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METHODOLOGY

Identification of reindeer fine-scale foraging 
behaviour using tri-axial accelerometer data
Heidi Rautiainen1*  , Moudud Alam2  , Paul G. Blackwell3   and Anna Skarin1   

Abstract 

Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behav-
iour may improve understanding of animal functional response to the environment and provide an important indica-
tor of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached 
acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the super-
vised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify 
reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, 
walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generaliz-
able results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-
attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random 
forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had 
the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and 
handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful 
tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow 
us to quantify fine-scale behavioural processes in relation to environmental events.

Keywords: Activity recognition, Tri-axial accelerometer, Random forests, Support vector machines, Hidden Markov 
models, Rangifer tarandus
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Introduction
Monitoring animal behaviour enables a better under-
standing of animal behavioural ecology in an evolution-
ary context e.g., inter- and intra-specific interactions 
such as competition and population dynamics [1]. Inves-
tigation of fine-scale animal behaviour can improve the 
understanding of animals’ functional response to the 
environment [2] and provide an important indicator of 
animal welfare [3]. Initial responses to stressors related 
to changes in animal management or environment are 
often behavioural and can provide the first indications 

of stress or impaired health of an individual [4, 5]. Tri-
axial acceleration sensors have been frequently used to 
study fine-scale animal behaviours in both wild [6, 7] and 
domesticated species [8, 9]. As an example, many stud-
ies have successfully been able to classify foraging behav-
iour in a range of species such as harbour seals (Phoca 
vitulina), arctic ground squirrels (Urocitellus parryii) and 
roe deer (Capreolus capreolus) [10–12]. However, each 
sensor type needs validation to confirm and quantify its 
capacity to accurately classify specific species behaviours.

Reindeer and caribou (Rangifer tarandus) is a key spe-
cies inhabiting the circumpolar north [13]. With the 
rapid and extreme climate and environmental change 
going on in the arctic and subarctic regions, there is a 
need to understand how this affects reindeer behaviour. 
Reindeer are ruminants of an intermediate, opportunistic 
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feeding type [14], mainly feeding on fresh herbal plants 
and graminoids and to some degree browsing shrubs and 
trees in summer and adapted to feed mainly on ground 
and arboreal lichens in winter [15]. Knowledge of rein-
deer fine-scale grazing could for example reveal rein-
deer’s ability to suppress the increased growth of woody 
taxa in the arctic [16, 17] and their ability to search for 
lichens [15]. Domesticated reindeer in free-roaming sys-
tems provide an excellent opportunity to validate accel-
erometers for Rangifer taxon aligning specific behaviours 
to the accelerometer data. Acceleration sensors have pre-
viously been used on reindeer and caribou for estimation 
of activity patterns [18–20], but have not yet been vali-
dated for prediction of fine-scale foraging behaviour.

The acceleration (in m/s2 or G-forces (g)) measured by 
a sensor in three dimensions (X, Y and Z) [Reviewed by: 
21], may be separated into both static and dynamic accel-
eration [22, 23]. Animal body orientation may be regis-
tered using the static acceleration caused by gravitational 
force acting on the accelerometers [24, 25]. Removing 
the gravitational component, the dynamic acceleration is 
revealed. This makes it possible to identify patterns in the 
acceleration waveform that corresponds to an observed 
behaviour [26, 27].

Supervised machine learning (ML) algorithms are 
effective ways to classify features of animal acceleration 
data into pre-defined behavioural categories [28–32]. To 
train and validate such algorithms, movement data is 
collected using acceleration sensors on the animal at the 
same time as the animal behaviour is recorded through 
direct observation [33, 34], or with a camera [35]. Animal 
behaviour is classified into different behavioural catego-
ries and then accelerometer data is annotated with the 
recorded behavioural categories [36, 37]. The raw accel-
eration annotated with the corresponding behaviour is 
normally pre-processed (using running means [38, 39] or 
low- and high pass filters [22, 40]) to reduce noise or to 
separate static and dynamic acceleration. Then the data 
is segmented into windows, followed by extraction of 
characteristics of acceleration data (features), selection 
of features, and modelling [41]. The features and their 
corresponding classified behaviours are used to train the 
models, which learn to distinguish between the classified 
behaviours given the differences in the acceleration data 
[41]. Once a model is trained, it can be used on new data 
(e.g., new individuals) to quantify different behaviours 
performed by the animal. This enables fine-scale behav-
ioural studies over long time periods under conditions 
where direct observations are difficult due to constraints 
such as visibility or geographic scale [20, 21, 42].

Generally, the performance of behaviour classification 
relies on a fixed placement and orientation of the sensors 
[43, 44]. This can be achieved using harnesses, halters, 

or glue-on tags [37, 45–47]. However, often sensors are 
attached to a collar around the neck of the animal [8, 48], 
and then it is likely that the sensor will change its posi-
tion and orientation relative to the animal’s body ori-
entation. This may cause significant errors and reduced 
recognition rate [49]. The variability caused by displace-
ment of the sensors may be accounted for by using robust 
features derived from the raw sensor output. For exam-
ple, the net acceleration computed from all three axes 
(the Euclidean norm of the acceleration vector) is less 
sensitive to changes in sensor orientation or placement 
[50, 51]. Alternatively, information about angles around 
X (roll) and Y (pitch) using a gyroscope or magnetometer 
can be used to correct the accelerometer sensor displace-
ments using rotation matrices [52, 53]. Such correction 
has to our knowledge seldom been applied on data col-
lected with collar-attached sensors.

We equipped reindeer with collar-attached accel-
erometers and registered their behaviour using video 
cameras to find the best model predicting reindeer for-
aging behaviour, such as grazing on ground lichens and 
browsing on shrubs and arboreal lichens in trees. The 
main objective of our study was to develop and validate 
a method for classifying foraging behaviour of reindeer 
using tri-axial acceleration sensors. We evaluated Ran-
dom forests (RF), Support vector machines (SVM) and 
hidden Markov models (HMM) to find the best model 
to classify acceleration data into pre-defined behavioural 
categories.

Methods
Study area, animals and management
In this study, we simultaneously collected video and 
acceleration data from in total 19 semi-domesticated 
female reindeer in Ståkke and Sirges Sami reindeer herd-
ing communities in northern Sweden. Initially, ten indi-
viduals per herding community were randomly selected 
from two groups of 40 animals being supplementary fed 
in a feeding experiment conducted in each community. 
In Sirges, the ten reindeer (nine-month-old) were kept 
in a 300  m2 enclosure from 27 February to 2 March 2020 
(Fig. 1). In Ståkke, the ten reindeer (two two-year-old and 
eight nine-month-old) were kept in a 150  m2 enclosure 
from 4 to 9 March 2020; one of the nine-month-old indi-
viduals was difficult to capture for collar fitting and was 
excluded from sensor attachment. In both enclosures, 
reindeer lichens (Cladonia rangiferina and Cladonia 
arbuscula) and commercially available pelleted reindeer 
feed (Renfor nära ®, Lantmännen, Sweden) were dug 
down under the snow to encourage natural grazing and 
digging behaviour. In addition, small trees covered with 
arboreal lichens (Bryoria fuscescens) were placed in the 
enclosures to encourage browsing behaviour.
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Video recordings
Three cameras (Axis Communications, 2025-LE Network 
Camera) were used and placed to cover the whole enclo-
sure and enable video recordings of the animals from dif-
ferent angles. The reindeer were video recorded from 6 
AM until 6 PM. In total, we generated 50 h daytime video 
(15 frames per second) on each individual.

Accelerometer data
We used a three-axial accelerometer (Axy-4; 
9 × 15 × 2  mm; 0.7  g) including a temperature sensor 
[54] positioned on the ventral-right side of the neck 
attached to a GPS-collar (Pellego) [55], with a total 
weight of 330 g. See Additional file 2: Fig. A1, illustrat-
ing the attachment and directions of the accelerometer. 
We choose to configure the accelerometers to a sam-
pling rate of 10 Hz with 8-bit resolution at ± 8 g. Sam-
pling rate of temperature was set to 0.2  Hz. At these 
settings, the sensor could store four months of data. 
Sampling rate was chosen according to Nyquist’s cri-
terion i.e., that sampling rate should be at least twice 
the highest frequency component of the signal [56, 
57]. Reindeer activities, like other large herbivores, 
were expected to involve frequencies of 5  Hz [58, 59]. 
Thus, sampling frequency of a minimum of 10 Hz was 
required to detect motions. The same computer was 
used for calibration and time synchronization of the 
accelerometer internal clock. All accelerometers were 
shaken in front of all cameras prior to attachment to 

acquire a reference for time synchronization [60]. Col-
lars were attached to mimic the conditions survey-
ing freely ranging reindeer, when the size of the collar 
needs to allow for growth of the neck, as these reindeer 
were still in their growth stage. Acceleration data was 
retrieved using Axy Manager Version 1.8.3.0 [60].

Behavioural observations
An ethogram was created after consulting the reindeer 
herders about typical reindeer behaviours and two hours 
of behavioural observations in the enclosures (Table  1). 
In total, 39  h of acceleration data from 19 individu-
als were annotated into 17 behavioural categories. On 
an average two hours of annotations were performed 
for each individual from the first day of video record-
ings. Behaviours were first annotated into the main cat-
egories: browsing high, browsing low, grazing, digging, 
lying, standing, moving, agonistic behaviour, scratching 
head against tree, other and missing data. If a behaviour 
did not fit the listed behaviours or if an animal expressed 
more than one of the listed behaviours at the same time, 
we annotate it as “other”. The latter occurred on a few 
occasions when one reindeer was digging and grazing 
at the same time. Total number of recorded behaviours 
for each individual are presented in Additional file  1: 
Table A2. Video recordings were annotated using BORIS 
Version 7.9.8 [61]. Reindeer have a polycyclic activity pat-
tern with all typical behaviours occurring in bursts both 
day and night [62, 63] throughout the year [64]. Thus, we 

Fig. 1 Enclosures with placement of cameras used for video recordings of ground-truth behaviour of ten and nine reindeer, respectively, fitted with 
acceleration sensors in (a) Sirges reindeer herding community and (b) in Ståkke reindeer herding community, both in northern Sweden
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expect to cover the most common behaviours occurring 
in night-time from the daytime recordings.

Behaviours used in model training
Closely related behaviours with high similarity in accel-
eration waveforms were merged before model training 
i.e., grazing behaviour included grazing, grazing from a 
hole, and grazing while walking, and inactivity included 
sleeping, ruminating, standing, and resting. Running was 
merged with trotting due to low occurrence. To quan-
tify reindeer foraging behaviour, a total of seven remain-
ing behavioural categories were used for model training: 
grazing, browsing low, browsing high, inactivity, walk-
ing, trotting, and other behaviours. Behaviours such as 
walking in rough terrain were not observed in the video 
recordings and were therefore not included in the train-
ing and validation.

Analyses of accelerometer data
Raw acceleration data (X, Y and Z) were first smoothed 
using a running mean of five seconds removing most 
of the static acceleration (gravitational component of 
acceleration) from the dynamic acceleration [e.g., 12, 23, 
27]. The GPS device (175 g) acted as a counterweight to 
avoid unwanted collar rotations around the neck. How-
ever, this happened to some extent, and when reindeer 

are free-ranging the accelerometers will also be prone to 
unwanted rotations. From the estimated static accelera-
tion, the angles around X (roll) and Y (pitch) were calcu-
lated [65; Table 2] to estimate accelerometer orientation. 
To validate our estimated angles, our filtering method 
and equations for pitch and roll were compared with 
true angles derived from a dataset collected with IMU 
sensors (accelerometer and gyroscope; Byström, unpub-
lished data). To adjust for the position of the accelerom-
eter when a collar had rotated, a rotation matrix around 
the X-axis was calculated to transform the sensor’s meas-
urements into fixed measures based on the estimated 
angle (α) around the X-axis (Table 2). The ℓ2-norm of raw 
accelerometer axes was calculated to assess an orienta-
tion-independent index of acceleration magnitude [49, 
66].

Acceleration data were then segmented into 2-, 3-, 
and 5-s windows using fixed-size non-overlapping slid-
ing windows [67]. As a result, behaviours occurring dur-
ing short timespans (< 2  s) were dropped from the data 
after segmentation. See Additional file  1: Table  A3–A5, 
for final number of windows for each behaviour and 
individual when using 2-, 3-, and 5-s windows, respec-
tively. Summary statistics were calculated from each seg-
ment of data resulting in 50 features. To avoid overfitting 
and computational load, we removed highly correlated 

Table 2 Processing (A) performed on raw acceleration data after applying a sliding window of five seconds prior to segmentation and 
summary statistics (features) calculated (B) for each window (two-, three-, and five-second windows) after segmentation

A Data processing Term Equation Description

Static acceleration sX, sY, sZ sXi = 1
51

i+25
i−25 Xi

Gravitational component of acceleration (9.81 m/s2 = 1 g) caused by gravi-
tational force acting on the accelerometers [16, 17, 35]

Dynamic acceleration dX, dY, dZ dXi = |Xi − sXi| Dynamic acceleration measures acceleration caused by animal movements 
where the gravitational component is removed [e.g., 12, 23, 27]

Roll (φ) roll atan2(sY, sZ) Rotation around the X-axis (roll) given in Euler angles ranging between ± π 
radian (equivalent to ± 180º) using 2-argument arctangent function, imple-
mented as atan2 in R

Pitch (θ) pitch −atan( sX√
sY2+sZ2

) Rotation around the Y-axis (pitch) given in Euler angles ranging 
between ± π/2 rad (equivalent to ± 90º) using arctangent function, imple-
mented as atan in R 

ℓ2-norm of raw accelerometer axes Norm
√
X2 + Y2 + Z2 Orientation-independent measure of acceleration magnitude [42, 62]

Rotation matrix Rx(ϕ)




1 0 0

0 cosϕ −sinϕ

0 sinϕ cosϕ





Rotation matrix around X-axis to adjust for rotations around the neck

B Summary statistics Term Description

Mean mean Mean value for each axis in each window

Minimum min Minimum value for each axis in each window

Maximum max Maximum value for each axis in each window

Median m Median for each axis in each window

Interquartile range IQR Third quantile (Q3) subtracted by the first quan-
tile (Q1) for each axis in each window

Standard deviation sd Standard deviation for each axis in each window
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features and used 12 features for model training and 
validation: m_roll, IQR_roll, mean_sX, sd_sX, mean_
dX, max_dX, m_Y, IQR_Y, min_sY, max_sY, sd_dZ and 
mean_dZ, with m_roll being the combination of median 
(m, Table  2B) and Roll (roll, Table  2A) and so forth. To 
further decrease predictor variables to avoid overfitting, 
we selected the most influential variables for classifica-
tion using forward feature selection for each window size 
implemented with the “CAST”-package [68]. Distribu-
tion of annotated data using three features (mean_sX, 
IQR_Y, and sd_dZ) and 2 s windows are shown in Addi-
tional file  2: Fig. A2. All data processing and analyses 
were performed using R version 4.0.3 [69] and RStudio 
version 1.3.1093 [70]. In this study, time-domain metrics 
were considered.

Random forests
Random forests (RF) is a classification method that com-
bines an ensemble of classification trees [71, 72]. Each 
classification tree defines decision rules to partition 
the dataset into subsamples with similar properties. A 
RF randomly selects observations and features to build 
multiple classification trees from a dataset. The pre-
dictions of each individual tree are averaged to give an 
overall classification decision [71]. Thus, the RF corrects 
for overfitting. In addition, RF is robust with respect to 
noise [71]. We initially constructed 500 trees using the 
“randomForest”-package [73], and used the “caret”-pack-
age [74] to tune the number of variables chosen at each 
iteration.

Support vector machines
Support vector machines (SVM) is a supervised machine 
learning algorithm which finds optimal separating hyper-
planes (decision boundaries) that separate the data points 
into the different classes. We implemented multiclass 
SVM using the “caret”-package [74] and radial kernel 
function using the “kernlab”-package [75]. Tuning was 
performed using the “caret”-package [74] to find the opti-
mal regularization parameter C and kernels smoothing 
parameter gamma.

Hidden Markov models
An hidden Markov model (HMM) is a stochastic time-
series model involving an observable state-dependent 
process and an underlying, unobservable state process. 
The goal is to learn about the hidden states (in our case 
behaviours) by observing the state-dependent process 
[acceleration metrics; 26]. The hidden states are assumed 
to follow a first-order Markov chain, and the probabil-
ity distribution of an observation at time t is assumed to 
depend only on the state at time t , independently of all 

other observations and states [76, 77]. Thus, HMM takes 
into account the serial dependence between observed 
behaviours, unlike RF and SVM.

To fit an HMM, we need to specify the number of 
states and the form of the observation distributions. 
In our case, the number of states is the number of pre-
specified behaviours, and we used state-dependent mul-
tivariate normal distributions for the observations. The 
transition probability matrix of the Markov chain and 
the parameters of the observation distributions can then 
be estimated by maximum likelihood, using the Forward 
Algorithm to evaluate the likelihood efficiently. Given a 
fitted HMM, the Viterbi algorithm can be used to recon-
struct the most likely states (behaviours) corresponding 
to the observations. See for example Leos-Barajas et  al. 
[26].

Training and validation
To account for variability among individuals used in 
the training and to make generic predictions on new 
(unseen) individuals, we used leave-one-subject-out 
cross-validation for model evaluation. This ensured that 
an individual never occurred in the training and valida-
tion dataset at the same time for each iteration of k. Thus, 
data from one individual was always left out in each fold 
and was utilized as a test set. This was repeated until data 
from all individuals were classified. To retain the natu-
rally unbalanced behaviours across individuals, the data-
set was not balanced across individuals, and we used an 
unequal number of behavioural classes from each indi-
vidual. Confusion matrices [ nij ] were used to summa-
rize model performances where i, j denotes the number 
of observations belonging to ground-truth behaviour i 
that were predicted by the model to be behaviour j (see 
calculations in Additional file 1: Table A1). We computed 
behaviour-specific sensitivity, precision and accuracy and 
overall accuracy across behaviours. Cross-validation was 
implemented using the “CAST”-package [68] for RF and 
SVM.

Results
Model development and evaluation
Random forests was tuned for the optimal number of 
variables chosen at each iteration (2 s windows: mtry = 2, 
3  s windows: mtry = 3, and 5  s windows: mtry = 4) and 
the number of trees was set to 50 (ntrees = 50, Additional 
file 2: Fig. A3). Future feature selection using RF to find 
the most important variables out of twelve resulted in 
eight predictor variables used for 2 s windows (mean_sX, 
sd_dZ, IQR_Y, IQR_roll, max_dX, min_sY,  sd_sX and 
m_Y), nine predictor variables used 3 s windows (mean_
sX, sd_dZ, IQR_Y, IQR_roll, max_dX,  min_sY, sd_sX, 
mean_dX and m_Y), and seven predictor variables used 
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for 5  s windows (mean_sX, sd_dZ, IQR_Y, IQR_roll, 
max_dX, sd_sX and min_sY). This subset of variables 
was later used for SVM and HMM. For RF, overall accu-
racy was 100% (Kappa = 1) in the training datasets for 
all sliding windows (2  s, 3  s and 5  s). Model overfitting 
was checked for RF by reducing number of trees, and the 
result did not differ (qualitatively) with number of trees as 
small as 50. Regions of tuning parameter gamma ( γ ) and 
optimal regularization parameter C (default values for C 
were 0.25, 0.5, 1, 2, 4) passed from training were used for 
SVM (2  s windows: γ = 0.225, C = 1, 3  s windows: γ = 
0.217, C = 1, and 5  s windows: γ = 0.308, C = 0.5). Fur-
ther tuning of hyperparameters for SVM provided better 
overall accuracy but increased bias towards dominant 
classes and were not able to classify undersampled behav-
iours. Similarly, bias towards dominant classes increased 
with increased window size (Table  3). In the training 
dataset for SVM, overall accuracy and Kappa was 86% 
and 79% for 2 s windows, 89% and 83% for 3 s windows 
and 88% and 81% for 5 s windows, respectively. Training 
set accuracy and Kappa for HMM was 82% and 73% for 
2 s windows, 82% and 73% for 3 s windows and 80% and 
68% for 5 s windows, respectively.

Model performance
Grazing (accuracy ≥ 88%) and inactivity (accuracy ≥ 90%) 
were easily identified by all three models. However, for 
browsing low, the models did not discriminate the behav-
iours to the same extent (Table  3). Most confusion was 
found between browsing low and browsing high for all 
models. For the three models applied, the highest over-
all accuracy (85%) was found for RF using 5  s windows 

(Table  3). Increasing window size (from 2 to 5  s win-
dow segmentation) improved overall accuracy of RF and 
SVM whereas overall accuracy of HMM increased with 
smaller window size. The best performing HMM (using 
2  s windows) had better performance across all indi-
vidual behaviours and was able to classify browsing high 
(Table  3). Similarly, HMM had better performance of 
trotting compared to the best performing RF and SVM 
(Table 3). Confusion matrices and F1-scores are provided 
in Additional file 1 (RF: Table A6, SVM: Table A7, HMM: 
Table A8, F1-scores: Table A9).

Discussion
We illustrate application of collar-attached acceleration 
sensors to quantify reindeer fine-scale behaviour. Using 
data from 19 reindeer, we tested the supervised machine 
learning algorithms RF, SVM, and HMM to find the best 
model classifying reindeer behaviour. Overall, HMM per-
formed best in predicting individual and rare behaviours, 
while RF and SVM were biased towards dominant classes 
and less able to handle rare behaviours such as trotting 
and browsing high.

Predicting grazing, accuracy varied between 88% 
(HMM) and 93% (RF and SVM). Our results were similar 
to Alvarenga et  al. [78] and Barwick et  al. [79] classify-
ing five sheep behaviours using halter and collar-attached 
accelerometers, respectively. Other studies have reported 
prediction accuracy and sensitivity for feeding behaviours 
from 77% to 96% and 75% to 100%, respectively [29, 80–
82]. In these studies, sheep and cow behaviour were clas-
sified and the predictive performance tended to increase 
with a lower number of behavioural classes included in 

Table 3 Performance statistics (%) of Random forests (RF), Support vector machines (SVM) and Hidden-Markov models (HMM) using 
time-domain features in 2-, 3- and 5-s windows (2 s, 3 s and 5 s)

Behaviour-specific metrics are given as sensitivity (Se), precision (Pr), accuracy (Ac), and overall model performance are presented as overall accuracy and Cohen’s 
kappa (K)

Behaviours other than grazing, browsing high, browsing low, inactivity, walking, and trotting are included as “other” in model training

Highest behaviour-specific metrics for each model are presented in bold and the overall best performing model is highlighted in italic

Grazing Browsing 
high

Browsing 
low

Inactivity Walking Trotting Other

Window size Se Pr Ac Se Pr Ac Se Pr Ac Se Pr Ac Se Pr Ac Se Pr Ac Se Pr Ac K Overall 
accuracy

RF 2 s 89 86 93 25 56 62 68 64 79 94 92 92 45 53 72 57 61 78 18 51 59 72 82

3 s 89 86 93 28 57 64 73 70 82 94 92 93 49 57 73 53 58 76 21 61 60 75 84

5 s 86 85 92 25 49 62 77 74 84 94 93 93 49 52 74 34 34 67 19 50 59 76 85
SVM 2 s 89 84 93 14 50 57 66 65 79 94 91 92 47 56 73 33 55 66 21 39 60 72 82

3 s 89 86 93 9 36 54 72 68 81 94 92 93 48 59 73 22 56 61 19 43 59 74 83

5 s 86 85 92 0 0 50 76 70 83 94 92 93 43 58 71 0 67 52 19 56 59 75 84
HMM 2 s 85 88 91 79 29 89 53 80 75 95 90 92 75 51 86 78 53 89 40 44 69 72 82

3 s 85 88 91 68 26 83 54 80 75 95 90 92 69 39 82 79 40 89 36 40 67 72 82
5 s 78 86 88 24 20 62 54 74 74 95 88 90 65 38 81 24 20 62 29 25 63 66 78
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the models [29, 80–82]. Similarly, Turner et al. [83] found 
a reduction in overall accuracy when more behavioural 
classes of sheep behaviour were included in the models 
using RF, SVM and Deep learning techniques. For exam-
ple, RF performed best using three behavioural classes 
with an overall accuracy of 83%, whereas overall accuracy 
dropped to a maximum of 72.4% for a RF model when 
using nine classes. Support vector machines achieved 
77% overall accuracy using three behavioural classes but 
dropped to 58% when using nine behavioural classes [83]. 
In our models, seven behavioural classes were used of 
which feeding was separated into three subgroups (graz-
ing and browsing high or low). Our results also indicated 
that when behaviour was classified as browsing high, 
this was generally correct, but that actual browsing high 
behaviour was often classified as browsing low (see con-
fusion matrices in Additional file 1, Table A6–A8). This 
most likely depended on the two behaviours only being 
separated by the change in angle of the head. The accel-
erometer was attached to the neck, and the change of the 
neck angle when browsing high or low might not have 
been large enough to separate the acceleration pattern 
for the two behaviours. Thus, there was not a clear dif-
ference in acceleration between the two behaviours and 
the sensitivity for browsing high was lower than for other 
behaviours only reaching 79% (HMM, 2 s windows), 28% 
(RF, 3  s windows) and 14% (SVM, 2  s windows). In our 
dataset, browsing high was also a relatively rare behav-
iour only expressed by a few individuals. More annota-
tions on rare behaviours could further have improved our 
classification accuracy, at least for those with distinct fea-
ture characteristics. For example, by visualizing the dis-
tribution using three statistical features (Additional file 2: 
Fig. A2) for our seven behavioural classes, it seems like 
browsing high has a distinct cluster. Nevertheless, RF and 
SVM failed to predict browsing high.

Annotating behavioural data to the accelerometer data 
is time-consuming, why a common challenge is to pro-
duce a dataset with a sufficient number of observations 
for each behaviour across individuals. Datasets with too 
few ground-truth observations are prone to overfitting. 
In addition, without enough individuals, it may not be 
possible to generate generalizable results on new indi-
viduals. To overcome this problem overlapping windows 
may be used when segmenting the data. The common 
data are shared across successive  time windows, usually 
with 50% overlap between the two windows [84]. Using 
50% overlap compared to no overlap may increase classi-
fication performance significantly [85]. Bersch et al. [67] 
compared classification performance in human activity 
recognition data using 0%, 25%, 50%, 75%, and 90% over-
lap and found a higher accuracy with increased overlap 
compared to no overlap. Riaboff et  al. [86] found that 

the best prediction performance of cow behaviour was 
achieved when using 90% overlap. However, there is a 
risk of information leakage resulting in over-optimistic 
results when data is shared across adjacent windows [87]. 
With our large dataset (90,052 labelled samples for one-
second windows for seven behavioural categories) it was 
not necessary with overlapping windows for segmenta-
tion. Information leakage could therefore be avoided in 
our model training.

It is important that an animal’s movement pattern is 
observed over an optimal time window to be able to iden-
tify different behaviours. Hence, window size may have a 
significant impact on the prediction results [67]. In our 
evaluation of window size on model performance, we 
found that RF and SVM had slightly higher performance 
accuracies at longer window sizes, while HMM had 
higher performance at shorter window sizes (Table  3). 
Hidden Markov models consider the serial dependence 
between behaviours and will most likely gain more infor-
mation from using shorter time windows. Thus, optimal 
window size depends on the model selected to classify 
behaviour.

We had one collar rotating clearly around the neck 
of the animal. If collar rotations are not accounted for 
this may result in significant errors when using collar-
attached acceleration sensors [49]. One way of dealing 
with collar rotations is to use orientation-independent 
features such as the total magnitude of all axes [49]. There 
may be a risk of decreased recognition rates due to loss 
of dimensionality when using orientation-independent 
features [43], but Kamminga et al. [49] and Barker et al. 
[50] used orientation-independent features and found 
that feeding behaviour of goat and cow was predicted 
with an accuracy of 83% and 86%, respectively. Alterna-
tively, rotation matrices can be used for correcting sen-
sor rotations [52]. To reduce the effect of collar rotations, 
we transformed the data along the X-axis using rotation 
matrices enabling better discrimination between the 
behaviours. Thus, total magnitude of axes were removed 
to avoid over-fitting. Using more individuals with rotat-
ing collars and combining magnetometers and/or gyro-
scopes to provide the true angles, would provide further 
insight into the impact of using rotation matrices on 
model performance. Increasing the number of sensor 
outputs, however, shortens battery life and capacity of 
the sensor.

Cross-validation is necessary to evaluate the reliability 
of a model [88, 89]. In many studies, cross-validation is 
performed using random K-fold cross-validation [e.g., 
29, 35], or leave-one-out cross-validation [90] when data 
is randomly split across individuals into training and vali-
dation data. Using these methods, it is likely that obser-
vations from all individuals are present in each fold and 
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the model is both trained and validated on all individu-
als. Random K-fold cross-validation may be suitable for 
models that will be used to monitor the same group of 
individuals again. However, this tends to show over-opti-
mistic results and may not assess a generic performance 
on new individuals [89]. Other studies have used a sin-
gle random split of training and validation data [59, 91]. 
Model performance in these studies with experimental 
settings when animals are fenced is high (overall accu-
racy ranging from 95 to 98%), but may not be gener-
alizable and good enough to be used on data from new 
individuals.

It may be challenging to label behaviours on enough 
individuals to capture the individual variation in a popu-
lation, especially in wild and free-ranging species. In our 
study, we strived for a model that would be applicable 
when reindeer are free-ranging and able to predict behav-
iour of new individuals. Therefore, leave-one-ID-out 
cross-validation was used. In other words, we made sure 
that each fold of observations from one individual was 
not present in both training and validation data. Leave-
one-ID-out cross-validation may increase the variance 
of the results and significantly reduce prediction accu-
racy by 40 percent due to the individual variation [89, 
92]. However, it will evaluate the generic performance of 
the models as it includes data from unseen objects, com-
pared to traditional K-fold cross-validation [89, 93]. To 
our knowledge, this is rarely implemented for classifica-
tion models on animal-borne accelerometer sensors but 
has been used for behaviour classification of e.g., meerkat 
(Suricata suricatta), sheep and cattle [80, 94, 95]. A rea-
son for this could be the time-consuming work of com-
piling a large enough dataset to perform leave-on-ID-out 
cross-validation as in Riaboff et al. [96].

Many machine learning algorithms are sensitive to 
unbalanced classes decreasing overall performance 
[97–99]. Therefore, stratified cross-validation to handle 
unbalanced datasets is sometimes used [35, 100] and is 
recommended by Riaboff et al. [101]. In our data, behav-
iours were unbalanced because some activities were not 
equally frequently performed across individuals. How-
ever, to retain the naturally unbalanced frequencies, 
behaviours were not stratified. Hidden Markov mod-
els had lower overall performance compared to RF and 
SVM but were able to better predict rare classes and thus 
under-sampled behaviours (browsing high and trotting). 
Compared to Smith et  al. [94] implementing leave-one-
subject out cross-validation using SVM for activity clas-
sification of six cow behaviours, our F-scores were higher 
(Additional file  1, Table  A9). Other techniques during 
data collection could be considered, such as active learn-
ing to deal with naturally unbalanced datasets [102]. It is 
also possible to use a refined systematic approach during 

the labelling process to obtain more balanced datasets, 
by collecting just enough observations for each class to 
avoid under- and oversampling.

Our methods enabled generation of detailed classifi-
cation of activity data from collar-attached acceleration 
sensors. Being able to document reindeer fine-scale 
foraging patterns have a wide range of applications. 
For example, in management of reindeer information 
on how reindeer behaviour is affected by management 
actions, extreme weather events, human presence, 
changes in habitat structure and land fragmentation 
are essential. As an example, supplementary feeding 
has become more common due to competing land use 
and climate change [103, 104]. Supplementary feeding 
might be beneficial in the short term but might risk 
the reindeer’s future ability to search for natural fodder 
such as ground lichens under the snow, especially under 
extreme conditions. Warm and wet weather in winter 
increase icing on the ground and in the snow, restrict-
ing access to ground lichens [105]. Such conditions may 
try reindeer foraging skills searching, finding, and dig-
ging for lichens under the snow. In addition, from a cli-
mate change perspective with increasing shrubification 
of the arctic tundra, our method could be vital to quan-
tify reindeer foraging intensity on shrubs and trees and 
its ability to suppress this vegetative greening [17, 106].

In conclusion, classification of remote fine-scale for-
aging behaviours from accelerometer data provides 
means to answer a wide range of questions related to 
animal behaviour, physiology, and ecology. Our results 
demonstrate that behaviours can be distinguished by 
isolated sequences of accelerometer data applying time 
domain features using a sampling frequency of 10  Hz. 
Hidden Markov models was able to best predict behav-
iours based on naturally unbalanced data and thus 
provide a useful tool to remotely monitor reindeer 
behaviour and to quantify how foraging behaviour of 
reindeer is affected by winter feeding.
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