
Plain Language Summary
Two sources walk into a model together
Who may or may not have previously met
They dictate an output, one with the other
But maybe those outputs are somewhat set.

By “set” we mean that the sources’ relation
Really determines the possible states,
Or ways that the sources can give information
To the output that they create.

We consider some cases, just for practice
From binary, math, and ecohydrology samples
We find patterns along the source relationship axis
With these simple to complex examples.

If you have a model and think that it’s hot
This source dependency framework could show
How your model listens (or maybe does not)
To sources it could possibly know

So models and sources are jointly to blame
For missing observed information flow,
But this little poem is admittedly lame,
And you should just read the paper below.

Abstract In a complex ecohydrologic system, vegetation and soil variables combine to dictate heat fluxes, 
and these fluxes may vary depending on the extent to which drivers are linearly or nonlinearly interrelated. 
From a modeling and causality perspective, uncertainty, sensitivity, and performance measures all relate to how 
information from different sources “flows” through a model to produce a target, or output. We address how model 
structure, broadly defined as a mapping from inputs to an output, combines with source dependencies to produce 
a range of information flow pathways from sources to a target. We apply information decomposition, which 
partitions reductions in uncertainty into synergistic, redundant, and unique information types, to a range of model 
cases. Toy models show that model structure and source dependencies both restrict the types of interactions that 
can arise between sources and targets. Regressions based on weather data illustrate how different model structures 
vary in their sensitivity to source dependencies, thus affecting predictive and functional performance. Finally, we 
compare the Surface Flux Equilibrium theory, a land-surface model, and neural networks in estimating the Bowen 
ratio and find that models trade off information types particularly when sources have the highest and lowest 
dependencies. Overall, this study extends an information theory-based model evaluation framework to incorporate 
the influence of source dependency on information pathways. This could be applied to explore behavioral ranges 
for both machine learning and process-based models, and guide model development by highlighting model 
deficiencies based on information flow pathways that would not be apparent based on existing measures.
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1. Introduction
The detection of causal interactions is relevant to both understand and model complex ecohydrologic systems. 
From an observational standpoint, forcing and feedback interactions can explain different ecosystem reac-
tions to perturbations (Goodwell et al., 2018), characterize pairwise dependencies of different strengths and 
timescales (Ruddell & Kumar, 2009; Sendrowski et al., 2018), or untangle dynamics of large-scale complex 
systems (Runge et  al., 2019). The land-atmosphere interface, watersheds, or the canopy-root-soil contin-
uum are generally non-interventional systems, in that it is impossible or difficult to perturb these types of 
systems and isolate a response. Instead, the notion of causality must be derived from statistical methods 
rather than experiments (van Leeuwen et al., 2021). From a modeling perspective, interventions to explore 
causal interactions can involve manipulating model structures, parameters, or inputs and observing model 
behavior. Beyond exploring the impact of these modeled interventions on predictions of the target variable, 
they must also be explored in the context of dependencies between inputs or source variables in complex 
environmental systems. On one hand, we can leverage relationships that emerge at larger spatial or temporal 
scales to develop parsimonious ecohydrological models. On the other hand, we need to diagnose the impact 
of dependencies between variables on model behavior to ensure that our understanding and predictions are 
robust in unseen conditions.

Measuring casual associations between model inputs, outputs, and observed data can be used to assess the 
“functional performance” of a model (Bassiouni & Vico, 2021; Ruddell et al., 2019), or the model’s representa-
tion of interactions relative to observations. This aspect of model evaluation addresses the question of getting 
the “right answers for the right reasons” (Kirchner, 2006), and can complement or contrast with “predictive 
performance” measures that compare observations directly to model outputs. For example, an ecohydrologic 
model that overestimates soil water evaporation but underestimates canopy transpiration may have high predic-
tive performance regarding the total evapotranspiration, but we would find poor predictive performance when 
we consider canopy transpiration as the target variable. This mismatch ultimately limits our ability to improve 
understanding of water-vegetation interactions. Misrepresentation of processes within the model would also 
become clear with a functional performance measure. A model with high predictive performance but low 
functional performance may be more likely to break down under previously unseen input or forcing conditions. 
Meanwhile, a model with both high predictive and functional performance is a more robust tool for scientific 
inquiry.

In both modeling and observational frameworks, causal interactions can occur between multiple sets of sources 
and targets, rather than only pairwise between a single source and target pair. A simple example is a model 
in which the target, or output, is the sum of two die rolls. While the knowledge of an individual die provides 
partial information about the sum, the knowledge of both sources together is needed to completely reduce the 
uncertainty about the sum. This paper focuses on these multivariate source-target causal interactions in the 
context of how models use information from source variables that may have varying interdependencies. These 
source dependencies could be linear correlations, or nonlinear, threshold-based, system state-dependent, or 
other types of dependencies. This addresses an aspect of the combination of process parameterization equa-
tions (Gharari et al., 2021) with input certainty hypotheses. When forcing is applied to a model with a given 
process parameterization, the full relevant, or physically possible, functional range of that model may not be 
accessed with the provided forcing data, leading to an incomplete view of how the model can use available 
information.

We use information theory-based measures to characterize “information flow” from multiple source variables to 
a single target variable. Information theory is based on Shannon Entropy (Shannon, 1948), a measure of uncer-
tainty of a random variable. Mutual information is the reduction in uncertainty of one variable given another, 
and can characterize information flows between sources and targets. A suite of information theory techniques 
based on mutual information provides pathways to causal analysis at different levels (Goodwell et al., 2020). For 
example, transfer entropy (Schreiber, 2000) is a measure of conditional mutual information and has been used 
to characterize Granger, or non-interventional, causality in observations and models. In hydrologic modeling 
research, it has been used to validate and diagnose missing process connections in a delta model (Sendrowski 
et  al.,  2018), evaluate a multi-hypothesis ecohydrological modeling framework (Bennett et  al.,  2019), select 
time aggregations and lags toward machine learning applications (Tennant et al., 2020), and finally character-
ize the functional performance of a multilayer canopy model (Ruddell et al., 2019). Transfer entropy has also 
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been applied to study ecohydrological and climate systems as process networks of pairwise connections between 
observed variables (Ruddell & Kumar, 2009; Ruddell et al., 2016; Sendrowski & Passalacqua, 2017). However, 
a transfer entropy-based analysis only highlights pairwise causal connections and does not address the feature of 
joint or simultaneous forcing from multiple sources.

Meanwhile, information decomposition (Williams & Beer, 2010) quantifies causal interactions in which two 
sources jointly provide information to a target variable, which could be an observation or a model output. In 
this framework, the total information provided to a target by the two sources is partitioned into four compo-
nents: redundancy, or overlapping information that both sources provide individually, synergy, which is joint 
information that is only obtained from the knowledge of both sources together, and two unique components, 
which is information only provided by a particular source. These information components reveal different 
aspects of the source-target relationship in observations or model frameworks. In viewing the system in terms 
of these four information components, we can look more deeply into the nature of model functional behaviors 
(Bassiouni & Vico,  2021). Understanding the structure of model errors in terms of how information flow 
is partitioned can provide important insights into the extent to which and why certain model structures are 
more or less desirable or robust in terms of performance. For example, different arithmetic operations and 
the parameters that weigh the influence of input variables in commonly used ecohydrological equations can 
produce varying information types (redundant, synergistic, and unique). A more comprehensive quantification 
of these effects and how they may vary with source dependencies can further improve our understanding of 
model functional behavior.

We consider model structure as a mapping from input variables to an output, which is dictated by the parameters 
and formulas within the model that are relevant to a particular input-output combination. Here, we use the term 
“source” to refer to any variable that may influence a “target”, or a variable of interest. Sources and targets tend 
to correspond to model inputs and outputs but could more generally involve variables that are not considered in 
a particular model. The source dependency, or the connectivity between two sources, is characterized as shared 
information between the sources. For example, highly correlated sources have a high source dependency, and 
completely independent sources have a source dependency that approaches zero. Both model structure and source 
dependencies can influence how information from inputs flows through the model to produce an output. As a 
simple illustration, consider an observation Z that is forced by a single source X within some range of system 
states. Within a different range of system states, Z is forced by both X and another source, Y, together. If a simpli-
fied model simulates Z as only a function of X, the amount of “missing” information about Z somewhat depends 
the relationship between the sources, X and Y. If these are perfectly correlated copies, the model will accurately 
predict Z even though it does not properly account for Y as a source. However, if X and Y are independent, the 
model cannot incorporate the additional information that Y could have provided.

In some cases, source dependencies could reflect multicollinearities that are known to increase errors in parameter 
estimates, especially in linear regression models, and fitting robust model coefficients requires selecting more adequate 
model structures (Bassiouni et al., 2016). Source dependencies in terms of their mutual information, however, go 
beyond multicollinearities and incorporate other, particularly nonlinear, ways in which sources can provide informa-
tion jointly to a modeled or observed target. We also consider sources as generically applicable to a wide range of 
model frameworks, beyond linear regressions, such as logical operations, process-based models, and machine learning 
models, which may or may not typically account for the issue of multicollinearity. In a process-based model where 
the sources are physically meaningful time-series variables, it is not typical to evaluate effects of multicollinearity, 
or any type of source dependency, during model development. On the contrary, dependencies between variables are 
often leveraged to represent unobserved processes empirically. For example, remote sensing algorithms for evapo-
transpiration leverage the relation between atmospheric relative humidity and surface conductance to water vapor to 
down-regulate potential evaporation in water-limited conditions (Baldocchi et al., 2022; Fisher et al., 2020). Equilib-
rium assumptions under which surface and atmospheric states are coupled at daily timescales are also used to success-
fully estimate evapotranspiration from standard weather station data (McColl et al., 2019; Rigden & Salvucci, 2015). 
Evaluating these assumptions along the axis of source dependencies is therefore critical to understand the conditions for 
which these generalized relations can be employed and select among alternative parameterizations.

Here, we use information decomposition to study how both model structure and source dependencies inherently restrict 
the ways in which a set of sources can provide information about a target, either relative to a different model or the natu-
ral system dynamics. In other words, we explore the influence of both model structure and source dependency on the 
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causal interactions, or joint dependencies, between sources and targets—a dimension of model functional performance 
that has yet remained unexplored by previous contributions (Bassiouni & Vico, 2021; Ruddell et al., 2019). Specifi-
cally, we hypothesize that source dependency, which can be linear or nonlinear, provides a relevant basis with which 
to compare between different model types and between different forcing scenarios for a single model. With a series of 
simple synthetic models and ecohydrologic and weather examples, we address the following questions:

•  How does the influence of source dependency on information flows change based on a given model structure? 
In other words, we explore the implications of model functional form on the ways in which a pair of sources 
can possibly inform a target. This addresses the “functional range” in terms of the possible causal associations 
that can be observed given source variables with different dependencies between them.

•  To what extent are models able to reproduce different types of interactions that we observe from data, given a 
certain source dependency range? In other words, we explore whether the modeled information flows and the 
influence on source dependency on these flows match observations. This addresses the functional performance of 
a model relative to the range of observed types of causal interactions that occur under different forcing conditions.

This paper is organized as follows: We present the information theory-based methods and case study setups in 
Section 2 (Figure 1). In Section 3, we discuss information partitioning results for synthetic binary models. In 

Figure 1. Illustration of model cases, where we show how different source distributions along with model structures dictate model behavior or information flows 
within a model. (a) Synthetic models based on source distributions and model mappings, (b) time series generated with simple mathematical equations, (c) regressions 
on air temperature (Ta) and wind speed (WS) to estimate relative humidity (RH), and (d) a comparison between simple (SFE) and more complex models (SUMMA 
variants) to estimate the Bowen ratio (b) from flux tower data.
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Section 4, we discuss information partitioning for several simple two-source models based on arithmetic opera-
tions forced with generated time series data. In Section 5, we discuss a suite of models trained on a weather station 
data set to predict relative humidity given air temperature and wind speed at fast timescales. In Section 6, we 
compare flux tower observations of the Bowen ratio (B) to simple versus more complex ecohydrologic models. 
Section 7 provides a discussion, and Section 8 is a conclusion.

2. Methods
2.1. Source Dependency and Information Partitioning Measures

Information theory is based on Shannon Entropy, H(X) = −∑ip(xi) log2p(xi) (bits), where the summation is over-
all possible states xi. H(X) is a measure of uncertainty of a discrete random variable X, or the missing information 
that would lead to its full predictability. In this paper, we focus on reductions in uncertainty, or gains in informa-
tion, in the form of mutual information between two or more variables.

We define source dependency between two sources, X and Y, as the mutual information between them, as follows:

𝐼𝐼(𝑋𝑋; 𝑌𝑌 ) =
∑

𝑝𝑝(𝑥𝑥𝑥 𝑥𝑥)log2

(

𝑝𝑝(𝑥𝑥𝑥 𝑥𝑥)

𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑥𝑥)

)

𝑥 (1)

where the summation is overall possible states of X = x and Y = y. This has units of bits and a maximum bound 
of log2(N), where N is the number of bins used to estimate the pdfs. It is upper bounded by the minimum of the 
source entropies (H(X) and H(Y)). Here, we use I(X; Y) to categorize different observed or synthetic data samples 
into different ranges of source dependency.

To determine information flow pathways in observations and models, we are concerned with the total information 
that two sources, X and Y, provide to a target variable Z:

𝐼𝐼(𝑋𝑋𝑋 𝑋𝑋 ;𝑍𝑍) =
∑

𝑝𝑝(𝑥𝑥𝑋 𝑥𝑥𝑋 𝑥𝑥)log2

(

𝑝𝑝(𝑥𝑥𝑋 𝑥𝑥𝑋 𝑥𝑥)

𝑝𝑝(𝑥𝑥𝑋 𝑥𝑥)𝑝𝑝(𝑥𝑥)

)

. (2)

In an information decomposition (Williams & Beer, 2010), this quantity can be partitioned into four components 
as follows:

𝐼𝐼(𝑋𝑋𝑋 𝑋𝑋 ;𝑍𝑍) = 𝑆𝑆𝑋𝑋𝑋𝑋𝑋 +𝑅𝑅𝑋𝑋𝑋𝑋𝑋 + 𝑈𝑈𝑋𝑋|𝑋𝑋 + 𝑈𝑈𝑋𝑋 |𝑋𝑋. (3)

In the above equation, RX,Y is redundant information, or information that both sources provide in overlap, and 
SX,Y is synergistic information, or information that is provided only when both sources are known together. UX|Y 
and UY|X terms indicate unique information, which is provided individually by one source when considered along 
with a particular second source. This partitioning of information can be placed in the context of other information 
theory measures. For example, mutual information is composed of one unique component and one redundant 
component of information, that is, I(X; Z) = UX|Y + RX,Y. Conditional mutual information, which includes transfer 
entropy as a special case, contains a unique and a synergistic component, that is, I(X; Z|Y) = UX|Y + SX,Y. Finally, 
the interaction information, which is symmetric between all three variables, is equivalent to SX,Y − RX,Y, such that 
a positive or negative interaction information indicates whether synergy or redundancy is dominant. To simplify 
notation hereafter, we omit subscripts such that SX,Y = S and RX,Y = R given a particular definition of sources and 
target. We similarly simplify unique information components to UX|Y = UX and UY|X = UY.

While information decomposition is an intuitively useful concept, information theory does not provide an equation 
to directly perform this partitioning into the four information components. Several methods have been proposed 
to compute redundancy, synergy, or uniqueness, and one proposed redundancy measure (Barrett, 2015; Williams 
& Beer,  2010) defines redundancy as the mutual information that the weakest source provides to the target, 
forcing one unique component to equal zero. However, this is actually a maximum bound for redundancy, and 
we apply a “rescaled” redundancy measure (Goodwell & Kumar, 2017) in which redundancy is scaled between 
minimum and maximum bounds that are defined by information theory. The maximum bound is the minimum 
mutual information that either source provides to the target, Rmax = min[I(X; Z), I(Y; Z)]. The minimum bound is 
zero for cases where the interaction information is positive, or S − R > 0, that is, I(X, Y; Z) > I(X; Z) + I(Y; Z). 
Otherwise, if S − R < 0, the minimum bound for redundancy is the negative interaction information, in order for 
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synergy to be non-negative. This leads to a definition of the minimum R as Rmin = max[0, I(X; Z) + I(Y; Z) − I(X, 
Y; Z)]. We then scale redundancy between these bounds based on the normalized mutual information between the 
source variables, 𝐴𝐴 𝐴𝐴𝑠𝑠 =

𝐴𝐴(𝑋𝑋;𝑌𝑌 )

min[𝐻𝐻(𝑋𝑋),𝐻𝐻(𝑌𝑌 )]
 , as follows:

𝑅𝑅 = 𝑅𝑅min + 𝐼𝐼𝑠𝑠 (𝑅𝑅max −𝑅𝑅min) . (4)

In a linear context, this definition causes highly correlated sources to be maximally redundant with each other, 
while independent sources are minimally redundant. It has been noted that this scaling assumption may not 
always hold in cases where a threshold in behavior exists (Weijs et al., 2018), but we maintain this formulation 
for R in the absence of a redundancy measure with universally desirable properties. A definition for redundancy 
enables the direct computation of the other information decomposition components, Sx,y, Ux, and Uy. We normal-
ize components by dividing each by the total mutual information I(X, Y; Z). With this normalization, all informa-
tion components add up to 1, and a given component indicates the fraction of reduced uncertainty in Z that can 
be attributed to that information type. Several illustrative case studies of this information partitioning method 
can be found in (Goodwell & Kumar, 2017), including the addition of two die rolls, addition of two Gaussian 
random variables, and dependencies between weather variables. Here we expand upon these examples to explore 
the information decomposition of a wider range of model structures and specifically explore interactions given 
different source dependencies.

2.2. Model Performance Measures

We build upon previous metrics for model predictive and functional performance based on information theory 
(Bassiouni & Vico, 2021; Ruddell et al., 2019) by investigating the variability of these metrics along a source 
dependency axis (Equation 1). We define the predictive performance for a given model as follows, where Z is the 
observed target variable, Zmod is the modeled output, and I(Z; Zmod) is their mutual information:

𝐴𝐴𝑝𝑝 = 1 −
𝐼𝐼 (𝑍𝑍;𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚)

𝐻𝐻(𝑍𝑍)
 (5)

Ap represents the information about the observed target variable that is missing from the model output and ranges 
from 0, for a perfectly accurate model, to 1, if Zmod does not reduce any uncertainty in Z. In other words, Ap is actu-
ally a measure of “predictive mismatch”, and a low score is desirable. While mutual information is not an ideal 
measure of predictive performance since it excludes an aspect of predictive “reliability” (Weijs et al., 2010), here 
we use it as a simple metric that is comparable to measures of source dependency and functional performance 
measures as described further. Other information theory-based measures, such as the Kullback-Leibler diver-
gence, could be used to more fully evaluate predictive performance, but have the drawback that model predictions 
need to be in probabilistic form, which we do not consider here.

Functional performance is separated into different components related to information partitioning and total infor-
mation measures. We consider the difference in an information flow measure for modeled versus observed data as 
an indicator of functional performance. We first consider the breakdown of information into S, R, and U compo-
nents, where performance can be assessed as the relative difference between observed and modeled information 
flows as Af,S, 𝐴𝐴 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑋𝑋

 , 𝐴𝐴 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑌𝑌
 , and Af,R. For example:

𝐴𝐴𝑓𝑓𝑓𝑓𝑓 = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜. (6)

The same applies for R, UX, and UY information components, and a positive value indicates that the model over-
estimates a particular component. As with Ap, all Af measures represent a degree of “functional mismatch” in that 
values close to zero indicate similarities between models and observations. We define the overall “partitioning” 
functional performance as the sum of the absolute values of the four individual functional performance measures 
as follows:

𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = |𝐴𝐴𝑓𝑓𝑓𝑓𝑓 | + |𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑋𝑋
| + |𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑌𝑌

| + |𝐴𝐴𝑓𝑓𝑓𝑓𝑓| (7)

A low Af,Ipart indicates better model performance in terms of information partitioning components. This meas-
ure ranges from 0, for a model that exactly reproduces the information components as observed, to two, for a 
model that completely trades one type of information for another, or a combination of other information types. 
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For example, if the observed system shows that UX = 1 (all information is unique to X), but a model system 
estimates S = 1 (that all information is synergistic between the two sources), this leads to Af,S = 1, 𝐴𝐴 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑥𝑥

= −1 , 
and Af,Ipart = 2. We compare these functional and predictive performance metrics for the different regression and 
physically based models and for source dependencies between that range from weak to strong.

We also consider the total mutual information that the two sources, X and Y, provide to the measured versus 
modeled target:

𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑓𝑓 (𝑋𝑋𝑓 𝑋𝑋 ;𝑍𝑍𝑚𝑚𝑓𝑓𝑚𝑚)

𝐻𝐻 (𝑍𝑍𝑚𝑚𝑓𝑓𝑚𝑚)
−

𝑓𝑓(𝑋𝑋𝑓 𝑋𝑋 ;𝑍𝑍)

𝐻𝐻(𝑍𝑍)
 (8)

If Af,Itot > 0, this indicates that the model overestimates the strength of the information flow. This “overly deter-
ministic” case is typical, as found in (Ruddell et al., 2019) and (Bassiouni & Vico, 2021), and most models are 
expected to follow this pattern. Particularly for a simple model with only a few inputs, we expect those inputs 
to determine the modeled output relatively more strongly than those same variables influence an observation. 
However, we find that Af,Itot is not a reliable performance measure, as a more complex model that better replicates 
the relationships between sources and targets in terms of all other IT-based measures may have a relatively high 
Af,Itot. In other words, a model may be very overly deterministic but still capture relevant interaction types better 
than a more “stochastic” model. With this, it is possible to have an accurate Af,Itot at the expense of inaccurate 
partitioning of the individual information components (Bassiouni & Vico, 2021). Additionally, for a two-source 
model with no other noise, and assuming perfect estimation of the 3D pdf, the term 𝐴𝐴

𝐼𝐼(𝑋𝑋𝑋𝑋𝑋 ;𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚)
𝐻𝐻(𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚)

 is equal to 1, since 
X and Y are the only sources of information to Zmod. In this case, Af,Itot only reflects properties of the observed 
system.

2.3. Model Cases

We apply information decomposition to several models of increasing complexity to explore the implications of 
model structure and source dependency on modeled interactions. All synthetic model cases involve two sources, 
X and Y, and the knowledge of the two sources completely reduces uncertainty of the model target variable, Z 
(Figures 1a and 1b). In other words, we know that I(X, Y; Z) = H(Z) because only one or both of the two source 
variables are used as model inputs. The other two cases are based on observations from weather stations and eddy 
covariance flux towers (Figures 1c and 1d) and do not have this property because no two sources fully inform 
an observed target. In each case, we explore how different models forced by sources with different dependencies 
capture information components. Here we provide a more detailed description of these four categories of case 
studies.

2.3.1. Synthetic Binary Model Maps and Source Distributions

We first generate very simple models with binary inputs and outputs. These models are defined by creating a 
probability distribution p(x, y, z) directly. We generate a range of p(x, y) source distributions, and a range of model 
mappings that assign each (x, y) pair to a value of z, as follows for binary (N = 2) cases (Figure 1a):

•  We create a range of possible source distributions p(x, y). We iteratively set p(0, 0) to values between 0 and 
1, p(0, 1) to values between 0 and 1 − p(0, 0), p(1, 0) to values between 0 and 1 − p(0, 0) − p(0, 1), and p(1, 
1) = 1 − p(0, 0) − p(0, 1) − p(1, 0). This results in a number of source distributions that range from independ-
ent (e.g., all four p(x, y) terms are equal to 0.25) to highly dependent.

•  We create a range of “model maps”, (x, y) → z, in which each (x, y) combination is assigned to a particular 
value of z. Each model map corresponds to a logical operation performed on one or both sources (e.g., AND, 
OR, or XOR) with or without the NOT operation (¬) as a preprocessing step.

•  Each source distribution p(x, y) is paired with each model map (x, y) → z to obtain a p(x, y, z) for that source 
and model combination.

These synthetic “models” for which we directly obtain distributions are then analyzed in terms of information 
decomposition components relative to source dependencies (Figure 1a). For the binary case, we generate over 
12,000 p(x, y) source distributions and consider 16 (2 4) possible model maps. However, half of these 16 maps are 
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mirror images of each other and two are trivial cases in which z = 0 or z = 1 regardless of the input. Based on this, 
we retain seven model maps and apply all source distributions to each.

2.3.2. Arithmetic Models Based on Generated Time Series

For a second model case, we generate time series data for X and Y, where X is a uniform random or normally 
distributed variable, and Y is a linear or nonlinear function of X to varying extents. For three cases, we generate 
time series for dependent sources as follows:

𝑌𝑌𝑡𝑡 = 𝜖𝜖𝜖𝜖𝑖𝑖 (𝑋𝑋𝑡𝑡) + (1 − 𝜖𝜖)𝑤𝑤𝑡𝑡 (9)

where 𝐴𝐴 𝐴𝐴𝑡𝑡 is a uniform random variable, and ϵ ranges from 0 to 1 and indicates a level of strength of the depend-
ency between sources X and Y. The term fi(Xt) indicates a function through which the sources are related. For a 
case that induces a linear correlation, we implement f1(Xt) = Xt as well as a case in which X and Y are linearly 
correlated Gaussian variables, with correlations that range from 0 to 1. For cases that induce nonlinear source 
dependencies, we implement f2(Xt) = 4Xt(1 − Xt) (a logistic map) and f3(Xt) = 0.5 cos(4πXt) + 0.5 (a function 
with multiple curves). These four scenarios result in two cases where sources are linearly dependent (f1(Xt) and 
Gaussian variables) and two cases where sources are nonlinearly dependent and have near-zero linear correlations 
(f2(Xt) and f3(Xt)). We apply these source pairs to several simple models as follows:

𝑍𝑍𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑋𝑋 + 𝑌𝑌 (10)

𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑋𝑋 ∗ 𝑌𝑌 (11)

����� = |� − � | (12)

𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑋𝑋

𝑋𝑋 + 𝑌𝑌
 (13)

For Zdiv, we use 𝐴𝐴
𝑋𝑋

𝑋𝑋+𝑌𝑌
 instead of 𝐴𝐴

𝑋𝑋

𝑌𝑌
 , because that case leads to very small shared information between sources and 

targets. In other words, for 𝐴𝐴 𝐴𝐴 =
𝑋𝑋

𝑌𝑌
 , there is a large decrease in entropy. Later in the weather station regression 

models, we see an example of this information loss due to the division of two source variables.

For these models, we use fixed binning to estimate the 3D pdf p(x, y, z) from the X and Y time series data and 
model output, Z, using n = 20,000 data points and N = 50 bins (SI: IT measures) and then compute informa-
tion theory measures and information partitioning components. In all synthetic or generated model cases, since 
H(Z)  =  I(X, Y; Z), we assume that the total information value is statistically significant. We also note there 

is no “error” or associated performance measures in these cases as there is 
no observational component. In other words, these cases purely focus on 
how sources with different dependency structures are filtered by a model to 
produce different types of information.

2.3.3. Data-Driven Models Based on Weather Data

To compare model performance of many different model structures to obser-
vations, we apply information decomposition to observed 1-min weather 
data, where we consider relative humidity (RH) to be an output of air temper-
ature (Ta) and wind speed (WS) (Figure 1c). Data were collected at a restored 
prairie site in central Illinois over a 2-year period from May 2014–2016 
(Goodwell & Kumar, 2017).

We compare observed information components for nine regression models 
that use different combinations of the two sources. These constitute linear 
regression models with between one and three inputs that are combinations 
of Ta and WS, in addition to a tree model (Table 1). We train the models with 
randomly selected 50,000 data points and use 10% hold-out validation. To 
test the robustness of these regressions, we repeat the model training with 
different random data samples of varying size up to 100,000 points, and find 

Model Model type Sources Abbreviation
RMSE 
training

RHmod,1 Linear regression Ta lin Ta 0.076

RHmod,2 Linear regression WS lin WS 0.097

RHmod,3 Linear regression Ta * WS lin Ta * WS 0.095

RHmod,4 Linear regression Ta, WS lin Ta, WS 0.075

RHmod,5 Linear regression Ta, WS, Ta * WS lin int 0.075

RHmod,6 Tree Ta, WS tree 0.068

RHmod,7 Linear regression Ta/WS lin Ta/WS 0.098

RHmod,8 Linear regression Ta + WS lin Ta + WS 0.087

RHmod,9 Linear regression Ta − WS lin Ta − WS 0.095

Note. Several additional machine learning models are described in the 
Supporting Information S1.

Table 1 
Weather Station Models Based on 1-Min Time Series Data Over a 2-Year 
Period
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very similar results. In general, we are not concerned with parameter optimization or overfitting and instead 
focus broadly on how different model structures use the same two source variables to estimate a target. We 
apply models to the entire 2-year (approximately 1 million data points) time period. We assess the predictive and 
functional performance of each model based on the information theoretical metrics defined above. Specifically, 
we assess their ability to match RH observations (Ap, Equation 5) in addition to their ability to replicate different 
types of interactions between Ta and WS that influence RH (Af measures, Equations 6–8).

We filter the diurnal and seasonal cycles from the observed and modeled data using a Butterworth filter, and remove 
outliers. We also normalize each variable to lie between 0 and 1 as follows: 𝐴𝐴 𝐴𝐴norm =

𝐴𝐴−𝐴𝐴min

𝐴𝐴max−𝐴𝐴min

 . To compare model 
behavior under different source dependency conditions, we partition the 2  years of time series data into 5-day 
moving time windows (approximately 7,200 data points per window), and compute source dependencies, model 
predictive performance, and functional performances for each model, for each time window. In other words, the 
model structure (coefficients) remains constant for each model, but the source dependencies vary between 5-day 
windows. We test for statistical significance of total mutual information I(Ta, WS; RH), and conditional mutual 
information terms, I(Ta; RH|WS) and I(WS; RH|Ta) with a shuffled surrogates method (SI: Statistical Significance).

As in the cases based on generated time series data, we compute probability distributions, p(Ta, WS, RH) for each 
time window for this data set, and also the modeled pdfs p(Ta, WS, RHmod,m), for m = 1…9. We then compare 
information partitioning components for observed and model cases. We also train several machine learning 
models, and results and discussion regarding these are included in the Supplementary Information (Figure S2 
in Supporting Information S1). These models performed most similarly to RHmod,4, the general linear regression 
model, with slight differences in information partitioning components. However, we focus here on the range of 
“worse but interesting” models that lead to more highly varying results in terms of functional range, rather than 
only the most high-performing models.

2.3.4. Ecohydrologic Models Forced With Weather Data

For a physically based model case, we compare information decomposition along the source dependency axis 
using a simple equation with no free parameters to a calibrated land-surface model, as well as variants of the 
land-surface model coupled with a neural network. We assess the performance of these models of varying 
complexities relative to flux tower observations (Figure 1d) in terms of their ability to estimate the daily relation 
between two sources, Ta and RH, to the ratio of sensible heat flux (H) to latent heat flux (LE) or the Bowen ratio 
(B, Brutsaert, 1982). We focus the analysis on this single functional relation between Ta, RH, and B to provide a 
direct linkage to the previous model setups (Figures 1a–1c) and aim to demonstrate the value and utility of our 
proposed model evaluation framework in identifying specific weaknesses among the selected model structures.

For the simple physical equation, we estimate B according to the principle of surface flux equilibrium (SFE) 
(McColl & Rigden, 2020; McColl et al., 2019), which requires no land-surface information and only the two 
source variables Ta and RH as follows:

𝐵𝐵 ≈
𝑅𝑅𝑣𝑣𝐶𝐶𝑝𝑝𝑇𝑇 𝑇𝑇

2

𝜆𝜆2𝑞𝑞∗(𝑇𝑇 𝑇𝑇)𝑅𝑅𝑅𝑅
, (14)

where λ = 2.5 × 10 6 (J kg −1) is the latent heat of vapourization of water, Cp = 1,005 (J kg −1 K −1) is the specific 
heat capacity of air at constant pressure, Rv = 461.5 (J kg −1 K −1) is the gas constant for water vapor, and q* is 
saturated specific humidity as a function of Ta. The SFE model thus estimates B with the assumption that only 
two sources (Ta and RH) encode the necessary information that drives variability in H and LE.

For the land-surface model, we derive B using existing simulations of H and LE from the Structure for Unify-
ing Multiple Modeling Alternatives (SUMMA, Clark et al., 2015), a modular process-based hydrologic mode-
ling framework, here, set up to mimic the Noah land surface model (see details in Bennett & Nijssen, 2021a). 
SUMMA estimates B by solving a complex series of energy and water balance equations, requiring numerous 
model inputs beyond Ta and RH, including land-surface parameters and additional weather forcing variables. We 
analyze three SUMMA variants: a standalone model, which is only based on physical equations (SUMMA-SA); 
a one-way coupled neural network, which estimates LE and H using SUMMA inputs (SUMMA-NN1); and a 
two-way coupled neural network, which estimates H and LE using both SUMMA inputs and modeled soil mois-
ture states (SUMMA-NN2).
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We use Ta, RH, LE, and H observations from 60 selected FLUXNET2015 sites for which SUMMA is locally 
calibrated and simulations driven by the flux tower weather data are available (Bennett & Nijssen, 2021b). We 
then calculate B from daily average Ta and RH using the SFE and from daily average LE and H using SUMMA 
outputs for each of the three variants to compare model performance against B derived from observations at each 
site. We select daytime conditions for which incoming shortwave radiation >50 W m −2. We exclude data flagged 
as gap-filled and only consider days with at least 12 half-hourly flux observations. To best meet assumptions of 
the SFE model and avoid stable atmospheric boundary layer conditions, we exclude days with negative LE or 
H. Sites cover a range of wet to arid biomes, including a diversity of sparsely vegetated, grassland, and forested 
ecosystems. This curated data set also spans a representative range of source dependencies. To compute pdfs 
for monthly time windows, we bin all data globally, that is, we discretize each variable in 50 equally sized bins 
spanning 0–6 for B, −10 to 40°C for Ta, and 0–1 for RH, and we set all extreme values above and below the 
prescribed ranges to the first and last bins. We therefore calculate information measures and associated functional 
and predictive performance metrics for each site using a histogram bin resolution of 2% of the range of observed 
data, similarly to previous benchmarking studies (Nearing et al., 2018).

3. Results: Synthetic Binary Models Show Functional Ranges
For each of the seven binary model cases based on a range of source dependencies, we compute the total informa-
tion from sources to the target, I(X, Y; Z), and the associated information decomposition (Figure 2). Although the 
knowledge of X and Y together completely reduces the uncertainty of Z, the value of H(Z) depends on the source 
distributions in addition to the model mapping, (x, y) → z, such that H(Z) can range from 0 to 1. Specifically, 
H(Z) = 1 for cases where the model map and the source pdf p(x, y) result in a uniform distribution over Z, and 
H(Z) approaches zero for cases where the outcome of Z is nearly certain. For example, in the AND(X,Y) model, 
(1, 1) → 1 and all other source combinations lead to Z = 0, so if p(1, 1) is extremely small, Z is nearly certain to 
be 0 and has correspondingly low entropy.

We find that several model “types” can be distinguished based on the ranges of Ux, Uy, S, and R information 
components for different source dependencies. Particularly, the models AND(X,Y), AND(¬X, Y), AND(X, ¬Y), 
and OR(X,Y) (equivalent to ¬AND[¬X, ¬Y]) have the same range of possibilities for all information components 
(distribution of gray points in Figure 2). These AND relationships correspond to model maps in which Z = 1 
or Z = 0 for exactly one (x, y) combination (Figure 2a). Meanwhile, the models Z = Y and Z = X are similar to 
each other, since they are models for which X or Y completely determines Z such that one of the sources does not 
provide unique information nor is there any synergistic information regardless of source dependency. However, 
there can still be redundant information in these cases, which arises from the dependency between the sources. 
Finally, the binary XOR(X,Y) model is the only model that results in high synergistic information and low redun-
dancy for a range of source dependencies. This model structure leads to relatively little overlap in the information 
that X and Y provide, and instead, they tend to provide synergistic and unique information.

This binary example of how information components vary depending on source dependency and model structure 
reveals several interesting features. First, for a given model and source dependency, there is typically a restricted 
range that a given information component can assume. For example, there are no cases for any model where a 
high I(X; Y) source combination leads to high Ux or Uy. This decrease in unique information with increasing 
source dependency is expected, since I(X; Y) is a term in the rescaled redundancy equation. More interestingly, S 
and R often show a branching structure, where for a given source dependency, one or the other is dominant. This 
implies a trade-off between synergy and redundancy that becomes more extreme as source dependency increases. 
In other words, for a certain type of model, high source dependency could either lead to high R or high S. We next 
address the differences between these scenarios.

Differences between models of a given general “category” become apparent when we look at other characteristics 
of the source variables. For example, we can partially distinguish between the four models with “AND” struc-
tures if we look at high versus low correlations between X and Y. For example, high positive covariance between 
sources corresponds to high R in the AND(X, Y) model, and high S in the AND(¬X, Y) model. For the AND(X, 
Y) case, a positive source correlation, or high probability for X = Y, allows us to distinguish between Z = 0 and 
Z = 1 outcomes given only one source variable. Due to this feature, the information that the other source provides 
is highly redundant. In contrast, for the AND(¬X, Y) model, (0, 1) → 1, while all other source combinations lead 
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to Z = 0. Here, positively correlated sources do not distinguish between Z = 1 and Z = 0, since the knowledge of 
a single source variable would always lead to a most likely outcome of Z = 0. This is exhibited by the low H(Z) 
for highly correlated sources in the AND(¬X, Y) model (red dots in Figure 2). For this model, since a source 
combination that falls in the negatively correlated range distinguishes between the possible Z outcomes (blue dots 
in Figure 2), the knowledge of both sources jointly, or synergistically, informs the outcome of Z.

The key insight gained through these binary model mappings is how both the dependency between source vari-
ables and model structure influence the range of synergistic, unique, and redundant information partitionings. 
Specifically, relatively dependent sources provide avenues for both redundancy and synergy, and relatively inde-
pendent sources can provide more unique information to the target and lead to a wider range of possible behaviors 
(green dots in Figure 2). Given input data with the same joint distribution, different model structures lead to 
different information flow pathways. However, models with similar structures lead to a similar range of possibil-

Figure 2. Synthetic binary model case study. (a) Model mappings for 7 different model structures. For example, model AND(X, Y) indicates that z = 1 when 
both x = 1 and y = 1. The ¬ symbol indicates the logical “not.” Information types as a function of source dependency, I(X; Y) for each model, including (b) total 
information from sources to the target (equivalent to H(Z) for these models) and (c) synergistic (S), (d) redundant (R), (e) unique from X (UX), and (f) unique from Y 
(UY) information components normalized by total information. Gray dots indicate all generated cases. Blue dots highlight cases with negative covariance between the 
sources, green dots highlight independent sources (cov(X, Y) = 0 and I(X; Y) = 0), and red dots are cases with high source covariance.
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ities. While this example is useful to explore the simplest possible models in detail, more complex model setups 
enable us to better understand the functional ranges of more realistic models.

4. Results: Synthetic Time Series Models Show Effect of Functional Forms
Next, we compare four two-source model structures (Equations 10–13) with four induced source dependency types 
that range from linear to nonlinear. Across all model structures and source dependency ranges, we see broad patterns 
in information components (Figure 3). In general, S decreases as sources become more dependent, R increases, and 
unique components UX and UY tend to increase up to a certain source dependency and then decrease. Synergistic 
information is the dominant component when sources are independent (Figures 3e–3h). As sources become more 
dependent, S drops relatively sharply as unique information increases. At a certain threshold source dependency, we 
see that redundant information begins to increase sharply and is the dominant component for completely dependent 
sources. This I(X; Y) threshold at which R increases corresponds to the point at which Rmin in the rescaled redun-
dancy term goes from 0 to a positive value (Equation 4). Below that threshold, S > R and the minimum R value is 
zero. In other words, there is a source dependency at which the interaction information goes from positive to nega-
tive, and R must be scaled based on the interaction information. We see that this threshold exists for all dependency 
types but tends to be slightly higher for nonlinearly dependent sources (blue colors in Figure 3).

Besides general patterns, there are differences between model structures (columns in Figure 3) and dependency 
types (colors in Figure 3). For example, multiplication and addition models, X * Y and X + Y, show very similar 
behaviors regardless of whether sources are linearly or nonlinearly dependent. However, this finding would be 
much different if we considered source covariance on the horizontal axis, rather than mutual information, as a 
measure of source dependency. Particularly, the nonlinearly dependent sources have near-zero covariances, such 
that these patterns cannot be discerned and all model cases would collapse to the vertical axis (as shown in Figure 
S1 in Supporting Information S1). This highlights the relevance of using an information theory-based measure of 
source dependency rather than, or in addition to, linear correlation. With mutual information, we see that source 
dependencies have a predictable effect on information partitioning components given a model structure.

Figure 3. Synthetic time series model case study, based on simple arithmetic operations corresponding to Equations 10–13 and for four different induced source 
dependency types indicated by colors (two linear and two nonlinear). Information types as a function of source dependency, I(X; Y), for each model, including (a–d) 
total information, and (e–h) synergistic (S), (i–l) redundant (R), (m–p) unique from X (Ux), and (q–t) unique from Y (Uy) information components for each model 
normalized by total information.
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Meanwhile, the division and difference models (third and fourth columns of Figure 3) show more variability 
between linearly and nonlinearly dependent sources. Mainly, when sources are linearly dependent, S remains 
high for a larger range of source dependencies, UX and UY are lower, and R increases more gradually with source 
dependency. This is also related to a decrease in target entropy as sources become linearly dependent (red lines in 
Figures 3c and 3d). In other words, as sources become correlated, dividing them or finding their difference goes 
toward a constant value, and target entropy is zero regardless of the variability of the sources. In contrast, this is 
not the case for nonlinearly dependent sources. Of all models, the difference, |X − Y|, shows the highest S at the 
expense of the lowest UX and UY.

A key insight gained from these synthetic models is that different mathematical operations, in tandem with 
certain types of source dependencies, determine the influence of two sources in terms of relative strengths and 
whether provided information can be unique, redundant, or synergistic. Moreover, we see that different ways 
in which sources are combined can cause a “loss” of information content from one or both sources, such as 
in the proportion example (Figure 3c) for which Zdiv approaches a constant value as sources become linearly 
correlated. While the target is always fully predictable given both sources, the variability of those sources is 
not always reflected in the target. This example also highlights the relevance of mutual information as a basis 
on which to compare model cases, since it captures more general aspects of source dependencies other than 
multicollinearity.

5. Results: Predictive Performance of Weather Station Regressions Tied to Functional 
Performance
From the normalized and filtered observed weather station data, we find that on average, the knowledge of Ta and 
WS reduces about 31% of the uncertainty of RH, or that 𝐴𝐴

𝐼𝐼(𝑇𝑇 𝑇𝑇𝑇𝑇𝑇 𝑇𝑇;𝑅𝑅𝑅𝑅)

𝑅𝑅(𝑅𝑅𝑅𝑅)
= 0.31 . We note again that we have filtered 

the dominant diurnal cycle from Ta and RH, such that the variables are composed of higher frequency variations. 
Without this filtering, the shared information between Ta and RH would be higher. From the observed data, we 
see similar but more muted trends in S and R relative to the arithmetic operations, in which S tends to decrease 
and R tends to increase as sources become more dependent (dotted lines in Figures 4a, 4c and 4e, g). From 
observations, we see that the dominant information component is unique information from Ta (UTa, Figure 4e), 
but models vary widely in terms of information component strengths. Particularly, models underestimate S and 
overestimate R (Figures 4a–4d). The main exceptions to this are the addition and subtraction models, RHmod,8 
and RHmod,9, where the single model input is the addition or subtraction of the two original sources. Meanwhile, 
models are split between over- and underestimating unique information, but any model that overestimates one 
unique component underestimates the other (Figures 4e–4h).

When RH is estimated as a linear function of either Ta (RHmod,1) or WS (RHmod,2), the unique contribution from the 
included source is overestimated, since the synergistic and non-included unique components are inherently zero 
(Figures 4a–4h). In these two cases, R exists due to dependency between sources. In other words, the non-included 
source only provides information through its dependency with the included source. In contrast, a source that is not 
included as a model input can never provide synergistic or unique information. The remaining models account for 
both sources in different ways. Models RHmod,3, RHmod,7, RHmod,8, and RHmod,9 perform a simple math operation on 
Ta and WS that is then used as a single input in a linear regression model. As noted in the previous synthetic exam-
ples, this operation results in some loss of information that the sources could provide to the modeled target. For 
example, multiplying two variables results in a single source that retains some information about each original 
source, but the original Ta and WS cannot be completely reconstructed given only the result of the multiplication. 
Here, this feature leads to relatively poor predictive and functional partitioning performances (high mismatch in 
terms of Ap and Af,Ipart, Figures 4i and 4j) for these model types, especially for RHmod,3 (multiplication) and RHmod,7 
(division). Meanwhile, we see that RHmod,8 (addition) and RHmod,9 (subtraction) models have the highest func-
tional partitioning performance (lowest mismatch in terms of Af,Ipart) of all models, indicating that the addition 
or subtraction retains more relevant information about the sources, particularly Ta, which is the stronger driver 
of RH. Finally, models RHmod,4, RHmod,5, and RHmod,6 all utilize both sources individually and/or jointly. RHmod,4 
and RHmod,5, which are linear regressions with two or more sources, tend to have high performance but always 
overestimate unique information from Ta and underestimate unique information from WS as the weaker source, 
and severely underestimate S. This indicates that the simple math operations force sources to be weighted more 
equally, and eliminate some of the information they could have provided jointly.
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Most models have better predictive performance for time windows with higher source dependency. The only 
exceptions to this are RHmod,9 (subtraction) and RHmod,7 (division), for which there is little or no change in Ap with 
source dependency (Figures 4i and 4j). This feature of improved predictive performance with source dependency, 
especially for the “best” performing models, indicates that these models take advantage of source dependencies 

Figure 4. Weather station model case study for different relative humidity (RH) regressions as a function of air temperature (Ta) and wind speed (WS). Comparison 
of individual information types between different models (colors) and observations (dashed black line) over the range of source dependencies, I(WS; Ta) (circle sizes) 
and functional performances, including (a–b) synergistic information, S and Af,S, (c–d) redundant information, R and Af,R, (e–f) unique information from Ta, UTa and 

𝐴𝐴 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇
 , and (g–h) unique information from WS, UWS and 𝐴𝐴 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑊𝑊 𝑊𝑊

 . (i) Functional partitioning performance Af,Ipart relative to predictive performance Ap. (j) Functional total 
information performance Af,Itot relative to Ap, for different source dependency ranges.
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to compensate for structural errors. When we consider the overall functional performance of these models, we 
see that Af,Ipart improves along with predictive performance for the worst-performing models (upper right corner 
of Figure 4i) but shows varying behaviors for the addition and subtraction models and fewer changes with source 
dependency for the “best” performing models.

An analysis of the total information that sources provide to the target, as Af,Itot, reveals a different aspect of these 
models (Figure 4j). Particularly, the several models with best predictive performance are among the most “overly 
deterministic.” Meanwhile, the addition, subtraction, and tree models more closely approach the observed total 
information, and the division model is the most “overly stochastic” model. As noted previously, Af,Itot is not a 
reliable measure of performance since models can have Af,Itot arbitrarily close to zero.

When redundancy is overestimated for highly dependent sources, models use information from a source that is 
actually redundant as unique or synergistic instead. This leads us to infer that when sources are more dependent, 
these models achieve better predictive performance by using the overlap in information the sources provide with-
out “realizing” that it is overlapping. In this case study, Ta is a dominant source and WS is a weaker source. When 
Ta and WS are dependent and provide more redundant information, a model that does not take Ta into account, or 
generally has some structural error in terms of how it represents the two sources, will perform better than when 
Ta and WS are independent. We confirm from the underestimation of redundancy that the model is behaving this 
way, or attributing unique information to the source for which it more adequately accounts.

A key insight of this case study is that source dependencies can enable models to compensate for missing or 
misinterpreted sources. This is in agreement with known aspects of multicollinearity, in that model fit tends 
to improve with more correlated sources. However, our approach further highlights the particular mechanisms 
behind these behaviors in the form of types of information flows relative to observations.

6. Results: Functional Performance of Bowen Ratio Models Tied to Source 
Dependency and Complexity
Next, we explore the relationship between source dependency and model performance for simple to more 
complex ecohydrological model structures in the estimation of daily land-surface sensible and latent heat fluxes 
(Figure 5). We compare the Bowen ratio (B) based on the SFE, which depends only on the two source variables 
Ta and RH, with three versions of SUMMA. SUMMA-SA is based on physical equations, while SUMMA-NN1 
and SUMMA-NN2 implement neural networks to estimate LE and H fluxes.

For observed data, URH > UTa for all source dependencies, indicating that RH informs observed B more strongly 
than Ta (Figure 5c, black dotted lines). With increasing source dependency, Ta and RH contribute an increasing 
amount of information about observed B. Meanwhile, the relative amount of S decreases, R increases, and both 
UTa and URH show a step-wise behavior (Figure 5a). For source dependencies up to about I(Ta, RH) = 2 bits, S 
dominates R and UTa and URH are relatively constant. For higher source dependencies, R dominates S and UTa 
and URH decrease with source dependency. These patterns are similar to the previous multiplication and addition 
model examples (Figure 3). All four models follow these general trends but to different extents, as shown from 
individual functional performance measures (Figure 5b), and thus lead to different predictive (Ap, Figure 5c) and 
overall partitioning functional (Af,Ipart, Figure 5d) performances.

The simplest SFE model is overall less accurate in terms of estimating B (higher mismatch in terms of Ap) and 
in representing the causal relation between Ta, RH, and B (higher mismatch in terms of Af,Ipart) compared to 
the SUMMA variants (Figures 5c and 5d). The SFE is particularly less accurate when sources are independent 
because Ta and RH, the only SFE inputs, are less informative of B as I(Ta, RH) decreases. Within the more 
complex SUMMA models, SUMMA-NN1 has overall lower predictive and functional performance compared to 
SUMMA-SA and SUMMA-NN2, indicating that the missing information about soil moisture states and there-
fore the meteorological history in SUMMA-NN1 is necessary to accurately represent the interactions between 
Ta and RH and B. Additionally, this information is most important in process states in which Ta and RH are less 
coupled. Predictive and functional performance for all model variants improves with higher source dependencies. 
In general, these results reflect the findings of the weather station (Ta, WS, RH) regression models, in that all 
models take advantage of source dependencies for better predictive performance.
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When we focus on performance for individual information components, we find diverging information flow rela-
tionships along source dependency ranges (Figures 5c and 5d), particularly for the SFE model. SFE mostly over-
estimates the total information contribution from Ta and RH (higher mismatch in terms of Af,Itot) because these 
are the only inputs. The SUMMA variants utilize more inputs, and Ta and RH contribute about the same amount 
of total information to B as in observations. SUMMA-NN2 is the most accurate overall in terms of Af,Itot, espe-
cially for low source dependencies. The SFE model underestimates UTa and URH for low source dependencies, 
overestimates S for mid to high source dependencies, and underestimates R for the range of source dependencies. 
Specifically, as source dependency increases, unique information performance improves at the expense of greatly 
underestimating redundancy. This matches with the weather station regressions, in that the model is “using redun-
dant information uniquely” or taking advantage of dependencies between Ta and RH to make better predictions 

Figure 5. Ecohydrological case study for simple theoretical (SFE) to more complex process-based (SUMMA-SA), data-driven (SUMMA-NN1), and hybrid 
(SUMMA-NN2) models for the Bowen ratio (b). Comparison of information components between models (colors) and observations (dashed black line) over the range 
of air temperature (Ta) and relative humidity (RH) source dependencies, I(Ta; RH) (circle sizes). (a) Total mutual information normalized by Shannon’s entropy of B 
(Itot, bits/bit) decomposed into synergistic (S), redundant (R) and unique (UTa, URH) information components. (b) Functional performance for each information type 
(Af,Itot, Af,S, Af,R, 𝐴𝐴 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑇𝑇𝑇𝑇

 , 𝐴𝐴 𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑅𝑅𝑅𝑅
 , bits/bit). (c) Model predictive performance (Ap, bits/bit); (d) overall model functional partitioning performance (Af,Ipart, bits/bit). Markers 

represent the average individual month-site metrics for six evenly spaced bins along the I(Ta; RH) axis in bits.
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of B. SUMMA-NN2 and SUMMA-NN1 result in higher S, lower R and higher URH than SUMMA-SA. This 
points to the neural network’s ability to use information from sources more synergistically, while the physically 
based equations of SUMMA-SA cause sources to provide more R at the expense of less URH. We also note that 
the sensitivity of individual functional performance metrics to source dependency is different for each model 
variant. For example, Af,S improves with source dependency for SUMMA-SA, while Af,S is relatively constant for 
SUMMA-NN2. These results show that all models trade off types of information particularly when sources have 
the highest and lowest dependencies. This effect is greatest for SFE and SUMMA-SA, while individual functional 
performance metrics for SUMMA-NN2 tend to be more constant along the source dependency axis.

We note that using information theoretical performance metrics to compare SUMMA variants at the 30 min 
timescale and for LE and H separately, we find that SUMMA-NN1 and SUMMA-NN2 outperform SUMMA-SA 
in terms of predictive performance as was shown in (Bennett & Nijssen, 2021a). Meanwhile, the pattern in func-
tional performance, especially for H, is more mixed (Figures S3–S4 in Supporting Information S1). This likely 
led to the more similar performance results between SUMMA-NN2 and SUMMA-SA in terms of daily B and the 
clearer underperformance of SUMMA-NN1. The daily B results thus highlight the advantage of SUMMA-SA, 
which enforces energy conservation, in estimating both LE and H together from physical equations. These find-
ings were not previously apparent from more traditional performance metrics (Bennett & Nijssen, 2021a) and 
when only considering predictive performance of individual fluxes at sub-daily timescales (Figures S3–S5 in 
Supporting Information S1).

While the SFE is by far the most parsimonious model to estimate B and does have lower performance relative 
to SUMMA models, we find that it generally follows the observed information flow patterns. Additionally, we 
find that information flow paths of SUMMA variants that implement neural networks can match observations 
just as closely as the standalone land-surface model. This example provides insights into how evaluating model 
performance based on source dependencies enables comparisons between models of very different complexities 
and structures. All model types use source dependencies to improve their performances, but through different 
mechanisms, highlighted by information component-level analyses. Specific differences in functional perfor-
mance between model variants demonstrates how model structure affects information flows and how they match 
observed dependencies between variables. Additionally, these differences explain why a given variant has the 
highest performance in different source dependency ranges.

7. Discussion
The scaffolding of increasingly complex case studies presented here highlight how dependencies within model 
inputs can affect functional and predictive model performance, and that this feature varies depending on model 
structure. Based on these experiments, we briefly review several key insights and further discuss the advantages 
and limitations of this model evaluation framework.

From synthetic models, we find that structure and source distribution both restrict the functional range of a 
model. We see this from the binary examples, in that only one model type (binary XOR) leads to dominantly 
synergistic information flows. This is also evident in the models based on generated data and arithmetic opera-
tions, in that different equation types lead to different relationships between source dependency and information 
measures. For example, it is possible to develop a model, and likely there are models in current use, that cannot 
possibly replicate certain information flow pathways that are observed in nature. Our synthetic cases also illus-
trate the value of a nonlinear measure of source dependency over linear correlations.

From the models tied to observations for which we can evaluate their performance, we find that models use 
dependent sources to achieve improved performance during those time periods. On one hand, this matches with 
intuition regarding multicollinearities between sources which is a long-standing area of study in regression mode-
ling. However, while all models tended to have improved performance measures with highly dependent sources, 
the mechanisms behind these improvements vary as shown by patterns in redundant, synergistic, and unique 
information flows. For some models, such as the weather station regression models and the SFE, the model 
structure has some error that causes it to improperly account for one of the sources. For these models, dependent 
sources allow them to compensate with redundant information that the other source provides. This is revealed as 
an underestimation of redundant information relative to observations. For other more complex models, such as 
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the SUMMA variations, source dependencies instead enable the model to better represent synergistic information 
that sources provide together. In other words, sometimes a model “gets the right answers” due to source depend-
encies, where it is able to utilize information from a source that it does not adequately account for, if that source 
is somewhat related to another model input. This also points to the fact that sometimes our model assumptions or 
simplifications are not correct in all process states and some types of information are traded for others depending 
on source dependencies. For example, we can say the SUMMA stand-alone and NN1 models are less reliable in a 
hypothetical future case when sources are more independent of each other, and the NN2 is more likely to provide 
a better result.

Understanding this trade-off of information types and functional performance measures along a source depend-
ency range contributes to the unsolved problem of “disentangling” different types of model uncertainties in hydro-
logical prediction (Blöschl et al., 2019). Uncertainty in models can be caused by errors in forcing data, model 
parameters, and the structure of a model. Model benchmarking is useful to separate model uncertainties into these 
different components (Nearing et al., 2016), and it has been found that models often use only a small amount of 
the information available to them. It has also recently been suggested that machine learning models could be inte-
grated with process-based models and achieve better performance or better understanding of processes than either 
model would alone (Bennett & Nijssen, 2021a). These studies and others indicate significant potential in terms of 
model improvements and potential for machine learning techniques to reveal process understanding in addition to 
improved predictive performance, through combining the strengths of different modeling frameworks (Reichstein 
et al., 2019). Findings that machine learning models often have more predictive power than physically based 
models indicate that these models are able to learn complex dependencies from their training data. It is important 
to diagnose the causal interactions learned in data-driven models that allow them to map input to output with high 
accuracy. If the data-driven models capture causal interactions better, this could be used to improve process-based 
models by encoding a better understanding of how information should flow through the model. Meanwhile for 
physically based models, it has been shown that a trade-off between functional and predictive performance, in 
which a model may be tuned to higher accuracy at the cost of its process representations, indicates a structural 
error in the model (Ruddell et al., 2019).

Models of any type implement our knowledge and assumptions about causal interactions. Due to this, perfor-
mance metrics that can test these assumptions without relying on interpreted system states are useful. For exam-
ple, we could have evaluated the weather station, SFE, and SUMMA models based on aridity conditions within 
each time window, and find lower model performance in a certain aridity range. In some cases, this could point 
to a related process equation within the model, but particularly for a data-driven model, it may not reveal a 
certain type of error that could be corrected or improved upon. Meanwhile, an information theory-based source 
dependency can be considered a “system state” (Ruddell & Kumar, 2009) that is agnostic to the magnitudes of the 
sources or environmental conditions that are assumed to be influential to a certain process. As shown in several 
examples, this aspect of different behaviors along a source dependency axis can potentially be related to structural 
components of a model, such as in the addition, multiplication, and division model examples.

While we restrict the focus to two sources that can jointly inform a target, other frameworks could be applied to 
consider modeled and observed interactions in increasingly multivariate contexts (Jiang & Kumar, 2018, 2020; 
Runge et al., 2019; van Leeuwen et al., 2021). For example, it could be that there are many “gateway” types of 
interactions (van Leeuwen et al., 2021), where variables are more or less influential in different ranges, or one 
variable sets the level of influence of another variable. Meanwhile, physically based models may not take these 
types of dependencies into account. A more multivariate approach could also be taken to study information flows 
through time in models with different structures, relative to lagged or instantaneous source dependencies. Particu-
larly, models that account for lagged inputs may show different time-dependent behaviors under different source 
dependency scenarios, relative to the most simple models.

8. Conclusion
This study fills a gap in model evaluation to answer emerging questions that involve multiple modeling approaches. 
Metrics that can diagnose more detailed aspects of model behavior and therefore robustly quantify multiple 
dimensions of model performance are necessary to accompany the proliferation of ecohydrologic models of 
varying complexities and levels of physical process representations. Such metrics are particularly timely given 
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the debate about process-based, data-driven, and hybrid modeling approaches and the utility of scale-emergent 
relations that take advantage of source dependencies to estimate ecohydrological fluxes from satellite data. In 
practice, the framework introduced here is relevant for several aspects of model evaluation and development, 
summarized below:

•  Uncertainty quantification: An information theory-based approach directly quantifies uncertainty and reduc-
tions in uncertainty, such that model diagnostics always relate to a fraction of reduced or remaining uncer-
tainty. Particularly, we categorize reduced uncertainty into different types of information and can compare 
these information uses between models and observations.

•  Feature selection: An extended version of this framework could be compared with feature selection or dimen-
sion reduction techniques, such as Principal Components Analysis (PCA). While PCA leads to dimensions 
that are linearly uncorrelated, nonlinear aspects of source dependencies may remain and could be significant. 
In general, considering source dependencies provides a pathway to determine levels of redundancy or overlap 
between multiple variables.

•  Extrapolation of forcing conditions: The focus on source dependency and the “functional range” of a model 
highlights the range of model behaviors over the range of source dependencies. With this, we can predict 
which models are most likely to have the most or least accurate predictions under source dependencies that 
have not been observed, regardless of the magnitudes of those sources. Additionally, by considering functional 
performance along with predictive performance, we assume that a functionally more accurate model should 
have better ability to extrapolate beyond known observations.

•  Model development or improvement: This framework introduces a nuanced set of model diagnostics that can 
be used to identify how sensitive models are to linear and nonlinear source dependencies. This could be used 
to compare behaviors of very different modeling frameworks, or to compare different parameterizations of a 
model and choose parameters that optimize functional and predictive performances across a range of source 
dependencies.

By taking the view that “a hydrological model is not a tool, but a hypothesis” (Savenije, 2009), this paper contrib-
utes a framework to test more detailed questions about how models behave, in terms of the flow of unique, 
synergistic, and redundant information types, and under which conditions, in terms of source dependencies, 
model assumptions robustly reproduce ecohydrological relationships. Despite our incomplete information, we 
can gain deeper insights about how our understanding of ecohydrological systems, encoded in models, compares 
to observations.
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