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Scatter-hoarding birds disperse seeds 
to sites unfavorable for plant regeneration
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Abstract 

Scatter-hoarding birds provide effective long-distance seed dispersal for plants. Transporting seeds far promotes 
population spread, colonization of new areas, and connectivity between populations. However, whether seeds 
transported over long distances are deposited in habitats favorable to plant regeneration has rarely been investigated, 
mainly due to methodological constraints. To investigate dispersal patterns and distances of Swiss stone pine (Pinus 
cembra) seeds we utilized advances in tracking technology to track the movements of their sole disperser, the spotted 
nutcracker (Nucifraga caryocatactes). We found routine individual movements between single seed harvesting and 
seed caching site. Harvesting sites of individual birds overlapped, whereas seed caching sites were separated and 
located on average 5.3 km away from the harvesting site. Interestingly, most distant caching sites were located at 
low elevations and in spruce forest, where Swiss stone pine does not naturally occur. This suggests that nutcrackers 
disperse seeds over long distances but that a large portion of these seeds are cached outside the known pine habitat. 
Therefore, we conclude that the implications of such long-distance seed dispersal movements for plant populations 
should be carefully considered in combination with the effects of habitat quality on plant recruitment.
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Background
Seed dispersal is an important component of plant life 
history because it lays the spatial template for the popu-
lation processes that follow. For animal-dispersed plants, 
an understanding of disperser movement behavior is 
critical to identifying spatial seed dispersal patterns and 
for making predictions regarding the population dynam-
ics and distribution of plant species [21]. However, link-
ing movement behavior to ecological processes, such as 
long-distance seed dispersal is a daunting task as most 
dispersers passively drop seeds in the environment [2, 8]. 
Previous studies have, for instance, combined movement 
data with gut passage times to estimate seed dispersal 

locations [20, 29, 30, 47]. Spatial biases in the accumu-
lation of dispersed seeds at specific locations, so called 
directional seed dispersal [39], have been demonstrated 
for a number of plant-seed disperser interactions (e.g., 
[7, 8, 17, 38]). However, directional dispersal of seeds is 
not equivalent to directed dispersal in the strict sense, i.e., 
dispersal of seeds to habitat favorable for plant establish-
ment [39, 46]. To date, it remains challenging to disentan-
gle the spatial extent of seed deposition and its relation to 
plant recruitment [1].

Scatter-hoarding animals, which cache seeds under 
the soil surface for later consumption, are particularly 
suitable to study seed dispersal, as they actively deposit 
seeds at particular sites [34], which can often be explic-
itly identified, in contrast with passive animal-mediated 
seed dispersal (i.e., endozoochory). Scatter-hoarders pro-
vide especially effective seed dispersal as they bury seeds 
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[43], which increases the chance of germination and 
protects seeds from predation by seed predators [4, 45]. 
The majority of data on scatter-hoarding animals come 
from studies of rodents (e.g., [4, 19, 35], however, scat-
ter-hoarding birds can disperse seeds over much greater 
distances [36, 37]. Such long-distance dispersal is par-
ticularly important for plant populations as it for instance 
maintains the genetic diversity of separated sub-popula-
tions and enables shifts in plant species distributions [5]. 
While long-distance dispersal of scatter-hoarding birds 
has thus been regarded as generally beneficial for the 
plant [17, 25], seeds dispersed over long distances could 
also be directed towards low-quality habitat where the 
probability of establishment is poor. However, this phe-
nomenon has rarely been addressed, likely due to the 
overall challenges of measuring long-distance dispersal 
using movement, genetic, or stable isotope approaches. 
Linking deposited seeds with the mother plant via DNA 
barcoding requires impractical sampling effort over large 
areas [14, 15]. Stable isotope enrichment is another suit-
able method to track seed deposition across large spatial 
scales [7, 8], but usually only covers dispersal distances 
of a few hundred meters. GPS tracking technology that 
now allows even small-bodied animals to be tracked fre-
quently and over longer time frames in combination with 
an understanding of potential seed fate can help to shed 
light on the implications of long-distance dispersal for 
plant populations.

We conducted fine scale spatiotemporal GPS tracking 
of spotted nutcracker (Nucifraga caryocatactes) move-
ments during the autumn ripening season of the Swiss 
stone pine (Pinus cembra) to investigate pine seed dis-
persal distances and dispersal patterns. Swiss stone pines 
depend exclusively on spotted nutcrackers, year-round 
residents of the European Alps, to transport their seeds 
as they are the only animals that can remove entire seeds 
from the hard cone [27]. Dispersal events by other species 
such as nuthatches or woodpeckers are very rare [27] and 
secondary dispersal by rodents occurs rather exception-
ally (pers. obs). When pine seeds ripen from August to 
September, nutcrackers harvest and then transport seeds 
to different caching locations. Seeds are stored below 
the soil surface and are fed on until new seeds begin to 
ripen the following year. Swiss stone pine populations 
occur across a narrow elevational gradient ranging from 
about 1,500–2,400 m [42]. At the lower elevational range 
limit, seedling recruitment probability is low due to high 
seed predation, high canopy cover, and drier conditions 
[28, 33], additionally, pines are outcompeted by other 
tree species at lower elevations, in particular Norway 
spruce (Picea abies). Swiss stone pine populations are 
declining and have become increasingly fragmented and 
threatened due to human activities [11, 42], but see [12]. 

Studying seed dispersal is therefore important to esti-
mate the regeneration potential of the species.

We investigated the movement behavior of spotted 
nutcrackers to ask: (1) whether harvesting and caching 
sites can be inferred by movement data, (2) how far and 
widespread nutcrackers transport pine seeds, (3) whether 
long-distance dispersal events of pine seeds result in 
caching at high elevation sites known to be the most 
favorable for pine seed germination and recruitment [28, 
33].

Methods
Study site and species
We studied spotted nutcracker movements in 2017 and 
2018 in the eastern Swiss Alps, in a ~  15km2 area sur-
rounding Davos, Switzerland. There, Swiss stone pine 
populations are a foundational species forming the upper 
tree line at between 1850 to 2200  m a.s.l. [27]. Seed-
bearing trees grow at elevations of up to 2150 m a.s.l. and 
highest pine densities are located at intermediate eleva-
tions within the elevational range [33]. At the valley bot-
toms, forests are dominated by Norway spruce (Picea 
abies) and European larch (Larix decidua), with low 
Swiss stone pine abundance.

Capture and GPS tracking
Spotted nutcrackers begin harvesting when Swiss stone 
pine seeds ripen from August to October. To capture 
nutcrackers we erected 3–4 mist nets in the Flüela valley 
(4648′0.25″N, 954′15.38″E), where a large stand of Swiss 
stone pine trees is located, from Aug 3–31 in 2017 and 
from Aug 6–19 in 2018. Mist nets were placed in areas 
where significant nutcracker activity had been observed 
previously. Nutcrackers were caught passively and with-
out the use of playback or decoys. All individuals were 
aged as either adults or juveniles according to the occur-
rence and shape of white tips on wing and covert feath-
ers [40]. We selected adults for GPS tag deployment as 
adults are most likely to have previous seed caching 
experience and to display harvesting and caching move-
ment patterns typical of the overall population. A juve-
nile tagged in 2018 remained at the harvesting site and 
moved over a small area (~ 0.5  km2) during 20  days of 
the harvesting and caching season (see Additional file 1: 
Fig. S1). A total of 20 adult nutcrackers (5 in 2017, 15 in 
2018) were fitted with 5.5 g backpacks containing a GPS, 
remote data readout, and a VHF radio transmitter (Pin-
Point VHF-120, Lotek, Newmarket, ON). The backpacks 
were a maximum of 3% body weight (all tagged nutcrack-
ers were > 182  g) and included sewn breakpoints that 
were designed to allow the backpack to fall safely from 
the bird after ~ 2  months. We used radio receivers and 
two element-H antennas to locate and approach birds, 
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then once within range we downloaded the data from the 
data logger. Remote data download was attempted daily 
for each tagged bird. When birds could not be located 
in the Flüela valley, we visited the surrounding valleys to 
attempt to make contact with tagged birds. Of 20 tagged 
birds, three were not contacted again after tagging and 
four had fewer than five days of data. This could have 
been most likely because of tag failure or because birds 
permanently moved to a location further away than we 
were able to detect. This resulted in a total number of 12 
tags with full datasets throughout the tracking period 
that were included in the analyses. GPS tags were pro-
gramed to record one location every 15 min from 10:00 
to 20:00 h. One tag was programmed to record one loca-
tion every 6 min from 10:30 to 11:30 h. As data recorded 
by this tag were comparable to the 15-min intervals (see 
Additional file 1, tag 37 in Fig. S2), we included this tag 
in the analyses. GPS point recording began the earliest 
at 10:00, as harvesting activity was slower in the early 
morning (pers. obvs). We tested the accuracy of Lotek 
GPS tags by placing two tags at the capture site and 
recording 95 fixes. The average linear error was 12.4  m 
(range 0–71.7 m, SD = 9.5 m, 50% CI = 12.8 m, and 95% 
CI 13.8  m). Overall tracking yielded movement data 
between 8 and 36 days (mean = 23.6 days) from 12 spot-
ted nutcrackers.

Movement analysis
We identified frequently revisited sites, time spent within 
these areas (visit duration), and time since the last visit 
to the area using the R package recurse [3]. We drew a 
radius of 500 m around each GPS point, such that each 
point could be treated as a potential revisitation site. 
We then calculated the number of revisits at each site. 
For one individual (tag 21), we used a 300  m radius, as 
the dispersal distances were too small to apply a 500 m 
radius. To isolate the frequently revisited sites, we set a 
threshold of revisits. To do so, we plotted the density of 
revisits, and then selected the minimum density as the 
threshold between the rarely revisited and the frequently 
revisited sites. In the rare cases where there was more 
than one local minimum (i.e., tag 20, 24, 27), we set the 
threshold at the minimum with the largest percentage of 
maximum revisits (Additional file 1: Fig. S2).

Observations at our capture site in the Flüela val-
ley confirmed intensive seed harvesting behavior (i.e., 
nutcrackers flying with cones and working on cones to 
remove seeds) and an extensive Swiss stone pine stand. 
While at distant frequently visited sites a few single nut-
crackers were observed, no harvesting behavior was 
seen, and most trees were spruce with few Swiss stone 
pines observed. Additionally, nutcrackers observed in 
long flights down valley from the Flüela capture site had 

sublingual pouches, which are used for seed transport, 
full of seeds. Once frequently revisited sites were iden-
tified, we performed a spatial fuzzy cluster analysis to 
group these sites into two clusters and then compared 
the visit durations between clusters. To measure the size 
of revisited sites, we extracted 95% convex polygons of 
each cluster using the “adehabitatHR” package [6]. We 
also extracted the straight linear distance between sites. 
To obtain information on the habitat type of frequently 
revisited sites, we calculated the overlap of revisited sites 
with Swiss stone pine forest cover. To do so, we used 
maps provided by the “Amt für Wald und Naturgefahren 
Graubünden” showing the proportion of Swiss stone pine 
in overall forest cover. We calculated the overlap between 
revisited sites with forest area that contained at least 10% 
of Swiss stone pine coverage. Finally, we extracted the 
elevation above sea level of revisited sites. To test for sig-
nificant differences in visit duration, area, overlap with 
Swiss stone pine forest and elevation of revisited sites, we 
fitted a separate generalized linear mixed effects model 
for each response variable, including tag ID as a random 
effect.

Results
We identified two revisitation sites for each individual, 
with routine movements between sites roughly every 2 h 
(mean 5.5 trips, SE 0.34, range 3.8–7.24, between sites per 
daily 10-h tracking period). While harvesting and cach-
ing sites were originally identified using field observa-
tions (see methods for additional details), we found that 
harvesting and caching sites could also be distinguished 
solely by the amount of time that nutcrackers spent at 
each site. Nutcrackers spent about 1.5 times more time in 
harvesting than in caching sites (Fig. 2a; Estimate: 0.4, SE 
0.09, t = 4.4, p = 0.001). While nutcrackers spent on aver-
age 1.4 h at harvesting sites per visit, they only stayed for 
an average of 39 min at caching sites.

The space used by individual nutcrackers at harvest-
ing sites was significantly smaller than at caching sites 
(Fig.  2b; Estimate: − 13.4, SE 3.43, t = − 3.8, p = 0.003). 
While harvesting areas were on average 11  ha in size, 
caching areas were 25  ha in size. The straight-line dis-
tance between harvesting and caching sites ranged 
from 2.1 to 8.5 km with a mean of 5.2 km between sites. 
Importantly, harvesting sites were shared among most 
individuals, which may have been an artifact of selecting 
a forest with high nutcracker activity as capture location; 
however, caching sites were spatially dispersed and not 
shared (Fig. 1).

There was a significant difference in pine forest cover 
overlap between harvesting and caching sites (Fig.  2c, 
Estimate: 68.9, SE 8.3, t = 8.3, p < 0.0001). While har-
vesting sites overlapped on average 80% with pine forest 
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(i.e., with forest that contained a minimum of 10% Swiss 
stone pine tree cover), there was only 11% overlap with 
pine forest at caching sites. Harvesting sites were located 
at higher elevations than caching sites (Fig. 2d, Estimate: 
244.0, SE 45, t = 5.4, p < 0.0002). While harvesting sites 
were located at on average 2047  m a.s.l., caching sites 
were located at 1803 m a.s.l. and thus, mostly outside the 
known range of pine occurrence in the study area (i.e., 
between 1850 and 2150 m a.s.l.).

Discussion
Here, we provide novel insights into the seed dispersal 
potential of a scatter hoarding bird using spatially and 
temporally detailed GPS movement data. Our results 
show routine individual daily movements between a 
single harvesting and a single caching site, shared har-
vesting sites but separate caching sites among individu-
als, and long-distance seed dispersal events. Expected 
harvesting and caching sites were clearly distinguishable 
by nutcracker visit duration, area, pine forest cover, and 
elevation. Interestingly, our results suggest that spotted 

nutcrackers cache seeds mostly at low elevations, outside 
the known range of occurrence of Swiss stone pine in the 
study area. This suggests that nutcrackers disperse seeds 
predominantly to sites with a low probability of pine 
regeneration. However, caching areas were much larger 
than foraging areas, which could increase the chances of 
future recruitment even at marginal densities.

Nutcrackers routinely dispersed seeds over very long 
distances (up to 8.5 km straight line path in this study). 
These directional dispersal movements were made on 
a remarkably regular basis, which is why they may not 
meet the classical definition of long-distance seed disper-
sal (i.e., mostly referring to rare and extreme events (see 
e.g., [13, 32]). Compared to previous studies, the seed 
dispersal distances observed in this study were beyond 
what has usually been recorded for many plant species 
(e.g., [41]). Even scatter-hoarding birds, such as jays or 
scrub-jays, which are usually very effective seed dispers-
ers, mostly disperse seeds over much smaller distances 
(reviewed in [37]). Only previous studies on Clark’s nut-
crackers (Nucifraga columbiana) in North America, have 

Fig. 1 Map of the study area in Davos (Grison), Switzerland. Left: movements of 12 spotted nutcrackers (Nucifraga caryocatactes) during the 
harvesting season (August–September 2017 and 2018) of Swiss stone pine (Pinus cembra) seeds. Black lines: spotted nutcracker movements 
between harvesting (red minimum 95% convex polygon) and caching (blue minimum 95% convex polygon) sites. Right: movement path of one 
individual spotted nutcracker between harvesting and caching sites. White points denote GPS position every 15 min
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shown exceptional seed dispersal flights up to 30 km [25, 
26, 37].

In our study, sites chosen for seed caching were located 
at low elevations outside the elevational range of the 
pine. In another scatter-hoarding system, European jays 
transport seeds from oak to pine stands which is consid-
ered beneficial for the viability of oak populations and the 
diversity of overall forest structure [17]. We find a similar 
pattern, dispersal between areas dominated by different 
tree species,however, seed dispersal to spruce forests is 
likely not very beneficial for the pine, as pine is outcom-
peted by spruce at its lower elevational range edge [28, 
42]. Previous work has further shown that the conditions 
for pine recruitment are very poor at the lower eleva-
tional range of the species, mainly due to high rates of 
seed predation [28, 33]. For seeds that are dispersed to 
sites at elevations lower than the lower elevational range 
edge, it seems that recruitment success is even more lim-
ited, which is why we assume that long-term establish-
ment and growth hardly occurs in spruce-dominated 
habitat. However, we emphasize that even rare success 
in recruitment would be sufficient to maintain popula-
tion viability [10], in particular given the long life-span of 
Swiss Stone pine [34]. The fact that caching areas were 
much larger than foraging areas further increases the 
spatial dispersion of the species, even though recruitment 

success likely happens rarely at caching sites. Clark’s nut-
crackers were also found to cache seeds at low elevations, 
probably to avoid a thick snow layer in winter [26]. We 
expect a similar motivation for spotted nutcrackers as 
lower elevation sites with benign abiotic conditions are 
preferable breeding territories. Additionally, spotted nut-
crackers are known to select microsites which promote 
long term storage of seeds rather than sites that are opti-
mal for pine seed germination [34]. Taken together, this 
suggests that spotted nutcrackers may not offer effective 
long-distance seed dispersal for Swiss stone pines.

Although our results suggest that effective long-dis-
tance seed dispersal in the spotted nutcracker and Swiss 
stone pine system does not occur en masse in a typical 
year, masting years and rare seed dispersal events may 
result in sufficiently effective seed dispersal for main-
taining population viability. Masting years, cyclical and 
spatially synchronized bumper crops [24], may cause 
consumer populations to be overwhelmed resulting in 
a larger number of unrecovered seeds that survive until 
reproduction [18, 22]. However, the specific effects of 
masting on scatter-hoarding behavior of corvids are not 
fully understood and require further study [37]. Rare seed 
dispersal events may also make up for the unfavorable 
caching sites observed in this study. Rare events, occur-
ring in less than 1% of seed dispersal events, may be suf-
ficient to maintain genetic links between subpopulations 
and to allow for regeneration of pine populations. It has 
been shown previously that rare long-distance dispersal 
events may be disproportionately important for plant fit-
ness and migration rates [9, 31]. For instance, movements 
of juvenile nutcrackers during dispersal to distant breed-
ing sites could result in rare long-distance seed dispersal 
events, as observed in the Sardinian warbler (Sylvia mel-
anocephala,[16]. Little is known about whether the tim-
ing of juvenile dispersal occurs during the cone ripening 
and harvesting season, or if such movements could result 
in seed dispersal to sites beneficial for pine germination 
and recruitment. The potential role of rare long-distance 
dispersal events not observed in this study, including the 
possibility of those carried out by juveniles moving to 
future breeding territories, are important areas of future 
research.

We found that the time spent at expected harvesting 
sites was greater than the time spent at expected caching 
sites, likely due to the greater time required to harvest vs. 
cache seeds [25]. For instance, Mattes [27] showed that a 
nutcracker needs about 33 s to establish one seed cache, 
whereas, removing seeds one at a time from the hard 
pine cone is more time consuming. These results suggest 
that movement data alone may be used to distinguish 
between spotted nutcracker harvesting and caching sites. 
It is important to note that previous studies have found 

Fig. 2 Differences between a visit duration, b area, c overlap with 
pine forest cover and d) elevation of spotted nutcracker caching and 
harvesting sites. Boxes indicate the 25% and 75% quartiles, black 
line indicates the median. Whiskers extend to the highest value that 
is within 1.5 × the interquartile range. Grey background color in d) 
indicates elevational range (1850–2150 m a.s.l.) of Swiss stone pines 
in the study area
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that caching behaviour also occurs at our main harvest-
ing site (Flüela valley; [28, 33], which may contribute to 
the greater time spent there. Such caching behaviour 
could be long term, or simply a temporary storage option 
[27] before most seeds are transported to distant lower 
elevation caching sites. Indeed, local seed dispersal at the 
harvesting site is important for Swiss stone pine recruit-
ment across, and, in particular, at the upper elevational 
range limit of the pine [33]. Future movement stud-
ies of scatter-hoarding species may wish to make use of 
similar characteristics of movement data to distinguish 
between harvesting and caching sites. Possibilities for 
using the time spent in distinct locations as indicators 
of the activities carried out is more challenging for non-
scatter hoarders but could include investigations into 
roosting and resting times [23], or certain habitat charac-
teristics in combination with the duration of movement 
behaviours.

Conclusions
In conclusion, spotted nutcrackers may provide poor 
long-distance seed dispersal service for Swiss stone pines 
as seeds are mainly dispersed beyond the lower eleva-
tional edge of the pine distribution. This dispersal pat-
tern will be particularly challenging for the pine in the 
course of ongoing climate change as plants are likely to 
shift their occurrence to higher elevations [44]. However, 
future studies will be required to improve our under-
standing of the nutcracker’s contribution to pine forest 
rejuvenation, including an extensive tracking program 
during a Swiss stone pine masting year.
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