surface reflectance, at two or more wavelengths, commonly 

in the areas of green, red and infrared.  

The earliest investigations using multispectral satellite remote sensing 

data involved a ratio of Landsats bands 7 and 5 introduced by Rouse et al. 

(1973). Since then, more than 500 VIs have been reported in the scientific 

literature, although it is important to note that not all of these calculations 

have been extensively tested (Henrich & Brüser 2022). Apart from 

vegetation indices based on multispectral analysis, hyperspectral (narrow 

band) vegetation indices have also been developed (e.g. Haboudane et al.  

2002).   
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a) Red/Green/Blue

b) NIR/Red/Green

c) NIR/Red-edge/Red

 
Figure 4. Brantevik 18th of June 2020 trial (trial close-up view) in different band 

composits (a, b, c). Dataset presented in Paper II. 

2.4.3 Active and passive sensing 

Remote sensing applications used in precision agriculture are primarily 

passive, i.e. based on sensing reflectance of the sun’s visible and near-

infrared light by soils or crops (Mulla & Khosla 2015; Thenkabail et al. 

2019). Active sensors, such as versions of the Yara N-sensor (Yara Gmbh, 

Hanninghof, Germany) described by Reusch (2005, 1997), are another 

possibility. This type of sensor uses its own source of radiation to 

“illuminate” objects (ESA 2022).  

2.4.4 Sensor mounts 

When sensors are mounted on ground vehicles or hand-held rather than aerial 

platforms, the term proximal sensing is used. An example of a potential range 
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for resolution, field of view, payload mass and costs of different platforms is 

summarised in Table 3. In principle, when practically feasible, any sensor 

could be carried on any platform. Sensing instruments are central for the 

VRA approach taken, although the choice of platform influences how the 

instruments can be used. The platform that carries the instrument and/or its 

operator largely determine the availability and quality and quantity of 

spectral data.   

A common challenge in the use of remote sensing data is timeline 

discontinuity in field datasets. For satellite platforms, this is usually the result 

of cloud cover and other atmospheric effects (Luca et al. 2022). Large-scale 

spatial coverage by satellite data generates potential for management, giving 

detailed within- and between field information on a large scale. Sensors 

mounted on a UAV platform are less affected by atmospheric effects and 

vehicle sensing can support on-the-go solutions, which in grain production 

can be relevant for providing information while fertilising or harvesting (e.g. 

Taylor et al. 2021). 
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Table 3. Comparison of different spectral sensing platforms (UAV = Unmanned aerial 

vehicle) and their approximate capabilities in terms of resolution, field of view, payload 

mass and costs (labour and monetary cost). 

 

 Resolution  

 

Field of 

view  

Payload 

mass 

Costs 

Hand-held 

device 

From mm Up to 

several m2 

per 

observation 

Can be 

limited 

High in time, 

medium in 

purchase of 

instruments  

Tractor (or 

comparable 

ground-

vehicle) 

0-1 m 50 m2/ sec Can be large On-the-fly: low 

in time, medium 

in purchase of 

instruments 

UAV 0.5–10 cm 50–5000 m2 Can be 

limited 

Low in time, 

medium in 

purchase of 

instruments 

Satellite 1–25 m 10–300 km Can be large Very low in 

time, often free 

to use 

 

Data from UAV-based models can be used as supporting information to 

satellite-based models, due to their finer spatial resolution and fewer 

atmospheric effects, compared with satellite sensing. Hand-held instruments 

are useful in the field, but  retrieving data with hand-held instruments is 

generally considered labour-intensive. This method usually gives point data, 

which can be interpolated when spatial autocorrelation in the crop or soil-

characteristic of interest can be assumed. Hand-held instrument data provide 

valuable in situ information that can be used to calibrate remote sensing data. 

It is worth mentioning that using hand-held instruments can bring flexibility 

over instruments mounted on vehicles, e.g. there are more options to set 

sensing instrument height and to control for moisture effects in the canopy.   
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2.4.5 Sensor geometry and view angle 

Each sensing platform has pre-defined geometric opportunities and 

restrictions. A simplified schematic diagram of relevant geometry is given in 

Figure 5, where the areas in grey show the measurement area covered by 

hand-held, tractor-mounted sensing, UAV or satellite sensing.   

It is important to note that the different types of sensing instruments differ 

not only in their geometry, but also in their viewing angle. Sensor sensing at 

nadir and oblique views can give very different results, which should be 

considered when comparing data from different sensing platforms (Lu et al., 

2019). Ideally, the spatial resolution of any instrument should at least match 

the spatial resolution of the machinery footprint used in the VRA application.  
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Figure 5. Simplified schematic top-down view of the data retrieval geometry (light grey 

areas) of different types of sensing instruments. 

1. Field  2. Tramline 

3. Satellite gridcell 4. Actor sampling area 

5. Tractor sensing area 6. Field trial 

7. Trial block 8. Zonal statistics area 



36 

 

2.5 Options for collecting field information 

2.5.1 Field sampling 

Measured or sensed field-data is the source of in-situ information. Field data 

can also be used to calibrate remote sensing models. When carrying out field 

measurements using a sensor for reflectance, the field of view must be taken 

into account. Measuring close to noon is preferable for passive sensors 

(10:00-14:00 h). Wind can act as a disturbance when carrying out 

measurements. In finer spatial resolutions in particular, wind can be a cause 

of inconsistency in a canopy structure Clevers (1986), which gives 

inconsistency in the data.  

In situ field sampling can be eased with in-situ threshing instruments. 

Data retrieval for lab-analysis can be done with a field threshing system (e.g. 

Minibatt+, Godé, Le catelet, France). This reduces the volume of samples to 

carry out from the field significantly.  

2.5.2 Field trials  

Over the years, much experience has been gained from preparing and 

analysing field trials or experiments. Field trials are valuable for testing new 

crop varieties, new fertilisers or other crop treatments. With their 

experimental form, they can help to standardise crop treatment results by 

excluding influences other than those experimentally applied in the study. 

Trials therefore make it possible to study the effects of crop treatments in a 

rather controlled manner. Additionally, field trials can be randomised to 

reduce potential unwanted effects.  

2.6 Multi-source data  

Recent research reported on options for using multi-source data (Reyniers et 

al. 2006; Sarvia et al. 2021; Wang et al. 2020). While some efforts has been 

taken to explore the potential of using multi-source data, finding the most 

effective combination of multi-source data requires more research (Wang et 

al. 2020).  
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Data from a ground optical sensor can be compared with aerial optical 

imagery to get a better understanding of sensing precision, when using data 

sensed from different platforms in continuous measurements (Reyniers et al. 

2006).  Data acquired via sensing instruments from multiple aerial platforms 

can be compared to study potential instrument-related effects on any crop 

information derived (Sarvia et al. 2021).  

If multi-source information via a DSS is to be used for a particular site 

throughout a cropping season, a better understanding is needed of data 

interchangeability from similar instruments sensed via different platforms. 

This can be done by studying the effects of technical instrument properties. 

Not by solely comparing instruments, but also by deducing to specific crop 

traits, such as N-uptake.  
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3.1 Workflow  

A summary of the workflows for the embedded Papers is presented in Figure 

6.   

In Paper I, hand-held derived N-uptake approximations and Sentinel-2 

satellite data were combined for predicting N-uptake. Five vegetation indices 

were calculated for satellite data of two satellite data processing levels. 

Upscaling was done via linear regression (LM) and a fitted power function. 

From the results for five different vegetation indices, one model was selected 

to be applied on a study area with the geometry of two merged satellite tiles 

in a wheat-dense production region. An upscaled result was compared with 

tractor N-sensing measurements. The model result was implemented in 

CropSAT.  

In Paper II, prediction models for crude protein content (CP %) in winter 

wheat (Triticum aestivum L.) based on multispectral reflectance data from 

field trials were developed and evaluated for independent trial sites. Two 

different prediction methods were tested: LM and multivariate adaptive 

regression splines (MARS) for seven vegetation indices. Unfertilised blocks 

(representing zero-plots) and blocks fertilised with a very large amount of N 

(representing max-plots) were used to test possibility for predicting with 

zero- and/or max plots. Unmanned aerial vehicle (UAV)-borne camera data 

in nine spectral bands had a similar specification to nine bands of Sentinel-2 

satellite data. This gave the possibility to test model transfer from a UAV-

based model to a small satellite dataset on independent sites.  

 

 

3. Materials and methods 
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Paper I Paper II Paper III

Proximal N-
sensor 

3.5

Sentinel-2
3.3.1

VIs
3.6

Regression LM 
& power 
function

3.7

Tractor N-
sensor

3.5
Upscaling

4.5

Comparative analysis
4.6

N-uptake model
4.4

UAV
3.3.2

VIs
3.6

Regression LM 
& MARS

3.7

VI 
4.4

VI 
4.3

Model comparison 
4.3

Apply to Sentinel-2
 4.6

Web-application in CropSAT
4.8 

MESAN
3.4

Crop 
observations.

3.5

Gompertz & 
Splines/MARS

3.7

DC-model
4.7

 
 

Figure 6. Workflow for Papers. Linear model (LM), unmanned aerial vehicle (UAV), 

vegetation index (VI), multivariate regression splines (MARS), nitrogen (N), 

meteorological analysismodel (MESAN). Numbers refer to sections in this thesis. An 

oval represents a start, rectangled boxes in indicate a proces, a paralellogram indicates 

input/output and a diamond indicates a decision or result.  

 

In Paper III, thermal-time-based models were developed and evaluated for 

use in a DSS and for getting a better understanding of implementation and 

accuracy in different crop developmental stages. Developmental stages 

expressed in DC (Zadoks et al. 1974) of winter wheat from field observations 
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in monitoring plots were compiled with weather data. Models predicting 

growth stages were developed based on weather variables, calculated to 

thermal-time units. Three different prediction methods Gompertz fit, 

regression splines (RS) and MARS were used to find the best-fitting 

procedure for growth stage prediction. Testing was done for different 

counties and cultivars were classified for testing with differences in speed of 

maturation.   

3.2 Study area 

The area most suitable for winter wheat cropping in Sweden is found in the 

southern counties and generally is located between 55° to 61° N and from 

10° to 19° E. Paper I and III have the entire southern Sweden as a study area 

and Paper II focussed on the southernmost region of Sweden, Scania (Skåne).  

3.3 Remote sensing  

3.3.1 Sentinel-2 

The satellite data used were taken from the Copernicus Sentinel-2 mission, 

a constellation comprising two polar-orbiting satellites phased at 180° to 

each other. The 13-band multispectral instrument (MSI) that is the payload 

on the Sentinel-2 satellites uses a pushbroom concept, meaning that the 

collected data consist of large arrays in an orbital swath (width 290 km), 

pushed by the forward motion of the spacecraft (ESA 2022). This results in 

a revisiting time of 5 days at the equator and under cloud-free conditions this 

gives data every 2-3 days at mid-latitudes like Sweden. Once data are 

transferred from the ground segment operations via collaborative interfaces, 

they are available for free. The data are organised via military reference grid 

system (MRGS) tiling, while containing within-tile overlapping of the swath. 

Instrument properties of the 13-band MSI carried by the Sentinel-2 satellites 

are described in Table 4. 

Some examples of previous satellites of interest for agriculture were 

Landsat 1-7 (at most seven bands) and SPOT (four bands). A large 

improvement in the Sentinel-2 constellation compared with these satellites 

is the revisiting time, which dropped significantly (by 7 and 11 days, 

respectively). Date products from this mission are available in different 
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processing levels (Level-1B, Level-1C and Level-2A) (Drusch et al. 2012; 

ESA 2022). L1C products are 100 x 100 km2 gridtiles with only radiometric 

and geometric corrections, including orthorectification and spatial 

registration (ESA 2022). Level-2A (L2A) correction algorithms are 

supplemented with a series of threshold tests. For these products, top of 

atmosphere (TOA) reflectance data are modified using auxiliary information 

to create data resembling bottom of atmosphere (BOA). 

 
Table 4. Sentinel-2 multispectral instrument (MSI) details. Spatial resolution (SR), 

Satellites 2A and B of Sentinel constellation (S2A, S2B), Wavelength (), bandwidth 
(W), near-infrared (NIR), Shortwave infrared (SWIR) 

 

Band  SR S2A   S2B 

 (m)  (nm) W (nm)   (nm) W (nm) 

1 – Coastal aerosol 60 443.9 27  442.3 45 

2 – Blue 10 496.6 98  492.1 98 

3 – Green 10 560.0 45  559.0 46 

4 – Red 10 664.5 38  665.0 39 

5 – Vegetation red-edge 20 703.9 19  703.8 20 

6 – Vegetation red-edge 20 740.2 18  739.1 18 

7 – Vegetation red-edge 20 782.5 28  779.7 28 

8 – NIR 10 835.1 145  833.0 133 

8A – Narrow NIR 20 864.8 33  864.0 32 

9 – Water vapour 60 945.0 26  943.2 27 

10 – SWIR – Cirrus 60 1373.5 75  1376.9 76 

11 – SWIR 20 1613.7 143  1610.4 141 

12 – SWIR 10 2202.4 242  2185.7 238 
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3.3.2 Unmanned aerial vehicle 

Unmanned aerial vehicle (UAV)-borne MAIA MSI (MAIA S2, SAL 

Engineering, Eoptis and Fondazione Bruno Kessler, Italy) with nine spectral 

bands using similar specification to nine visible (VIS) and near infrared 

(NIR) bands of Sentinel-2 satellite data was used in Paper II (Figure 7). The 

UAV MSI spatial resolution, unlike the Sentinel-2 (10-60 meters resolution), 

the MAIA MSI is not different in spatial resolution for bands. Data were pre-

processed with MultiCam Stitcher Pro software, provided with the 

instrument. The output was a nine-band tiff for each acquisition. Afterwards, 

orthomosaics were generated using the web application solvi.ag (Solvi AB, 

Gothenburg, Sweden). 

An overview of the spectral properties of the MAIA MSI is given in Table 

5, where a comparison with Sentinel-2 satellite data is made in the right-hand 

column.  

 

 

 

  
 

Figure 7. Unmanned aerial vehicle (UAV)-borne Maia multispectral instrument (MSI) 

with 9 filter inlets.  
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Table 5. Band central wavelength (), bandwidth (W) and name of the nine bands (B1-

B9) of the MAIA multispectral instrument (MSI) and the corresponding band in the 

Sentinel-2 (S2) MSI (see Table 3). NIR is short for near-infrared. 

 

MAIA-

S2 sensor 

 (nm) W(nm) Band  

name 

Corresponding 

band in S2 MSIs 

S1 443 20 Violet 1 

S2 490 65 Blue 2 

S3 560 35 Green 3 

S4 665 30 Red 4 

S5 705 15 Red-Edge 1 5 

S6 740 15 Red-Edge 2 6 

S7 783 20 NIR 1 7 

S8 842 115 NIR 2 8 

S9 865 20 NIR 3 8A 

 

Calibration panels 

Panels with known reflectance can serve as field calibration for remote 

sensing reflectance data. Reflectance panels have a known reflectance, so 

raw pixel values for the panel can be converted to reflectance values and used 

to calibrate other images with the same lighting conditions in the field. In 

Paper II, panels with near-lambertian reflectance characteristics (2%, 9%, 

23%, 44% and 75%), within the 400-900 nm range of the electromagnetic 

spectrum were used.  

3.4 Mesan grid  

The Mesan weather grid system is a grid-based meteorological analysis 

model that can be conveniently accessed for use in DSS in Sweden 

(Häggmark et al. 1997). Using weather data from the Mesan grid is 

supplementary to using data from individual weather stations, because of the 

limited number of weather stations available (www.smhi.se). Information 

http://www.smhi.se/
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from individual weather stations is interpolated to grid format using 

meteorological interpolation models. The grid cell size is 11 km x 11 km.  

Collection of daily temperature data for the study area in this thesis resulted 

in around 40,000 records per year for a period of 10 years. In Paper III, these 

data were connected to growth stage (Zadoks DC observations).   

3.5 Field observations 

In Paper I, hand-held data were retrieved using a Yara N Sensor® (Yara 

Gmbh, Hanninghof, Germany) for proximal measurements during two 

seasons (2017 and 2018). This allowed for a large dataset (> 700) 

observations) for estimation of N-uptake to be generated. N-uptake data were 

also gathered by tractor scanning in 13 fields (ranging in size from 2 to 30 

ha) in 2017 in the area around the village of Ardala, in Västra Götaland 

County in southwestern Sweden. A passive Yara N-Sensor® was used, and 

the tractor was driven in a regular pattern with 24 m between tram lines over 

the fields, registering N-uptake every second (with approximately 3 m 

between registrations). Field data on harvested protein content (CP in % of 

dry matter) at the end of anthesis until milk maturity were extracted in five 

field trials in 2019 and 2020 for Paper II, where for each plot in the Nordic 

Field Trials System (NFTS; <https://nfts.dlbr.dk>; Danish Technological 

Institute and SEGES, Aarhus, Denmark) CP was determined by FOSS 

Infratec1241 NIT equipment (FOSS, Hillerød, Denmark). Weekly 

observations of the winter wheat developmental stage in Paper III were done 

on a fixed day of the week for years from 2010 to 2017, and multiple 

observations per week per site for the latest years in the dataset (2018-2019), 

according to instructions described in Eriksson (2022). GDD was calculated 

from January, each year, using Equation 1, using either 0°C or 5°C for base 

temperature (GDDbase). The subscript i denotes the day number. The unit for 

GDD is °C days. Tmax is the daily maximum temperature and Tmin is the daily 

minimum temperature. 

 

(1) 

Growing degree days (𝐺𝐷𝐷) = ∑
Tmax𝑖 + Tmin𝑖

2

n

i=0

−𝑇𝑏𝑎𝑠𝑒 
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The multivariate adaptive regression splines model used photoperiod, county 

and cultivar as additional variables. Photoperiod expressed in accumulated 

photoperiod (DL) was calculated from January according to Forsythe et al. 

(1995). Accumulated DL was a sum of daylight hours per day (dli) up to the 

date of each field observation (Equation 2). Also in this equation the 

subscript i denotes day number. The unit for DL is daylight hours. 

 

(2) 

 Accumulated photoperiod (𝐷𝐿) = ∑ 𝑑𝑙𝑖

𝑛

𝑖=0
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3.6 Vegetation indices 

Vegetation indices were used in Paper I and II. Formula’s for the index 

calculation of respective Papers respective are summarised in Appendix A1.  

A more detailed justification for the choice of each equation individual index 

is described in the respective Papers. The indices used were categorised 

based on common characteristics (Table 6).   

 
Table 6. Vegetation indices in Paper with reference organised by type. Visible spectrum 

area (VIS). Red-edge chlorophyll index (CI), modified soil adjusted vegetation index 

(MSAVI2), optimized soil adjusted vegetation index (OSAVI), red-edge inflection point 

(REIP), transformed chlorophyll absorption reflectance index (TCARI), normalised-

difference vegetation index (NDVI, with alternatively using bands 8 and 6 NDRE86), 

normalised difference red-edge (with bands 7 and 5: NDRE75). A ratio index between 

TCARI and OSAVI (TCOS).     

 

 

 

 

 

 Sentinel-2 3 4 5 6 7 8   

 MAIA         

Index type Index       Reference(s) Paper(s) 

Chlorophyll 

ratio 

CI       Gitelson et al. 

2003  

I, II 

 TCARI       Kim et al. 1994; 

Haboudane et al. 

2002 

II 

Red-red-edge REIP       Guyot et al. 1988 II 

Soil- adjusted MSAVI2       Qi et al. 1994 I, II 

 OSAVI       Huete 1988; 

Rondeaux et al. 

1996 

II 

Normalised 

difference 

NDVI       Rouse et al., 1974 I, II 

 NDRE85       Derived from 

Barnes et al. 2000 

I, II 

 NDRE75       Barnes et al. 2000 II 

 NDRE86       Derived from 

Barnes et al. 2000 

I, II 

Combination 

of indices 

TCOS       Haboudane 2002 II 

Platform 
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3.7 Statistics 

Both parametric methods and non-parametric methods were tested. 

Modelling was done using LM, RS or MARS. In terms of model 

performance, experience has shown that flexible models work well on both 

linear and non-linear datasets, while linear regression approaches often 

struggle with non-linearity (Hastie et al. 2009). Models that are intrinsically 

linear in their mathematical form, can be adapted to non-linear patterns in 

the data, by manually adding non-linear model terms such as squared terms 

or interaction effects, or other transformations of the original elements used 

in the calculation (Boehmke & Greenwell; Friedman 1991). In this way, 

regression splines estimates hinge functions with knots, on critical model 

areas, where slope requires change. This method can handle both continuous 

and categorical data and the method works well with multivariate datasets.  

The Gompertz function is a mathematical model used for time series 

(Equation 3). Where k, and lag are tuning parameters and x is the numeric 

vector of values at which to evaluate the model. It is a sigmoid function 

commonly used to describe biometric measurements as being slowest at the 

start and at the end of a given period (Gompertz 1825; Tjørve & Tjørve 

2017). The limits of the curve are set by Y0 and Ymax.   

 

(3) 

𝐷𝐶 = Y0  +  (Ymax  − Y0)−

(𝑘∗(𝑙𝑎𝑔−𝑥))
𝑌𝑚𝑎𝑥−𝑌0

+1

 
 

Validation 

Validation on independent data is used for assessing prediction model 

performance. This can be done using data on independent sites, such as 

independent trial sites (called leave-one-trial-out cross-validation, LOTO), 

or on data that differ temporally, such as different cropping years (leave-one-

year-out cross-validation, LOYO). Spearman’s rank correlation (Spearman 

1904) was used in Paper I and II.  

Model error quantification 

The accuracy indicators used were goodness of fit (R2) , model error (E; Nash 

& Sutcliffe 1970) mean error (ME), mean absolute error (MAE) and root 

mean squared error (RMSE).  
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Spatial statistics 

Spatial statistics were used for geoprocessing of data in all Papers. Ordinary 

block kriging (as explained in Burrough & McDonnell, 1989) of tractor-

mounted sensor scanning data was used to convert the data (Yara Gmbh, 

Hanninghof, Germany) to raster format for N-uptake calculation in Paper I. 

Zonal statistics were used in Paper II for calculation of median reflectance in 

trial plots. A spatial join was used to connect crop development observations 

to MESAN grid data in Paper III.  

3.8 Software 

The main analysis software used were SQL server, accessed via SQL server 

management studio, R accessed via RStudio, Python accessed via Visual 

studio code and ArcGIS 10 (Microsoft, Redmond, Washington, USA; R Core 

Team;  RStudio, PBC, Massachusetts, USA; Python Software Foundation, 

Delaware, USA; ESRI, California USA) and Microsoft Office professional 

was used (Microsoft corporation, Redmond, Washington, USA).  
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3.9 Data and method summary  

An overview of main data and methods for each Paper is given in Table 7.  

 
Table 7. Summary of data and methods used per Paper   

 Paper I  Paper II  Paper III 

Main 

Source 

Satellite/Yara-

hand-held and 

tractor mounted 

N-sensor 

UAV/ Tissue analysis MESAN/field 

observations 

Model n 

(application 

set) 

251 96(34) 26729 

Validation 

design 

LOYO LOTO LOYO 

Result Linear regression Linear 

regression/Regression 

splines/MARS  

Gompertz/Regression 

splines/MARS  

Study area Southern Sweden Skåne county Southern Sweden 
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4.1 Cultivar specific models (Paper I, II & III) 

Results were implemented using a general model or multiple cultivar specific 

models. In Wolters et al. (2019) and in Paper II cultivar specific models were 

tested. In Paper III early, medium and late maturation classes of cultivars 

were tested. In all of the aforementioned studies cultivar specific models 

gave a different result from general models. In the results of Paper I and II, 

cultivar specific models show substantial difference in performance, this 

indicates that there can be a benefit in implementing models for specific 

cultivars.  

Table 8 summarises the findings from the cultivar specific models tested 

either with individual cultivars, with cultivar classes, or classed by early, 

medium or late maturation rates. The amount of cultivars present in studies 

varied between the studies and not all cultivars were used to build prediction 

models. The dataset used in Paper I showed in Wolters et al. (2019) that 

selected cultivars had a better goodness of fit (R2) in a cultivar specific N-

uptake prediction model (R2 = 0.84 vs. R2 = 0.79). No further cultivar specific 

testing was performed in Paper I. Testing of cultivar-specific models in Paper 

II gave large variation in results, both between cultivars and between a 

cultivar specific and a general model, with R2 ranging between 0.33 to 0.86 

and MAE ranging between 0.40 to 1 % CP.  

Maturation rates by classes of cultivars are cultivars grouped by the 

expected properties of that cultivar in terms of maturation speed. The 

different classes in Paper III were not very different in performance (RMSE 

4.54-4.66 DC). The results in Paper III showed no clear benefit in 

distinguishing between maturation rate classes.  

4. Results  
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Table 8. Findings from individual cultivar- or cultivar classes models 

 

Paper I  Paper II Paper III 

Types of model tested (individual, cultivar specific) 

No cultivar specific models 

were tested in Paper I. 

Cultivar specific models 

were tested for this dataset 

in Wolters et al. (2019). 

Cultivar specific 

models were tested.  

Early, medium and 

late maturation rates 

of classes of cultivars 

were tested.  

Number of different cultivars represented in the dataset 

14 different cultivars. 10 different cultivars 

per year, 20 unique 

cultivars.  

45 different cultivars.  

Benefit from using cultivar specific models 

Yes, A cultivar named 

‘Julius’ had lower error than 

other cultivars.  

Yes. Large differences 

in performance 

between cultivars.  

No. Differences in 

performance of 

classed cultivars 

were small.  

4.2 Performance by growing stage (Paper I & III) 

Developmental limits could be of relevance for evaluating model fit in 

developmental stages most crucial for fertilisation management decision 

making. The very beginning of crop development and the latest stages in 

maturation could in some cases be more difficult to predict from field data 

and these are also expected to be less crucial for fertilisation management 

decisions. In Wolters et al. (2019), by subsetting the data into certain growth 

stages (DC 31-45) predictions were not improved. A minor difference in 

performance was seen when models were restricted to DC 22-53 (Paper I, R2 

in Figure 5 & Table 2). Performance was slighly improved with a 

developmental limit. Moreover, in Paper III, prediction models showed 

different performance (RMSE) over different DC-classes. This result 

indicates that it is important to evaluate model performance in different 

stages of crop development. Stage-wise evaluation of models can improve 
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understanding of error in different periods during crop development (more 

details are given in section 4.7.1).  

4.3 UAV-based CP predictions (Paper II) 

Vegetation indices intercorrelated, as shown in the UAV reflectance vs. 

protein dataset (Paper II). Some indices were highly correlated (-0.9 < r > 

0.9 ), such as CI-NDRE75/TCOS/REIP and TCOS-TCARI (Figure 8).  

Vegetation indices of a similar type (see Table 5) can be expected to 

intercorrelate more strongly in a reflectance dataset. The indices that 

correlated most strongly (positive) with CP were CI and NDRE75, while the 

smallest correlation (positive) with grain protein was found for OSAVI and 

REIP (Figure 8). A moderate negative correlation was found between 

TCARI, TCOS and CP.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Indices (inter-)correlation (Spearman) vs. crude protein content (CP). 

Vegetation indices: red-edge chlorophyll index (CI), the ratio TCOS, transformed 

chlorophyll absorption reflectance index (TCARI), ratio red-edge inflection point (REIP) 

and optimized soil adjusted vegetation index (OSAVI). 
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The models tested showed some potential for predicting winter wheat grain 

CP from reflectance data. However, the models did not give consistent 

results for all sites (for interpretation of model performance in specific sites 

see Paper II, Figure 4). Linear methods performed well and showed 

consistent results between different sites. MARS modeling gave unstable 

results and did not optimize on a dataset this small in size. 

Validation results of uni- and multivariate LOTO are shown in Table 9. 

Using the linear regression method and the best-performing index (CI), gave 

R2 = 0.71 and MAE 0.64% CP. Inclusion of zero-plots reduced the accuracy 

of this model slightly (R2 = 0.60, MAE 0.71% CP). The max-plot CI value 

(CI-max) did not influence the prediction outcome, R2 = 0.71, MAE = 0.64% 

CP. A model with both the zero-plots and max plot gave R2 = 0.60 and MAE 

= 0.71% CP for the linear method. The MARS results were unstable, 

however, showing better prediction with zero-plots included than with max-

plots included and generally showing large variation (R2 0.36-0.70, MAE 

0.64-1.19 % CP).  

 
Table 9. Validation results leave-one-trial-out (LOTO) of crude protein content (CP) 

content in wheat for the eight modelling strategies, using two model types (linear (a), 

MARS (b)), and four different combinations of predictor variables (1-4). Indices used 

are shown in Table 3. Goodness of fit (R2), mean absolute error (MAE). 

 

 

 

 

Strategy R2 MAE  

(% 

CP) 

Predictors in final model 

1a 0.714  0.64  CI 

2a 0.602 0.71 CI, CI-zero 

3a 0.710 0.64 CI, CI-max 

4a 0.601 0.71 CI, CI-zero, CI-max  

1b 0.504  0.90  CI, OSAVI, TCOS, REIP 

2b 0.630 0.70 CI, CI-zero, OSAVI, TCOS 

3b 0.363 1.19 CI, CI-max, OSAVI, TCOS, REIP 

4b 0.703 0.60 CI, CI-zero, CI-max, NDRE75,  

REIP, TCARI, OSAVI 
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4.4 Sentinel-2 data processing levels (Paper I) 

Atmospheric processing of Sentinel-2 data in critical bands for vegetation 

modelling gave a systematic trend of deviation from the 1:1 line, when 

correlated (Figure 9). As should be expected, Spearman correlation was high 

(r > 0.98) between the L2A and L1C Sentinel-2 data processing levels. In 

bands 3 and 4, the L1C values were larger than the L2A values. In bands 6 

and 8, the opposite pattern was seen, with L2A values being lower than L1C 

values. Atmospheric effects in the dataset were thus corrected for, as can be 

seen in band 3-4 and band 6-8 reflectance. This shows the relationship 

between data from two different processing levels.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Band correlation between processing levels: level 1C and level 2A. 
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Figure 10. Comparison of model prediction of nitrogen uptake by winter wheat (of five 

indices) at two different Sentinel-2 data processing levels (L1C, L2A). For explanation 

of vegetation indices, see Table 6. 

 

For the same dataset (described in more detail in Paper I), models that were 

calculated using data in different processing levels were similar. In all index-

based models, L2A underperformed sligthly L1C processing levels in DC 

22-53 when using goodness of fit (R2). Visual interpretation suggests most 

difference in NDVI and NDRE85. This is not clearly related to a specific 

band or bands.  

Five vegetation indices were modelled to predict N-uptake (Figure 10). 

The CI-index performed well in comparison to other vegetation indices, that 

were also calculated in Paper I. A linear prediction model based on the red-

edge chlorophyll index (CI) was able to predict N-uptake (L1C data: R2 = 

0.74, mean absolute error; MAE = 14 kg ha-1). Although the normalised 

difference indices tended to non-linearity, this tendency was unclear, 

therefore these data were also approached with a linear model.  
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4.5 Upscaling a prediction model (Paper I) 

The availability of Sentinel-2 data, made it possible to update N-uptake 

models for implementation in CropSAT, which was previously not 

functioning for Sentinel-2 data. Upscaling of results shows that it is possible 

to pinpoint fields where VRA of N will likely be most useful. Model 

application was examined in a study area (the size of two satellite tiles in a 

wheat-dense area) other than the area in which models were calibrated. This 

gave the opportunity to showcase small regional differences in N-uptake as 

predicted by this model (Figure 11). The estimated field variation increased 

slightly (mean 30-41 kg ha-1), when subsetting for field size within the inter-

percentile range of 2.5-97.5 %. Standard deviation (SD) differed slightly, 

from 12 to 13 kg ha-1. 

As shown in Figure 11, within-field variation could be high in fields 

larger than 5 ha in the selected case study area at growth stage DC37. This 

implies that information for fields where VRA has most potential could be 

selected by upscaling the N-uptake model. This information can be used in 

DSS, as guiding information in farm management of VRA. In the 4169 fields 

studied in Paper I, the average variation in N-uptake was 90 kg ha-1 (SD = 

20 kg ha-1) (Figure 12).  

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 11. Range of within-field variation (2.5-97.5% inter-percentile) in nitrogen (N) 

uptake for winter wheat (kg ha-1) at growth stage DC37 for field sizes (a) between 5 and 

10 ha, (b) between 10 and 30 ha and (c) 30 ha or more, in southern Sweden. 
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Figure 12. Average nitrogen (N)-uptake (kg ha-1) in fields > 5 ha in the case study area 

decribed in Paper I. 
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4.6 Multi-source data (Paper I & II) 

4.6.1 Index model VS. vehicle measured N-uptake (Paper I) 

Nitrogen uptake based on tractor scanning with a N-sensor showed much 

similarity with N-uptake predicted by the CI-based model from satellite data 

at DC37. Within-field variation for a selection of fields in the study area used 

in Paper I showed similarities, which could be easily identified by visual 

comparison (Figure 13). Although the maps produced by CI-based modelling 

show higher N-uptake, within-field high and low values were in similar 

location.  

 
Figure 13. Nitrogen (N) uptake (high to low in kg ha-1) as (left) predicted by a model 

based on satellite data and red-edge chlorophyll index (CI)  and (right) measured by a 

tractor-mounted N-sensor. 
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4.6.2 UAV model transfer (Paper II) 

 

 

 
Figure 14. Observed and predicted crude protein content (CP %) in winter wheat on 

different sites (denoted with letters A-I), with 1:1 line. Results from transfer of a UAV-

based univariate linear chlorophyll index (CI) model (a) before and (b) after model 

transfer to the satellite dataset.  

 

In an attempt to transfer a UAV model to satellite scale, a field trial-based 

protein prediction model was used to test transfer of two models, a univariate 

regression model (Figure 14) and a MARS model using multiple indices. 

Transfer from the two types of UAV-based models to a small satellite dataset 

for the same region was not successful (univariate model transfer is shown 

in Figure 14). It appeared that the linear regression method overpredicted CP 

in the case of univariate model transfer (data above 1:1 line in Figure 14b). 

Transfer of the multivariate model was less successful than transfer of the 

univariate option with CI (for results from MARS modelling, see Paper II). 

4.7 Predicting crop phenology (Paper III) 

Historical field observations of crop development (for the period 2010-2019) 

are shown in Figure 15. The data distribution showed a high point density in 

the range between Zadoks stage DC 30-32, as highlighted by adding colour 

to the graph for point density, in Figure 15. Stages DC 30-32 were more 

frequently noted by the observers in the field, reasons for this could be an 

observation inaccuracy or stages in the range 30-32 take a longer time to 

complete. This difference in distribution possibly had implications for the 

results.  

 

Site 
Site 
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Figure 15. Distribution of field observations 2010-2019 for growing degree days (GDD) 

with a base temperature of 5 ˚C and Zadoks development stage (DC) in winter wheat. 2D 

point density distribution is indicated by the color scale. 

 

Criteria for evaluating the possibility of crop phenology prediction were 

straightforward and statistical quantification was done in model error. The 

results showed that the large MESAN dataset could be used to predict 

Zadoks DC-growing stages from GDD (GDD5 Gompertz model: RMSE = 

4.08 DC, GDD5  splines model RMSE = 4.64 DC) (Figure 15 & 16). 

Differences in model performance were not large (Table 10). The 

multivariate model, using DL, county and cultivar as additional variables 

showed performance was comparable to GDD5 models, although this showed 

a lower RMSE than the splines univariate model (RMSE = 4.17 DC). 

 

 

Point density  
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Figure 16. Prediction models, for 2019, for a growing degree days (GDD) calculation 

with Tbase = 5 ˚C and Zadoks development stage (DC) with leave-one year-out (LOYO) 

validation for the univariate solutions. The Gompertz model result is shown in panel a 

and the splines model result in panel b. 

 

In an effort to explore options for improving estimation of winter wheat 

phenology, initial testing of models was performed with a multitude of 

possible predictors, including photoperiod and county location. Small 

differences were found between thermal time models for two different base 

temperatures, the counties, the maturation rates and the multivariate model 

(MARS), as shown by differences in model RMSE (3.47-5.17 DC; Table 

10). Differences between counties DC observations in raw data were also 

small (see Appendix A2).  
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Table 10. Summary statistics of the different univariate models and the multivariate 

model for different models. Multivariate model variables are: county, cultivar and 

accumulated daylength. Organised by modeltype with growing degree days (GDD). With 

root mean squared error (RMSE (in unrounded DC stages) and sample size (n). 

 

 Gompertz  Splines (MARS)  

 RMSE n RMSE n 

Thermal Time     

GDD0 5.17 26739 5.15 26739 

GDD5 4.08 26739 4.64 26739 

County     

GDD5 Skåne  3.96 7300 4.48 7300 

GDD5 Västra Götaland 3.47 3435 4.71 3435 

GDD5 Uppsala 3.58 2473 4.26 2473 

Maturation rate     

GDD5 Early  4.64 5381 4.65 5381 

GDD5 Medium 4.62 14992 4.57 14992 

GDD5 Late 4.60 4194 4.54 4194 

Multivariate     

GDD5 Multivar -  4.17 26739 
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4.7.1 Modelling error of growth stage classes (Paper III) 

Model error (RMSE) values for different expert-assigned DC classes are 

shown in Figure 17. For most models RMSE is small and similar. GDD0  was 

predicted with higher RMSE than GDD5 for both Gompertz and splines 

models (see black arrows). Some classes (indicated by solid-lined boxes in 

Figure 17) showed a trend for lower RMSE than the other classes. One of 

these, the DC class in the range DC 30-32, had a larger number of 

observations, which likely explains the lower RMSE in these classes. 

Another class after flowering (milk development) (DC 71-75) also had a 

slightly smaller RMSE result than surrounding classes. This may mean that 

the models performed well, with low (< 3) RMSE, for the most common 

period for supplementary N fertilisation in winter wheat in Sweden (around 

DC 30-39), provided that the models were not biased by the larger amount 

of observations around DC in the range 30-32 DC.  

Regional Gompertz models resulted in a lower RMSE (indicated by the 

dash-lined box). This trend was not seen with splines modelling and is 

possibly due to tuning in the Gompertz fitting procedure.  

 

 

 
Figure 17. RMSE for univariate models Gompertz (a) and regression splines (b) per DC 

class. Early, medium and late maturation stages (subsequently indicated as: E, M, L). 

Regions Skåne, Västra Götaland and Uppsala (subsequently indicated as: sk, vg, up). 

Growing degree days (0 degree base GDD0, 5 degree base GDD5). 

RMSE  
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4.8 Implementation  

The N-uptake result from Paper I as well as phenology model from Paper III 

have been, or will be, implemented in the CropSAT DSS.  

Paper I resulted in a proximal vs. remote sensing algorithm that can be 

used for upscaling N-uptake estimation. The resulting model for N-uptake 

can be used to generate VRA-maps using Sentinel-2 data. Application users 

in CropSAT are prompted for a total N amount planned for application, 

which will be distributed per field, according the VRA model.  

In addition, however, not yet implemented at this stage is the option to 

use the the upscaled result for quantification of VRA potential. The potential 

for VRA implementation can optionally be provided in CropSAT, giving 

insight in benefits of VRA beyond single fields. Local business developers 

working on the CropSAT DSS have started work on implementation of a 

Gompertz-based phenology model (based on the Paper III results). The crop 

phenology addition is not yet implemented in the N fertilisation module, 

however, a design has been proposed for an initial pilot implementation 

(Figure 18). After deliniation of fields by users (1), crop development (2), 

the calendar (3) and timeline (4) can be used to indicate timing of 

fertilisation. Even with recalibration of the curve using user input, the 

amount of input data that is required from users is low. The result will be 

connected to user fertilisation strategies in the application in the future.  
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1. Field display showing selected fields  

2. A carousel of developmental stages 

3. Calendar 

4. Timeline with developmental curve 

 

1 

2 

3 

4 

Figure 18. Design for upcoming implementation of a winter wheat phenology application 

in CropSAT. Courtesy of Dataväxt AB, Grästorp, Sweden. 
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5.1 Progress in the N fertilisation complex  

In preparation of index-based information for implementation, decisions 

need to be made on the type of models to implement and how to implement 

them, e.g. regional implementation or at larger area, for specific cultivars or 

for multiple cultivars, in specific growing stages or over a wider period, or 

in stressed or stress-free conditions (Figure 19). A next step in decision 

support for N fertilisation is conversion of N-uptake rates to N dosage 

recommendations. Making recommendations on N fertilisation is not 

straightforward. For example, when crop properties suggest potential N 

deficiency, this commonly means that the application rate can be increased 

in early growing stages, whereas when indices indicate a rising red-edge 

ratio, fertilisation rates should preferably go down (Heege 2013). Besides the 

steps taken in this thesis, continuation from N-uptake toward crop 

recommendations will in addition require a connection with economical 

optimal nitrogen rates (Basso et al. 2011; Piikki et al. (2022). VRA can 

require targetting more than one economical optimum and there remains a 

challenge. Current outcomes can be tested for different fertilisation strategies 

in future research. The VRA algorithm (Paper I), created from proximal- and 

remote sensing measurements, could improve existing decision support for 

N fertilisation in CropSAT. Implementation can be adjusted for specific 

cultivars, since small differences between cultivars were found for the data. 

Pre-harvest CP estimation UAV-based models (Paper II) are a possibility. 

However, since models were tested on a small dataset and transferability of 

pre-harvest CP UAV-based models to a satellite scale is currently not well 

tested, no implementation is planned. Had the outcome been more 

5. Discussion 
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successful, then pre-harvest predictions could be included in VRA for N 

fertilisation.  Modelling of crop phenology from historical data was possible 

by different methods, which can potentially be implemented to follow 

strategic timing of VRA in DSS implementations. Besides the 

implementation of a crop phenology implementation, it is required to link 

these models in future work to fertilisation strategies (Table II), and test the 

outcome of such an implementation.  

 

 

 Cultivar-specific
 Region-specific
 Strategic timing
 Targetting 

foreseen stress 

 N-uptake
 CP
 Phenology

 Choice of satellite 
input data

 Differences 
between cultivars

 Possibilities for 
model transfer

 Implementation 
in developmental  
stages

What to implement
Knowledge 

requirement
How to implement 

 

 

Figure 19. Example of considerations for model implementation.  

5.2 Calibration for N-uptake  

Hand-held sensor measurements are used throughout Sweden and reported 

on a weekly basis (Swedish board of agriculture 2022). In Paper I, these field 

data were used for upscaling to remote sensing scale, which is similar in 

approach to work presented in Söderström et al. (2017). The implicit 

assumption was made that hand-held sensor spectral data are sufficiently 

accurate in estimating within-field variation in N-uptake to serve as a proxy 

for field N-uptake. In-situ N-uptake sampling, analysed with laboratory plant 

tissue analysis gives, however, gives more accurate information on N-uptake 

(Prananto et al. 2020). Correlations between sensing instruments have to be 

strong when making predictions using multiple instruments. Considering 

accuracy in approximation of field N-uptake, in-situ tissue analysis would 
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have been a more appropriate choice. Using lab-analysis of field data is, 

however, costly and time-consuming. In-situ measurements were not 

available on the scale and in the amount as hand-held sensor measurements 

were available. Over 700 hand-held sensing measurements, distributed over 

the main winter wheat cropping areas in southern Sweden, were used. The 

scaled result from Paper I gave the possibility to pinpoint specific locations 

for VRA, thereby showcasing application potential. This information could 

be used in a DSS application for quantification of expected gain from VRA, 

resulting potentially in improved adoption rates.  

5.3 Field trials for CP prediction 

A multivariate approach testing vegetation indices and  information of zero- 

and/or maximum N applications was used in Paper II. Two methods were 

tested, linear models and MARS modelling. The dataset was small and this 

limited possibilities for analysis. In Paper II, this resulted in MARS models 

not optimising, this could for example be seen from the inconsistency of 

models for different sites (optionally: see Figure 4 in Paper II). Study design 

could have been improved with access to a more extensive dataset. 

Vegetation indices derived from field trial data, with rising fertilisation levels 

(0-320 kg ha-1) applied to the trial blocks, were used. Using field trial data 

with distinct and wide-ranging N rates for wheat protein estimation resulted 

in N fertiliser levels having a larger range than is usually the case in a field 

situation. This means that protein values based on such data are 

unrepresentative of the true range in N concentrations.    

Another complication with using field trial data for pre-harvest CP 

predictions, is that trials are commonly placed where soil is homogeneous. 

Protein variation, however, could be better understood when soil variation is 

taken into account (e.g. Petterson 2007). Although several of the vegetation 

indices tested showed a relationship with winter wheat CP, auxiliary 

information on soil moisture content would have been useful (or possibly 

essential) to understand current findings in more detail.  

Further exploration of the relationships between individual indices and 

protein would likely have resulted in a better understanding of potential use 

of individual indices in a DSS to predict protein variation (see Appendix A3). 

The two normalised difference indices (NDVI and NDRE86) showed a very 

different relationship with protein, indicating the importance of wavelengths 
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around the red-edge area of the electromagnetic spectrum (e.g. band 6 in the 

MAIA MSI). A mainly non-linear relationship between several vegetation 

indices and protein can be seen. 

 

Alternative data  

Assessment of N and protein via NIR based indices is useful, however, also 

short-wave infrared (SWIR)-based indices have proven to be succesful in 

assessment of these properties (Berger et al. 2020; Ferwerda et al. 2005; 

Herrmann et al. 2010). The  SWIR  wavelengths  have been of  value in e.g. 

Börjesson et al. (2019),  confirming  that  water  content of the crops is 

important for protein predictions. Sentinel-2 data would have been an 

opportunity, as its payload produces data in three SWIR bands and two of 

these (11&12) can potentially be useful together with in-situ sampling (ESA 

2022). A comparison could have been made for improving our understanding 

of use of UAV-based models (Paper II).  

According to Basnet et al. (2020), there are similarities between barley 

and wheat protein in terms of spectral response to N fertilisation. In addition, 

Petterson (2007) showed that vegetation indices can be used for predicting 

CP in barley and proposed a similar method for winter wheat. Comparison 

of results with results for other crops, such as malting barley, could have 

improved understanding of differences in canopy structure when using 

reflectance data. Unfortunately, this was outside of the scope of this thesis. 

It could, in addition, have been interesting to focus on reflectance in 

combination with potential physio-developmental traits, such as crop height 

(considering a potential relationship between protein and biomass/yield). 

The relationship between grain yield and grain protein is bi-directional, 

depending on available moisture. When water is limiting, grain yield 

decreases and grain protein content increases with N fertilisation, to produce 

a negative relationship (Terman 1979). In contrast, when N is limiting, 

protein and yield both increase with applied N, to produce a positive 

relationship. In a recent study, Zhou et al. (2021) demonstrated that crop 

height can be estimated using structure from motion, which means estimating 

three-dimensional structures from two-dimensional image sequences 

(Holman et al. 2016) and by applying machine learning methods afterwards 

prediction of protein can improve, thereby increasing understanding on the 

relationship between yield and protein.  
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5.4 Transfer from UAV- to satellite data scale  

Testing of the UAV-based models to fill satellite timeline information gaps 

(induced by cloud cover, for example) on one site is potentially interesting. 

Latini et al. (2021) showed an encouraging result when spectral model 

transfer was conducted on the study site, results from two instruments were 

comparable. In the model application (Paper II), when tested on a new site it 

was seen that direct model transfer was more complicated than comparison 

on the same site. However, the data did not allow the option to control DC 

(nor the cultivar) in the fields where model transfer was tested. The 

comparability of MAIA-S2 and Sentinel-2 MSIs for possible model transfer 

therefore requires further testing. After an extensive literature review, Berger 

et al. (2020) rightfully note, that transfer of indices-based models to different 

sites can give unforeseen results. Yet, there was little evendence available at 

the time of the beginning of this work to support or reject this claim. The 

tests that were done in Paper II could therefore contribute to the 

understanding of the difficulties in simple model transfer. With the benefit 

of hindsight, model transfer could have been reported for more univariate 

linear regression models using a single vegetation index, such as TCOS or 

NDRE75 with absolute correlation r > 0.76 (Appendix A3), although results 

are not substantially different from current findings for this dataset.  

5.5 Approaching phenology  

Paper III demonstrates a GDD approach to crop phenology estimation using 

weather data and two different modelling approaches. Jamieson et al. (1995) 

have shown how during stem elongation in stress-free conditions 

developmental rate is approached with solely temperature data and 

independent of daylength. In the case of crop stress, which gives a sparser 

and warmer canopy, temperature is likely less good in predicting 

development. Near surface temperature, rather than air temperature was 

found more strongly related to phenology in earlier research (Jamieson 

1995). There is an ongoing research debate on how to model the relationship 

between observed phenology, temperature and environmental variables, but 

developing a larger framework of different approaches could be a way 

forward (Boote 2019).  

For DSS implementation near soil temperature data were not widely 

available. The concept of GDD during history has been expanded multiple 
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times in order to better capture crop phenology and recently in Butler and 

Huybers (2015) even a concept called killing degree days was introduced to 

describe the damaging effects of extreme heat stress on crops. While this 

concept may seem less relevant for Sweden now, extreme heat in spring in 

summer has occurred in Sweden in, for example, the year 2018. In such 

future scenario’s a model using only GDD will not suffice.  

Using satellite data for crop phenology estimation can be an alternative 

option for satellite-based DSS. With direct practical implementation in mind, 

the satellite-based approach does bring practical challenges. Gao & Zhang 

(2021), for example, describe how while in principle trend/curve based 

approaches to satellite data do the job, advancing to real-time estimation is, 

difficult, due to remote sensing data not always being sensitive to crop 

phenology. Detection using satellite data depends on the frequency and 

availability of cloud-free products, an approach using more easily available 

weather data was preferred with implementation in a DSS in mind. A satellite 

approach was planned for a future study and considered beyond the scope of 

this thesis. It would be interesting to compare a satellite-based approach with 

current weather-based options in future work.  

While it can be a disadvantage to rely on user input in DSS applications, 

user input could be an additional luxury to a phenology implementation. 

Using simple models that rely on a limited amount of input data gives the 

opportunity to recalibrate our model implementation with user input, as 

demonstrated in the carousel in Figure 18 (panel 3). The effectiveness of this 

method is requires testing in practice after implementation is fully finalized.  

5.6 Research for direct DSS implementation  

In the previous sections, a number of situations were described where direct 

implementation has played a role in the conceptualization and choice of 

method. Multispectral datasets were the main datatype for DSS development 

in CropSAT. Common (and likely more common) in precision agriculture 

today is the use of data with higher spectral resolution and a larger spectral 

range (Mulla 2013). Higher-spectral resolution data require a good data 

infrastructure and flexible and data-driven methods for analysis, which are 

now widely available (Lu et al. 2019; Verrelst et al. 2015). The advent of 

space-borne hyperspectral sensors provides new options for improving 

understanding N fertilisation, for potential possibilties in future DSS 



73 

implementations. In an attempt to find possibilities for additional testing with 

data in higher spectral resolution via hyperspectral data I found that the 

available field sampling points had a very near miss with Prisma data 

(PRecursore IperSpettrale della Missione Applicativa, Agenzia Spaziale 

Italiana). As flexible statistical methods place higher demands on data-

storage and transfer, preferably via open data in standardized form via e.g. 

datacubes (Tagliabue et al. 2022), this is currently not considered feasible 

for real-time application. Data-driven approaches, on the other hand, could 

have increased understanding for models that are currently implemented in 

CropSAT. 

5.7 Using fast vs. elaborate algorithms 

Fast crop production functions derived via statistical analysis, which 

simplify the biological or physical principles involved, may be inferior to 

elaborate models (Jame & Cutforth 1996). Research intended for DSS 

implementation requires balancing between fast- and more elaborate 

algorithms. While some approaches for current implementations are aiming 

for comprehension, their simplicity can make them biased. Elaborate 

approaches can be more information-dense and accurate, however, difficult 

to implement in practice. This can be a barrier to adoption of precision 

agriculture. In DSS for precision agriculture there is benefit in working 

towards reaching most potential out of input data, using few different types 

of input data and making choices for data as input that require little or no 

user input. This makes DSS applications easy to use and therefore could have 

a positive effect on adoption rates in precision agriculture.  

At last, an important issue, but one that is scarcely reported, is the 

opportunity for greater adoption of VRA approaches by fast algorithms. Fast 

implementation of models could become a source of calibration data (when 

ethically feasible), as shown by Silva et al. (2020) for data collected via DSS, 

in an interesting example of possibilities for extending data generation 

opportunities in DSS development. The interaction between research and 

practice can become a cyclic process, where each benefits the other, resulting 

in faster advances from data-driven development approaches.  
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General conclusions 

 Recommendations in this thesis could contribute to advances in DSS 

development. Using prediction models in DSS applications is a way 

to direct farm management towards future efficiency, although more 

research is required to reach sufficient knowledge for advancing use 

of multi-source data.  

 A close relationship between research for DSS development and 

parallel technical advances (mainly in the area of remote sensing) is 

required to keep up with, very rapidly emerging, new and updated 

technologies in this research field. Advancements in development of 

DSS could have a positive effect on this development, via practical 

testing.  

Upscaling an N-uptake model  

 Differences between the Sentinel-2 L1C (TOA) and L2A (BOA) 

datasets are currently small and in this thesis no improvement in N 

estimation was found for corrected products.  

 Upscaling of field sensor data to satellite-data scale gave insight in 

VRA potential beyond single fields.  

 It is recommended to include in situ data in continued N-uptake 

modelling.  

Protein modelling  

 Multispectral data can be used for predicting pre-harvest CP in 

winter wheat, although more data are required for a more complete 

understanding of the possibilities for prediction of pre-harvest CP 

for implementation.  

6. Conclusions and future outlook 
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Multi-source data 

 Use of multi-source data is currently difficult to achieve in practice, 

but investigation of options should continue. Direct transfer of 

prediction models from UAV- to satellite scale requires further 

testing.  

Timing of field operations 

 Two different approaches were able to predict phenology in winter 

wheat. Future comparison of the tested GDD method with existing 

crop growth models and/or satellite data could be of interest in future 

research. 

 Further translation of crop phenology prediction results for 

management of fertilisation timing is required and possibly a 

division between stressed or stress-free conditions could be 

included.  

Applicability  

 Models for N-uptake and phenology developed in this thesis are 

applicable in practice. There are potentially more future 

implementation options using results from this thesis, such as 

implementation of VRA beyond fields and connection of crop 

phenology predictions to the N fertilisation VRA model.  
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Winter wheat nitrogen (N) fertilisation is often done in a fixed rate per field. 

Alternatively, the application of N fertilizer on a field can be done in a way 

that the rate of fertilizer application is adjusted to the requirements of crops 

in smaller fields sub-parts. Variable rate fertilization is a more precise, and 

therefore more efficient alternative. 

Decision support systems collect and analyse different types of data (for 

example satellite data) for advising farmers in practise accessible via a 

website. In order to instruct fertiliser spreading machinery, maps (called 

taskmaps) are used that hold the information on the desired dosage of 

fertiliser for a field. Taskmaps can be generated from the support system to 

use on a fertiliser spreader.  

In Paper I, a new model from satellite images helps to understand how 

much nitrogen has been taken up by the wheat crop. This can then be used 

on farms as support for N fertilisation decision making. This information can 

also be used to pinpoint fields where variable rate application is likely to 

bring the most benefit. Paper II looks into predicting the quality of winter 

wheat before harvest, which can help to make decisions on when and 

possibly where to harvest. The protein level present in harvested grain 

kernels is important for the quality of winter wheat products, such as bread. 

It was also tested whether knowledge from unmanned aerial vehicles 

(drones) could be used in satellite decision support systems. In the last Paper, 

the winter wheat crop development was predicted from weather information, 

this could help make existing fertilisation advice more accurate. Some of the 

outcomes of this work were implemented in a Swedish system called 

CropSAT. 

Taken together, the different parts in this work have improved decision 

support in Sweden, however, there are also remaining challenges described.  

Popular science summary 
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Vete är en av de viktigaste grödorna i världen. I Sverige sås höstvete på 

hösten och skördas i slutet av sommaren året därpå. För att det ska växa bra 

måste grödan ha tillgång till många olika näringsämnen, bland annat kväve. 

Gödsling med kväve till höstvete görs ofta med en jämn giva inom varje fält. 

Emellertid kan grödans behov av kväve variera inom ett fält, t ex beroende 

på varierande jordart. Därför är ett alternativ till en jämn giva, att variera 

tillförseln av kväve så att den anpassas efter behovet i olika delar av fältet. 

Varierad tilldelning, som är en central del inom det som kallas 

precisionsodling, leder till att kvävet kan utnyttjas mer effektivt.  

Genom webbaserade beslutsstödsystem kan lantbrukare lättare utnyttja 

olika typer av data, till exempel data från satelliter, för att kunna anpassa 

åtgärder efter varierande behov. Gödningsspridare kan styras av digitala 

tilldelningskartor som kan innehålla information om hur mycket gödning 

som varje fältdel behöver. Beslutsstödsystem för precisionsodling kan 

generera sådana tilldelningskartor. 

Den här avhandlingen består av tre vetenskapliga artiklar. I den första 

artikeln har en modell tagits fram som gör att man från satellitbilder kan 

uppskatta hur mycket kväve som tagits upp av en höstvetegröda mitt i 

växtsäsongen. Varje 20 x 20 m yta i alla höstvetefält i en satellitbild får ett 

beräknat värde, och informationen kan sedan användas som stöd till 

lantbrukare när man ska bestämma hur mycket ytterligare kväve som grödan 

behöver. Informationen kan också användas för att lokalisera fält där 

varierad tilldelning är mest effektiv. Den andra artikeln handlar om 

möjligheten att bedöma kvaliteten i höstvete innan skörd, något som skulle 

kunna vara användbart för en lantbrukare när man planerar skörden. Halten 

av protein i det skördade vetet är en viktig kvalitetsegenskap, och avgör till 

exempel om vetet är lämpligt att användas till bakning av bröd. I studien 

Populärvetenskaplig sammanfattning 
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undersöktes om data insamlade med hjälp av sensorer på drönare kunde 

användas för att beräkna proteinhalten i vete, och om denna information 

sedan kunde överföras till satellitbilder för användning i beslutsstödsystem. 

I den sista studien togs en modell fram för att man från väderdata kan beräkna 

höstvetets utvecklingsstadier. Olika åtgärder i fält, som till exempel 

kompletterande tilldelning av kväve, görs lämpligast när vetet nått vissa 

stadier. Därför kan en sådan modell vara användbar i beslutsstödsystem. 

En del av resultaten i detta arbete har implementerats i ett fritt tillgängligt 

beslutsstödsystem som används i Sverige som heter CropSAT. 

Sammanfattningsvis så exemplifierar resultaten från de olika studierna hur 

olika typer av data kan användas för att förbättra funktionaliteten i 

beslutsstödsystem för precisionsodling, men de visar också att många 

utmaningar återstår, och att fortsatt forskning på området behövs.  
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Index Formula 

CI (red-edge) (𝜌7/𝜌6)-1 

MSAVI2 1/2 (((2 × 𝜌8 + 1) √((2 × 𝜌8 + 1)2 − 8 

× (𝜌8 − 𝜌4))) 

NDRE75 (𝜌7−𝜌5)/ (𝜌7+𝜌5) 

NDRE85 (𝜌8−𝜌5)/ (𝜌8+𝜌5) 

NDRE86 (𝜌8−𝜌6)/ (𝜌8+𝜌6) 

NDVI (𝜌8−𝜌4)/ (𝜌8+𝜌4) 

OSAVI 1+0.16((ρ7-ρ4)/((ρ7+ ρ4)+0.16)) 

REIP 700+40 (((ρ4-ρ7)/(2-ρ5))/(ρ6-ρ5)) 

TCOS TCARI/OSAVI 

TCARI 3((ρ5-ρ4)-0.2(ρ5-ρ3)ρ5/ρ4) 

 

Appendix A1. Formula’s for the vegetation indices used in the relevant Paper. Band (𝜌) 

indicates the band number in the respective study where the index is used.  
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Appendix A2. Illustration of observed data in different regions in the period May 1 to 

August 15 for the 10 different years with applied local polynomial regression (LOESS) 

quadratic function. 
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Appendix A3. Intercorrelation for crude protein (CP %) and vegetation indices (Paper II) 

data; chlophyll index (CI), normalised-difference vegetation index (NDVI). Normalised-

difference red-edge NDRE with alternative bands 8 and 6 (NDRE86), normalised 

difference red-edge (with bands 7 and 5 NDRE75), optimised soil adjusted vegetation 

index (OSAVI), red-edge inflection point (REIP), transformed chlorophyll absorption 

reflectance index (TCARI), and the TCARI/ OSAVI ratio (TCOS).  
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Abstract
Total nitrogen (N) content in aboveground biomass (N-uptake) in winter wheat (Triticum 
aestivum L.) as measured in a national monitoring programme was scaled up to full spa-
tial coverage using Sentinel-2 satellite data and implemented in a decision support system 
(DSS) for precision agriculture. Weekly field measurements of N-uptake had been carried 
out using a proximal canopy reflectance sensor (handheld Yara N-Sensor) during 2017 and 
2018. Sentinel-2 satellite data from two processing levels (top-of-atmosphere reflectance, 
L1C, and bottom-of-atmosphere reflectance, L2A) were extracted and related to the proxi-
mal sensor data (n = 251). The utility of five vegetation indices for estimation of N-uptake 
was compared. A linear model based on the red-edge chlorophyll index (CI) provided the 
best N-uptake prediction (L1C data:  r2 = 0.74, mean absolute error; MAE = 14  kg  ha−1) 
when models were applied on independent sites and dates. Use of L2A data, rather than 
L1C, did not improve the prediction models. The CI-based prediction model was applied 
on all fields in an area with intensive winter wheat production. Statistics on N-uptake 
at the end of the stem elongation growth stage were calculated for 4169 winter wheat 
fields > 5 ha. Within-field variation in predicted N-uptake was > 30 kg N ha−1 in 62% of 
these fields. Predicted N-uptake was compared against N-uptake maps derived from trac-
tor-borne Yara N-Sensor measurements in 13 fields (1.7–30 ha in size). The model based 
on satellite data generated similar information as the tractor-borne sensing data  (r2 = 0.81; 
MAE = 7 kg ha−1), and can therefore be valuable in a DSS for variable-rate N application.
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Introduction

Winter wheat (Triticum aestivum L.) is an important crop globally, and is often the 
main crop in northern European cropping schemes. Much of the arable land in Swe-
den is dedicated to winter wheat production (19% of total cropping area and 48% of 
total grain production) (Swedish Board of Agriculture 2019a). Fertilisation with nitro-
gen (N) is often performed in two or three steps between the developmental stages of 
tillering and booting, to match crop requirements. Making decisions on the frequency, 
timing and quantity of this supplementary fertilisation can be a challenge for farmers, 
who try to find an economically optimum level in fertilisation. The estimation of the N 
concentration in aboveground plant tissues multiplied by above-ground dry matter mass 
(here denominated as N-uptake) during the period of supplementary fertilisation is an 
important component in the formulation of a fertilisation strategy (Schils et al. 2018). 
There are both economic and environmental benefits in optimising N fertilisation, since 
it optimises the quantity and quality of the crop in relation to the production costs and 
at the same time helps prevent losses of excess N through leaching or denitrification 
(e.g. Delin and Stenberg 2014; Swedish Board of Agriculture 2019a). Optimisation can 
be done on different scales, by fertilising different fields in different ways or by fertilis-
ing individual fields using a variable rate (variable rate application, VRA). It is known 
that growing conditions are often non-uniform between and within cropping fields (e.g. 
Sawyer 1994; Stafford 2000). Thus VRA of N fertiliser based on estimated N-uptake at 
the time of fertilisation is likely to better meet crop demands than uniform application. 
Variable application of N fertiliser can also be carried out for the purpose of reaching 
target levels of grain protein content, which is an important quality aspect (Basnet et al. 
2003; Börjesson et al. 2019; Söderström et al. 2010).

Estimation of N-uptake in winter wheat can be done in multiple ways. Optical remote 
sensing is a method that has gained interest in recent decades, due to relatively easy 
and affordable application in the field (Berger et al. 2020; Mulla 2013; Zhao 2005). The 
N-status of crops can be estimated with optical sensing instruments by estimation of 
leaf chlorophyll concentration and biomass volume (Curran 1989; Kokaly 2001). Opti-
cal sensors measure canopy reflectance in different regions of the electromagnetic spec-
trum. Proximal crop canopy optical sensors have been available to farmers and advisors 
for many years (Reusch 2003; Singh 2019). These can be mounted on a vehicle, such as 
a tractor, or can be used as a handheld instrument. Limitations of this approach are that 
users rely on costly equipment and that collection of sensor data in the field can be time-
consuming, making this method less feasible or attractive for some farmers.

The Swedish Board of Agriculture (Jordbruksverket, Jönköping, Sweden) provides 
weekly assessments to farmers on N-uptake in winter wheat based on measurements 
using the handheld version of the Yara N-Sensor® (Yara Gmbh, Hanninghof, Germany; 
as described by Reusch 2005). The measurements are taken at about 40 point locations 
in each year across the major agricultural regions in Sweden. They have been carried out 
to create up-to-date advice for farmers and advisors based on N-uptake measurements in 
unfertilised plots (N-uptake in unfertilised plots, so called zero-plots, is an indication of 
soil N-supply) during the period of supplementary fertilisation. Measurements were also 
made in an area of the field judged to be uniform and with no experimental manipulation 
(i.e. managed by the farmer as usual). The results are reported to farmers and advisors 
through an internet service (www.grepp a.nu). This campaign generated a continuous time 
series of N-uptake, as measured by the N-sensor, but with no spatial coverage.

http://www.greppa.nu
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A development could be to scale this point information using satellite remote sensing 
to full spatial coverage using optical satellite imagery. The Copernicus Sentinel-2 mission 
comprises a constellation of two polar-orbiting satellites (2A, 2B) placed in a sun-synchro-
nous orbit, and phased 180° to each other (Fletcher 2012, Drusch 2012). The instrument 
has a swath width of 290 km and a revisit time of 5 days at the equator. At Swedish lati-
tudes, the temporal frequency for obtaining a new satellite product is every 2–3 days. This 
temporal frequency may be sufficient for practical use in time-critical, within-season N-sta-
tus monitoring in grain crops.

Sentinel-2 data are published in different levels of processing, as top-of-atmosphere 
(TOA) data (L1C) and bottom-of-atmosphere (BOA) data (L2A) (ESA 2020). L1C prod-
ucts have been disseminated by ESA since June 2015 and L2A products from May 2017. 
The L1C products are 100 × 100  km2 tiles with radiometric and geometric corrections, 
including orthorectification and spatial registration (ESA 2020). L2A products are con-
sidered ‘analysis-ready products’ that should be ready for immediate analysis without the 
need for further processing, and thereby better estimate reflectance. The L2A correction 
algorithms used by ESA are based on a series of threshold tests that use as input TOA 
reflectance from various Sentinel-2 spectral bands and auxillary data, look-up tables 
derived from a radiative transfer model library and digital elevation model (DEM) data. 
The processing procedure encompasses six steps: (1) a scene classification procedure to 
identify clouds, their shadows and snow; (2) aerosol optical thickness (AOT) calculation 
using a dense dark vegetation algorithm; (3) usage of a differential absorption algorithm to 
retrieve water vapour (WV); (4) cirrus cloud correction; (5) surface reflectance retrieval; 
and (6) scene classification with a terrain correction using DEM data. Apart from the cor-
rected result, outputs are an AOT map, a WV map and a scene classification map, together 
with quality indicators for cloud and snow probabilities (Gascon et al. 2017; Main-Knorn 
et al. 2017; Mueller-Wilm 2016).

To derive information on crop canopy health and vigour from multispectral satellite data 
and proximal crop sensors, vegetation indices are often used. Commonly used vegetation 
indices use bands in the near-infrared (NIR), red and red-edge regions of the electromag-
netic spectrum. Red-edge indices in particular have been proposed for intensive crop man-
agement applications throughout the growing season (Gitelson et al. 2003; Reusch 2003, 
2005; Söderström et  al. 2017). Some red- and NIR- based indices lose sensitivity after 
reaching a threshold level of leaf coverage and/or chlorophyll content, whereas red-edge-
based indices are still sensitive to variation in denser canopies (Barnes et al. 2000; Qi et al. 
1994; Rouse et al. 1974). The short-wave infrared (SWIR) region has also been shown to 
be useful in assessment of N content in crops (e.g. Herrmann et al. 2010; Söderström et al. 
2010), but many of the crop sensors currently in use lack bands in this region of the elec-
tromagnetic spectrum. With hyperspectral and multispectral sensor data, a limitation of the 
conventional vegetation indices is that only a limited portion of the available data is used. 
An alternative approach to indices is to apply more advanced multivariate or machine-
learning methods to include all bands or, preferably, all relevant bands (Berger et al. 2020; 
Verrelst et al. 2015). Regardless of the approach used, it is important to properly validate 
the prediction models, and to make sure there is no overfitting. This is important for model 
deployment in a decision support system (DSS) for precision agriculture.

Crop canopy N-status information, in the form of vegetation index maps from satel-
lite data, are already available to end-users (e.g. farmers and advisors) via an internet 
based DSS, such as CropSAT (www.crops at.com) (Söderström et  al. 2017). A DSS 
can function as a tool to translate reflectance based N-uptake data to N-rate maps (i.e. 
prescription maps) to be used for VRA of N fertilisers. Agricultural practitioners can 

http://www.cropsat.com
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use a DSS to get instant access to inexpensive, yet timely and site-specific, decision 
support for precision N fertilisation.

Wolters et al. (2019) developed a prediction model based on Sentinel-2 L1C data for 
generation of N-uptake maps to be used in a DSS. That study demonstrated that a Sen-
tinel-2 L1C-based model could be used to predict N-uptake with different vegetation 
indices for use in practical applications.

The aim in the present study was to test whether it is possible to scale up the weekly 
point measurements of the Yara N-Sensor to full spatial coverage of the arable land in 
southern Sweden, and make the result available in a DSS. Specific objectives were to:

• Develop N-uptake scaling models through scaling handheld proximal sensor data 
using Sentinel-2 data, and evaluate their performance at independent sites and 
dates;

• Evaluate differences in model performance between Sentinel-2 processing levels 
(L1C and L2A) and different vegetation indices;

• Quantify the spatial variation in N-uptake within and between fields, by applying 
the model in an area in Sweden with intensive winter wheat production; and

• Apply the best scaling model and evaluate the resulting satellite-based N-uptake 
maps by comparison with N-uptake maps from a commonly used tractor-borne sen-
sor system.

The hypotheses are as follows:

• Handheld N-sensor measurements in winter wheat can be scaled up for use in a 
DSS for VRA of N.

• The scaled model performs better when based on Sentinel-2 L2A data than when 
based on L1C data.

• The scaled model produces N-uptake maps that are similar to maps from tractor-
borne proximal reflectance sensors.

Materials and methods

Study area

The entire study area encompassed a large part of southern Sweden, from roughly 55° 
to 61° N and from 10° to 19° E (Fig.  1). The temperate climate makes this a suit-
able area for rain-fed grain production, e.g. the median winter wheat yield during 
2015–2019 was 7400 kg ha−1 (Statistics Sweden, Örebro, Sweden; www.scb.se). Mean 
annual precipitation is around 700–1000 mm in the agricultural regions studied, with 
higher values in western parts, and mean annual temperature is 5–8 °C (Swedish Mete-
orological and Hydrological Institute, Norrköping, Sweden; www.smhi.se). The crop-
land (around 2 × 106 ha) in the region is mainly found on young lacustrine and marine 
sediments deposited after the Weichselian glaciation (Fredén 1994), with heavy clays 
in the northeast and mostly loam and sandy loam in the southwest (Piikki and Söder-
ström 2019).

http://www.scb.se
http://www.smhi.se
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Handheld proximal sensing

The handheld version of the Yara N-Sensor was used by the Swedish Board of Agricul-
ture to collect field data from 40 to 50 farms per year on N-uptake in winter wheat during 
growth stages DC22-53 (Zadok et al. 1974), in measurements conducted on a weekly basis 
from late April to early June 2017–2018. In this study, data was used from sensor meas-
urements made in a uniform area of the winter wheat fields, in a part of the field that was 
managed by the farmer as usual (i.e. not the zero plots). Each proximal sensor measure-
ment was the average of four recordings obtained in four directions, together representing 
an area of approximately 3 m × 3 m. The Yara N-Sensor is a sensor that records reflectance 
data in 45 bands 10 nm wide in the 400–900 nm region of the electromagnetic spectrum. 
Conversion to N-uptake is made through a built-in calibration function developed by Yara 
(Reusch 2003) and used by the Swedish Board of Agriculture in its monitoring programme. 
The selected farms cover the main winter wheat districts in Sweden (Fig. 1). Fourteen of 
the most commonly grown winter wheat cultivars in Sweden were included, seven from 
Lantmännen SW seed (Malmö, Sweden): ‘Brons’, ‘Festival’, ‘Hereford’, ‘Julius’, ‘Linus’, 
‘Norin’, and ‘Stava’; and seven from Scandinavian Seed (Lidköping, Sweden): ‘Elvis’, 
‘Frontal’, ‘Mariboss’, ‘Olivin’, ‘Praktik’, ‘RGT Reform’ and ‘Torp’.

Tractor‑borne proximal sensing

Data on N-uptake were also gathered by tractor scanning in 13 fields (ranging in size 
from 2 to 30  ha) in the area around the village of Ardala (see Fig.  1) on 27–29 May 
2017. A passive Yara N-Sensor® was used and the tractor was driven in a regular pat-
tern over the fields on tramlines at 24 m spacing, recording N-uptake every second (with 
approximately 3  m between recordings). The N-uptake values from the sensor were 

Fig. 1  The study area includ-
ing the locations of proximal 
field data nitrogen (N)-uptake 
measurements in southern Swe-
den in winter wheat (Triticum 
aestivum L.). The area northeast 
of Gothenburg depicts the case 
study area in which the within-
field variability of N-uptake was 
statistically assessed by deploy-
ing the satellite-based prediction 
model for all winter wheat fields. 
In the vicinity of the Ardala vil-
lage, 13 winter wheat fields were 
scanned with a tractor-borne 
N-sensor for comparison with the 
Sentinel-2 based model
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interpolated by ordinary block kriging (Burrough and McDonnell 1989) to the same 
20 m × 20 m grid cell size as the Sentinel-2 data, to enable comparisons.

Satellite remote sensing

The Sentinel-2 satellites (2A and 2B) carry optical instrument payloads that sample 13 
spectral bands with different spatial resolution: 10  m (2 [nominal blue], 3 [green], 4 
[red] and 8 [broad-band NIR]); 20 m (5, 6, 7 [red-edge], 8A [narrow-band NIR], and 11, 
12 [SWIR]); and 60 m (1 [coastal blue], 9 [NIR water vapour], and 10 [SWIR cirrus]) 
(ESA 2020). Details are given in Table 1.

Sentinel-2 data (both L1C and L2A) were downloaded from the Copernicus Open 
Access Hub (https ://scihu b.coper nicus .eu/; ESA, EU, download period: 2018–2020). 
Sentinel-2 products were projected in WGS1984 UTM zone 33 N and organised by tiles 
following the military grid reference system (MGRS). After downloading, products 
were visually inspected for haze and clouds. Images that appeared cloud-free on field 
data points were paired (if within ± 3 days of acquisition) with the handheld proximal 
sensor data, and Sentinel-2 reflectance values were extracted (using nearest neighbour) 
from the pixel in which the field measurement was carried out. A total of 251 unique 
records had both handheld proximal data and remote sensing data. Some field measure-
ments appeared to contain georeferencing errors (the points were outside the field) and 
were removed. The final dataset contained 242 records after exclusion of such records. 
Correlation of data from the L1C and L2A products was evaluated for four of the Senti-
nel-2 bands (3, 4, 6 and 8).

Table 1  Sentinel-2 satellite data bands with associated spatial resolution, central wavelength (λ) and band-
width (Width) for sensor A (S2A) and sensor B (S2B) (ESA 2020)

Abbreviations in band descriptions are Near infrared (NIR) and shortwave infrared (SWIR)

Band Spatial 
resolution

S2A S2B

(m) λ (nm) Width (nm) λ (nm) Width (nm)

Band 1—Coastal aerosol 60 443.9 27 442.3 45
Band 2—Blue 10 496.6 98 492.1 98
Band 3—Green 10 560.0 45 559.0 46
Band 4—Red 10 664.5 38 665.0 39
Band 5—Vegetation red edge 20 703.9 19 703.8 20
Band 6—Vegetation red edge 20 740.2 18 739.1 18
Band 7—Vegetation red edge 20 782.5 28 779.7 28
Band 8—NIR 10 835.1 145 833.0 133
Band 8A—Narrow NIR 20 864.8 33 864.0 32
Band 9—Water vapour 60 945.0 26 943.2 27
Band 10—SWIR—Cirrus 60 1373.5 75 1376.9 76
Band 11—SWIR 20 1613.7 143 1610.4 141
Band 12—SWIR 10 2202.4 242 2185.7 238

https://scihub.copernicus.eu/
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Vegetation indices

To explore how different types of vegetation indices functioned in modelling, five dif-
ferent vegetation indices all based on bands within the spectral region of the proximal 
sensor were tested for this study. The vegetation indices were calculated from the Senti-
nel-2 data and were: normalised difference vegetation index (NDVI; Rouse et al. 1974); 
normalised difference red-edge vegetation index for two different band combinations, 
bands 8 and 5 (NDRE85), and bands 8 and 6 (NDRE86) (Barnes et al. 2000); modified 
soil-adjusted vegetation index (MSAVI2; Qi et al. 1994); and leaf chlorophyll index (CI; 
Gitelson et  al. 2003). Two of these indices (NDVI and MSAVI2) are NIR-/red-based 
and both are already used in CropSAT (Söderström et al. 2017). The other three indices 
(NDRE85, NDRE86 and CI) use a red/red-edge band combination. Bands in the red-
edge region have been shown to be useful in studies of N-uptake (Reusch 2003, 2005). 
Equations  1–5 show how the indices were calculated, where ρ is reflectance and the 
subscript indicates the Sentinel-2 band number:

Modelling and validation

An overview of the data processing and analyses performed in the study is given in 
Fig. 2. Regression models for prediction of N-uptake were parameterised between the 
handheld proximal sensing N-uptake data and the vegetation indices derived from the 
Sentinel-2 data. To assess the prediction accuracy when applying the model to new sites 
and dates, a spatiotemporal cross-validation was designed and employed. This method 
of leave-one-out cross-validation is a model validation technique in which the records 
are repeatedly split into ‘test data’ (the record for which a prediction is made) and ‘train-
ing data’ (the records used to parameterise the model). With each iteration, one record 
was assigned to the test set and the remaining records were assigned to the training set. 
In order to validate the model in a manner which resembled a practical application in 
a DSS, any records from the same site as the test record and data collected later in the 
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same year (than the date of the test record) were also removed from the training dataset. 
This was repeated until all 242 records had been tested (Fig. 3).

To determine prediction accuracy, validation measures were calculated from the meas-
ured and predicted N-uptake values. The Nash–Sutcliffe modelling efficiency (E) can theo-
retically take values between − ∞ and 1, where an E value of 0 means that the model is 
just as accurate as a mean of the measured data and an E value of 1 is a perfect fit, which 
means that the predicted values are equal to the measured values (Nash and Sutcliffe 1970). 
The mean error (ME) is a measure of the overall prediction bias. The mean absolute error 
(MAE) is the average of the absolute prediction error. The coefficient of determination  (r2) 
explains the goodness-of-fit of the prediction.

To exemplify possible use of modelling results and to quantify the magnitude of within- 
and between-field variation in N-uptake, the best fitting prediction model was applied to 
predict N-uptake within a case study area (Fig. 1), covering 7045  km2 with a high density 
of winter wheat fields (as determined by winter wheat fields reported in the EU agricultural 
subsidies system; Swedish Board of Agriculture 2019b). For this, cloud- and haze-free sat-
ellite data from 27 May 2017 were used (corresponding to approximately winter wheat 
growth stage DC37 in this area according to an online service by the Swedish Board of 
Agriculture; https ://etjan st.sjv.se/). Modelled data were extracted for each field (which was 
reduced in size using a buffer of 15 m along field boundaries to avoid mixed pixel effects) 
and the magnitude of within-field variation in N-uptake was calculated for the inter-percen-
tile range 2.5–97.5% (to exclude other potential outlier effects).

The satellite-based model predictions of N-uptake were compared with maps resulting 
from interpolation of the tractor-borne N-sensor measurements. This comparison consisted 
of two parts: (1) a visual comparison of spatial variation patterns and (2) field-wise corre-
lation analyses between satellite-based and tractor-based values  (r2 and MAE).

Software

To determine which MGRS files matched the field measurement coordinates, the Python 
programming language was used (Python software foundation, Wilmington, Delaware, 
USA). Data were stored in a SQLserver database (Microsoft, Redmond, Washington, USA) 
and analyses were performed using the R programming language (R core team 2018). Arc-
GIS 10.7 (Esri Inc., Redlands, California, USA) was used for data analysis and display.

Except future dates this year & except same site Current site & 
date

All data{L1C or L2A processing level}

Training dataset Test dataset

Fig. 3  Graphical display of the spatiotemporal leave-one-out cross-validation procedure used for regression 
predictions. A set of all data of either top of atmosphere (L1C) or bottom of atmosphere (L2A) process-
ing level enters the procedure. For each record in the dataset, a model was trained leaving out that record 
and also leaving out other records from the same site and all records from later dates in the same year. 
The training set was used to calibrate prediction models and nitrogen (N)-uptake was predicted for the test 
record

https://etjanst.sjv.se/
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Results

Data exploration

The data from the L1C and L2A processing levels were found to be linearly correlated 
to each other in bands, 3, 4, 6 and 8 (Fig. 4). In bands 3 and 4, the L1C values were 
larger than the L2A values. In bands 6 and 8, the opposite pattern could be seen, where 
L2A values were smaller than L1C values. In all cases, Pearson correlation coefficient 
was higher than 98%, with the lowest correlation for band 3. Reflectance values in the 
individual bands for the two different processing levels were thus very similar in this 
dataset.

The vegetation indices studied correlated differently with N-uptake measured by the 
handheld proximal canopy reflectance sensor for both the L1C and L2A processing level 
datasets (Fig. 5). NDVI and the two different NDRE indices showed weak correlations, 
with  r2 < 0.44 for both L1C and L2A data. As can be seen from the diagram, the CI val-
ues were better correlated to the proximal sensor measurements (L1C:  r2 = 0.78; L2A: 
 r2 = 0.76). The MSAVI2 values were non-linearly correlated with the field data (L1C: 
 r2 = 0.55; L2A:  r2 = 0.50).

Fig. 4  Comparison of reflectance values in top of atmosphere (L1C) versus bottom of atmosphere (L2A) 
processing level products for bands 3, 4, 6 and 8
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N‑uptake prediction

The results of the spatiotemporal cross-validation procedure for the different models are 
summarised in Table  2. Use of L2A data instead of L1C data resulted in only minimal 
differences in the correlation statistics and modelling was therefore done only with the 
L1C satellite data. There was a relatively strong linear relationship  (r2 = 0.74) between the 
predicted and observed values. The Nash–Sutcliffe efficiency index confirmed relatively 
good model performance (E = 0.72). The MAE was 14 kg N ha−1 and ME was 4 kg N ha−1, 
reflecting the spread around the 1:1 line in Fig. 6, and the prediction bias was small.

Model application

The prediction model based on the CI values was applied at around development stage 
DC37 to all winter wheat fields in the case study area (see Fig. 1). As the indicator maps in 
Fig. 7 show, fields with high or low within-field variation were spread across the area, but 
some spatial trends were distinguishable. For example, in the intense cultivation area in the 
west (the circles to the west in Fig. 7a, c), there was a tendency for fields to have relatively 
low within-field variability, whereas in the eastern part of the case study area fields with 
higher within-field variability in N-uptake were common. Of all fields larger than 5  ha, 
62% showed variation in N-uptake greater than 30 kg N ha−1. The within-field variation in 
N-uptake (inter-percentile range 2.5–97.5%) in the 4169 different fields ranged between 0 
and 105 kg ha−1 (summarised in Fig. 8). Less than 50% of the fields were between 5 and 
10 ha in size and these had the smallest within-field variation, on average 30 kg N ha−1. 
The magnitude of within-field variation increased with field size, up to 41 kg N ha−1 for 
fields > 30 ha. The histograms in Fig. 8 show this variation, which shows a normal distribu-
tion. Field mean values of N-uptake, as measured with the Yara N-sensor, ranged between 
28 and 149 kg N ha−1, with an average of 90 kg N ha−1 (Fig. 9).  

Comparisons between N-uptake predicted by the satellite model and the tractor-borne 
N-sensor are shown in Figs. 10 and 11; Table 3. The  r2 values ranged from 0.29 to 0.85 
for the 13 fields. When all fields were considered together,  r2 was 0.81 and MAE was 

Table 2  Validation statistics 
(modelling efficiency (E), mean 
error (ME), mean absolute 
error (MAE), coefficient of 
determination  (r2)) for prediction 
models for different vegetation-
based indices at two different 
processing levels, top of 
atmosphere (L1C) and bottom of 
atmosphere (L2A)

Normalised difference vegetation index (NDVI); normalised differ-
ence red-edge index (NDRE85) based on band 8 and band 5; normal-
ised difference red-edge index (NDRE86) based on band 8 and band 
6; chlorophyll index (CI) and modified soil adjusted vegetation index 
(MSAVI2)

NDVI NDRE85 NDRE86 CI MSAVI2

L1C
 E 0.30 0.16 0.41 0.72 0.46
 MAE (kg  ha−1) 23 25 21 14 20
 ME (kg  ha−1) 2 − 1 2 4 8
 r2 0.31 0.20 0.42 0.74 0.55

L2A
 E 0.15 0.08 0.41 0.70 0.36
 MAE (kg  ha−1) 25 26 21 15 22
 ME (kg  ha−1) − 4 − 4 1 5 9
 r2 0.21 0.15 0.41 0.73 0.48
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7 kg N ha−1. High  r2 values were more common when the within-field variation was larger. 
The MAE varied slightly (4–12 kg N ha−1) between the fields, and this variation did not 
appear to be clearly related to field size. Visual comparison revealed that the spatial pat-
tern of within-field variability was fairly similar between maps produced by data from the 
tractor-borne N-sensor and maps generated from the Sentinel-2 L1C CI-based prediction 
model. A close-up view of a few fields is shown in Fig. 11.  

Discussion

Using handheld proximal crop sensing data to build the model, it was possible to develop 
a well-performing, simple linear prediction model for N-uptake from Sentinel-2 data 
 (r2 = 0.74 for the CI-based model with L1C data). Prediction of N-uptake by sensors is 
done in reality through its correlation with total canopy chlorophyll content, which in 
turn is closely correlated with total canopy N content (e.g. Schlemmer et al. 2013). Using 
N-uptake models based on satellite data is a low-cost method to derive decision support for 
building N fertilisation strategies, quickly and inexpensively, for large cropping areas. In 
this case, the N-uptake prediction model was general, and 14 different winter wheat varie-
ties were included. In addition, a relatively long period of crop development (DC22-53) 
was covered. Earlier work by Wolters et al. (2019) and Söderström et al. (2017) showed 
that satellite-based N-uptake models could be slightly improved if they were cultivar-spe-
cific, but this was not done in the present study.

Estimation of N-uptake by means of reflectance data from optical satellite data brings 
common challenges that arise when using remote sensing data. Irregular product quality 

Fig. 6  Spatiotemporal cross-validation prediction based on a chlorophyll index (CI) model for top of atmos-
phere (L1C) satellite data versus field nitrogen (N)-uptake obtained from the proximal canopy reflectance 
sensor. The mean absolute error (MAE) is also shown
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due to interference by clouds and cloud shadows can present difficulties in model calibra-
tion or model implementation in a DSS. Satellite data suppliers, in this case ESA, devote 
much effort to providing high-quality satellite data and are continually striving to improve 
their available products. However, regardless of ongoing development, some issues like 
persistent periods of cloud cover are difficult to overcome. Before implementation in a 
DSS, visual assessment of satellite data quality may be required by DSS providers and 
users.

With regard to development of models in the present study, there were enough 
cloud-free images available to get good estimates of N-uptake throughout the season 

Fig. 7  Spatial representation of within-field variation in nitrogen (N)-uptake in the case study area 
(for location, see Fig.  1). One point represents one winter wheat field > 5  ha. The red circles to the left 
(west) and right (east) highlight areas with visible differences in the magnitude of within-field variation in 
N-uptake (kg ha−1). Background: Sentinel-2 true colour composite with sensing date 27 May 2017
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of supplementary N fertilisation at the field data locations. The very small differences 
between models based on the L1C and L2A data (Fig. 5) suggest that the visual inspection 
of quality of the L1C images performed during the selection process was sufficient to yield 
directly usable data. L1C products gave slightly lower index values for the MSAVI2 veg-
etation index than the L2A products (Fig. 5). This was due to somewhat higher reflectance 
values in band 4 and lower reflectance values in band 8 (in L1C compared with L2A).

It was shown that, using a Sentinel-2 prediction model of N-uptake, it was possible to 
map the range of within-field variation over large areas. This can be valuable information 
for farmers, advisory workers and precision agriculture retailers, and in environmental 
protection-based programmes such as the Swedish ‘Focus on Nutrients’ Initiative (OECD 
2018). In highly variable fields, the potential benefit of precision agriculture practices is 
likely to be greater from both an economic and an environmental point of view. Many 
fields in this study (> 62%) showed within-field variation exceeding 30  kg  N  ha−1. The 

Fig. 8  Range of variation (inter-percentile range 2.5–97.5%) of nitrogen (N)-uptake within fields (kg  ha−1) 
for field sizes a between 5 and 10 ha, b between 10 and 30 ha and c more than 30 ha in the case study area

Fig. 9  Average nitrogen (N)-
uptake (kg  ha−1) in fields > 5 ha 
in the case study area
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data presented therefore support previous conclusions by e.g. the European Union (EEA 
2019; EPRS 2016) that VRA of N fertilisers is the way forward in using resources more 
efficiently and thereby also potentially mitigating emissions of greenhouse gases.

A future application of N-uptake prediction models is as part of N fertilisation algo-
rithms, with the aim of deriving an economically optimum N-rate. For other crops 
and small fields that require high spatial detail, prediction models based on instru-
ments mounted on other vehicles or stationary systems may be applicable. Having more 

Fig. 10  Nitrogen (N)-uptake from the tractor-borne sensor compared with satellite-based prediction model 
N-uptake for the Ardala fields (see also Table 3; Fig. 11)
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Fig. 11  Close-up view of some of the Ardala fields (location in Fig. 1). Left: the nitrogen (N)-uptake calcu-
lated from the satellite prediction model. Right: Interpolated N-uptake data from the tractor-borne N-sensor 
within two days of the aquisition date of the satellite image. The different fields are labelled with their field 
identification (ID) number (cf. Table 3; Fig. 10). Background: Sentinel-2 true colour composite with sens-
ing date 27 May, 2017

Table 3  Comparison of nitrogen (N)-uptake (kg  ha−1) values produced by tractor-borne Yara N-sensor 
measurements (N-sensor) with N-uptake maps predicted by a model based on satellite data (Satellite) for 13 
fields around Ardala village, arranged by field size (large to small)

Coefficient of determination  (r2) and mean absolute error (MAE) are also shown

ID no Field size (ha) N-sensor (kg  ha−1) Satellite (kg  ha−1) r2 MAE (kg  ha−1)

Min Max Min Max

12 30.4 64 103 61 113 0.64 7
1 20.7 101 125 103 132 0.29 7
2 17.2 68 103 71 124 0.65 12
3 11.7 93 118 80 130 0.52 6
4 9.2 62 108 54 116 0.85 4
7 6.5 62 108 57 119 0.85 5
5 5.9 73 116 75 131 0.57 11
6 5.6 45 113 54 116 0.77 6
9 5.0 75 108 71 121 0.71 8
8 4.8 99 116 88 126 0.56 5
10 4.2 93 113 93 120 0.32 5
13 3.0 65 97 62 114 0.70 8
11 1.7 109 122 110 127 0.47 4
All 125.9 45 125 54 132 0.81 7
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reflectance data available from different platforms, for example drones, could help increase 
model performance via downscaling of algorithms.

Models for N-uptake should ideally be continuously updated to include new cultivars 
and varying growing conditions. Weekly scanning of crops with proximal sensors over sev-
eral seasons (as done by the Swedish Board of Agriculture for their advisory programme) 
provides an invaluable dataset of observations that are useful for producing models that are 
applicable in seasons with different growing conditions.

Winter wheat is an important staple crop and is widely cultivated in northern Europe 
(often in large fields), so there is great potential for using modelling techniques based on 
Sentinel-2 data for this crop. Considering the good resemblance between N-uptake maps 
from the model based on satellite  sensing and those from the commonly used tractor 
N-sensor (Table  3), it can be inferred that satellite data may also be useful in practical 
VRA applications.

Conclusions

It was possible to scale proximal canopy reflectance sensor data to full spatial coverage in 
wheat production areas in Sweden using Sentinel-2 satellite data. A linear model based on 
the CI showed the best N-uptake prediction performance for new sites and dates (L1C data: 
 r2 = 0.74 and MAE = 14 kg ha−1). Model predictions were not improved when using BOA 
reflectance values from Sentinel-2 L2A data compared with L1C data.

When Sentinel-2 satellite-based maps of N-uptake were compared with maps 
based on data from a tractor-borne sensor in 13 fields, a correlation of  r2 = 0.81 and 
MAE = 7 kg N ha−1 was found. Visual comparison of the maps showed a similar pattern of 
spatial variation. It was concluded that the satellite-based model, using CI values from L1C 
Sentinel-2 data for N-uptake prediction, gave results comparable to a tractor-borne in-field 
reflectance instrument.

Satellite-based scaling of proximal N-uptake measurements is useful for general 
assessments of within and between-field variation, making it possible to pinpoint fields 
where VRA of N would be most useful. The within-field variation in N-uptake exceeded 
30 kg N ha−1 in 62% of all fields larger than 5 ha, indicating potential for major economic 
and environmental benefits from within-field VRA.
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Predicting grain protein concentration in winter wheat (Triticum aestivum L.)
based on unpiloted aerial vehicle multispectral optical remote sensing
Sandra Wolters a, Mats Söderströma, Kristin Piikkia, Thomas Börjessonb and Carl-Göran Petterssonc

aDepartment of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Skara, Sweden; bAgroväst Livsmedel AB, Skara,
Sweden; cLantmännen, Stockholm Sweden

ABSTRACT
Prediction models for crude protein concentration (CP) in winter wheat (Triticum aestivum L.) based
on multispectral reflectance data from field trials in 2019 and 2020 in southern Sweden were
developed and evaluated for independent trial sites. Reflectance data were collected using an
unpiloted aerial vehicle (UAV)-borne camera with nine spectral bands having similar
specification to nine bands of Sentinel-2 satellite data. Models were tested for application on
near-real time Sentinel-2 imagery, on the prospect that CP prediction models can be made
available in satellite-based decision support systems (DSS) for precision agriculture. Two
different prediction methods were tested: linear regression and multivariate adaptive regression
splines (MARS). Linear regression based on the best-performing vegetation index (the
chlorophyll index) was found to be approximately as accurate as the best performing MARS
model with multiple predictor variables in leave-one-trial-out cross-validation (R2 = 0.71, R2 =
0.70 and mean absolute error 0.64%, 0.60% CP respectively). Models applied on satellite data
explained to a small degree between-field variations in CP (R2 = 0.36), however did not
reproduce within-field variation accurately. The results of the different methods presented here
show the differences between methods used and their potential for application in a DSS.
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Introduction

Grain crude protein concentration (CP) is an important
baking quality indicator in bread wheat (Triticum aesti-
vum L.). The quantity and also quality, of CP (primarily
the proteins glutenin and gliadin) affect gluten for-
mation and the physical properties of bread dough
(Gooding and Davies 1997). In many countries, wheat
grain intended for milling and baking is sold for a
higher price if a certain CP threshold is exceeded. In
Sweden, that threshold is often 11.5% protein on a dry
matter basis. CP concentration is therefore determined
on all grain deliveries, using near infrared transmittance
(NIT) sensing. It is also routinely determined in grain
samples from winter wheat field trials, using the same
technology.

Yield maps from monitors on combine harvesters are
already used as a tool for farmers to evaluate crop man-
agement and for guidance in precision management in
coming seasons, e.g. by splitting fields into management
zones (Mulla 1993; Martínez-Casasnovas et al. 2018; Miao
et al. 2018). Combine harvesters equipped with NIT
sensors for CP mapping during harvest are also available
(as described in Taylor et al. (2005) and Thylén and
Algerbo (2001)), however, these are not yet as widely

used as the yield mapping counterpart. Field zoning
based on expected CP is an alternative method. With
CP estimation before harvest, there is the option to
split fields into harvesting zones with different expected
CP in the current year. This would provide the option to
exploit the spatial heterogeneity by selling some grain
loads as bread wheat for a higher price and other
loads as fodder wheat. Such models could also be
useful for the grain industry, providing information on
available quality at harvest. For example, Freeman
et al. (2003) have shown how pre-harvest prediction of
winter wheat grain yield and/or protein using the nor-
malised difference vegetation index (NDVI; Rouse et al.
1974) could assist farmers in generating yield maps
and reliable product marketing. However, the spatial
pattern of CP within fields, and the relationship with
for example yield, is complex and can vary substantially
between years (e.g. Delin 2004).

Grain proteins are synthesised from nitrogen (N)
that is translocated from other plant organs (50–70%)
and from ongoing N-uptake during grain filling (30–
50%) (Gooding 2009). It has been demonstrated in
field trials that CP can be increased when additional
N is applied in Zadok’s growth stage (Zadok et al.
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1974) DC37 or later (Finney et al. 1957; Gooding and
Davies 1992; Hamnér et al. 2017; Rodrigues et al.
2018; Hu et al. 2021. Sieling and Kage 2021), even
though N use efficiency may be lowered by very late
applications (Gooding 2009). If CP could be predicted
from spectral reflectance data sensed by cameras
mounted on UAVs, satellites, ground vehicles or hand-
held instruments, CP predictions could serve as
decision support for late-season N fertilisation aiming
at meeting certain CP targets. Bastos et al. (2021)
made a review of CP predictions, including remote
and proximal sensing as well as on-combine sensors.
They concluded that using on-combine protein
measurements generated more accurate predictions
than what could be achieved using proximal or
remote sensing during the growing season. Prediction
modelling of CP based on proximal and remote
sensing data is often less successful than e.g. predic-
tion models of yield (e.g. Freeman et al. 2003;
Øvergaard et al. 2013; Barmeier et al. 2017). Barmeier
et al. (2017) used a hyperspectral field sensor in field
experiments during anthesis (DC 65) in malting
barley, and used partial least squares regression
(PLSR) for developing prediction models of protein
content. Validation was done in independent field
trials, but the models performed poorly (R2 = 0.28),
indicating the challenges in estimating protein
content in harvested grain. Similar to Hansen et al.
(2002) they did not find a clear effect of nitrogen fer-
tiliser level on protein content. Prey and Schmidhalter
(2019) tested a large number of vegetation indices and
their correlation to grain N concentration, and found
that only few parts of the electromagnetic spectrum
within the visible-near infrared (NIR) region proved to
be useful. Bands corresponding to around 780 nm in
the lower part of the NIR region, combined with a
band in the upper part of the red edge region per-
formed best. Zhou et al. (2021) compared linear
regression and some machine learning (ML; Liakos
et al. 2018) methods for CP prediction in four fields
in Japan, using data from a multispectral UAV based
sensor. The results showed that it was difficult to
predict protein accurately, although some ML
methods seemed to perform better than the linear
models. Bastos et al. (2021) reported that most
studies on CP predictions in grain based on remote
and proximal sensors probably overestimated the
model accuracy and precision since the models were
often not tested across different spatio-temporal
scales.

Börjesson and Söderström (2003) showed that the
best time for making protein predictions for winter
wheat and malting barley (Hordeum vulgare L.) when

using spectral data from handheld sensors is at the
end of anthesis (Zadok’s DC69). Basnet et al. (2003)
and Prey and Schmidhalter (2019) also suggested that
canopy reflectance derived just after anthesis are best
correlated with grain protein content, and Bastos et al.
(2021) found that this was most commonly reported in
the studies included in their review. The reason may
be that it provides information on sources of N available
for protein formation through late season N remobilisa-
tion to the grain (e.g. Hansen et al. 2002). Söderström
et al. (2010) demonstrated that it is possible to map CP
in malting barley based on remotely sensed crop
canopy reflectance together with ancillary variables. Bör-
jesson et al. (2019) demonstrated that CP prediction in
winter wheat could be performed based on a combi-
nation of early (DC37) and late (DC73) satellite reflec-
tance data. Their prediction models had mean
absolute error (MAE) of <1% CP when tested on inde-
pendent fields.

The seasonal dynamics of N supply, from fertilisers
and from mineralisation of organic matter in the soil in
relation to the dynamics of (other) yield-influencing
environmental conditions, such as water availability,
disease, temperature and radiation, affect the CP
content in the harvested grain (see e.g. Gooding 2009).
Small on-farm experiments (OFE; Lacoste et al. 2022)
called zero-plots and max-plots can be used for deter-
mining optimal N fertilisation rates (see e.g. Lory and
Scharf 2003; Raun et al. 2011). Zero-plots are strategically
placed plots in commercial fields (often 10–100 m2) left
without any N fertiliser application, which are used to
monitor N-limited crop growth as a proxy for soil N
supply. Max-plots are plots with an N-fertilisation level
high enough for N not to limit yield, and crop growth
in max-plots can be used as a proxy for potential N-
uptake or potential yield (Johnson and Raun 2003;
Piikki and Stenberg 2017). Since it is now relatively
common to use zero-plots and sometimes also max-
plots in cereal fields, it is interesting to investigate how
these plots can be useful in CP prediction modelling. It
has been shown, e.g. by Pettersson and Eckersten
(2007), that there are differences between grain crop cul-
tivars in terms of both canopy properties (e.g. structure
or albedo) that affect vegetation indices and CP levels.
Thus, it is possible that cultivar-specific models would
perform better than general models. On the other
hand, when general models are parameterised based
on all cultivars used in a field trial, the resulting larger
calibration dataset may give more robust models.

Satellite-based decision support systems (DSS) can
reach many farmers and cover very large areas in com-
parison with handheld or tractor-based sensor systems.
In agricultural research, an abundance of data on crop
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qualities are available from field trials. Sensors carried by
unpiloted aerial vehicles (UAVs) are suitable for collect-
ing data in single fields for different crop management
purposes (Du et al. 2017). It could be beneficial to use
UAVs to collect spectral data in field trials, generate pre-
diction models for crop properties and then apply such
models on satellite images used in DSS to upscale the
research results in practical implementation.

The aim of the present study was to develop and
evaluate prediction models for CP at harvest in
winter wheat, based on optical remote sensing data
from UAV-borne multispectral sensors acquired in
development stages DC69-73, in field trials. In this
study we used a selection of vegetation indices
based on spectral bands in the red to NIR region
which in previous studies have been useful for describ-
ing the protein content (e.g. Freeman et al. 2003; Pet-
tersson et al. 2006; Prey and Schmidhalter 2019). For
modelling we used both linear regression and multi-
variate adaptive regression splines (MARS; Friedman
1991). MARS is a non-parametric ML method that in
previous studies has been useful when dealing with
remote sensing data in relatively small datasets (e.g.
Filippi et al. 2014; Söderström et al. 2015). Special
attention was paid to validation in order to validate
on independent data. Moreover, the models devel-
oped were applied on satellite images currently used
in DSSs and performance was evaluated against field
observations. The following tests were carried out:

. Screening for best CP modelling approach, by leave-
one-trial-out cross-validation of eight different mod-
elling approaches comprising linear regression
models or MARS models with different predictors
(combinations of vegetation indices in trial plots
with realistic N rates and chlorophyll index in zero-
plots and max-plots)

. Test of cultivar-specific models, by leave-one-trial-out
cross-validation

. Test of models on Sentinel-2 data, by comparing pre-
dictions with CP values from grain samples collected
across five fields.

Materials and methods

Sites

The study area was Skåne (Scania) county in southern
Sweden (approx. 55–56°N, 12–14°E). Data were used
from five field trials, conducted at different locations.
Three of the trials were performed in 2019 (at Stora
Markie, Tommarp and Alnarp) and two in 2020 (at
Lund and Brantevik) (Figure 1). All field trials were part

of an ongoing national trial series (L7-0150, Nitrogen
demand of different winter wheat cultivars1). The
winter wheat cultivars grown were different between
years, and 10 different cultivars were tested in each
year. Each trial had six split N treatments (the latest
applied in Zadok’s development stage DC37). Total N
rates were: 0, 80, 140, 200, 260 and 320 kg N ha−1. The
trial was replicated four times. In total, one trial consisted
of 240 plots, of approximately 2 × 10 m in size (Figure 2).
The focus in this study was on winter wheat cultivars
intended for bread wheat, for which CP is critically
important. Six bread wheat cultivars were grown in the
field trials in 2019 and 2020 (cultivars: Etana, Hallfreda,
Julius, Linus, Praktik and RGT Reform). The data for the
satellite application were collected from five sites in
the same region (A-E in Figure 1).

UAV measurements

Data were collected with a UAV octocopter (Explorian-8,
Pitchup AB, Gothenburg, Sweden), equipped with a
MAIA-S2 multispectral camera (Eoptis Srl, Trento, Italy),
a global navigation satellite system (GNSS) unit and an
incoming light sensor (ILS). The MAIA-S2 sensor has
nine bands with centre wavelengths in the range 443–
865 nm (Table 1). These bands correspond to nine of
the bands in the Sentinel-2 satellite system (ESA, EU)
(Nocerino et al. 2017).

The UAV was flown autonomously (at 80 m height
and flight speed 5 m s−1), using a pre-planned flight
mission, in DC65-75, covering anthesis to medium milk
development stages. Details of the flights are summar-
ised in Table 2. The flights were mostly carried out
between 12:00 and 16:30 h local time, when the solar
incidence angle varied between about 40 and 55°.
Each flight took about 10 minutes, during a period
with uniform cloud conditions (clear sky or complete
overcast), no precipitation the day before the flight,
and not windier than a gentle breeze. At each trial site,
10 reflectance calibration panels (MosaicMill Oy,
Vantaa, Finland) measuring 50 cm × 50 cm were placed
on the ground (five along each end of the trial). These
panels had known near-lambertian reflectance charac-
teristics (2%, 9%, 23%, 44% and 75%) within the 400–
900 nm range of the electromagnetic spectrum.

The UAV images were collected with at least 80%
overlap both along and between flight lines. During a
flight, the UAV’s position was logged using GNSS and
the incoming light from the ILS was logged at each
photo point. Post-processing of images was performed
using Multicam Stitcher Pro 1.1 provided by the manu-
facturer of the MAIA-S2 sensor. This software corrects
for geometrical distortion and radial distortion of the
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raw images and stitches the images of each of the nine
bands into one multispectral image. The software also
incorporates data from the ILS to radiometrically cali-
brate the images. The output images had pixel size
of about 3 × 3 cm. Orthomosaics were created from
the output images using the web application Solvi
(https://solvi.ag; Solvi AB, Gothenburg, Sweden).
These were downloaded and further processed in
ArcGIS (ESRI Inc., Redlands, CA, USA). Using the reflec-
tance panels, a linear function was derived to empiri-
cally recalculate the digital numbers of the
orthomosaics to reflectance. The median reflectance
of each band and for each trial plot was calculated
(excluding a 0.2–0.3 m buffer zone along the plot

edges). Data on harvested yield (kg ha−1) and protein
content (CP in % of dry matter) were extracted for
each plot in the Nordic Field Trials System (NFTS;
https://nfts.dlbr.dk; Danish Technological Institute and
SEGES, Aarhus, Denmark). CP in this dataset was deter-
mined by FOSS Infratec1241 NIT equipment (FOSS,
Hillerød, Denmark). These data were combined with
the UAV data for the statistical modelling and analyses.

Statistical analyses and modelling

An initial screening process revealed potential problems
with the data from the flight at Alnarp. In this particular
field trial there was an unusually large amount of soil

Figure 1. Field trial locations in Skåne (Scania) County, Sweden, and locations where satellite data were collected. Numbers (A-E)
indicate locations of winter wheat field trials where trial-data were collected for testing crude protein (CP) prediction models
using satellite data.
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nitrogen available (the zero-plot yield was about 10
tonnes ha−1) which made treatments in this trial similar
and not representative for Swedish conditions, therefore
this trial was excluded from analysis. In addition, two
plots in the Brantevik trial and 14 plots in the Lund trial
were excluded, due to missing data in the NFTS.

Plots where the applied N rate was >0 kg N ha−1 and
<320 kg ha−1 were selected for model calibration and
validation. The plots with 0 kg N ha−1 and 320 kg N

ha−1 were denoted as zero-plots and max-plots, respect-
ively and were not used in general modelling. A remote
sensing-based vegetation index from these plots was
introduced as a predictor. Reflectance values of
different replicates (blocks) were averaged. The initial
dataset contained 1184 records, and cleaning, treatment
subsetting and block aggregation resulted in 96 records
for building predictive models.

The correlations among and between predictors and
CP content were explored using the Spearman

Figure 2. A field trial orthomosaic example from the unmanned aerial vehicle (UAV) sensor in Brantevik, on sensing date June 18,
2020. The different nitrogen (N) treatments are displayed in the trial blocks.

Table 2. Crop development stage, date, time and weather on
the day of the unpiloted aerial vehicle (UAV) flights.

Trial

UAV flight
date (yyyy-
mm-dd)

Crop
development

stage

Local flight
time (hh:
mm) Weather

Alnarp 2019-06-22 DC75 16:00-16:10 Clear sky
Stora
Markie

2019-06-22 DC75 13:50-14.00 Clear sky

Tommarp 2019-06-23 DC71 11:55-12:05 Slight
haze

Brantevik 2020-06-18 DC69 14:15-14:25 Overcast
Lund 2020-06-18 DC69 16:30-16:40 Overcast

Table 1. Band specifications of the MAIA-S2 camera used in this
study. NIR = near infrared.
MAIA-
S2
sensor

Centre
wavelength

(nm)

Width of
band
(nm) Band name

Corresponding band
in Sentinel-2
constellation

S1 443 20 Violet Band 1
S2 490 65 Blue Band 2
S3 560 35 Green Band 3
S4 665 30 Red Band 4
S5 705 15 Red Edge 1 Band 5
S6 740 15 Red Edge 2 Band 6
S7 783 20 NIR 1 Band 7
S8 842 115 NIR 2 Band 8
S9 865 20 NIR 3 Band 8A
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correlation coefficient (r). The statistical procedures
linear regression modelling (as explained in Hastie
et al. 2009) and multivariate adaptive regression
splines (MARS, Friedman 1991) were used in this study
for building predictive models. Linear regression is a
simple statistical procedure of fitting a linear model
with one, or more (if multiple linear regression), predic-
tor variables. MARS is a more flexible, non-parametric
regression method which can predict using non-linear
relationships with multiple predictors.

Vegetation indices

Seven vegetation indices (VIs) were calculated from the
reflectance values in the different bands in the electro-
magnetic spectrum (Table 3). These were: (i) Optimised
soil-adjusted vegetation index (OSAVI) (Huete 1988;
Rondeaux et al. 1996), which was developed in an
effort to minimise soil brightness influence by use of
red and near-infrared (NIR) wavelengths. (ii) Red-edge
inflection point (REIP), the computed wavelength
where the crop canopy reflectance spectrum has its
inflection point in the red-edge wavelength region,
which is strongly related to chlorophyll content
(Reusch 1997). A method to approximate this point pre-
sented by Guyot et al. (1988) was used in this study. (iii)
Transformed chlorophyll absorption in reflectance index
(TCARI) (Kim et al. 1994; Haboudane et al. 2002), which is
one of several ‘CARI’ indices and indicates the relative
abundance of chlorophyll. (iv) TC/OS, a ratio introduced

by Haboudane et al. (2002) that is very sensitive to chlor-
ophyll content variations and to variations in leaf area
index (LAI: defined as half the total area of green
elements of the canopy per unit horizontal ground
area). This index is not sensitive to altitude. TC/OS has
been found to show good results for protein predictions
in malting barley (Pettersson et al. 2006). (v) Chlorophyll
index (CI) (Gitelson et al. 2003), is another relevant
simple ratio index. (vi). Normalised difference vegetation
index (NDVI) (Rouse et al. 1974), is a very common NIR-
visible-based ratio calculation introduced by Rouse
et al. (1974). (vii) Normalised difference red-edge index
(NDRE) (Barnes et al. 2000) is calculated in a similar
manner to NDVI and includes a red-edge band instead
of a red band, making it less sensitive to saturation if
biomass is high compared with NDVI.

The equations in Table 3 show how these VIs were
calculated, with reflectance (ρ) followed by the MAIA-
S2 band number.

Modelling strategies

The eight modelling strategies tested (Table 4) were
combinations of two different model types, linear
regression (a) and MARS modelling (b), and four
different predictor sets (1–4). Linear regression models
were based on a VI highly correlated with CP content,
and MARS models were based on all seven VIs in Table
3. In some strategies, in addition to the VIs, the CI
values in the zero-plots (denoted CI-zero) and/or the
max-plots (denoted CI-max) were included as predictors.
The index CI was pre-selected since this index was found
to have the highest correlation with protein in this
dataset. Irrespective of model type, the predicted
values were constrained within reasonable limits. Pre-
dicted CP values below 8% were set to 8% and predicted
CP values higher than 13.5% were set to 13.5%.

Table 3. The seven vegetation indices used in this study, with
equations and references. Reflectance is expressed in spectral
bands (ρ).
Index Full name Equation References

OSAVI Optimised soil-
adjusted
vegetation
index

1 + 0.16
r7− r4

(r7+ r4) + 0.16
Huete 1988;
Rondeaux
et al. 1996

REIP Red-edge
inflexion
point

700 + 40

r4− r7
2− r5
r6− r5

Guyot et al.
1988

TCARI Transformed
chlorophyll
absorption in
reflectance
index

3(r5− r4)− 0.2(r5− r3)
r5
r4

Kim et al.
1994;
Haboudane
et al. 2002

TC/OS Ratio
calculation

tcari
osavi

Haboudane
et al. 2002

CI Chlorophyll
index

r7
r6

− 1 Gitelson et al.
2003

NDVI Normalised
difference
vegetation
index

r8− r4
r8+ r4

Rouse et al.
1974

NDRE75 Normalised
difference
red-edge
index

r7− r5
r7+ r5

Barnes et al.
2000

Table 4. The eight different modelling strategies with different
model types and predictor sets tested in this study.
Strategy Predictors Model type Validation

1a Best single VI LR LTO + field test
2a Best single VI + CI-zero MLR LTO
3a Best single VI + CI-max MLR LTO
4a Best single VI + CI-zero + CI-max MLR LTO
1b All seven VIs MARS LTO + field test
2b All seven VIs + CI-zero MARS LTO
3b All seven VIs + CI-max MARS LTO
4b All seven VIs + CI-zero + CI-max MARS LTO

All models were evaluated by leave-one-trial-out cross-validation (LTO). Two
strategies were also evaluated by comparison with independent crude
protein (CP) observations in five production fields. VI, vegetation index;
LR, linear regression; MLR, multiple linear regression; MARS, multivariate
adaptive regression splines. CI-zero, chlorophyll index in zero-plot; CI-
max, chlorophyll index in max-plot.
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Model cross-validation

To assess the prediction accuracy when applying a mod-
elling strategy to new sites, leave-one-trial-out (LTO)
cross-validation was performed. Records were repeat-
edly split into ‘test data’ (the record(s) for which a predic-
tion was made) and ‘training data’ (the records used to
parameterise the model). With each iteration, all data
from one trial were assigned to the test set and the
remaining records were assigned to the training set.

To determine prediction accuracy, two validation
measures (mean absolute error, coefficient of determi-
nation) were calculated from the measured and predicted
N-uptake values.Mean absolute error (MAE) is the average
of the absolute prediction errors. Coefficient of determi-
nation (R2) quantifies the prediction goodness-of-fit.

Model parameterisation

After LTO cross-validation, the final models were para-
meterised for each of the eight strategies using all
data (no trials left out). In linear regression models (1a-
4a in Table 4), all predictors obtained were included in
the final model, however in the parameterisation of
MARS model predictors with a little predictive power
were discarded. Therefore, the final model may not
include all predictors. Modelling was also carried out
separately for each specific cultivar in the dataset. The
cultivar-specific models were validated for the best-per-
forming strategies in the general models.

Model field application

Model application was tested for general models from
strategies 1a and 1b (Table 4) using satellite data for
five winter wheat fields in Skåne county (locations A-E
in Figure 1). These models were implemented on satel-
lite data, Sentinel-2, L2A processing type, from June
25, 2020 (the cloud-free image expected to most
closely correspond to DC 69-75). Field data were col-
lected just before harvest in the year 2020. On each
sampling location, one sample consisted of seven sub-
samples (for sampling stability), covering an area of
approximately 3 × 3 m. There were eight samples
obtained on each field. A total of 34 records remained
after removal of sample points with incorrect location
references, or those collected very close to field
boundaries.

Software

The data were stored in a SQLserver database (Microsoft,
Redmond, Washington, USA) accessed via SQL Server

Management Studio (Microsoft, Redmond, Washington,
USA) and analyses were carried out using R (R Core
Team, 2021), including package ‘Earth’ (Milborrow
2021). ArcGIS 10.7 (Esri Inc., Redlands, California, USA)
was used for spatial data analysis and display.

Results

In most compiled predictor sets, there were strong cor-
relations between variables (Figure 3). For example,
NDRE75 proved to be highly correlated with three
other VIs, CI, TCOS and REIP. The VIs TCARI and TCOS
were also very highly correlated, while TCARI and
OSAVI showed very low correlation. All except two pre-
dictor pairs r was above 0.5. For the indices, the Spear-
man correlation ranged between −0.90 and 0.96.
Wolters et al. (2021) have shown a good relationship
with reflectance calculated to CI and N-uptake. In this
study, the CI index also had the best correlation with
grain CP (r = 0.87) content and was selected as the
index to use in linear models.

Performance of general models

A summary of the results from LTO cross-validation for
the six different bread wheat varieties is given in Table
5. Using the linear regression method and the best-per-
forming index (CI), R2 = 0.71 the MAE was 0.64% CP.
Inclusion of CI values from zero-plots reduced the accu-
racy of the model slightly, to R2 = 0.60 with MAE 0.71%
CP. The max-plot CI value (CI-max) did not influence
the prediction outcome substantially, R2 = 0.71, MAE =
0.64% CP. A model with both the zero-plots and the
max plot gave R2 = 0.60, MAE = 0.71% CP for the linear
method.

Leave-one-trial-out cross-validation with the MARS
method gave lower accuracy in the results. The number
of indices selected by the MARS method varied from
three to five. Using all seven indices at the start of the pro-
cedure resulted in a model with R2 = 0.50, MAE = 0.90%
CP. The VIs: CI, OSAVI, TCOS and REIP were selected in
this model. In the MARS method, the model was
improved with the introduction of zero-plot CI values
R2 = 0.63, MAE = 0.70% CP. The opposite was the case
when max-plots were used for modelling, R2 = 0.36,
MAE = 1.19% CP. The model performance improved
again when VI values for both zero-plots and max-plots
were introduced to the model R2 = 0.70, MAE = 0.60%
CP. In all models, for both methods, MAE was <1.20% CP.

Prediction results for all eight modelling strategies
summarised in Table 5 are also presented in Figure 4.
In two cases (1a, 3a), linear models were generally a
better fit than the predictions with MARS modelling
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and in two cases (2b, 4b) the MARS models performed
slightly better. In the prediction graphs for linear predic-
tions, there was less variation between sites than in the
MARS method graphs. For the site ‘Tommarp’, predicted
values were lower than observed in the first three
models (Figure 4).

Performance of cultivar-specific models

Results from LTO cross-validation of cultivar-specific
models for strategies 1a and 4b (the best-performing

strategies for general models for the two model
types, Figure 4) are summarised in Table 6. Using
the linear modelling method with CI (strategy 1a),
it was possible to parameterise well-performing
cultivar-specific models. Cultivar-specific linear
models performed better than general models. For
MARS models, more variation in the performance
of different cultivar-specific models was found
(Table 6). In both methods, the varieties ‘RGT
Reform’ and ‘Etana’ stood out as good-performing
varieties.

Satellite application

Model performance evaluation for a satellite dataset
on five fields (strategy 1a-b) showed that the linear
regression model based on one VI performed better
(higher R2) than the multivariate model based on
four VIs (Figure 5). However, it is clear from Figure 5
that the model mainly explained between-field vari-
ation in those cases. The CP variation within the
fields was small and could not be predicted well by
the model. In application of the linear model there
was a general prediction bias, with most predictions
being higher than the observed values.

Figure 3. Spearman correlation coefficient (r) for the different predictors and crude protein (CP) content.

Table 5. Validation results (leave-one-trial-out) of crude protein
(CP) content in wheat for the eight modelling strategies, using
two model types (linear (a), MARS (b)), and four different
combinations of predictor variables (1-4).

Strategy R2
MAE (%
CP) Predictors in final model

1a 0.714 0.64 CI
2a 0.602 0.71 CI, CI-zero
3a 0.710 0.64 CI, CI-max
4a 0.601 0.71 CI, CI-zero, CI-max
1b 0.504 0.90 CI, OSAVI, TCOS, REIP
2b 0.630 0.70 CI, CI-zero, OSAVI, TCOS
3b 0.363 1.19 CI, CI-max, OSAVI, TCOS, REIP
4b 0.703 0.60 CI, CI-zero, CI-max, NDRE75, REIP, TCARI,

OSAVI

Indices used are shown in Table 3. R2, goodness of fit; MAE, mean absolute
error.
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Discussion

Field trials and decision support systems

Field trials are important for agricultural research. From
a practical application perspective, it is advantageous if
results can quickly reach end-users, in the form of
advice and recommendations (Söderström et al.
2021). One part of the ongoing digitalisation of agricul-
ture is increasing use of digital DSSs in precision agri-
culture. Some of these systems are using remote

sensing multispectral data derived with satellites, or
less commonly, UAVs. It is important to develop
different types of relevant models that are
suitable for implementation in DSSs. Thus, the aim in
the present study was to develop a model for
protein prediction at harvest in winter wheat using
data from a UAV-borne sensor flown over a number
of field trials during two seasons and transfer
that model to a satellite data processing DSS and
test it on a few fields. This approach, moving from

Figure 4. Leave-one-trial-out cross-validation for the eight modelling strategies (see Table 5). Predicted crude protein (CP) percentage
vs. observed CP percentage.
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trials to DSS application, revealed opportunities and
challenges.

UAV data collection

Ideally, UAV data is collected in all field trials during the
same crop development stage, at the same time of day,
and under similar weather conditions (e.g. Souza de
et al. 2021). In reality this is not always feasible, especially
in a project with trial sites located far apart (Figure 1). We
aimed for a relatively narrow crop development window
(DC69-73; as suggested in earlier studies, e.g. Bastos et al.
2021; Börjesson and Söderström 2003; Prey and Schmid-
halter 2019;) however, in one of the trials used in the

modelling measurements were made at DC75. Note
also that the DC specified is the manually assessed
average DC of each trial, although there were some differ-
ences within each trial, both random and between var-
ieties and N rates. Since weather conditions were
different, the aim was at least for uniform weather con-
ditions where possible during individual flights, although
three different types of weather were encountered during
the flights: overcast, sunny and hazy (Table 2).

Trial design

The purpose of the trial design (Figure 2 & Table 2), was
to test the response of different wheat varieties to
different N rates. This means that the trials were, when
possible, located in places where the crop variation
was only driven by the treatment (i.e. different N rates
and cultivars). In farmers’ fields, this of course rarely is
the case (Colaço and Bramley 2018). Conventional plot
experiments are likely not the ideal method to evaluate
variable rate technologies implemented to accommo-
date the effects of spatial variability in CP. Other
factors may limit crop growth to different extents in
different parts of a field, such as availability of other
soil nutrients or water. A difficulty with the use of reflec-
tance data is that the causes of variation in reflectance
from the crop are usually not known. Studies separating
e.g. water status from N status may provide valuable
context in this case (Reese et al. 2010; Kusnierek and Kor-
saeth 2015).

Table 6. Validation statistics from leave-one-trial-out cross-
validation of linear or multiple linear regression models based
on the best single index for strategy 1a (see Table 4) and
Multivariate Adapted Regression Splines (MARS) prediction
results for strategy 4b.
Strategy Cultivar R2 MAE (% CP)

1a Etana 0.86 0.41
1a Hallfreda 0.70 0.69
1a Julius 0.81 0.64
1a Linus 0.79 0.60
1a Praktik 0.80 0.50
1a RGT Reform 0.87 0.40
4b Etana 0.75 0.48
4b Hallfreda 0.33 1.00
4b Julius 0.70 0.69
4b Linus 0.71 0.69
4b Praktik 0.65 0.56
4b RGT Reform 0.84 0.46

R2, goodness of fit; MAE, mean absolute error; CP, crude protein content.

Figure 5. Predicted crude protein (CP) values versus observed CP values when the best-performing (left) linear model (strategy 1a)
and (right) multivariate adaptive regression splines (MARS) model (strategy 1b) (see Table 4) as applied on Sentinel-2 data from the
five test fields (locations A-E in Figure 1).
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Protein prediction models

Even with the well-known relationship between CP and
N rate (Terman et al. 1969; Hamnér et al. 2017; Sieling
and Kage 2021), it is challenging to model protein
content in field crops (Colaço and Bramley 2018), even
when distinct fertilisation steps are present in the
dataset (Pettersson et al. 2006). In this study we did
not find benefit in using a more complex CP prediction
model (MARS model based on multiple indices including
zero-plots and max-plots) (R2= 0.70; MAE = 0.60% CP)
over using the best linear model (based on one veg-
etation index, CI) (R2= 0.71; MAE = 0.64% CP). It
appeared that the ML model did not optimise with this
small dataset, and the independent validation. Given
that it can be difficult to compare validation statistics
between different studies, these models seem to
perform relatively well compared to a statistical
summary of reported research in this field (Bastos et al.
2021). In terms of best-performing index (CI), our study
is in line with earlier work (e.g. Reusch 2005; Prey and
Schmidhalter 2019) which indicates that an index
based on two bands in the NIR-red-edge region is
better correlated to N concentration and N-uptake
than commonly used indices, such as NDVI and
MSAVI2. There were in general small or no improve-
ments in model performance when zero-plots and/or
max-plots were included as predictors in the models
(Table 5). In practical agricultural production in
Sweden, the use of zero-plots and max-plots as a
means of improving supplementary N fertilisation rate
at DC37-45 in winter wheat appears to be increasing
(Hushållningssällskapet 2021). However, data collection
was done here at a considerably later stage, when the
benefit of zero-plots and max-plots for protein predic-
tion models may be limited. . There was much variation
in the model accuracy between the different models
including these predictors, and there was no proven
benefit in preparing zero-plots and max-plots for this
type of CP prediction.

The linear cultivar-specific protein prediction
models worked better than the general model
(Tables 5 and 6). The LTO validation statistics
showed good performance, with the best variety
being RGT Reform (R2 = 0.87; MAE = 0.40% CP). When
modelling was performed for each variety individu-
ally, the MARS model performed less well, possibly
due to the relatively small number of observations
used for calibration. When the MARS method was
used, the variety ‘RGT Reform’ again performed best
(R2 = 0.84; MAE = 0.46% CP). With a more extensive
dataset, the results would likely have been more
clear. The response to N varies between cultivars

(Fowler 2003). Some cultivars tend to be both high-
yielding and at the same time have high CP
content, whereas others can be high-yielding but
the CP content will be lower. The yield-CP interaction
differs among the cultivars tested in this study. For
example, the cultivar Etana is a high-yielding high-
protein cultivar, and in comparison the cultivar Hall-
freda tends to have lower CP at the same yield,
whereas the cultivar Praktik has a lower yield at the
same CP (Hammarstedt 2021). This interaction is
likely important when using canopy reflectance for
modelling CP, and modelling yield variation is often
easier than modelling CP (e.g. Barmeier et al. 2017).

Transfer of UAV data to satellite data

A question raised in the section on model field appli-
cation, is whether it is possible to transfer models
between platforms. Application of the UAV-based
models on Sentinel-2 satellite data revealed that trans-
fer of the model resulted in a low prediction accuracy
and bias in the predictions. We used a UAV-borne
sensor (MAIA-S2), which sensed bands with similar
spectral characteristics as the intended satellite to be
used in a DSS (Sentinel-2), however there are likely
still discrepancies between the acquired reflectance
values from the two sensing systems (shown in e.g.
Bukowiecki et al. 2021; Peng et al., 2021; Rasmussen
et al. 2021; Sarvia et al. 2021). Panels with known reflec-
tance properties were used in the field trials and the
digital numbers were calculated using an empirical
relationship derived in each trial. Here we applied the
protein prediction models on Sentinel-2 L2A data,
which presumes that data from the two platforms are
comparable. The prediction accuracy was not good
when the models were applied, which indicates that
the comparability in the field of data from MAIA-S2
and Sentinel-2 requires further investigation (Figure
5). An issue with applying models in satellite based
DSS is that images from suitable dates (the growth
stages for which the model was parameterised) must
be available. The protein prediction model in this
study was developed based on data collected at crop
development stages DC69-75, a relatively large DC
range, however a satellite image was not always avail-
able for that period. If the model is to be applied over
large areas and the crop growth stages in individual
fields are not known, the model performance may be
limited. Earlier research suggested that spectral
models during anthesis could be affected by large phe-
nological shifts during that period, and that the most
stable relationships between N concentration and
canopy reflectance could be found during milk-
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ripening stage (DC73; Prey and Schmidhalter 2019). In
this case, the DC was not recorded in the fields. The
Swedish Board of Agriculture has a website where
weekly recordings of DC are reported (https://etjanst.
sjv.se/povpub-gui/#/karta?produktionsinriktning=
jordbruk, accessed March 10, 2022), and by following
information from this page we noticed it is possible
that in part of south-western Sweden the DC in winter
wheat on June 25, 2020 was slightly higher than DC75.

Validation of the performance of a satellite-based
model requires carefulness (e.g. Bastos et al. 2021). Col-
lecting ground truth protein data in a growing wheat
crop is difficult if the data are to be comparable to
values sensed by a satellite such as Sentinel-2. The Sen-
tinel-2 pixels are 400 m2 (20 × 20 m) for the bands used
in the best-performing models. Ground truth data in
the field were subsamples collected within about 3 ×
3 m areas. In this case, the sampling locations were
not positioned according the outline of the pixels of
the Sentinel-2 data. Even if this had been done,
minor shifts in the georeferencing of the satellite
image, practicalities during field work, and accuracy
of positioning of the grain sampling location, still
make it difficult to match a sample with a satellite
image pixel. The sampling procedure is usually challen-
ging and will inevitably have induced uncertainty in
the results. In future research, the procedure of collect-
ing ground truth data with modification will better
match to the satellite data. The results reported in
Figure 5 should be interpreted with the issues
described above in mind. There appears to be some
bias in the predictions (see linear model application
in Figure 5), with the model over-predicting the
protein content compared with the ground obser-
vations. If all observations are regarded collectively,
the model made a poor prediction on the satellite
dataset (R2= 0.36) and the within-field variation was
not captured by the model. There was no field check
done on the crop development stage for the
different fields, and therefore the satellite data was
selected from regional general information on reported
crop growth stages in winter wheat, which will differ
between fields. The simpler linear model performed
better than the more flexible MARS model.

The modelling results of the different methods pre-
sented here add to the general knowledge base on CP
estimation and protein models will maybe be applicable
in a DSS in the future, when a different approach has
been tested. Predicting and mapping the variation of
protein content in grain crops remains a challenge, as
also reported by Bastos et al. (2021). Further work on
finding functional methods using proximal and remote
sensing is recommended.

Note

1. The trial series forms part of Sverigeförsöken. It was con-
ducted by Hushållningssällskapet and funded by Stiftel-
sen lantbruksforskning. Agronomic data from the trials
are publicly available in the Nordic Field Trials System
(NFTS; https://nfts.dlbr.dk; The Danish Technological
Institute and SEGES, Aarhus, Denmark). More method
details on the trials are also available in this database.
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