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Abstract

Spectroscopic measurements of soil samples are reliable because they are

highly repeatable and reproducible. They characterise the samples' mineral–
organic composition. Estimates of concentrations of soil constituents are inevi-

tably less precise than estimates obtained conventionally by chemical analysis.

But the cost of each spectroscopic estimate is at most one-tenth of the cost of a

chemical determination. Spectroscopy is cost-effective when we need many

data, despite the costs and errors of calibration. Soil spectroscopists understand

the risks of over-fitting models to highly dimensional multivariate spectra and

have command of the mathematical and statistical methods to avoid them.

Machine learning has fast become an algorithmic alternative to statistical anal-

ysis for estimating concentrations of soil constituents from reflectance spectra.

As with any modelling, we need judicious implementation of machine learn-

ing as it also carries the risk of over-fitting predictions to irrelevant elements of

the spectra. To use the methods confidently, we need to validate the outcomes

with appropriately sampled, independent data sets. Not all machine learning

should be considered ‘black boxes’. Their interpretability depends on the algo-

rithm, and some are highly interpretable and explainable. Some are difficult to

interpret because of complex transformations or their huge and complicated

network of parameters. But there is rapidly advancing research on explainable

machine learning, and these methods are finding applications in soil science

and spectroscopy. In many parts of the world, soil and environmental scientists

recognise the merits of soil spectroscopy. They are building spectral libraries

on which they can draw to localise the modelling and derive soil information

for new projects within their domains. We hope our article gives readers a

more balanced and optimistic perspective of soil spectroscopy and its future.

Comment on “Estimating soil chemical properties by diffuse reflectance spectroscopy: Promise versus reality”
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Highlights

• Spectroscopy is reliable because it is a highly repeatable and reproducible

analytical technique.

• Spectra are calibrated to estimate concentrations of soil properties with

known error.

• Spectroscopy is cost-effective for estimating soil properties.

• Machine learning is becoming ever more powerful for extracting accurate

information from spectra, and methods for interpreting the models exist.

• Large libraries of soil spectra provide information that can be used locally to

aid estimates from new samples.
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1 | INTRODUCTION

The recent Opinion article in this journal by McBride
(2022) reviews the science underlying diffuse reflectance
spectroscopy for determining concentrations of chemical
constituents in soil. In the article, McBride criticises the
techniques and the exaggerated claims made by some of
its exponents. Some of the comments made by McBride
are fair. The reflectance spectra of soil in the visible (vis;
400–700 nm), near-infrared (NIR; 700–2500 nm), and
mid-infrared (MIR; 2500–20,000 nm) are influenced
simultaneously by many soil components, each absorbing
electromagnetic radiation at characteristic frequencies.
Soil spectra are more complex than those of many other
materials, making it more difficult to analyse and draw
inferences from them. We should not readily expect to
obtain accurate estimates of constituents that lack spec-
tral response, which according to McBride, many practi-
tioners seem to assume. Regression, whether based on
ordinary least squares, more elaborate modelling or
machine learning, is unlikely to provide reliable predic-
tions of target variables that are only weakly correlated
with the spectra. All modelling can be risky and suffer
from over-fitting unless appropriately used and validated.
Spectroscopy in these circumstances is no panacea; it is
no certain substitute for well-established soil chemical,
physical or biological analysis. We agree with McBride
on these matters. With only a superficial review of the lit-
erature, we might find published studies that would have
readers believe otherwise.

There are, however, important aspects of McBride's
paper with which we disagree. The article is published as
an ‘Opinion’, and we contend that this opinion is based on
a partial and somewhat outdated appreciation of science
and rapidly advancing technologies. We also contend that
McBride has failed to appreciate the circumstances in
which reflectance spectroscopy has merit. We elaborate on
these aspects below.

2 | SOIL SPECTROSCOPY CAN BE
‘TRUSTED ’

McBride (2022) states that the spectroscopic method can-
not be ‘trusted’ because of the ‘indirect’ relationship
between the soil properties and the spectra. Using such a
broad statement to describe soil spectroscopy is wrong.
Diffuse reflectance spectroscopy is a well-established
quantitative method long used in physical and analytical
chemistry because atoms and molecules absorb radiation
in specific wavelengths and have their own unique spec-
tra (McClure, 2003; Pasquini, 2018; Workman Jr, 1996).
Soil spectroscopy in the vis–NIR and MIR integrates the
signals from the soil's minerals, organic matter, and
water adsorbed or present in mineral structures (Clark
et al., 1990; Nguyen et al., 1991; Viscarra Rossel &
Hicks, 2015). The spectra provide a ‘fingerprint’ of the
molecular composition of the soil matrix. Therefore, over
the past four decades, research has shown that when
soil's physical, chemical, and biological properties derive
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from or are associated with the mineral–organic matrix,
the spectra of air-dry soil can respond to variation in
those properties. If the spectroscopic model accounts for
the minerals and organic signals in the spectra as well as
their interactions, then the method can reasonably accu-
rately estimate the concentration of other constituents
(Ben-Dor & Banin, 1995; Soriano-Disla et al., 2014;
Stenberg et al., 2010; Viscarra Rossel et al., 2006).

Not all constituents are properties of the soil matrix,
and those unrelated to it will contribute to the spectra
only fortuitously. Any correlation to the spectra will be
transient and, although perhaps locally significant, would
not generally apply (e.g., Wetterlind et al., 2008).

Spectra obtained from soil under field conditions can
contain substantial contributions from water. These are
fairly linearly related to the water content (Bowers &
Hanks, 1965; Lobell & Asner, 2002), providing an opportu-
nity to develop valid spectroscopic calibrations for soil water
(Baumann et al., 2022). If water is taken into account (Ji
et al., 2015; Minasny et al., 2011; Wijewardane et al., 2016),
field spectra can also be calibrated to estimate soil constitu-
ents (e.g., Li et al., 2015; Viscarra Rossel et al., 2017). But this
research is ongoing, so we leave a discussion of it for now.

3 | SPECTROSCOPY
COMPLEMENTS CONVENTIONAL
ANALYSIS

McBride (2022) writes that in many publications on soil
spectroscopy, while describing the method's benefits, pro-
ponents of spectroscopy have implied that their ultimate
goal is to replace conventional soil testing. We have seen
the papers and can imagine that the authors, in their
enthusiasm, have exaggerated the benefits of soil spec-
troscopy. Clearly, such claims are wrong because esti-
mates of soil properties rely on empirical calibrations of
the spectra with the properties measured conventionally.
Nevertheless, we should consider those comments in
their written context.

The question of whether spectroscopy could replace
conventional analysis was posed some time ago by Janik
et al. (1998) who asked if MIR spectroscopy could replace
soil extractions. They answered that, for the most part,
spectroscopy could not, but stated that spectroscopy adds
value to conventional methods and extends them because
spectroscopy also helps to understand soil chemistry bet-
ter. Proponents of spectroscopy understand this and treat
it not to replace conventional analysis but to complement
it. We need both to increase the data we can assemble to
satisfy the growing demand for quantitative information
on the soil to support new science and help meet the
world's needs for food, fibre, climate adaptation,

environmental quality, and sustainable development
(Viscarra Rossel & Bouma, 2016).

McBride repeatedly opines that ‘… spectral reflectance
methods are not sufficiently reliable to replace conventional
testing’. As above, the aim is not to replace conventional
testing. Nonetheless, the statement is misleading; diffuse
reflectance spectroscopy is ‘reliable’ in the sense that
repeated measurements are consistently reproducible on
any given sample of soil from one occasion to another. We
know from a great deal of experience that repeated spectro-
scopic measurements of a soil sample produce spectra with
almost identical mineral–organic absorbances at the same
wavelengths (Stenberg et al., 2010), provided, of course, that
the soil sample does not change. Perhaps McBride does not
mean that spectroscopy is unreliable but that estimates of
soil properties are inaccurate because of uncertainties in the
spectroscopic modelling. We address this point below.

4 | THE EXPECTED ACCURACY OF
SOIL SPECTROSCOPY

One of the main criticisms made by McBride (2022) is
that the proponents of spectroscopy have not shown it to
be as accurate as conventional methods. Of course, they
have not. The reason is that the conventional methods
for soil analysis are the de facto standards. Any other
techniques that aim to produce the same results are inev-
itably less accurate because they rely on the calibration of
the spectra against the standards and incur statistical
error. When developing the calibrations, we assume that
the analytical errors of the standard methods are small
enough to be negligible. In some circumstances they can be
substantial, however (O'Rourke & Holden, 2011; van
Leeuwen et al., 2022; Viscarra Rossel & Bouma, 2016), and
then those errors will carry over into the calibrations and
reduce the accuracy of the spectroscopic estimates.

It also does not make sense to compare a spectro-
scopic estimate with a standard analytical technique on a
one-to-one basis. The advantage of soil spectroscopy (and
incidentally of other sensing methods, whether proximal
or more remote) is that one can make many more mea-
surements, at least an order of magnitude more than by
the conventional laboratory analysis, for the same cost.
So, the estimation variance of a spectroscopic estimate of
the average of some soil properties will be smaller than
from conventional analysis. Thus, when the dominant
source of error in the individual estimates is random rather
than systematic (Guerrero & Lorenzetti, 2021), and when
the costs and errors of calibration are taken into account,
spectroscopy is cost-effective (Li et al., 2022). Moreover,
because its estimation variance is smaller than that of
means of fewer replicate measurements obtained by the
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more expensive standard analytical technique, the estimates
are also more informative. The advantages become even
more significant when one needs hundreds or thousands of
data, for example, for assessments of soil spatial and tempo-
ral variation, for mapping (e.g., Ramirez-Lopez et al., 2019;
Vågen et al., 2016; Viscarra Rossel et al., 2015), for model-
ling (e.g., Lee et al., 2021; Lee & Viscarra Rossel, 2020), and
in decision-support systems (e.g., Vågen et al., 2018). For
those reasons, the Australian Government Emission Reduc-
tion Fund (ERF) method for measuring and monitoring soil
carbon sequestration1 is the first to include spectroscopy as
a way to improve the accuracy and reduce the cost of mea-
suring and monitoring (England & Viscarra Rossel, 2018;
Viscarra Rossel, Lobsey, et al., 2017; Viscarra Rossel &
Brus, 2018; Viscarra Rossel, Brus, et al., 2016).

A notable exception to much of the discussion above is
when the measurement of the soil property is made more
directly from the characteristic absorptions of the soil con-
stituent, for example, measures of soil colour or iron-oxide
and clay mineralogy (Clark, 1999; Farmer, 1974; Viscarra
Rossel, 2011; Viscarra Rossel et al., 2010). In such cases, the
spectroscopic measurements might be at least as accurate
as the conventional analysis (e.g., Janik et al., 1995).

5 | CALIBRATION, REGRESSION
AND DIMENSIONALITY
REDUCTION

Apart from the few exceptions mentioned, spectroscopic
estimates of soil constituents depend on the strength of the
relation between the target variables, such as the concentra-
tion of organic carbon and the absorbances in the various
wavelengths. The spectra produced by modern spectrome-
ters contain thousands or more wavelengths. Therefore, the
first task is a multivariate calibration, that is, obtaining an
equation from which to predict the concentration of the tar-
get constituent from the spectra. Some transformation of
the measurement scales is usually required, and pre-
processing to linearize the data and remove noise. One
might think that, at its simplest, that equation might mean
an ordinary least-squares multiple regression. However, we
know that with so many predictor variables, multiple
regression will suffer from a lack of selectivity of the predic-
tors to the target and redundancy and collinearity among
the predictors (Martens & Næs, 1989).

McBride (2022) recognises the problems; they quote
Bergstrom & West (2020), who write about the ‘curse of
dimensionality’, first proposed by (Bellman, 1957). How-
ever, McBride dismisses the methods for reducing the
number of dimensions used to overcome the problem.
One popular way is to do a principal components analysis
(PCA) of the spectra and then regress the target variable

on some of the leading components. The method is called
Principal components regression (PCR) (Hotelling, 1957).
Partial least squares regression (PLSR) (Wold et al., 1984)
is better because it weights the predictors to minimise the
prediction variances. McBride refers to these methods as
‘data manipulations’. One might regard PCR as such
because it makes no assumptions about the relations
between the leading components and target variables.
But to view PLSR in that way is a mistake; it is a sound
form of statistical analysis that optimises predictions and
reveals the relative importance of the predictor variables.
PLSR is a vital tool in chemometrics (Wold et al., 2001).
There are, of course, other ways of dealing with the many
multicollinear predictors, but McBride fails to mention
any of them. These, too, have been reported in the litera-
ture on soil spectroscopy. They include, for example,
wavelet multi-resolution analysis (Viscarra Rossel,
Behrens, et al., 2016; Viscarra Rossel, Brus, et al., 2016;
Viscarra Rossel & Lark, 2009; Vohland et al., 2016) and
the variance inflation factor (Song et al., 2021).

5.1 | Extrapolations and overfitting

McBride (2022) criticises extrapolation beyond the limits
of the data on which the models are built and over-fitting,
that is, fitting a model to virtually meaningless informa-
tion, effectively to noise. They are fair comments, but they
are practices that statisticians have warned against for
many years; they are not confined to soil spectroscopy.

Unfortunately, included in the burgeoning publications
on spectroscopic modelling are many examples of poor
practice—of both unwise extrapolation and over-fitting.
They seem to arise from a poor understanding of spectros-
copy itself, naïve implementation of mathematical and sta-
tistical procedures, poor validation practice, and access to
computer software on which one needs only to ‘press a few
buttons’. As McBride shows, these articles are reasonably
easy to identify. Unfortunately, McBride fails to recognise
the opposite: the many articles that record sound practice.
When the modelling is robust (Hastie et al., 2009; Srivastava
et al., 2014), and the spectroscopic models are interrogated,
interpreted and validated, there is little risk of extrapolation
or over-fitting.

6 | MACHINE LEARNING

The increased capacity and speed of computers in the last
20 years have enabled mathematicians and data scientists
to develop algorithms for machine learning. McBride
(2022) is critical of these and calls them ‘black boxes’.
There are indeed examples that report on the spectroscopic
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modelling with machine learning that lack adequate imple-
mentation and interpretation, undermining the confidence
in those models. If one only read those reports, there might
be some justification for labelling all machine learning as
obscure, uninterpretable ‘black boxes’.

We agree that machine learning should be used with
caution and judged on its performance. We should ask
the following questions before using machine learning
for spectroscopic modelling. Is it necessary? Even if not,
can we use it to our gain? Or is it a ‘sledgehammer to
crack a nut’ with no advantages over more straightfor-
ward and transparent regression methods? Whatever we
answer, we must recognise that machine learning is here
to stay (Heuvelink & Webster, 2022). Further, it will
become ever more powerful and potentially more helpful
as time passes. If we are to use machine learning for esti-
mating soil constituents with spectra, then we must vali-
date the outcomes with adequately sampled, independent
data (Brown et al., 2005; Spiegelhalter, 2019). Further, if
we are to understand the outcomes, we must learn how
the input variables contribute meaningfully to the predic-
tions. McBride itemises the steps we should take but still
lacks confidence in the procedures.

The problem of modelling with highly dimensional
data does not affect all machine learning methods, or at
least not to the same extent. For example, methods based
on regression trees tend to minimise the vector space for
predictions and thus prevent the ‘curse of dimensional-
ity’. Random forests (Breiman, 2001) create many trees,
but only a few variables bear on the target within any
one tree. Deep convolutional neural networks (CNN), a
more recent innovation, are proving effective for analys-
ing intricate structures in high-dimensional data (LeCun
et al., 2015). They can effectively separate the signal from
the noise in the highly-dimensional, multi-collinear soil
spectra (Shen & Viscarra Rossel, 2021; Yang et al., 2020).

Before we conclude this section, we draw attention to
the interpretability of machine learning. Interpretability
varies depending on the algorithm and how one uses it
(Viscarra Rossel & Behrens, 2010). Spectroscopic model-
ling with regression trees is explainable and interpret-
able. For example, CUBIST (Quinlan, 1992), a now
popular (and well-performing) method for spectroscopic
modelling (Viscarra Rossel & Webster, 2012), uses
human-readable if-then conditions to split the spectra
into coherent ‘branches’ and fits (well-understood) piece-
wise multiple linear regressions to the outcomes of each
split. We agree that other methods, like support vector
machines (SVM) and deep CNNs, can be difficult to inter-
pret because of the complex data transformations or their
huge and complex network of parameters. However,
there is rapidly advancing research on explainable artificial
intelligence (XAI) (Gunning et al., 2019; Savage, 2022).

These developments, based on sound theoretical founda-
tions, are transforming the ‘black-boxes’ into ‘grey-’ and
even ‘white-boxes’ (e.g., Chen et al., 2020). The methods
are finding applications in soil science and soil spectros-
copy. For example, SHapley Additive exPlanations (SHAP)
(Lundberg & Lee, 2017), based on game theory
(Roth, 1988), has been used successfully for meaningful
interpretation in spectroscopic machine learning (Haghi
et al., 2021; Zhong et al., 2021).

7 | SPECTRAL LIBRARIES AND
MODEL LOCALIZATION

For decades, soil scientists have been developing databases
(or libraries) of soil properties with corresponding spectra
for regions of various sizes, from strictly local to national
(e.g., Viscarra Rossel & Webster, 2012; Wijewardane et al.,
2018), continental (e.g., Stevens et al., 2013), and global
(Shepherd & Walsh, 2002; Viscarra Rossel, Behrens, et al.,
2016). Many of these libraries were developed by measur-
ing the spectra of soil samples stored in archives as lega-
cies from different experiments and surveys at different
scales. The analytical reference data in those libraries often
require significant analysis, preprocessing and harmonisa-
tion to ensure that they are consistent and of good quality
for modelling. Since the soil samples are not collected
using a sampling design suitable for developing a spectral
library and subsequent modelling, one must also judi-
ciously validate the spectroscopic models to prevent over-
optimistic results.

In earlier research (e.g., Brown et al. (2006) cited by
McBride (2022)), the main reason for developing spectral
libraries was to see if one could use them to build unique
calibrations to estimate soil properties. The approach was
taken from spectroscopic studies in other domains, devel-
oped for estimating the concentrations of substances that
are much less complex than soil. Soil scientists embraced
the approach directly and without alteration, often result-
ing in suboptimal spectroscopic models of soil properties
and a prejudiced perception of its potential.

Since then, research has shown that soil spectral
libraries should be used differently, not to make large
general models but as a source of information for build-
ing localised calibrations for specific contexts and pedo-
logic domains. We have learned that one must be wary of
using a general calibration derived from all of the data in
a country-wide national or global library for estimation
locally in a small region (Guerrero et al., 2016). Unlike
the estimates from calibrations derived locally, these gen-
eral models are likely to produce biased estimates
because the general relationships will not depict those
present locally and are likely also to mask local variations
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(Shen et al., 2022). Thus, even if we had spectral libraries
with an infinite number of samples and derived calibra-
tions with all the data, this problem would remain.

Current understanding and ongoing research suggest
that large and diverse spectral libraries are beneficial, but
the development of methods for ‘localising’ the spectro-
scopic modelling is equally important. The literature con-
tains reports on several of these methods. For instance,
practical methods such as spiking (Guerrero et al., 2010;
Wetterlind & Stenberg, 2010) and spiking with extra-
weighting (Guerrero et al., 2014), the LOCAL algorithm
(Shenk & Westerhaus, 1991), memory-based learning
(MBL) methods that focus on a deterministic local search
of the spectral library (Ramirez-Lopez et al., 2013), data-
driven stochastic search methods such as RS-LOCAL
(Lobsey et al., 2017; Shen et al., 2022), to feature-based
deep transfer learning (Liu et al., 2018). McBride seems
to have missed all of this research. Most recently, Shen
et al. (2022) showed that instance-based deep transfer
learning lessens the need for conventional analytical
measurements. They suggest that as these methods and
spectral libraries develop, the need for conventional anal-
ysis will further diminish and eventually disappear with-
out losing accuracy that entirely local modelling would
provide. Research is ongoing as those ideas need further
experimentation and testing, however.

8 | CONCLUSIONS

The recent article in this journal by McBride (2022),
under the heading ‘Opinion’, criticised reflectance spec-
troscopy for estimating the concentrations of soil constit-
uents. Some of that criticism is fair; many exponents
have exaggerated claims about the technology. Other
aspects of McBride's Opinion are outdated, incorrect or
otherwise misleading. We countered McBride's views to
provide readers with more balanced insight into soil spec-
troscopy and its merits. In responding to McBride's arti-
cle, we have tried to distinguish between fair comments
and what we regard as outdated statements of fact and
false inferences. We have concentrated on what we
regard as the most important matters and we have omit-
ted issues that are discussed elsewhere, for example, the
spectroscopic estimation of trace elements in soil
(Baveye & Laba, 2015; Shi et al., 2015).

Like most new methods and technologies, soil spec-
troscopy has had its hiccups, and some practitioners have
undoubtedly been over-enthusiastic in its application.
However, as the technology develops and interest in soil
spectroscopy grows further, practitioners understand the
various methods better in practice and research and are
becoming more adept at applying them. As a result, soil

spectroscopy is becoming an essential tool for measuring
and monitoring soil and obtaining large amounts of
quantitative soil information in a broad range of soil and
environmental science applications. Most practitioners of
soil spectroscopy do not seek to replace conventional ana-
lytical methods; instead, they see soil spectroscopy work-
ing alongside conventional analyses as an essential
partner. Other scientists have recognised this too. The
Global Soil Partnership of the Food and Agriculture Orig-
ination (FAO) of the United Nations and its Global Soil
Laboratory Network initiative on soil spectroscopy
(GLOSOLAN-Spec) is helping to combine conventional
soil testing and spectroscopy. It is also helping to bring
the community together via a scientific community of
practice to steer future developments and build capacity
in soil spectroscopy globally but recognising that individ-
ual countries will have their particular approaches.

Soil is complex, and so are the relationships
between its components and the spectra. Sophisticated
technologies and mathematical and statistical methods
are needed to characterise and deal with such complex-
ity. However, just because we do not understand them
entirely does not mean we should shy away from them.
On the contrary, we should embrace them and strive to
comprehend and use them to gain insights into the
complexity of soil. We hope that our article gives
readers and newcomers to soil spectroscopy a more
objective, balanced and optimistic view of the subject
and its future.

ENDNOTE
1 http://www.cleanenergyregulator.gov.au/ERF/Choosing-a-
project-type/Opportunities-for-the-land-sector/Agricultural-
methods/estimating-soil-organic-carbon-sequestration-using-
measurement-and-models-method
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