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Abstract. Soil moisture has important implications for
drought and flooding forecasting, forest fire prediction and
water supply management. However, mapping soil moisture
has remained a scientific challenge due to forest canopy
cover and small-scale variations in soil moisture conditions.
When accurately scaled, terrain indices constitute a good
candidate for modelling the spatial variation of soil mois-
ture conditions in many landscapes. In this study, we eval-
uated seven different terrain indices at varying digital eleva-
tion model (DEM) resolutions and user-defined thresholds
as well as two available soil moisture maps, using an ex-
tensive field dataset (398 plots) of soil moisture conditions
registered in five classes from a survey covering a (68 km2)
boreal landscape. We found that the variation in soil mois-
ture conditions could be explained by terrain indices, and the
best predictors within the studied landscape were the depth to
water index (DTW) and a machine-learning-generated map.
Furthermore, this study showed a large difference between
terrain indices in the effects of changing DEM resolution and
user-defined thresholds, which severely affected the perfor-
mance of the predictions. For example, the commonly used
topographic wetness index (TWI) performed best on a res-
olution of 16 m, while TWI calculated on DEM resolutions
higher than 4 m gave inaccurate results. In contrast, depth to
water (DTW) and elevation above stream (EAS) were more
stable and performed best on 1–2 m DEM resolution. None
of the terrain indices performed best on the highest DEM res-
olution of 0.5 m. In addition, this study highlights the chal-
lenges caused by heterogeneous soil types within the study
area and shows the need of local knowledge when interpret-
ing the modelled results. The results from this study clearly
demonstrate that when using terrain indices to represent soil
moisture conditions, modelled results need to be validated,

as selecting an unsuitable DEM resolution or user-defined
threshold can give ambiguous and even incorrect results.

1 Introduction

Soil moisture represents plant-available water at the land sur-
face that is not derived from groundwater, rivers and lakes
but instead in the pores of the soil. It consists of unsatu-
rated soil, affected by variable temporal and spatial dynamics
that regulate fundamental ecosystem functions such as plant
growth, nutrient cycling and carbon accumulation (Olsson et
al., 2009; Högberg et al., 2017; Wang et al., 2019). Soil mois-
ture also has important implications for drought and flooding
forecasting, forest fire prediction and water supply manage-
ment (Koster et al., 2010; Robock, 2015; O et al., 2020).
While temporal variability in soil moisture is largely deter-
mined by precipitation, temperature and soil characteristics,
topography acts as a first-order control of spatial variation in
soil moisture within most landscapes (Florinsky, 2016).

Predicting soil moisture patterns across space and time
remains an important scientific challenge, limited by large
temporal variability, small-scale heterogeneous responses to
precipitation inputs and local soil properties. While small-
scale spatial variability often limits the use of empirical mea-
surements for upscaling, temporal dynamics superimposed
on such heterogeneous patterns create an additional chal-
lenge. Due to the effect that topography has on the spa-
tial variation in soil moisture conditions, such information
is a fundamental part of soil moisture modelling. A digi-
tal elevation model (DEM) is a digital representation of a
terrain surface, often generated using remote-sensing tech-
niques such as photogrammetry or airborne light detection
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and ranging (lidar). Terrain indices extracted from DEMs
have become widely used in soil and hydrologic sciences
predicting surface water and groundwater flow paths and soil
moisture conditions.

An early and successful approach to modelling soil mois-
ture conditions was the topographic wetness index (TWI)
developed by Beven and Kirkby (1979). TWI is a function
of both the slope and upslope contributing area and is still
widely used in landscape modelling. TWI has been shown
to be sensitive to DEM resolution (Western et al., 1999;
Sørensen and Seibert, 2007; Lin et al., 2010) and the spe-
cific flow algorithms used (Sørensen et al., 2006; Kopecký
et al., 2021). TWI has been followed by several other terrain
indices based on similar approaches such as the downslope
index (DI) (Hjerdt et al., 2004) and the Wetness Index based
on Landscape position and Topography (WILT) (Meles et al.,
2020).

Some topography-based indices use stream networks in
the calculations, which are derived from flow accumulation
grids such as the depth to water index (DTW) (Murphy et
al., 2008) and elevation above stream (EAS) (Rennó et al.,
2008). Using this approach, streams are defined with a so-
called stream initiation threshold, which is the accumulated
area required to form surface water. Selecting an appropri-
ate stream initiation threshold has proven to be difficult due
to temporal dynamics (Ågren et al., 2015) and soil textures
(Ågren et al., 2014). Thresholds, such as stream initiation,
used in terrain indices can be as, or even more, important
as selecting the correct DEM resolution for the soil moisture
modelling.

The use of airborne lidar has increased both the accuracy
and resolution of DEMs and, as a result, soil moisture mod-
elling (Murphy et al., 2011; Ågren et al., 2014; Leach et
al., 2017; Kopecký et al., 2021). However, the resolutions
of DEMs used for hydrological modelling must reflect to-
pographic features that are key elements in the hydrological
response (Quinn et al., 1995). This means that higher reso-
lutions do not necessarily result in better predictions, as the
microtopography does not always control hydrological flow
paths. Hence, there is a concern that the development of lidar-
derived high-resolution DEMs has changed resolutions from
being too coarse for small-scale hydrological modelling to
being too high for many applications. With the use of ter-
rain indices, there is often an optimal resolution depending
on landscape type and specific feature of interest (Gillin et
al., 2015). Despite rapid lidar development, finding the op-
timal DEM resolution of terrain indices has remained rela-
tively unexplored, with only a few exceptions (Seibert et al.,
2007; Lin et al., 2010; Ågren et al., 2014).

In addition to DEM resolutions and user-defined thresh-
olds, soil moisture modelling using terrain indices must take
the local variations in soils and landforms into consideration.
Across former glaciated landscapes, soil hydraulic properties
are often relatively consistent with unconsolidated ablation
till overlaying basal till and/or bedrock. This means that hy-

drological pathways are significantly affected by the topog-
raphy, resulting in soil moisture conditions in neighbouring
areas differing greatly within short distances because of the
local topography (Rodhe, 1987). The topographical effect on
hydrological pathways is less pronounced in flat sorted sed-
iment areas due to often low topographic variation and soils
with consistent hydrological conductivity at depth (Bachmair
and Weiler, 2011). In landscapes with varying quaternary de-
posits, accurate soil moisture predictions become more chal-
lenging (Güntner et al., 2004; Grabs et al., 2009; Zhu and
Lin, 2011; Ågren et al., 2014), with consideration of these
factors becoming important when interpreting modelled soil
moisture.

Recent promising approaches for accounting for landscape
and soil variations have combined multiple terrain indices
and other mapped information. One example of such an ef-
fort is the Swedish soil moisture index (SMI) that com-
bines DTW and the soil topographic wetness index (STI)
(Buchanan et al., 2014) and accounts for soil transmissivity
estimated from the quaternary deposit maps. An alternative
is to use machine learning (Abowarda et al., 2021). Ågren
et al. (2021) adjusted the soil moisture maps to local condi-
tions over the whole of Sweden by training the model on field
data from 16 000 plots and information from 28 maps. Key
to this work were high-resolution terrain indices calculated
for different resolutions and thresholds. However, while ma-
chine learning is an excellent way of generating predictive
models, it is difficult to interpret how the model combines
indices with multiple resolutions and thresholds for different
landscape types. Due to the large applications, wide uses and
availability of terrain indices there is a need of understand-
ing the underlying effects that DEM resolution, user-defined
thresholds and landscape types have on the modelled results.
Using terrain indices to model soil moisture conditions on
inappropriate scales and landscape types may result in inac-
curate predictions.

The aim of this study was, therefore, to evaluate how DEM
resolution, thresholds and landscape types affect soil mois-
ture predictions from a range of readily available terrain in-
dices. We did this by examining which digital terrain index
provided the best prediction of field-determined soil moisture
classes within a heterogeneous but well-studied landscape in
the boreal region, the Krycklan catchment study (Laudon et
al., 2021). Using a detailed forest and soil survey that cov-
ered the entire catchment allowed for a test and performance
evaluation of different terrain indices, in order to find the op-
timal resolutions and thresholds for modelling soil moisture.

2 Methods

2.1 Site description

The 68 km2 Krycklan study catchment is situated in the
northern part of Sweden (lat. 64◦23′ N, long. 19◦78′ E)
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Figure 1. The Krycklan catchment showing the quaternary deposits survey and plots as black circles.

(Fig. 1). The catchment has a gentle topography, with a
poorly weathered gneissic bedrock and elevations ranging
from 127 to 372 m a.s.l. The highest postglacial relict coast-
line crosses the area at around 257 m a.s.l. The upper parts
are dominated by glacial till, while the lower parts are dom-
inated by sorted sediments of sand and silt. The climate is
characterized as a cold temperate humid type with persistent
snow cover during the winter season (Laudon et al., 2021).
The 30-year mean annual temperature (1986–2015) is 2.1 ◦C,
with the highest monthly mean temperature in July and low-
est in January (14.6 and−8.6 respectively). The mean annual
precipitation equals 619 mm where more than 30 % falls as
snow. Land cover is dominated by forest (87 %) and a mo-
saic of mires (9 %) and lakes. Due to forest management,
Krycklan is a complex mosaic of forest stands of different
age classes and species composition. Forests are dominated
by Scots pine (Pinus sylvestris L.) and Norway spruce (Picea

Abies (L.) H. Kartst.), covering 63 % and 26 % respectively.
Understorey vegetation is dominated by ericaceous shrubs,
consisting mostly of bilberry (Vaccinium myrtillus) and cow-
berry (Vaccinium vitis-idaea) covering moss mats of Hylo-
comium splendens and Pleurozium schreberi. Peatlands and
wet areas have a vegetation dominated by Sphagnum species
(Laudon et al., 2013). Forest soils are dominated by well-
developed iron podzol. In addition to analysis over the en-
tire catchment area, Krycklan was divided into two sub-areas
(till and sorted sediment) according to the quaternary de-
posits map, in order to analyse the effects of landscape types
(Fig. 1).

2.2 Forest survey

A forest survey grid was established in 2014, consisting
of 500 10 m radius survey plots (314.15 m2) covering the en-
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tire Krycklan catchment, with each plot spaced 350 m apart.
The survey plot locations were calculated using a randomly
chosen origin and oriented along the coordinate axis of the
SWEREF 99 TM projection. Each nominal plot location was
located in the field using a Garmin GPS 62stc GNSS re-
ceiver, and plot centres were marked with an aluminium pro-
file. During a revisit, high-accuracy centre positions were
placed in the field using a Trimble GeoXTR DGPS receiver.
Plots without high-precision GPS locations, plots located on
or outside the catchment boundaries, arable land, lakes and
roads were excluded in this study. In total, soil moisture clas-
sifications were made for 398 plots during the autumn of
2014 and the spring of 2015.

2.3 Soil moisture field classification

Soil moisture classes were registered in the field following
the protocol of the Swedish national forest inventory (NFI)
(Fridman et al., 2014), based on an estimation of each plot’s
average depth to groundwater level during the vegetation pe-
riod estimated from its position in the landscape, vegetation
patterns and soil type. This approach reduces the discrepan-
cies caused by seasonal variation and provides an indicator
of the general soil moisture conditions, which is the focus of
this study. Survey plots were categorized in five classes – dry,
mesic, mesic–moist, moist and wet – which are described and
presented below and can be found in more detail in the field
instruction (Swedish NFI, 2014).

– Dry soils have an average groundwater table more than
2 m below the soil surface. Dry areas tend to be coarse-
textured and can be found on the top of hills, ridges
and eskers. The soils are mainly Leptosols, Arenosols,
Regosols or Podzols (with thin organic and bleached
horizons).

– Mesic soils have an average groundwater table between
1–2 m below the soil surface. Podzol is the dominating
soil type with a thin fairly thin (4–10 cm) organic mor
layer covered mainly by dryland mosses (e.g. Pleuroz-
ium schreberi, Hylocomium splendens and Dicranum
scoparium). They can be walked on dry-footed even di-
rectly after rain or shortly after snowmelt.

– Mesic–moist soils have an average groundwater table
depth less than 1 m. Mesic–moist areas are often lo-
cated on flat ground in lower-lying areas or lower parts
of hillslopes. The soils tend to wet up on a seasonal
basis. Whether you can cross in shoes and keep your
feet dry depends on the season and the time since the
last heavy rain or snowmelt event. Patches of wetland
mosses (e.g. Sphagnum sp., Polytrichum commune) are
common, and trees commonly tend to grow on humps.
Podzols are commonly found but often with a thicker or-
ganic layer compared to mesic sites. The organic layer
is often classified as peaty mor.

– Moist soils have an average groundwater table depth
less than 1 m below the soil surface. The groundwater
table is often visible in depressions within the plot. Ar-
eas classified as moist are found at lower grounds, at the
lowest parts of slopes and flat areas below larger ranges.
One can cross in shoes and keep one’s feet dry by utiliz-
ing tussocks and higher-lying areas. When stepping in
depressions, water should form around the feet even af-
ter dry spells. The vegetation includes wetland mosses
(e.g. Sphagnum sp., Polytrichum commune, Polytrichas-
trum formosum). Trees often grow on small mounds,
and the soil type is most often Histosol, Regosol or
Gleysol.

– Wet soils are areas where the ground water table is close
to the soil surface, and permanent pools of surface wa-
ter are common. These areas are often located on open
peatlands. Drainage conditions are very bad, and it is
not possible to cross these areas in shoes without ending
up with wet feet. Coniferous trees seldom develop into
stands. The soil type is most often Histosol or Gleysol.

2.4 Digital terrain indices

The study utilized a lidar-based digital elevation
model (DEM) created from an airborne laser scanning
in August 2015. A 0.5× 0.5 m DEM was generated from a
point cloud with 10 points per square metre. Horizontal and
vertical errors were 0.1 and 0.3 m, respectively. The DEM
was resampled from 0.5 m to resolutions of 1, 2, 4, 8, 16, 32
and 64 m. Nine commonly used digital terrain indices were
calculated using DEMs with eight resolutions of 0.5, 1, 2,
4, 8, 16, 32 and 64 m (Table 1). The indices depth to wa-
ter (DTW) and elevation above stream (EAS) use extracted
stream networks in their calculations, with the size of the
stream network being set by the stream initiation threshold.
For each resolution, DTW and EAS were calculated for the
stream initiation thresholds 1, 2, 4, 8, 16 and 32 ha, which
is the range of the expected variability in the study region.
The downslope index (DI) was calculated with vertical
distances of 2 and 4 m. A total of 146 terrain indices maps
of soil moisture were produced. Field plot centre values for
all indices maps were extracted for evaluation. All of the
digital terrain indices were calculated using Whitebox Tools
(Lindsay, 2016b), an open-source program developed at the
University of Guelph, Canada. The code for aggregating the
DEM and the Python code for the calculations can be found
in the “Code and data availability” section. In addition to
the terrain indices that we calculated from the DEM, we
also used two soil moisture maps downloaded from external
sources: the SLU soil moisture map (Ågren et al., 2021) and
a soil moisture index map (SMI) developed by the Swedish
Environmental Protection Agency (Naturvårdsverket, 2021).
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Table 1. All indices calculated in this study. Calculations were made for resolutions of 0.5, 1, 2, 4, 8, 16, 32 and 64 m. 1 Calculations were
also done for stream initiation thresholds of 1, 2, 4, 8, 16 and 32 ha. 2 Calculated with vertical distances of 2 and 4 m. All GIS calculations
were carried out using Whitebox Tools (Lindsay, 2016b), except for SLU soil moisture map and SMI, which were downloaded from other
sources.

Digital terrain indices Abbreviation Total
number of

layers

Topographic wetness index TWI 8
Depth to water DTW1 48
Elevation above stream EAS1 48
Downslope index DI2 16
Wetness Index based on Landscape position and Topography WILT 8
Relative topographic position RTP 8
Plan curvature PlanC 8
SLU soil moisture map SLU 1
SMI SMI 1

2.5 DEM preprocessing and extraction of stream
networks

Prior to hydrological modelling, the DEM was preprocessed
to make it hydrologically accurate using the two-step breach-
ing approach suggested by Lidberg et al. (2017). This ap-
proach works by first carving a short path into the DEM
at locations where culverts and previously mapped streams
intersect road embankments. Remaining depressions were
resolved by a complete breaching approach using the tool
Breach depressions in Whitebox Tools (Lindsay, 2016a).
Two flow pointer grids and flow accumulation (FA) grids
were extracted from the hydrologically corrected DEM using
theD-infinity flow routing algorithm (D∞) (Tarboton, 1997)
and the multiple flow direction algorithm (MD∞) (Seibert
and McGlynn, 2007). D8 (O’Callaghan and Mark, 1984) and
D∞ (Tarboton, 1997) are both commonly used and widely
implemented flow routing algorithms. MD∞ is an attempt to
combine these two approaches and disperses flow like D∞
up to a user-defined threshold (aiming to simulate diffuse
groundwater flows), after which it switches to operate like
D8 without dispersion (aiming to simulate channelized flow
of surface waters). Stream networks were extracted from the
flow accumulation raster using stream initiation thresholds
1, 2, 4, 8, 16 and 32 ha. Streams during different conditions
can be mapped by varying the stream initiation thresholds.
Larger stream initiation thresholds represent streams during
low flow conditions, while smaller thresholds represent con-
ditions at high flow rates.

2.5.1 Topographic wetness index (TWI)

TWI predicts soil moisture based on local slope and the
area’s specific catchment area (Eq. 1), where α is the spe-
cific catchment area, and β is the slope of the grid cells in
degrees (Beven and Kirkby, 1979).

TWI= ln(α/ tanβ) (1)

This was calculated using the D∞ flow algorithm for all
eight DEM resolutions.

2.5.2 Depth to water (DTW)

The depth to water index predicts soil moisture using the sur-
face water source grid (stream network) and the surrounding
landscape (Murphy et al., 2008). The DTW index refers to
the least-cost path from any cell in the landscape to the near-
est surface water cell (DTW= 0) channel. DTW is expressed
as Eq. (2), where dzi and dxi represent the vertical distance
between two cells.

DTW=
[∑ dzi

dxi
a

]
xc (2)

The constant α is equal to 1 if the path between the cells
connects parallel to the cell boundaries or

√
2 if it connects

the cell diagonally; xc is the size of the raster cells. Cells
located far away or at higher elevation from the flow chan-
nels will have high DTW values, meaning that the cells are
drier. Stream cells were calculated using the source layers
with extracted streams from the (MD∞) pointer described
above. DTW was calculated for each of the six stream initia-
tion thresholds and eight DEM resolutions.

2.5.3 Elevation above stream (EAS)

EAS indicates soil moisture using the source layer with
extracted streams described above and the original DEM
(Rennó et al., 2008). EAS is calculated from the elevation
difference between a grid cell in the landscape and the near-
est stream cell calculated from the nearest flow path from the
(MD∞) pointer grid. EAS was calculated for each of the six
stream initiation thresholds and eight DEM resolutions.
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2.5.4 Downslope index

The downslope index represents the length of a flow path
required to drop a given vertical distance d (m) (Eqs. 3
and 4) (Hjerdt et al., 2004). The algorithm calculates the dis-
tance downslope required to travel in order to descend d m.
The downslope index can be reported both as a distance d
and a gradient, tanαd, where the horizontal distance to the
point d m below follows the steepest directional flow path.

tanαd =
d

Ld
(3)

Local linear interpolation is used between the two points to
calculate the value of Ld. The slope angle between the start-
ing point and the target point is represented by αd. For ele-
vation differences approaching zero, the values of tanαd ap-
proach the local ground surface gradient, tanβ:

tanαd = tanβ. (4)

The downslope index was calculated for 2 and 4 m as the
given vertical distances.

2.5.5 Wetness Index based on Landscape position and
Topography (WILT)

WILT assumes that soil moisture is inversely proportional to
1X and 1Z in a groundwater-dominated landscape, where
1Z is the depth to groundwater, and 1X is the horizontal
distance to the nearest surface water feature (Eq. 5) (Meles
et al., 2020). WILT is a modification of TWI, obtained by
dividing the upslope contribution area A by 1X and 1Z:

WILT= ln
(

A

1X ·1Z · tanβ

)
. (5)

In this study, we calculated WILT, where A was the upslope
source area using D∞ flow accumulation, as with the TWI
calculations. 1X was derived from the downslope distance
to stream and lakes using surface waters. 1Z was the eleva-
tion difference between the DEM and modelled groundwater,
represented by a DTW calculated for the property map.

2.5.6 Relative topographic position (RTP)

RTP is an index for the local position of a point in the land-
scape relative to its surroundings, which accounts for eleva-
tion distribution (Eq. 6). Within a user-specified local neigh-
bourhood size, the RTP function uses the central elevation
relative to the minimum (zmin), mean (µ) and maximum ele-
vation (zmax):

RTP=
(z0−µ)

(µ− zmin)
, if z0 < µ or

RTP=
(z0−µ)

(µ− zmax)
, if z0>=µ. (6)

RTP index is bound by the interval of [−1, 1], indicating
whether the cell is above or below the filtered mean (New-
man et al., 2018).

2.5.7 Plan curvature (PlanC)

The plan curvature represents the curvature of the surface
perpendicular to the direction of the slope direction (Wilson
and Gallant, 2000). This index shows the divergence and con-
vergence of slopes, where values are positive for convergent
areas and negative for divergent ridges. The plan curvature
was chosen for its influence on the downslope convergence
and divergence of water flow paths.

2.5.8 Soil moisture index (SMI)

We also included an SMI from the national land cover
database of the Swedish Environmental Protection Agency
(Naturvårdsverket, 2021). This SMI was calculated as

SMI=
(

0.7×
1

DTW

)
+ (0.3×STWI). (7)

This is a weighted map combining DTW and a modified TWI
calculation, the Soil Topographic Wetness Index (STWI)
(Buchanan et al., 2014), which accounts for soil transmis-
sivity estimated from the quaternary deposit maps. The SMI
map has a resolution of 10 m.

2.5.9 SLU soil moisture map

A recent development in soil moisture mapping has been the
use of machine learning to combine multiple soil moisture
indices into one map (Lidberg et al., 2019; Abowarda et al.,
2021; Ågren et al., 2021). Ågren et al. (2021) developed a
new soil moisture map of Sweden by utilizing a variety of
nationwide information, including the above-mentioned ter-
rain indices, climate data and quaternary deposits. Training
data consisted of nearly 16 000 field plots spread across the
Swedish forested landscape from the national forest inven-
tory. The final map showed the probability (0 %–100 %) of
a soil being wet. The SLU soil moisture map was produced
at 2 m resolution, while the input digital terrain indices were
calculated in multiple scales.

2.6 Statistics

2.6.1 Orthogonal Projections to Latent
Structures (OPLS)

To ascertain which digital terrain index provides the best pre-
diction of soil moisture within this heterogeneous landscape,
we used Orthogonal Projections to Latent Structures (OPLS)
analysis. Field classifications of soil moisture at each plot
were used to evaluate the terrain indices through direct plot
by plot comparison. OPLS was carried out on the entire
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catchment. The OPLS was carried out using the multivari-
ate statistical program SIMCA 16.0, Umetrics, Umeå. The
method of OPLS is a modification of partial least-squares
regression (PLS) (Eriksson et al., 2006). In OPLS, the sys-
tematic variation in the predictors (X) is divided into two
parts: one part that is predictive for the determinant (Y ) (in
this case, the field-determined soil moisture classes) and the
orthogonal, i.e. not related to Y . OPLS produces a model
with improved interpretability compared to the ordinary PLS
method. The method is used to identify important variables
for predicting Y and singling out less important variables
containing “noise”. High positive or negative loadings on
the predictive axis (pq[1]) indicate variables that are, respec-
tively, positively or negatively correlated with Y , with in-
creased correlation further away from origin. The orthogo-
nal axis shows how much of the variation for each variable
was not correlated with the determinant (Y ). Before analy-
sis, all variables were transformed to fit normality using a
log transformation in SIMCA. SIMCA 16.0 also calculates
the influence of each X variable in the model called “vari-
able importance on projection” (VIP). VIP components of an
OPLS model are VIP predictive and VIP orthogonal as well
as VIP total component. The VIP values are regularized such
that if allX variables had the same importance for the model,
they would all take the value 1. VIP values larger than 1 for
either VIP component indicateX variables that are important
for that part of the model (Eriksson et al., 2006). Analysis
was carried out in SIMCA 16.0, and figures were produced
using R version 4.0.2 (R Core Team, 2020) and the package
ggplot2 (Wickham, 2016).

2.6.2 Confusion matrix

To evaluate the effects of landscape type, i.e. sorted sediment
and till soils within the catchment, we used the terrain in-
dex that performed best in the OPLS analyses and its cor-
respondence to the two wettest soil moisture classes (wet
and moist). The overall conformance of the best terrain in-
dex with the combined wet and moist classes was assessed
using confusion matrixes, accuracy (ACC) (Eq. 8) and the
Matthews correlation coefficient (MCC) (Eq. 9). The con-
fusion matrix consists of true positives (TP) values, so ac-
curately predicted wet plots, and false positive (FP) values
where dry plots were predicted wet, true negative (TN) val-
ues, where the map correctly predicted dry plots, and false
negative (FN) values, where the map predicted dry areas on
wet plots. Accuracy (ACC) was assessed for each of the plots
by

ACC=
TP+TN

TP+TN+FP+FN
. (8)

The confusion matrix was further evaluated using the
Matthews correlation coefficient (MCC), for which a value
of 1 indicates a perfect fit, 0 no better than random predic-

Table 2. Percentage of observations in the five soil moisture classes
for the entire Krycklan catchment and divided into till and sorted
sediment areas.

Soil moisture classes

Soil moisture Dry Mesic Mesic– Moist Wet Plots
class moist (n)

Entire catchment 10 % 60 % 15 % 8 % 8 % 398
Till 9 % 57 % 15 % 10 % 10 % 293
Sorted sediment 12 % 69 % 13 % 3 % 3 % 105

tions and −1 a perfect negative correlation. MCC was calcu-
lated as

MCC=
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

. (9)

For unbalanced datasets such as this, MCC is the best mea-
sure of model performance (Boughorbel et al., 2017).

3 Results

3.1 Field data

The field survey showed that the dominant soil moisture class
was mesic, making up 60 % of the survey plots in the catch-
ment (Table 2). Mesic–moist was the second largest class
with 15 % of the plots; the moist and wet classes each made
up 8 %. The driest class (dry) made up 10 % of the total plots
in the catchment. Dividing the catchment into till and sorted
sediment areas using the quaternary deposit map (Fig. 1), the
proportion of classes became substantially different. Only
6 % of the plots in the sorted sediment area were classified
as moist or wet, compared to 20 % in the till areas. A larger
percentage (12 %) of plots were found in the driest class in
the sorted sediment areas compared to the till areas (9 %).

3.2 OPLS analysis

The OPLS analysis loading plot showed large variation in
performance within and between terrain indices (Fig. 2). Fig-
ure 2 only shows the variable names from the best resolu-
tion for each digital terrain index and threshold based on the
VIPpredictive value shown in Fig. 3, as the graph would be too
cluttered if all 146 variable names were displayed. There is
an interactive plot in the “Code and data availability” section
where the name of each variable can be found. The general
patterns of the effects of scale and threshold are indicated
by the size and colour of the dots in the OPLS loading plot
(Fig. 2). In order to help the reader to visualize the effects of
scales and resolution, the indices and thresholds have been
grouped together using coloured guides to connect terrain in-
dices moving from high to low resolutions.

The OPLS analysis demonstrates that the DTW was a
strong predictor of soil moisture classes (Fig. 3) but only if
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Figure 2. OPLS loading plots for the Krycklan catchment and DEM-derived terrain indices in respect of soil moisture predictions. Variables
that cluster closely within the same neighbourhood along the far sides of the horizontal axis are the more robust soil moisture predictors
across DEM scales. Coloured guides connect terrain indices moving from small to large resolutions as depicted by the symbol size. In the
loading plot, predictive performance increases with increased distance from 0 on the predictive axis (pq[1]). Negative and positive values on
the (pq[1]) axis correspond to negative and positive correlations with Y . The orthogonal axis (poso[1]) represents how much of the variation
for each variable was not correlated with the determinant (Y ). For the reader who is interested in the details, we have published an electronic
version of this graph where all labels are visible by moving the cursor over each circle (“Code and data availability” section).

Figure 3. VIPpredictive values for the best-performing variable for
each terrain index. In OPLS, VIPpredictive < 1 are variables that are
better at explaining Y .

the optimal resolution and stream initiation threshold were
used (Fig. 2). DTW loadings were located below zero on the
predictive axis due to a negative relationship to soil mois-
ture classes. Generally, the DTW variables were clustered to-
gether according to thresholds, with decreasing performance
for coarser DEM resolutions. The loading of EAS followed
the pattern of DTW, and both terrain indices had the high-
est predictive performance at stream initiation thresholds of
1 and 2 ha in DEM resolutions of 1–4 m. The highest reso-
lutions of 0.5 m had a lower predictive performance (Fig. 2).
Increased stream initiation thresholds above 2 ha lowered the
predictive performance and added noise, as shown on the or-
thogonal axis (poso[1]).

The SLU soil moisture and SMI maps both performed
well and were the second and fourth best terrain indices, re-
spectively, for predicting soil moisture classes (Fig. 3). SMI
scored lower on the predictive axis (pq[1]) and had slightly
higher variation not related to the soil moisture classes com-
pared to the SLU soil moisture map (Fig. 2). The SLU soil
moisture map and DTW were the best-performing soil mois-
ture predictors and had a very similar VIPpredictive value
(Fig. 3).
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Figure 4. Orthophoto (© Lantmäteriet) (a) and hill-shaded DEM (b) covering a till area within the Krycklan catchment. Below, maps of the
highest-performing maps of different terrain indices in order of VIPpredictive with simplified common symbology for terrain indices (c–j)
based on value distribution for the visual comparison.

The downslope index (DI) was shown to be a good soil
moisture class predictor. DI was positively correlated to soil
moisture classes and therefore located on the positive pq[1]
axis. DI2m (d=2 m) performed better than DI4m (d = 4 m)
with higher loading on the predictive axis and lower loading
on the orthogonal axis. For both DI2m and DI4m, a resolu-
tion of 2 m had the highest predictive performance (pq[1])
with the lowest noise. Resolutions below 2 m and above 8 m
reduced the performance of the predictions substantially.

The performance of TWI was highly sensitive to the res-
olution of the DEM; too fine or too coarse resolutions gave
nonsensical results. For this landscape, 16 m was found to be
the optimal resolution for TWI calculations (Fig. 3).

WILT showed the highest value on the positive predictive
axis at 8 and 4 m resolution, which was also true for RTP. The
WILT loadings were slightly higher than the best-performing
TWI on the predictive axis (pq[1]) but also much higher on
the orthogonal axis, indicating a large variation not related
to soil moisture (Fig. 2). RTP showed no clear clustering,

similar to TWI, and performed worse compared to the above-
mentioned terrain indices (Fig. 3). Plan curvature scored low
on the horizontal axis, indicating that this variable was not
a good soil moisture predictor for this landscape, something
also confirmed by the VIPpredictive value being below 1.

3.3 Visual evaluation

Wet and moist soil conditions within the catchment are
mostly found on mires or as riparian soils along streams, as
shown in Fig. 4. In the IR orthophoto (Fig. 4a), mires can
be seen in the flatter areas (Fig. 4b) in the northern parts of
the selected area. Several small stream channels in the bot-
toms of valleys drain the area from northwest to southeast,
which borders onto wet riparian soils. Modelled soil mois-
ture conditions of the best-performing indices showed simi-
lar but varied agreement with natural features when visual-
ized (Fig. 4), with DTW and SLU soil moisture maps clearly
delineating the mire in the northwest corner and around
the lake, as well as the drier hilltops in the southeast cor-
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Figure 5. Maps of TWI, DTW and hill-shaded DEM at 1, 4, 8, 16 and 32 m resolution. Best-performing rasters in the OPLS analysis are
outlined in red.

Figure 6. Maps of DTW at 1 m resolution with stream initiation thresholds from 1 to 32 ha.

ner (Fig. 4). With the appropriate resolution and thresholds,
many of the terrain indices were able to represent the vari-
ation of soil moisture conditions in more or less accurate
ways after visual comparison. RTP had a poor performance
in the OPLS, which is in line with the results demonstrated
in Fig. 4j, where it predicted dry areas within the mire.

Figure 5 illustrates differences in the effects of increased
DEM resolution represented by modelled results for TWI and
DTW with a 1 ha streamflow initiation threshold. Varying
DEM resolution had larger effects on the spatial variation
of soil moisture conditions using TWI compared to DTW,
which was less affected; this is illustrated by the large differ-
ences moving from TWI at 1 m resolution to 32 m. The dis-
tribution of wet areas was not affected by DEM resolution for
DTW compared to TWI. To visualize the effects of different
user-defined stream initiation thresholds, DTW maps calcu-

lated for 1, 2, 4, 8, 16 and 32 ha stream networks were created
(Fig. 6). Increasing the streamflow initiation threshold short-
ens the stream network, resulting in a drier landscape model,
and decreasing the streamflow initiation threshold models a
wetter landscape.

3.4 Confusion matrix

The overall agreement of DTW 1 m 1 ha values (DTW< 1)
in relation to wet and moist soil classes was further tested us-
ing a confusion matrix (Table 3). Over the entire catchment
area, the accuracy was 77 %, with a MCC of 0.42. Divid-
ing the catchment into till and sorted sediment areas revealed
significant differences in conformance. On the till area of the
catchment, the DTW accuracy was higher with an accuracy
of 78 % and a MCC of 0.50. On the sorted sediment area of
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Table 3. Confusion matrix of true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) values, representing wet
(positive) and dry (negative) plots predicted by DTW 1 ha at 1 m
resolution and the SLU soil moisture map, as well as prediction
accuracy (ACC, %) and the Matthews correlation coefficient (MCC,
%). Confusion matrixes and statistics were calculated for the entire
catchment and divided into till and sorted sediment areas.

Area Plots TP TN FP FN ACC MCC
(n) (%)

D
T

W Entire catchment 398 61 245 61 31 77 0.42
Till 293 53 176 49 15 78 0.50
Sorted sediment 105 8 69 12 16 73 0.20

SL
U Entire catchment 398 78 255 21 44 84 0.60

Till 293 69 180 11 33 85 0.66
Sorted sediment 105 9 75 10 11 80 0.34

the catchment, DTW falsely predicted a large proportion of
the dry plots as wet (FP). Only a third of the wet plots were
predicted as wet (TP). The overall accuracy was better for
the SLU soil moisture map but showed the same pattern as
DTW in the sorted sediment area, with a low MCC value of
0.34 %.

4 Discussion

Modelling the spatial patterns of soil moisture remains an im-
portant scientific challenge and terrain indices are potentially
a useful tool. As the availability and resolution of DEMs
have increased, so have the uses of terrain indices for mod-
elling hydrological, environmental and soil properties. How-
ever, the predictive performance of terrain indices is highly
dependent on identifying the optimal spatial scales and user-
defined thresholds for modelling soil moisture (Sørensen and
Seibert, 2007; Lin et al., 2010; Ågren et al., 2014). The aim
of this study was, therefore, to evaluate how DEM resolu-
tion, user-defined thresholds and landscape types affect soil
moisture predictions from a range of readily available terrain
indices in relation to field-classified soil moisture conditions
across a boreal catchment. Our results demonstrate the po-
tential of terrain indices for modelling soil moisture when
the optimal DEM resolutions and user-defined thresholds are
selected. No previous study has been able to provide such de-
tailed data at catchment level or this large amount of terrain
indices in combination with an extensive field survey, which
clearly demonstrates the importance of selection of terrain
indices, DEM resolution and index-specific thresholds.

Several terrain indices were able to predict the spatial vari-
ation of soil moisture classes within our study area; however
our results revealed a large variation in the predictive perfor-
mance within, and between, terrain indices at different DEM
resolutions and index-specific thresholds (Fig. 3). The gen-
eral agreement of appropriately scaled terrain indices with
field classified soil moisture conditions (Fig. 2) and visual-

ized maps (Fig. 4) supports the underlying assumption that
topography acts as the main driver of spatially varying soil
moisture conditions. This is in line with many previous stud-
ies relating terrain indices to soil moisture conditions (Lin
et al., 2010; Seibert et al., 2007; Grabs et al., 2009; Mur-
phy et al., 2011; Ågren et al., 2014) and groundwater levels
(Rinderer et al., 2014).

Ground truthing is required to evaluate the performance
of different terrain indices, to prevent inappropriate choices
of resolution and user-defined thresholds, resulting in non-
representative predictions of soil moisture. As its ground
truth, this study used a uniquely extensive and high-precision
field survey within a well-studied landscape. We used field-
mapped soil moisture classes based on estimated depth to
groundwater from the soil surface guided by surrounding to-
pography and vegetation patterns as a proxy for average soil
moisture conditions, thus reducing the uncertainty associated
with the large temporal and small-scale spatial variability
of soil moisture (Murphy et al., 2011; Oltean et al., 2016;
Beucher et al., 2019; Lidberg et al., 2019). The position in
the landscape and the vegetation patterns that form the ba-
sis for the classifications stay constant over time. In contrast,
more direct soil moisture measurements using values such
as soil water content and time domain reflectometry (TDR)
are greatly affected by the specific weather conditions be-
fore, and at the moment of, measurement. On the other hand,
using soil moisture classes as the ground truth, we only eval-
uate the “average” soil moisture conditions for each site and
thereby focus on the spatial variability of relative soil mois-
ture conditions within the landscape. We do, however, ac-
knowledge that soil moisture varies greatly with season and
depends on regional weather conditions, causing stream net-
works and wet soils to expand and shrink during the year
(Ågren et al., 2015).

Our results highlight that the optimum DEM resolution for
soil moisture predictions differed depending on terrain index
and further demonstrated the large effects of DEM resolu-
tion within certain terrain indices (Fig. 5). In line with pre-
vious studies, TWI was greatly affected by DEM resolution
and was shown to perform best with a coarser 16 m reso-
lution while performing poorly with high-resolution DEMs.
This agrees well with previous studies both within Sørensen
and Seibert (2007) and Ågren et al. (2014) and outside the
study area (Lin et al., 2010; Murphy et al., 2011). However,
this is in contrast to a recent study by Riihimäki et al. (2021),
where they thoroughly investigated the effect of DEM resolu-
tion and flow accumulation algorithms on TWI calculations
in a 300 ha area of the northwestern Fennoscandian moun-
tain tundra. Their conclusion was that the D-infinity flow
routing algorithm reached its maximum explanatory power
at 3 m resolution. This highlights that the optimal DEM reso-
lution for predicting soil moisture conditions using TWI can-
not just be taken from literature as it varies from site to site,
and it is necessary to investigate the optimal resolution for
each landscape. While this has previously been shown in the
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literature, a concern with the rapidly increasing numbers of
high-resolution DEMs worldwide is that researchers will use
the most commonly used terrain index TWI and disregard
its poor performance with high-resolution DEMs. Other in-
dices, such as DTW, EAS and DI, had the best performance
for resolutions between 1 and 4 m and were stable within
this range, as shown for DTW in Fig. 5. When using high-
resolution DEMs, the importance of selecting the optimal
method for the preprocessing step (the hydrological correc-
tions of depressions) increases. The impoundments caused
by road banks (that are captured in high-resolution DEMs)
otherwise cause problems for the subsequent steps of mod-
elling the flow paths in the landscape (Woodrow et al., 2016;
Leach et al., 2017). Studies have shown that it is better to
preprocess the DEM using breaching rather than filling func-
tions (Wang et al., 2019; Lidberg et al., 2017). In this study,
we used the protocol suggested by Lidberg et al. (2017), as
that study was carried out on similar glaciated catchments in
Sweden. The highest resolution of DEM did not perform op-
timally for any of the evaluated terrain indices. This has been
highlighted by previous studies to be caused by small-scale
variations in surface topography that do not affect the overall
hydrological pathways (Gillin et al., 2015). The dependency
of DEM resolution is important for any type of digital soil
mapping, and the optimum resolutions have been shown to
be different, depending on landscape and the spatial scale of
the environmental phenomena and processes involved in the
soil property of interest (Cavazzi et al., 2013).

This study also demonstrated the effects of adjusting user-
defined thresholds associated with certain indices calcula-
tions (Figs. 2 and 6). In line with a previous study modelling
the spatial extent of wet areas, DI calculated with a 2 m given
vertical distance (d) (Eq. 3) performed best (Hjerdt et al.,
2004). DTW and EAS were among the best-performing ter-
rain indices (Fig. 3); however the overall predictive perfor-
mance was dependent on the chosen stream initiation thresh-
olds (Fig. 2). The best performance was achieved at 1 ha fol-
lowed by 2 ha streamflow initiation threshold, much in line
with previous results from the studied catchment area (Ågren
et al., 2014) and from other study areas (Oltean et al., 2016).
However, that only means that those thresholds might work
well for glaciated catchments: in other regions, these thresh-
olds might need to be adjusted. Again, our study highlights
the need for ground truthing of the digital terrain indices, as
the quality of the generated maps is so dependent on the
selected thresholds. The substantial effects of varied user-
defined thresholds for DTW and EAS highlight the impor-
tance of caution when selecting terrain indices.

The unique setting of the Krycklan catchment, with its het-
erogeneous soils, made it possible for this study to demon-
strate the challenges raised from variable landform types,
where the assumption of topography acting as a first-order
control of soil moisture becomes less valid. In the sorted
sediment areas of the Krycklan catchment, topographic vari-
ation is low and hydraulic conductivity high, allowing for

deeper infiltration of water, which decreases the topograph-
ical control of groundwater flows compared to the upper till
which dominates parts of the catchment (Jutebring Sterte et
al., 2021). The layout of the study did not allow for separate
analysis of the different land form classes due to the lim-
ited number of field plots and low variation of soil moisture
classes in the sorted sediment area (Table 1). However, us-
ing a confusion matrix of the classified best-performing ter-
rain index (DTW< 1 m) from the OPLS in conformance with
wet and dry soils, this study demonstrated a large difference
in the MCC values between the sorted sediment (0.20) and
till (0.50) parts of the catchment. The attempts of combin-
ing terrain indices and other mapped information to tackle
the challenges of soil moisture modelling faced by landscape
heterogeneity did not outperform the more basic terrain in-
dices at the entire catchment level. The confusion matrix us-
ing the SLU map and DTW’s overall conformance clearly
showed the challenges caused by the sorted sediment areas of
the catchment (Table 3). This study highlights the necessity
of adapting soil moisture predictions to local soil conditions.
These underlying factors need to be taken into consideration
when modelling soil moisture conditions on any level from
catchment, regional and national scale. One such attempt was
the SLU soil moisture map which was constructed for the
entire country of Sweden using vast amounts of field data
from 16 000 field plots across the country as training data
and several digital terrain indices at multiple resolutions and
thresholds. Even so, when evaluated on the Krycklan catch-
ment, the SLU soil moisture map ranked second among the
top predictors for soil moisture (Figs. 2 and 3) and did not
outperform several of the more simple terrain indices.

The results from this study demonstrate the potential of
terrain indices for modelling soil moisture across the land-
scape when the optimal scales and thresholds are selected
for the calculations. Terrain indices have been related to soil
properties (Seibert et al., 2007; Zajícová and Chuman, 2021),
ecological studies (Zinko et al., 2005; Bartels et al., 2018)
and site productivity (Mohamedou et al., 2017; Bjelanovic
et al., 2018) and will likely develop further as a useful tool
within many fields of study. However, it should be recog-
nized that the predictive power of terrain indices is limited
by the non-topographical drivers of the spatial variation in
soil moisture, which will always be significant and rarely
less than 50 % (Western et al., 1999). Such drivers are, for
example, soil depth, texture, hydrological conductivity, per-
meability and vegetation (Gwak and Kim, 2017). With an
increasing demand for high-resolution spatial and temporal
soil moisture models for climate, hydrology and soil mod-
elling, it is important to understand the underlying covariate
factors used to build them.
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5 Conclusion

This study was designed to test, demonstrate and visualize
the importance of appropriate scaling when modelling soil
moisture conditions using terrain indices. Although some
previous studies have drawn similar conclusions, there is still
a tendency within many fields to use the highest DEM reso-
lution available when using terrain indices to represent soil
moisture conditions as a covariate. However, one size – or
resolution in this case – does not fit all. Due to the differences
in climate, landscape types and soil texture, terrain indices
must be adapted to local conditions and calculated at appro-
priate scales and thresholds. Heterogeneous landscape types
remain a challenge for predicting soil moisture conditions
and should be taken into account when interpreting modelled
results. We, therefore, stress the importance of evaluating the
modelled terrain index results for the area of interest and not
to extrapolate the optimum terrain indices for our study ar-
eas directly or to blindly use the DEM of highest resolution
available.
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for aggregating the DEM and generating the different terrain indices
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