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1 Introduction

The southern regions of Sweden, Norway and Finland are among the areas in Europe most af-

fected by surface water acidification (European Environment Agency, 2016). Since the 1980s,

some steps have been taken to contrast this issue, which have contributed to a steady recovery

of the water chemistry (Erlandsson et al., 2010). Among others, the Geneva Convention on

Long Range Transboundary Air Pollution and its associated protocols have made an important

contribution to the reduction of sulfate emissions (ibid.). In addition, monitoring programs

have been put in place to detect patterns of acidification, and predict the long-term path to full

recovery (European Environment Agency, 2016; Fölster et al., 2014).

A number of models have been developed in order to study the long-term trends in the levels of

PH and other acidifying variables of relevance (Moldan et al., 2013; Wright and Cosby, 2003).

Those models are useful to evaluate the overall trend in the levels of water acidity, and discuss

whether the process of recovery is going in the right direction. However, a limitation of those

models is that they might overlook the occurrence of episodic acidification, which can have

severe impacts on local ecosystems (Baker et al., 1996; Heard et al., 1997; Laudon, 2008).

Sudden changes in the levels of acidity can be deadly to a large number of fish species, and

undermine long-term biodiversity (ibid.).

The purpose of this research is to contribute to fill this knowledge gap, by developing a frame-

work to analyse, graphically and numerically, trends in the occurrence of episodic acidification.

By combining the use of generalised additive models and quantile regression, models able to

incorporate both seasonal and long-term time trends are developed. Patterns in episodic acidi-

fication are then illustrated with the help of visual tools first introduced by von Brömssen et al.

(2021).

1.1 Aim

The overall objective of this project is to model and visualise trends in extreme values of acid-

ifying variables. The reason for why this is interesting is that ecological effects of relevance

are sometimes more closely related to the occurrence of episodic acidification than to the long-
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term average levels of acidity. In spite of this, many of the present models overlook episodic

acidification, which is why more research on the patterns of episodic acidification is necessary.

1.2 Disposition

The structure of this project report is as follows:

Section 2 describes the dataset on which this research is based, and offers an empirical justifi-

cation for why it is important to model the extreme values of the acidifying variables. Section

3 introduces the reader to the methodology employed in order to describe long-term trends in

acidifying variables. Section 4 presents the main results of this research through examples of

local and regional analyses. Section 5 summarises the results presented in Section 4, and dis-

cusses some possible strengths and limitations of the models employed.

1.3 Abbreviations

N: Northern Sweden

SV: Southern and Western Sweden

ÖM: Eastern and Central Sweden

GAMs: Generalised Additive Models

QGAMs: Quantile (Generalised) Additive Models

GAMMs: Generalised Additive Mixed Models
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2 Data

The data available for this study were collected as a part of the Swedish national program for

the monitoring of freshwater quality. The chemical analyses were performed by the Depart-

ment of Aquatic Sciences and Assessment at the Swedish University of Agricultural Sciences

(see also von Brömssen et al. 2021 and Fölster et al. 2014 for more details). The collection was

performed on a regular basis (once a month in most cases) at over 200 different monitoring sites

spread over the three macro-regions of Sweden (N, SV and ÖM). The data include information

on several variables related to the acidity of freshwaters, such as pH, sulfates and ANC (Acid

Neutralising Capacity). At least 10 years of data are available for all of the sites included in

this paper. The methodology employed allows for time series of different length, and therefore

makes use of all available data (see also Section 3 for additional details).

2.1 Long-term trends

This subsection briefly describes the long-term trends of acidifying variables in Swedish rivers.

Mean, medians and key percentiles are presented for the three Swedish macro-regions (N, SV

and ÖM).
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Figure 1 shows how the mean levels of PH, ANC and sulfate concentration (mekv/l) have de-

veloped over the last 40 years. Important changes in the PH and concentration of sulfates have

occurred before the year 2000. Since then, the mean value of all three acidifying variables has

been rather stable.

Figure 1: Mean PH, ANC and sulfate concentration over time
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Figure 2 shows how the median levels of the three key acidifying variables have been evolving

over time. A slightly different picture is painted by in this case: The overall trends are rather

similar to those in Figure 1, but the differences among regions are smaller (Figure 2).

Figure 2: Median PH, ANC and sulfate concentration over time
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Even greater differences can be observed when looking at the trends in the 10th percentile of

PH and ANC, and in the 90th percentile of sulfate concentration (Figure 3). The 10th percentile

of ANC has been stable over time, while PH and sulfate concentrations show some variation

over time. In particular, it is interesting to note that the 90th percentile of sulfate concentration

has been slowly creeping up in ÖM an SV in the last years, suggesting that the frequency of

episodic acidification might have also been increasing.

Figure 3: 10th percentile PH and ANC, and 90th percentile sulfate concentration over time
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The obvious differences between the trends in average values (Figure 1 and Figure 2) and the

trends in the values in the tales of the distribution (Figure 3) offer a clear picture of why an

analysis of the trends in episodic acidification is necessary: The trends in the mean and median

values provide us with little or no information on the frequency and severity of extreme events.

A separate analysis of the trends in episodic acidification is necessary.
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3 Methodology

Generalised Additive Models are a useful way of describing environmental trends (von Brömssen

et al., 2021). The basic idea behind GAMs (Wood, 2006; Hastie and Tibshirani, 1986) is that

a function of the dependent variable y is modelled as a series of splines of some explanatory

variables xi. The main advantage of GAMs over simpler models, such as linear regression, is

that GAMs are able to capture both linear and non-linear trends, whereas linear regression as-

sumes that the relationship between the predictors and the output follows a predetermined form.

GAMs are given by the following formula:

g(E(Y )) = �0 + f1(x1) + f2(x2) + ...+ fi(xi) (1)

where g(E(Y )) is a function of the output variable, �0 is an intercept, and f1(x1) + f2(x2) +

...+ fi(xi) are smooth functions of the predictors. The smooths can differ between predictors,

and be estimated in a number of different ways. Most estimation methods penalise for exces-

sive complexity.

3.1 Quantile Generalised Additive Models

An application of GAMs of particular interest for this research is quantile generalised additive

models (Fasiolo et al., 2021), sometimes going under the name of QGAMs. QGAMs aim at

modelling the effect of the predictors on a quantile of choice of the dependent variable, rather

than on the more common choice of the mean value of the dependent variable. In mathematical

terms, a QGAM model can be expressed in the following way:

Qt(Y ) = f1(x1) + f2(x2) + ...+ fi(xi) (2)

where Qt(Y ) is a quantile of choice of the dependent variable. A quantile is, in less technical

terms, a percentile out of all possible values of the variable of choice. For instance, if we model

the first decile of the dependent variable, what we are actually modelling is the expected effect

of the predictors on the 10th percentile of the dependent variable.
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The main advantage of quantile regression and QGAMs over models looking at the expected

effect of the predictors on the mean of the dependent variable is that quantile based models

are more robust for outliers. Furthermore, those models allow for exploring the relationship

between the predictors and the values of dependent variable in the tales of the distribution,

which is what this research aims to do. By choosing a small or large enough quantile, we can

identify the effect of the predictors on the extreme values of the acidifying variable of choice.

3.2 Regional visualisations of QGAMs

The regional plots included in the results section are based on von Brömssen et al. (2021). For

a detailed explanation of the reasoning behind those visualisation tools we remind therefore to

the aforementioned paper. All of the tools were carefully adapted to accommodate the use of

QGAMs, and minor adjustments were made in order to enhance the visual experience in the

new context.

3.3 A Generalised Additive Mixed Model for Count Data

An alternative way of identifying trends in extreme values is through a two steps procedure

based on GAMMs (Generalised Additive Mixed Models)1. In the first step, a GAM model with

time as explanatory variable and the acidification variable of choice as dependent variable is fit

to each station (Expression 3).

E(Y ) = f1(date) + f2(month) (3)

In order to determine what values should be classified as extreme, a confidence interval for the

values of the acidification variable is determined, either empirically or on the base of previ-

ous research. Many possible arguments may be employed to determine how large this interval

should be. All observations falling outside of this interval are recorded as extreme. For the sake

of simplicity, we use a wide confidence interval, given by ten times the size of the standard error

estimated by the model described by Expression 3. In this way, only the most extreme values

are identified as extreme.

In the second stage, we fit a GAMM model with a random intercept for each of the monitoring
1see also Pedersen et al. (2019) for a detailed treatment of GAMM models
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sites included, in order to predict the number of extreme events likely to occur in a given year

(Equation 4). Given the fact that the number of extreme values for a given site in a given year is

discrete and usually small, we make use of a negative binomial GAMM model, which assumes

that the number of extreme values for a given site in a given year follows a negative binomial

distribution, and allows for over- and underdispersion. In order to account for unbalanced

sampling over years and stations, we also include an offset representing the number of the

available observations.

E(log(count of extremes)) = f(date) + ⇣site (4)

In expression 4, E(log(count of extremes)) is the number of extreme values for a given site in

a given year, and ⇣site is the site-specific random intercept. By looking at the effect of time

(f(date)) on the expected number of extreme events, site specific and overall trends can be

obtained for any geographical areas of interest.
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4 Preliminary results

The results in this section are to be seen as preliminary in the meaning that this research is still

ongoing. The main goal of this section is to give a picture of what kind of questions can be

answered with the help of QGAMs and specific visualisation tools adapted to those models. A

number of relevant examples are presented based on the dataset first introduced in Section 2.

4.1 Quantile Generalised Additive Models

The quantile additive model presented in Section 3 can be used for the purpose of analysing the

long-term trends in extreme values of acidifying variables for a given site.

We take as an example "Mälskarbäcken", a monitoring site in Northern Sweden. Figure 4 sug-

gests an answer the question of whether extreme values in acidifying variables have become

more or less frequent over time. Significant increases in the value of the quantile are marked in

red, and significant decreases are marked in blue. Periods of time without significant changes

are described by the colour yellow.

An increase in the value of a given quantile over a certain period of time suggests that the fre-

quency of events above that value has increased, whereas a decrease in the value of that same

quantile suggests that the number of events above that threshold has decreased. In other words,

a red marking in the plots visualising changes in sulfate concentration over time can be inter-

preted as a sign of an increased frequency in the number of recordings of extreme values of

sulfate concentration, whereas this same interpretation can instead be given to blue markings

in the case of pH and ANC.

Figure 4 suggests that the frequency of extreme events at Mälskarbäcken has not increased

markedly over time, and that the trend for the last years is rather stable.
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Figure 4: Mälskarbäcken, significant trend changes in pH (10th percentile), ANC (10th percentile) and
sulfate (90th percentile) over time

It is important to note that the results we obtain depend on the significance level we choose to

determine significant trend changes, and on how we define the extreme values. Figure 4 uses

a significance level of 0.1, and considers values in the top (for sulfate) and bottom (for pH and

ANC) decile respectively to be extreme. If we change some of those values, the results we

obtain may be different.

Figure 5 provides an example of how different significance levels may affect the results: in this

case, a lower significance level was used (0.05), and only the values in the top (sulfate) and

bottom (pH and ANC) 5th percentile were identified as extreme.
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Figure 5: Mälskarbäcken, significant trend changes in pH (5th percentile), ANC (5th percentile) and
sulfate (95th percentile) over time

The overall conclusion is the same: episodic acidification has not become more common in

the last years. However, a number of differences in the trends of episodic acidification can

be identified: For instance, whereas before it appeared that the number of extreme events in

pH had become less common in the last five years, it now appears that they are approximately

as common now as they were about five years ago. In addition, fewer significant changes occur.

A limit of Figure 4 and Figure 5 is that they concern a very limited geographical area, whereas

we might be interested in the overall trends for multiple sites. Trends in episodic acidification

might in fact be better understood when looking at several streams at once, as acidic deposition

is likely to affect all sites in a given area in similar ways. The figures in the next section offer a

remedy to this issue, by allowing us to look at multiple sites at once.
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4.2 Regional visualisations of QGAMs

The quantile additive model presented in Section 3 can also be used for the purpose of analysing

long-term trends in extreme values in acidifying variables for a number of sites at the same time.

In this subsection, we offer some examples of how this can be done.

We begin by looking at five randomly chosen sites in Southern and Western Sweden (SV, Figure

6). To the left, we can see the coordinates of the individual sites according to the "SWEREF"

system (latitude and longitude). The sites are ordered from North to South (largest latitude

first). The colour scheme is the same as the one used in the plots in Subsection 4.1

Figure 6: SV sample (five monitoring sites), significant trend changes (0.1 significance level) in ANC
(10th percentile), pH (10th percentile), and sulfate concentration (90th percentile) over time
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Figure 6 shows that three out of five streams have been experiencing more frequent extreme

values of pH and sulfate concentration in the last years. However, this figure gives us only

limited information on the overall trends in the region, as only five stations are included in this

sample. Figure 7 and Figure 8 look at the trend for all monitoring sites in the region.
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Figure 7: SV, significant trend changes (0.1 significance level) in ANC (10th percentile) and pH (10th
percentile) over time
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Figure 8: SV, significant trend changes (0.1 significance level) in sulfate concentration (90th percentile)
over time
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Figure 7 and Figure 8 offer a better picture of the overall trends in extreme values in the re-

gion. Figure 7 suggests that the frequency of extremely low ANC values has been rather stable

over the last years, while the number of episodes of extremely low pH values has increased for

some of the sites. Figure 8 reinforces the picture that episodic acidification has become more

common, as more cases of extremely high values of sulfate concentration have been recorded

in most sites.

A negative side of Figure 7 and Figure 8 is that they require much space in order to be easily

readable. Furthermore, it might be hard to distinguish overall regional trends when trends from

individual streams show contrasting results. For those reasons, an alternative plot, which better

summarises overall trends, is also provided (Figure 9).
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Figure 9: SV, percentage of sites per year experiencing significant trend changes (0.1 significance level)
in ANC (10th percentile), PH (10th percentile) and sulfate (90th percentile)

Figure 9 gives a better overview of the overall trends in the region. It is clear that recordings of

extremely high sulfate concentrations have become more common in most sites during the last

years, while the frequency of extreme values in ANC and pH has remained more stable.

A possible limitation of all of the plots included in this section is that they might be excessively

prone to show a large number of significant trend changes. The excess "wiggliness" in the trend
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estimate is due to the fact that the QGAMs we employed do not take into account the fact that

the series might be autocorrelated. This might lead to an increased number of up and downs

and the series, resulting in a large number of significant trend changes in the plots.
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4.3 A Generalised Additive Mixed Model for Count Data

An alternative approach, first introduced in Section 3.2, is to use a two-stage GAMM model to

estimate a long time trend in the number of extreme events per year.

An example is provided for three nearby rivers in the Gävleborg county: Ljusnan, Delångersån

and Dalälven. Figure 10 shows the overall trend in episodic acidification for the three rivers, in

black, and for the individual sites.

Figure 10: Trends in number of yearly events of episodic acidification (pH). Overall trend (in black)
and trends for individual sites

Figure 10 suggests that the number of extreme events per year has decreased over time, both

for the river as a whole and for the individual sites. We might, however, also want to try to

quantify how sure we are about our conclusions, especially when it comes to the overall trend.

An attempt to provide a solution to this question is made by Figure 11, which includes confi-

dence intervals representing the levels of uncertainty surrounding our prediction for the overall

trend.
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Figure 11: Trend in number of yearly events of episodic acidification (pH). Overall trend (in black) and
confidence interval for the overall trend (dashed lines in grey)

Figure 11 is useful to get a first impression of how sure we are about the overall direction and

size of the trend. However, two limitations affect the estimated confidence intervals: Firstly,

the estimated intervals do not take into account the uncertainty introduced by the estimation

process taking place in the first stage of the modelling process, described by Expression 3.

Secondly, it is hard to correctly determine how wide the intervals should be in order to rep-

resent a confidence level of 95%: for this example, we made use of the traditional formula

1.96 x SE, but it is possible that we might be underestimating the overall level of uncertainty.

A better way of computing the levels of uncertainty surrounding our prediction is among the

future goals of this research project.

Similar plots can be obtained for any other acidifying variables of interest. For instance, Figure

12 and Figure 13 display, respectively, the overall trend in extreme values of ANC, and the

trend in sulfate concentration for the river Ljusnan. Figure 13 represents an interesting exam-

ple of why the estimated confidence intervals cannot always be relied on, especially if many of

the observed values are zero: after the year 1990, the lower boundary of the interval overlaps

with zero, while the upper boundary becomes progressively larger despite the fact that very few

occurrences of episodic acidification could actually be observed.
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Figure 12: Trend in number of yearly events of episodic acidification (ANC). Overall trend (in black)
and confidence interval for the overall trend (dashed lines in grey)

Figure 13: Trend in number of yearly events of episodic acidification (sulfate concentration). Overall
trend (in black) and confidence interval for the overall trend (dashed lines in grey)
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5 Conclusion

This report has been looking at the ways that trends of extreme values in acidifying variables

can be identified with the help of QGAMs, Negative Binomial GAMMs, and visualisation tools

adapted from von Brömssen et al. (2021). The need for those models is highlighted by Section

2, where the differences between long-term trends in average and extreme values of acidifying

variables are introduced to the reader. A number of applications of the models and of the visu-

alisation tools are presented in Section 4, where both local and regional data are analysed and

visualised. Additional plots for the regional data can be found in the Appendix.

A strength of the models and visualisations tools presented in this paper is that they can be used

equally effectively to identify patterns in extreme values for a single site and for a large number

of monitoring sites at once. For instance, Figure 17, Figure 18 and Figure 19 offer an overview

of how the number of extreme values has been changing in the whole of Southern and Western

Sweden over time, whereas Figure 4 and Figure 5 look at just one of the monitoring sites in

Northern Sweden. Another strength of these tools is that they are very flexible: they can be

used to analyse the patterns of episodic acidification for any variable of interest.

One of the main limitations of QGAMs is that they might be harder to understand and apply

than traditional regression and time-series models. Another important limitation is that their

results can be affected by how the extreme values are defined and identified: More signifi-

cant changes in the frequency of episodic acidification are likely to be detected when a larger

number of events are recorded as extreme. The fact that QGAMs do not account for any auto-

correlation in the series at the station level might also be a limitation.

Similar limitations also affect the GAMMs: how extreme should an event of episodic acidifica-

tion be in order to be recorded as extreme? Another limitation has to do with the quantification

of uncertainty surrounding the estimated trends: the confidence intervals presented in Subsec-

tion 4.3 are likely to underestimate the actual levels of uncertainty of the estimation, as they

do not take into account the uncertainty introduced by the first step of the estimation process

(Expression 3).
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Appendix

Regional visualisations QGAMs: Northern Sweden

Figure 14: N, significant trend changes (0.1 significance level) in ANC (10th percentile) and pH (10th
percentile) over time
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Figure 15: N, significant trend changes (0.1 significance level) in sulfate concentration (90th percentile)
over time
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Figure 16: N, percentage of sites per year experiencing significant trend changes (0.1 significance level)
in ANC (10th percentile), PH (10th percentile) and sulfate concentration (90th percentile)
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Regional visualisations of QGAMs: Eastern and Middle Sweden

Figure 17: ÖM, significant trend changes (0.1 significance level) in ANC (10th percentile) and pH (10th
percentile) over time
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Figure 18: ÖM, significant trend changes (0.1 significance level) in sulfate concentration (90th per-
centile) over time
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Figure 19: ÖM, percentage of sites per year experiencing significant trend changes (0.1 significance
level) in ANC (10th percentile), PH (10th percentile) and sulfate concentration (90th per-
centile)
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