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Calcium ions (Ca2+) regulate plant growth and development during exposure

to multiple biotic and abiotic stresses as the second signaling messenger in

cells. The extracellular calcium-sensing receptor (CAS) is a specific protein

spatially located on the thylakoid membrane. It regulates the intracellular Ca2+

responses by sensing changes in extracellular Ca2+ concentration, thereby

affecting a series of downstream signal transduction processes and making

plants more resilient to respond to stresses. Here, we summarized the

discovery process, structure, and location of CAS in plants and the effects of

Ca2+ and CAS on stomatal functionality, photosynthesis, and various

environmental adaptations. Under changing environmental conditions and

global climate, our study enhances the mechanistic understanding of

calcium-sensing receptors in sustaining photosynthesis and mediating

abiotic stress responses in plants. A better understanding of the fundamental

mechanisms of Ca2+ and CAS in regulating stress responses in plants may

provide novel mitigation strategies for improving crop yield in a world facing

more extreme climate-changed linked weather events with multiple stresses

during cultivation.

KEYWORDS
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Introduction

Calcium, a crucial macronutrient for plants, has important

physiological functions such as maintaining cell morphology

and regulating ion balance and osmotic pressure. Interestingly, it

is also a key component for several early signaling pathways

involved in plant–environmental stresses interactions (Lambers

and Oliveira, 2019; Song et al., 2020; Wu et al., 2020). Most

elemental calcium in plant cells exists in ionic forms, which

contribute to forming microtubules in the cytoskeleton and

maintaining the fluidity of cell membranes (Kong et al., 2020;

Liu, 2021). In addition, calcium signals assist in the integration

of various signaling pathways to coordinate plants’ growth

response to multiple environmental signals (Edel and Kudla,

2016; Kudla et al., 2018; Luan and Wang, 2021; Kim et al., 2022).

The extracellular calcium-sensing receptor (CAS) is an

important protein that specifically exists in plants and has

specific regulatory functions. These proteins regulate

intracellular Ca2+ responses by sensing changes in extracellular

Ca2+ concentration, thereby affecting a series of downstream

signaling activities and fine-tuning plants’ responses to

environmental perturbations. We summarized the research

progress of Ca2+ and CAS in regulating photosynthesis and

stress responses. Here, we focused on the fundamental role of

CAS in regulating growth and signal transduction in response to

the external environment.
Structural characteristics of the
calcium-sensing receptor

Discovery and location of CAS

The extracellular Ca2+ receptor gene was cloned for the first

time using the functional gene screening method in Arabidopsis

thaliana and named as the calcium-sensing receptor (CAS) (Li

et al., 2022). With the aid of fluorescence imaging and

proteomics technologies, the CAS was located on the

chloroplast thylakoid membrane of Arabidopsis thaliana,

spinach, and green algae (Allmer et al., 2006; Naumann et al.,

2007; Nomura et al., 2008; Weinl et al., 2008). Interestingly, the

CAS was also detected within the purified eyespot of green algae

(Trippens et al., 2017). Yamano et al. (2018) fused the CAS-

Clover with high-resolution fluorescence imaging to coincide

with the eyespot, which also verified the existence of CAS. In

addition, high-resolution fluorescence images of CAS were

obtained using the sensitive hybrid detector and image

deconvolution technology, and its cellular localization on the

thylakoid membrane was authenticated and observed with

greater clarity.
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Structural features of CAS

The carboxyl-terminal of CAS is located within the cell and

has two domains (Vainonen et al., 2008); one of which is a non-

catalytic thiocyanate domain with high homology, and the other

is related to protein interaction which can interact with the 14-3-

3 and FHA (forkhead-associated) domain. Under light

conditions, the CAS light-regulated kinase STN8 is targeted for

phosphorylation at Thr-380 (Vainonen et al., 2008). The amino

terminal of CAS is located outside the cell membrane, which may

plausibly be the Ca2+ binding region, although its conserved

sequence has not been found. It was later verified that the binding

site of Ca2+ in CAS was the amino end rather than the carboxyl

end in Arabidopsis and Chlamydomonas (Wang et al., 2016a).
CAS and stomatal functionality

The pair of guard cells have a fundamental role in regulating

gas exchange between plants and the atmosphere, and biotic

infection (Melotto et al., 2008; Chen et al., 2012; Sawinski et al.,

2013; Sun et al., 2014; Murata et al., 2015; Agurla et al., 2016;

Bharath et al., 2021). Generally, Ca2+ plays an important role in

regulating guard cell turgor and the movements of guard cells.

Ca2+ ions affect stomatal conductance to water vapor and CO2 by

regulating the pore size. Peng et al. (2022) discovered that an

exogenous application of 18MmCa2+ could increase the stomatal

conductance of Paris polyphylla under high temperatures and

strong light conditions. The CO2-induced stomatal closure

process is also calcium-dependent and the CPK (calcium-

dependent protein kinase) has a role in signal transduction and

regulating the ion channels of guard cells. In the pentaploid

mutant plants with cpk3/5/6/11/23, the stomatal movements

were significantly impaired, suggesting that CPK has important

functions in facilitating stomatal movement and is plausibly

regulated by CO2 concentration (Schulze et al., 2021). Jakobson

et al. (2016) confirmed that there were significant differences in

stomatal phenotypes among casmutants with different alleles and

the cas overexpression of Arabidopsis transformants promoted

stomatal closure. Li et al. (2017) also demonstrated that the

deletion of the CAS gene could disrupt stomatal closure and

this phenomenon was attributed to high levels of extracellular

Ca2+. It was later verified that the extracellular high Ca2+ in CAS

gene-deficient mutants could not induce stomatal closure,

indicating that CAS was essential for extracellular Ca2+-induced

stomatal closure in Arabidopsis (Qi et al., 2018).

Interestingly, it was also found that CAS has an important role

in elevating intracellular Ca2+ concentration when induced by

extracellular Ca2+. These studies provided evidence for

Arabidopsis chloroplasts in regulating extracellular Ca2+-induced
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intracellular Ca2+ concentration increases and subsequent stomatal

closure (Nomura et al., 2008; Li et al., 2022). Wang et al. (2016b)

found that the chloroplastic regulation of stomatal closure required

the reduction of quinone, foliar production of H2O2, and the

phosphorylation of CAS and LHCII during exposure to

unfavorable perturbation. It was confirmed that stomatal

movement was associated with NO and the NO acted

downstream of the H2O2 step in regulating stomatal movement

(Bright et al., 2006). Specifically, the stomatal closure induced by

H2O2 and NO requires the involvement of extracellular Ca2+ and

the accumulation of H2O2 and NO in guard cells (Li et al., 2009;

Zhao et al., 2011). Tang et al. (2007) suggested that CAS might

regulate the stomatal closure process through the Ca2+-CAS-IP

signaling pathway. Subsequently,Wang et al. (2012) found that the

extracellular Ca2+ induced H2O2 and NO accumulation through

CAS in Arabidopsis thaliana, which induced transient changes in

cytoplasmic Ca2+ concentration and was able to regulate stomatal

movement. In addition,Arabidopsis plants expressing PHPLCd-GFP

protein were used for PHPLCd-GFP imaging of guard cells, which

indicated that H2O2 and NO were involved in the CAS-IP3
signaling pathway (Wang, 2013). Li et al. (2017) found that H2O2

might directly or indirectly regulate CAS activity and serve as redox

signaling molecules, thereby regulating stomatal closure.

Interestingly, the data also revealed that the exogenous NO-

induced stomatal closure of CAS guard cells was facilitated by

exogenous NO bypassing the damaged CAS. Furthermore, it was

indicative that NO has a downstream role relative to CAS in the

signal transduction pathway.Recent studies suggested that stomatal

movement induced by extracellular Ca2+ was the culmination of

multiple interactions among CAS, H2O2, and NO signals (Zhang

et al., 2018; Li et al., 2022). Li et al. (2017) used multi-disciplinary

approaches to examine the responses of different mutants to

extracellular Ca2+ in guard cells. It was found that there was a

cascade of H2O2, ABA, and NO in the CAS signaling pathway.

With further studies, it was confirmed that seed germination and

stomatal closure of mutant cau1 transformants were excessively

sensitive to ABA. In addition to extracellular Ca2+, the CAU1-CAS

could also respond to ABA through interaction, and ABA and

CAUI could also regulate stomatal closure (Ueda and Seki, 2020),

although the specific role of CAS in this process required further

clarification. Li et al. (2017) found that ABA in CASas mutant

plants was able to induce stomatal closure, indicating that the ABA-

induced signal transduction pathway was not dependent on CAS;

here, CASas refers to the CAS antisense line of Arabidopsis. Based

on these studies, the signal transduction cascade is summarized

accordingly in a scheme (Figure 1).
CAS and photosynthesis

Photosynthesis is one of the most important biological

processes on earth (Liu et al., 2011; Stael et al., 2012; Lambers
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and Oliveira, 2019). Calcium is involved in regulating various

photosynthetic processes, such as CO2 fixation and protein

phosphorylation in chloroplasts (Rocha and Vothknecht, 2012;

Liu, 2020). Hu et al. (2022) found that low calcium levels caused

the decline in photosynthesis of Taxus wallichiana varieties, but

this negative effect could be reversed by applying supplementary

calcium nutrition, which was consistent with previous findings

in grape and cucumber (He et al., 2018; Duan et al., 2020).

Harnessing the pull-down analysis (network database

GeneCAT) combined with proteomics and gene co-expression

method, Wang (2013) found that 52% of the CAS co-expression

genes in Arabidopsis were related to photosynthesis. Combining

photosynthetic indexes, chloroplast structural observation and

gene expression profiling, these observations verified that the

photosynthetic level and biomass accumulation of Arabidopsis

CASas plants were significantly reduced. Specifically, the

inhibition of CAS caused the transcription level of

photosynthetic electron-related genes to be down-regulated

(Wang et al., 2014). Navazio et al. (2020) found that the

transcription expression of the CAS gene in Arabidopsis was

up-regulated under strong light conditions, and the CAS

transcription level under dark and weak light conditions was

also significantly up-regulated compared with that under normal

light conditions. Petroutsos et al. (2011) confirmed that CAS

played a role in maintaining PSII functionality and helping

plants to adapt to strong light. Additionally, Li (2021) found

three AtCAS homologous genes in some shade plants such as

ginseng, and two AtCAS homologous genes in the non-shade

plant such as tomato. As CAS is a phosphorylated protein

regulated by light intensity; it is plausible that CAS may be

closely related to light adaptability. The stomatal movement of

terrestrial plants regulates CO2 entry and exit through HTI

protein kinase and carbonic anhydrase (Hu et al., 2010), and

aquatic plants maintained stable photosynthesis through the

CO2-concentration mechanism (CCM). Studies have indicated

that Ca2+ and CAS are related to CCM. In response to low CO2

concentration, the CAS can be transferred to the protein

nucleus, and then mediate the chloroplastic retrograde

signaling to maintain the expression of HLA3 (high-light

activated 3) and LCIA (low-CO2-inducible gene A) (Wang

et al., 2016a). Yamano et al. (2018) obtained interesting CAS-

Clover high-resolution fluorescence images using a sensitive

mixed detector coupled with image deconvolution technology.

It was found that CAS moved along the thylakoid membrane in

response to low concentration CO2, and gathered spatially in the

protein nucleus during the CCM mechanism. As a chloroplastic

thylakoid membrane protein, CAS functionality was examined

during de-etiolation and chloroplast development in Arabidopsis

thaliana (Huang et al., 2012). The thylakoid-localized CAS

protein could assist in the production of cytosolic calcium

transients, and the activation of the MPK3/MPK6 signal

system. Subsequently, the activated MPK3/MPK6 was involved
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in the nucleus-induced phosphorylation of ABI4. The activation

of ABI4 at both the transcriptional and posttranslational levels

induced the inhibition of LHCB (Gao et al., 2016). These results

showed that the cystoid-located CAS was involved in the

retrograde signaling pathway from chloroplast to nucleus (Li

et al., 2022).

Protein phosphorylation is vital for photosynthesis and

adaptation to multiple environmental stresses (Vener, 2007;

Fristedt et al., 2010). Vainonen et al. (2008) found that CAS

could be phosphorylated by STN8, and the phosphorylation

intensity increased with light intensity enhancement. At the

same time, a new phosphorylation site Thr-367 was also found

in the CAS of green algae (Lemeille et al., 2010). Cutolo et al.

(2019) conducted proteomics analysis and phosphorylation

determination of CASas, and identified Thr-376, Ser-378, and

Thr-380 as the main phosphorylation sites of STN kinase.

Protein phosphorylation is also important to regulate

photosynthetic electron transport efficiency (Reiland et al.,

2011). The cyclic electron transport (CET) process is involved

in chloroplast energy regulation and redox metabolism, which is

particularly important for photosynthesis. The studies

demonstrated that CET has two pathways, PGR5/PGRL1-
Frontiers in Plant Science 04
mediated pathway and the NDH-mediated pathway (Johnson

et al., 2014; Ma et al., 2021a). The protein interaction between

CAS and PGRL1 was confirmed in Chlamydomonas reinhardtii,

indicating that there is a link between CAS and CET (Terashima

et al., 2012; Ma et al., 2021b). Chen et al. (2015) found that Ca2+

controlled the biosynthesis of lipids induced by chloroplastic

nitrogen starvation by promoting the expression of CAS in the

PGRL1-mediated CET pathway.
CAS, stress resilience, and plant
defense

When plants are exposed to environmental stresses, they will

improve their resilience by self-regulating several in vivo

processes (e.g. changes in intracellular calcium concentration)

to cope with these perturbations (Liu, 2020). Salinity is an

important environmental factor, which has a negative impact

on plant growth and photosynthesis (Acosta-Motos et al., 2017;

Ma et al., 2022). Similarly, Ca2+ is also crucial in mediating stress

responses (Park et al., 2016). It was verified that Ca2+ can

enhance the salt tolerance of plants by improving water
FIGURE 1

A simplified scheme illustrating the salient signal transduction steps leading to stomatal closure.
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balance, regulating sodium secretion, and enhancing membrane

integrity (Ahmed et al., 2021). In addition, Ca2+ also enhances

resilience to chilling stress. Liu et al. (2013) found that

exogenous Ca2+ could mitigate the significant decline in

peanut photosynthesis and biomass accumulation during

exposures to low night temperatures. It was also confirmed

that exogenous Ca2+ ameliorated night chilling-dependent

feedback inhibition of photosynthesis by improving sink

demand and facilitating nonstructural carbohydrate export

from chloroplasts, to restore peanut growth, dry matter

production, and leaf photosynthetic capacity (Shi et al., 2020;

Song et al., 2020; Wu et al., 2020). Sun et al. (2022) reported

that the Ca2+ mediated-CAS was crucial for alleviating

photoinhibition in peanut growing under conditions of

moderate phosphorus deficiency. In addition, Zhao et al.

(2015) confirmed that OsCAS could improve drought

tolerance in Arabidopsis. When drought and heat stresses were

imposed on the creeping bentgrass (Agrostis stolonifera), the

expression of CAS was down-regulated, indicating that the

calcium sensitivity to drought and heat stress responses was

reduced (Xu and Huang, 2018). The molecular mechanism of

proline metabolism regulation under drought also revealed a

new drought tolerance pathway mediated by CAU1 (Fu et al.,

2018). Huang et al. (2012) provided further evidence to support

the role of Ca2+ and CAS in leaf re-greening and chloroplast

development of Arabidopsis. Zheng et al. (2017) screened a

chloroplast protein QUA1 by harnessing the large-scale

forward genetic method. It is plausible that the CAS-mediated

salt and drought tolerance of plants through the calcium

signaling-linked QUA1 that influence the stability of CAS. It

was further suggested that CAS has a regulatory role in the

downstream of QUA1. Interestingly, there are some pieces of

evidence to indicate that CAS is a prerequisite for chloroplast

Ca2+ to induce light response and light-dark transition (Nomura

et al., 2012). The expression of cas in Arabidopsis thaliana was

significantly reduced under high-temperature treatment. It is

plausible that the heat-sensing ability of chloroplasts was

partially dependent on CAS during high-temperature exposure

(Lenzoni and Knight, 2019).

Plant defense against invasive pathogens is dependent on the

dual innate immune system. Meta-analysis indicated that CAS

regulated the expression of flg22-induced immune genes through
1O2-mediated retrograde signaling; flg22 is a peptide derived from

bacterial flagellins. These studies revealed that the weakened

signals, chloroplasts, and superoxide anions were collectively

involved in the innate immune system (Sano et al., 2014; Stael

et al., 2015). In the study of plant-pathogen interaction mediated

by small molecules during the invasion of Fusarium

graminearum, Jia et al. (2019) found that the fungal infection or

the use of exogenous fusaoctaxin A inhibited the expression of

three CAS-like genes and chloroplast genes. Thus, the lowered
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susceptibility of wheat to Fusarium A, and the inhibition of

photosynthesis provided some evidence that chloroplasts might

play a key role in regulating early immune responses (de Torres

Zabala et al., 2015). Sclerotinia sclerotiorum is a well-known

necrotizing fungus that attacks many crops (Bolton et al., 2006).

The CAS is involved in the defense response of Arabidopsis

thaliana to S. sclerotiorum, and actively regulates the

accumulation of salicylic acid (SA) by promoting the expression

of SA biosynthesis-related genes, thereby enhancing the resistance

of plants to S. sclerotiorum (Tang et al., 2020). HopAU1 is an

immune inducer existing in Pseudomonas syringae pv. actinidiae

(Psa) which can interact with NbCAS in tobacco. Thus, silencing

the NbCAS by RNAi in N. benthamiana greatly attenuated

HopAU1-triggered cell death, suggesting that HopAU1 targets

CAS and enhances plant immunity. Further study showed that

the overexpression of NbCaS in N. benthamiana significantly

improved plant resistance against Sclerotinia sclerotiorum and

Phytophthora capsici (Zhang et al., 2022). Taken together, the

CAS also serves as a promising resistant-related gene for breeding

new disease-resistant varieties.
Future outlook

The CAS has an important role in facilitating Ca2+-mediated

stomatal closure and is associated with several signaling

molecules. As a specific protein located on the chloroplast

thylakoid membrane, the CAS functions as the first messenger

along the signal transduction pathway in plants. There is some

evidence that CAS may participate in various photosynthetic

processes such as CO2 fixation and protein phosphorylation.

With further research, we could gain insights into the Ca2+-

induced signaling pathway and the functional characteristics of

CAS in plant cells. In the future, it is important to further explore

the following: (i) the various relationships between CAS and the

other calcium-linked signals; (ii) the potential cross-talk between

CAS and light signaling at the chloroplast thylakoid membranes;

(iii) the CAS and its specific role in facilitating plant abiotic and

biotic stress responses using advanced techniques/tools

(proteomics, transcriptomics, and bioinformatics, etc.); (iv)

extrapolating the understanding of CAS in model plants to

non-model plants such as the legumes and horticultural

crops, etc.
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