
Acta Universitatis Agriculturae Sueciae

Doctoral Thesis No. 2022:69

This thesis analysed the interactive effect of different land uses, tree cover, and 

livestock grazing on soil organic carbon and hydrological properties in miombo 

woodlands. Results show that higher livestock grazing intensities are more 

detrimental in croplands than in forest lands. It also shows that trees can counteract 

the negative effects of grazing and agriculture, but for soil hydrological properties 

only at low to moderate grazing intensities and not at high intensities. This provides 

more insight on how to better manage and restore miombo landscapes.

Lufunyo Lulandala received his postgraduate education at the Department 

of Forest Ecology and Management, Swedish University of Agricultural Sciences, 

SLU, Umeå. He has an MSc in Ecosystem Science and Management from Sokoine 

University of Agriculture (SUA).

Acta Universitatis Agriculturae Sueciae presents doctoral theses from the Swedish 

University of Agricultural Sciences (SLU).

SLU generates knowledge for the sustainable use of biological natural resources. 

Research, education, extension, as well as environmental monitoring and 

assessment are used to achieve this goal.

ISSN 1652-6880

ISBN (print version) 978-91-8046-014-9

ISBN (electronic version) 978-91-8046-015-6

Doctoral Thesis No. 2022:69
Faculty of Natural Resources and Agricultural Sciences

D
octoral T

h
esis N

o. 2022:69  •  Land use change, tree cover and livestock in m
iom

bo…
   •  Lufunyo Lulandala

Land use change, tree cover and
livestock in miombo woodlands

Lufunyo Lulandala

Interacting effects on soil carbon and hydrological
properties



 

Land use change, tree cover, and 
livestock in miombo woodlands 

 

Interacting effects on soil carbon and hydrological 

properties 

Lufunyo Lulandala 

Faculty of Forest Sciences 

Department of Forest Ecology and Management 

Umeå 

 

 

DOCTORAL THESIS 

Umeå 2022 



Acta Universitatis Agriculturae Sueciae 

2022:69 

Cover: Livestock grazing in miombo woodlands in Kilosa district, Tanzania. 

(photo: Lufunyo Lulandala) 

 

 

ISSN 1652-6880 

ISBN (print version) 978-91-8046-014-9 

ISBN (electronic version) 978-91-8046-015-6 

© 2022 Lufunyo Lulandala, Swedish University of Agricultural Sciences, Department of 

Forest Ecology and Management, Umeå, Sweden 

Print: SLU Service/Repro, Uppsala 2022 



Abstract 

Miombo woodlands stretch across eastern and southern Africa and occupy an area 

of around 2.7 million km2. These forests provide a wide range of ecosystem services 

that are essential to the livelihoods of communities around them and play a crucial 

role in the carbon and hydrological cycles at regional and global scales. However, 

miombo woodlands are affected by deforestation and forest degradation, mainly due 

to agricultural expansion, charcoal production, timber and firewood harvesting, and 

livestock grazing. This thesis aims to assess the impacts of these land uses and tree 

cover on key soil properties, particularly soil organic carbon and soil hydrological 

properties such as infiltration capacity, which are important indicators of ecosystem 

health. The central hypothesis was that tree cover positively influences soil 

hydrological properties and soil organic carbon, while land uses that involve a 

decrease in tree cover or disturb the soil have a negative impact. I conducted the 

studies in two different sites in Tanzania; Kitulangalo forest reserve and the 

surrounding areas in Morogoro Rural district, and Ulaya mbuyuni village in Kilosa 

district. I measured infiltration capacity, preferential flow, tree basal area, livestock 

grazing intensity, and different soil properties, including soil organic carbon, bulk 

density, and texture. Results show that soil hydrological properties and soil organic 

carbon increased with increasing tree cover. Hence, croplands had relatively lower 

infiltration capacity and soil organic carbon than forest land. Both soil organic 

carbon and soil hydrological properties decreased with increasing livestock grazing 

intensity across land uses. Findings also indicate that the positive effect of trees on 

soil hydrological properties and soil organic carbon was significantly reduced when 

livestock grazing intensity was high. In addition, the combination of croplands and 

high livestock grazing intensity resulted in lower infiltration capacity and organic 

carbon than the combination of forest and high grazing intensity. When comparing 

small and large clearings for charcoal production, large clearings had lower values 

of infiltration capacity and soil organic carbon. I concluded that forest conversion to 
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in miombo woodlands: Effects on soil 
hydrological properties 



croplands reduces soil hydrological functioning and soil organic carbon. Trees could 

be an important tool to restore soils and their hydrological function in degraded 

landscapes, but the presence of high livestock grazing intensities reduces their 

effectiveness.  

 

Keywords: Soil hydrological properties, land use, livestock grazing intensity, 

miombo woodlands, charcoal production, silvopastoralism, drylands 

 

Author’s address: Lufunyo Lulandala, SLU, Department of Forest Ecology and 

Management, SE-901 83, Umeå, Sweden 

E-mail: lufunyo.lulandala@slu.se  

 

  



Muhtasali 

Misitu ya miombo imeenea kote mashariki na kusini mwa Afrika na 

kuchukua eneo la karibu kilomita za mraba milioni 2.7. Misitu hii hutoa 

huduma mbali mbali za mfumo ikolojia ambazo ni muhimu kwa maisha ya 

jamii zinazoizunguka na huchukua jukumu muhimu katika mzunguko wa 

kaboni na kihaidrolojia katika mizani ya kikanda na kimataifa. Hata hivyo, 

misitu ya miombo huathiriwa na ukataji miti na uharibifu wa misitu, hasa 

kutokana na upanuzi wa kilimo, uzalishaji wa mkaa, uvunaji wa mbao na 

kuni, na malisho ya mifugo. Tasnifu hii inalenga kutathmini athari za 

matumizi haya ya ardhi na mfuniko wa miti kwenye sifa kuu za udongo, hasa 

kaboni hai ya udongo na sifa za kihaidrolojia za udongo kama vile uwezo wa 

kupenyeza, ambazo ni viashirio muhimu vya afya ya mfumo ikolojia. Dhana 

kuu ilikuwa kwamba mfuniko wa miti huathiri vyema tabia ya kihaidrolojia 

ya udongo na kaboni hai ya udongo, wakati matumizi ya ardhi ambayo 

yanahusisha kupungua kwa kifuniko cha miti au kuvuruga udongo yana 

athari mbaya. Nilifanya tafiti hizo katika maeneo mawili tofauti nchini 

Tanzania; Hifadhi ya msitu wa Kitulangalo na maeneo jirani katika Wilaya 

ya Morogoro Vijijini, na kijiji cha Ulaya mbuyuni wilayani Kilosa. Nilipima 

uwezo wa kupenyeza, mtiririko wa upendeleo, eneo la msingi wa miti, 

ukubwa wa malisho ya mifugo, na sifa tofauti za udongo, ikiwa ni pamoja 

na kaboni hai ya udongo, msongamano mkubwa na umbile. Matokeo 

yanaonyesha kuwa tabia ya kihaidrolojia ya udongo na kaboni hai ya udongo 

iliongezeka kutokana na kuongezeka kwa mifuniko ya miti. Kwa hivyo, 

ardhi ya kilimo ilikuwa na uwezo wa chini wa kupenyeza na kaboni hai ya 

udongo kuliko ardhi ya misitu. Tabia zote mbili za kaboni hai ya udongo na 

kihaidrolojia ya udongo zilipungua kwa kuongezeka kwa malisho ya mifugo 

katika matumizi ya ardhi. Matokeo ya utafiti pia yanaonyesha kuwa athari 

Mabadiliko ya matumizi ya ardhi, mfuniko wa miti, na 

mifugo kwenye misitu ya miombo: Athali kwenye 

kaboni na sifa za kihaidrolojia za udongo 



chanya ya miti kwenye tabia ya kihaidrolojia ya udongo na kaboni hai ya 

udongo ilipunguzwa kwa kiasi kikubwa wakati kiwango cha malisho ya 

mifugo kilikuwa kikubwa. Aidha, mchanganyiko wa mashamba ya mazao 

na wingi wa malisho ya mifugo ulisababisha kupungua kwa uwezo wa 

kupenyeza na kaboni hai kuliko mchanganyiko wa misitu na malisho mengi. 

Wakati wa kulinganisha maeneo madogo na makubwa kwa ajili ya uzalishaji 

wa mkaa, usafishaji mkubwa ulikuwa na viwango vya chini vya uwezo wa 

kupenyeza na kaboni ya kikaboni ya udongo. Nilihitimisha kuwa ubadilishaji 

wa ardhi ya misitu kuwa mashamba ya mazao hupunguza utendaji kazi wa 

kihaidrolojia wa udongo na kaboni hai ya udongo. Miti inaweza kuwa 

chombo muhimu cha kurejesha udongo na sifa zake za kihaidrolojia katika 

mandhari iliyoharibiwa, lakini kuwepo kwa kiwango ch juu cha ulishaji wa 

mifugo hupunguza ufanisi wao. 

Maneno Muhimu: Sifa za kihaidrolojia za udongo, matumizi ya ardhi, 

ukubwa wa malisho ya mifugo, misitu ya miombo, uzalishaji wa mkaa, 

silvopastoralism, maeneo kavu 
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1.1 Land use, tree cover, and groundwater 

Land use - the human use of land - encompasses both the economic and 

cultural activities taking place in an area, including agricultural, residential, 

mining, and recreational uses  (EPA, 2017). Land use change is a global 

concern as it is one of the main reasons for environmental change (Sharma 

et al., 2019). In efforts to provide food, fiber, water, and shelter to the 

growing global population, forests, farmlands, waterways, and air are being 

modified globally (Foley et al., 2005). In the course of two centuries, global 

population has increased by 7-folds to the current approximate of 7.8 billion 

people (PRB, 2020). Such increase in population comes with an increased 

demand for basic human necessities, including energy and food, which 

drives land use change and negatively impacts natural ecosystems through 

loss of biodiversity, increased greenhouse gas emissions, and the degradation 

of soil and water resources (Foley et al., 2005).   

Soil Organic Carbon (SOC) improves the water-holding capacity of the soil, 

improves soil structure and stability, and increases microbial activities. 

(Milne et al., 2015). Considering that soil is a major carbon reservoir - with 

two times the amount of carbon in the atmosphere and three times that in 

vegetation (Powlson et al., 2011)- conserving soils is essential both for 

climatic regulation and agricultural productivity.  

Agricultural expansion makes up about 90 % of global deforestation, most 

of which occurs within the tropics (FAO, 2021; Pendrill et al., 2022; Ramesh 

et al., 2019). Converting forest land to annual cropland is frequently 

associated with carbon loss from both the soil and vegetation. The impact of 

this change depends on several climatic and environmental factors, including 

1. Introduction 
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temperature, moisture availability, soil characteristics, and frequency of 

disturbance (Malhi et al., 1999). In the temperate region, the conversion of a 

natural forest to agricultural land leads to a 60 % loss in soil organic carbon, 

up to 75 % in the tropics, while sub-Saharan Africa (SSA) has lower carbon 

loss than in the overall tropics with 63 % (Devi, 2021; Lal, 2004; Vågen et 

al., 2005). This makes tropical ecosystems, particularly vast and densely 

populated tropical drylands, more vulnerable to land use changes (Gaur & 

Squires, 2018). 

Trees offer a wide range of services (Bargués-Tobella et al., 2014; Benegas 

et al., 2014; Ekhuemelo, 2016). Apart from carbon storage and climate 

regulation, trees maintain biodiversity, prevent soil erosion, improve soil 

fertility and soil aggregation, regulate the hydrologic cycle, and provide 

different products like fruits, timber, and fiber (Barrios et al., 2018; 

Cavender-Bares et al., 2022; Cunningham et al., 2015; Salmond et al., 2016). 

However, the influence of trees and how different land uses in a landscape, 

particularly in drylands, interact and collectively affect soil water dynamics 

is still poorly understood. Through the improvement of soil quality, trees 

positively influence soil hydrological properties. Soil hydrological properties 

are complex and are influenced by several factors both inherent and 

management-dependent, including vegetation cover, soil texture, soil 

organic matter content, and land use (Lozano-Baez et al., 2021). In the face 

of climatic changes, drylands are confronted with even bigger risks of 

increased drought spells and temperatures (Easterling et al., 2000; Hughes, 

2003). To avoid degradation, it is important to understand how different co-

occurring land uses in dryland landscape influence hydrological processes 

and how to optimize the land use-soil hydrology relationship for 

conservation. However, information on how different landscape 

components, whether separately or in interaction, affect soil hydrological 

properties in drylands is still scarce but highly needed. 

Groundwater, sometimes referred to as subsurface water, is that water found 

beneath the Earth’s surface, in rock and soil pore spaces, and in fractures of 

rock formations (Holmes, 2000). Groundwater makes up approximately 30.1 

% of all freshwater worldwide, while 68.7 % is fixed in ice caps and the other 

1.2 % is surface freshwater in the form of lakes, rivers, and dams (Gleick, 

1996). Groundwater comes from precipitation and the process by which 

water drains deep into the ground is called recharge (Ajami, 2021). 

Groundwater is a vital source of drinking water. Globally, about 50 % of all 
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drinking water comes from groundwater (Beckie, 2013) and it also accounts 

for 38 % of all water used for irrigation (Siebert et al., 2010). In addition, 

groundwater supports rivers, lakes, and wetlands, particularly during the 

drier month when there is little or no rain input; hence, it supports the 

biodiversity of plants and animals (Aylward, 2005). All these make 

groundwater a precious item that needs conservation, particularly in drylands 

with limited rainfall. However, both groundwater quality and quantity are 

being threatened by over-exploitation from uncontrolled wells drilling 

(Chesnaux, 2012), contamination from both industrial wastes and chemical 

agricultural fertilizers (Hansen et al., 2012), reduced recharge quantities due 

to the disruption of groundwater recharge systems as a result of land use 

changes, as well as climatic changes (Green et al., 2011).     

Soil hydrological processes, including water infiltration and preferential 

flow, runoff generation, soil-water storage, redistribution, drainage, 

evaporation, and transportation, have important consequences on the overall 

soil water budget (Zhang et al., 2016). Water flows from above ground into 

the subsurface through infiltration, and the maximum rate at which soil can 

absorb water in a given condition is termed infiltration capacity (Ferré & 

Warrick, 2005) or infiltrability (Hillel, 2003). Once on the ground, water 

movement through the soil is influenced by two major forces: capillary and 

adsorptive forces. When soils are not yet saturated, water moves downward 

by the adhesion force, however, when the soil is near a point of saturation 

matric potential decreases and large pores in the soil are filled and water 

moves rapidly through them by the gravitational pull downward (Voroney, 

2019).  The relatively slow and even movement of water and solutes through 

the soil in pores that are small enough to retain water against the force of 

gravity is called matrix flow (Zhang et al., 2017), while the rapid, uneven 

movement of water and solutes through regions of higher flux in larger soil 

pores such as from root and animal channels and cracks is known as 

preferential flow (Lei Guo et al., 2019). Hydrological processes are complex, 

with spatial and temporal variabilities, and are influenced by many natural 

and management-dependent factors (Easterling et al., 2000; Eger et al., 2017; 

Gwak & Kim, 2017; Hughes, 2003; Yair & Raz-Yassif, 2004). Destruction 

of macro-pores will decrease infiltration capacity, and hence that risks 

reducing the flow of water needed to recharge groundwater reserves during 

intense rain events in tropical areas (Bargues-Tobella et al., 2020).  In order 

to avoid degradation, it is essential to understand how different land uses in 
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dryland landscape influences hydrological processes and how to optimize 

land use-soil hydrology relationships for soil and water conservation.  

1.2 Drylands 

Drylands cover about 40 - 45 % of the world's land area  (Huang et al., 2016; 

Schimel, 2010), and support around 2.1 billion people worldwide of whom 

90 percent live in low and middle-income countries (UN, 2020). Africa is 

the continent with the largest share of the total global dryland area (32%), 

followed by Asia, North America, South America, and Europe (Maestre et 

al., 2021). Drylands can be broadly defined by using an aridity index, which 

is a quantitative indicator of the degree of water deficiency calculated as the 

ratio of mean annual precipitation to mean annual potential 

evapotranspiration (UNEP, 1992). UNEP classifies drylands as areas with an 

aridity index of less than 0.65, that are characterized by high 

evapotranspiration rates exceeding the available rainfall or snowfall (UNEP, 

1992). Based on the aridity index, drylands can further be classified into 

hyper-arid (< 0.5), arid (0.05 – 0.20), semi-arid (0.20 – 0.50), and dry sub-

humid (0.50 – 0.65) making a major ecosystem in both tropical and temperate 

regions throughout all continents (Prăvălie, 2016; UN, 2011). Despite the 

level of aridity, drylands support a diverse mosaic of contrasting landscapes 

and biodiversity of both plants and animals found in these ecosystems, as 

well as human communities (Chakrabarti, 2016). Drylands are extremely 

vulnerable to climatic variations and anthropogenic activities that include 

unsustainable agriculture practices, deforestation, and overgrazing (Davies 

et al., 2012).  

1.2.1 Land use in drylands 

Land use in dryland regions is highly dynamic and not fully understood (Fu 

et al., 2021). Land use dynamics are influenced by natural factors like 

climate, soil, and topography, as well as socioeconomic factors, including 

population, economic status, and culture (Gaur & Squires, 2018). Globally, 

of the 6.1 billion hectares of drylands, 28 % of it is considered 

barren/unproductive land too dry to support life, 25 % is classified as 

grasslands, 18 % as forest land, and 14 % as croplands (Figure 1). It is 

estimated that drylands support up to 44 % of the world's cultivated systems 

and are the source of 50 % of the world's livestock production (Chakrabarti, 
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2016). Traditionally, drylands have primarily been used for livestock 

production, particularly in arid and semi-arid climates, but reports show an 

ever-increasing rate of rangeland conversion into cropland (UN, 2018). Since 

global livestock production also keeps growing (Pandey & Upadhyay, 2022), 

this could imply an increasing overlap of the two land uses (livestock 

keeping and crop cultivation), as it has also been reported in the drylands of 

Africa (Mortimore, 1991).  There is a need for thorough studies on how these 

conversions of rangelands to croplands and the overlapping of livestock 

grazing and cropping land uses affect different aspects of dryland 

ecosystems.  

 

Figure 1. Major land use classification, land area coverage, and percentages in the global 
drylands (FAO, 2019). 

Compared to other ecosystems, drylands display a uniquely close 

interdependence between nature and dryland dwellers that is mainly 

attributed to limited available resources (Sietz, 2011). Approximately 1/3 of 

the population living in drylands depends on agriculture for their livelihood 

(UN, 2021). This close interdependence has been and still is one of the most 

substantial influencing factors on spatial-temporal land modification in 

drylands (Silva et al., 2016). The population density in drylands increases 

with decreasing aridity, from 10 people km-2 in hyper-arid areas to 71 people 

km-2 in dry sub-humid areas (Gaur & Squires, 2018). At the same time, 

drylands are home to the poorest and most marginalized communities in the 

world, and 16 % of their population live in chronic poverty and hence are 
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greatly dependent on ecosystem services for their survival (UNCCD & DIE, 

2019). Population growth in drylands is not, in principle, a direct driver of 

environmental degradation per se, but it increases the pressure on natural 

resources (Milas, 1985). Population growth is expected to increase further 

the demand for, e.g., settlement land and agricultural and animal-based 

products, which in turn may lead to shorter fallow periods (Pelzer, 1964) and 

more encroachment on rangelands, woodlands, and forests, resulting in even 

more land and ecosystem degradation (Spinoni et al., 2021). Evidence on the 

implications of these modifications on soil and water resources in drylands 

is scarce but highly relevant and urgently needed.  

Although dryland communities also depend on crop cultivation for their 

livelihood, dryland climate does not offer favorable conditions to support 

crop cultivation (Gimenez et al., 1997). Apart from water limitations due to 

low and unreliable rainfall coupled with high evapotranspiration rates 

(Miller, 2005), dryland agriculture is also faced with other severe biotic and 

abiotic challenges, including declining soil quality, pests and diseases, and 

climate change (Holmgren et al., 2006; Venkateswarlu & Shanker, 2012). 

Dryland soils are characterized by low fertility, low organic matter content, 

and are easily eroded by wind and water (Venkateswarlu & Shanker, 2012). 

Considering these poor characteristics and the fact that 80 % of the world's 

agricultural land area is rain-fed (Lamptey, 2022), drylands are far 

disadvantaged and often characterized by low productivity and land 

degradation (Parr et al., 1990). To efficiently manage dryland farming 

systems, considerable quantities of inputs in the form of nutrients, irrigation 

systems, and appropriate management strategies are needed. However, these 

options are economically inaccessible to the majority of dryland farmers, and 

most of them opt for shifting cultivation (Gordon et al., 2013). Shifting 

cultivation, which is a form of cultivation where farm plots are temporarily 

abandoned for vegetation to grow while the farmer moves to another location 

(Hillel, 2008), has been one of the prominent factors for vegetation 

manipulation and land modification in drylands.  

As a result of low organic matter content, dryland soils have low aggregate 

stability and hence are highly vulnerable to degradation (Chen et al., 2022). 

In addition, drylands are characterized by limited water availability, which 

limits primary productivity. As a result, soil organic carbon (SOC) (Ramesh 

et al., 2019) is low compared to more humid systems, and vegetation is often 

scattered or sparsely distributed, leaving the soil exposed to direct agents of 
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degradation like rain, overland flow, sunlight, and wind (Reynolds, 2001). 

Poor qualities of soils in the drylands make them highly vulnerable to 

common unsustainable land uses like overgrazing and shifting cultivation.  

1.3 Miombo woodlands 

Miombo is a common term used to identify the most extensive tropical 

seasonal woodland and dry forest formation in Africa, covering an estimated 

area of 2.7 - 3.6 million km2 across the central African plateau and its 

escarpment (Campbell et al., 1996; Frost, 1996). Miombo woodlands cover 

about 10 % of the African landmass (Figure 2) (Malmer, 2007) and extend 

from Tanzania and southern parts of the Democratic Republic of Congo 

(DRC) in the north to Zimbabwe in the south, and across the continent from 

Angola, through Zambia, to Malawi and Mozambique (Walker & Desanker, 

2004). The overstory in Miombo woodlands is mainly dominated by the 

genera Braychystegia, Julbernadia, and/or Isoberlinia (Leguminosae, sub-

family Caesalpinioideae) (Williams et al., 2008). The miombo region has an 

estimated 8500 species of higher plants, over 54% of which are endemic 

(Rodgers et al., 1996). Miombo woodlands have been widely classified into 

two types based on the amount of rainfall they receive, dry miombo (< 1000 

mm/year), and wet miombo (> 1000 mm/year) (Munishi et al., 2011; White, 

1983), which also vary slightly in their vegetation structure and composition. 

Dry miombo is usually characterized by a lower canopy height (< 15 m) and 

canopy cover (30 - 60 % of the ground), and a lower floristic composition 

compared to wet miombo (Ribeiro et al., 2020). Miombo woodlands are 

characterized by the presence of trees with an umbrella-shaped canopy, 

scattered sub-canopy trees, a discontinuous layer of understory saplings and 

shrubs, and patchy grasses and forbs (Frost, 1996). 
 



26 

 

Figure 2. Map showing the distribution of miombo woodlands in eastern, central, and 
southern African countries (Source: Maquia et al., 2019). 

1.3.1 Land use/ land cover dynamics in miombo woodlands 

Over 100 million rural and urban communities directly or indirectly depend 

on miombo woodlands for their livelihood, through the provision of goods 

and services like timber and non-timber products, including fruits, 

mushrooms, traditional medicines, and bee products (Chirwa et al., 2008). 

About 80 % of the communities living in miombo woodlands are agro-

pastoralists, practicing livestock keeping and farming as their main economic 

activities together with some charcoal production (Njana et al., 2013). Poor 

management and increased utilization pressure have led to extensive miombo 

degradation.  

                                                                                                                                                            

For a long time, shifting cultivation has been the standard agricultural 

practice in the miombo region (Grogan et al., 2013; Kilawe et al., 2018; 

Luoga et al., 2000; Stromgaard, 1988). It is mainly practiced on a subsistence 

basis by small-scale rural farmers, often with small farm sizes of < 2 ha 

(Ribeiro et al., 2013). This mode of farming has widely been used in many 

parts of the world, including Southeast Asia and South America, and it is still 

widely practiced in both dry and humid Sub-Saharan Africa (Hillel, 2008). 

It involves the rotation of farming fields with variation in fallow times 

ranging from 1 to 20 years depending on the rate of recovery and demand for 
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arable land (Kilawe et al., 2018). In this form of cultivation, soil fertility is 

restored by long periods of fallowing through the recycling of nutrients 

between vegetation rather than by off-farm inputs of fertilizers (Lal, 2005).  

Shifting cultivation systems are ecologically viable even in harsh and fragile 

ecosystems like the tropical drylands as long as there is enough land for long 

restorative fallow (Lal, 2005). However, soaring population growth in Sub-

Saharan Africa and increased demand for settlement areas and arable lands 

has led to high pressure on natural ecosystems like miombo woodlands and, 

thereby, the shortening of fallow periods (Dalle & De Blois, 2006). 

Consequently, this form of cultivation has generally been identified as the 

major cause of land cover changes and deforestation in the tropics (O'Brien, 

2002). Under extreme reduction of fallow periods, productivity is drastically 

reduced, leading to system breakdown and severe soil degradation (Alajangi 

et al., 2021).  

Livestock grazing in miombo woodlands 

Livestock keeping is one of the main economic activities of dryland 

communities like those living in miombo woodlands (Njana et al., 2013; 

Powell et al., 2010). Miombo woodlands have been used as grazing lands by 

indigenous communities for a long time (Ruvuga et al., 2020), however, 

studies of how livestock grazing influence miombo ecology are still scarce. 

Livestock supports an estimated 70 % of the rural dryland population of West 

and East Africa, where about 20 % of these livestock keepers depend 

exclusively on livestock (pastoralists), while the rest derive a portion of their 

income from cropping (agro-pastoralists) (Cornelis de, 2016). The increasing 

trend of the global demand for animal-based products is the main reason for 

the current increasing pattern of livestock keeping in drylands (Abdallah & 

Monela, 2007; Gumbo et al., 2018). 

Studies of how livestock grazing affects the miombo ecosystem are few, and 

most of that available focus on vegetation stratum. Such studies show that 

overgrazing reduces regeneration and species diversity in the long run 

(Mtimbanjayo & Sangeda, 2018; Nduwamungu et al., 2009; Sangeda & 

Maleko, 2018), but how livestock grazing affects soil properties, particularly 

hydrological functions, is still not well understood.  

Charcoal production in miombo woodlands 

About 65 % of the world's charcoal is produced in Sub-Saharan Africa (SSA) 

(Mensah et al., 2020), with Nigeria, Ethiopia, the Democratic Republic of 
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Congo, Mozambique, Tanzania, Ghana, and Egypt being the top seven 

producers (Mensah, 2021). Global sustainable development goal number 7, 

directing toward access to affordable, clean, and sustainable energy in low- 

and middle-income regions by 2030 (UN, 2015). However, charcoal is still 

the primary domestic fuel in most SSA countries (Doggart et al., 2020), 

where more than 80 % of households use firewood and charcoal for cooking 

and heating (Meng et al., 2021). Charcoal production is one of the main 

sources of disturbance in miombo woodlands (Sedano et al., 2016), and it is 

closely associated with many environmental problems that have both 

regional and global scale consequences, including deforestation, forest 

degradation, pollution and contributes to climate change (Doggart et al., 

2020; Ramanathan & Carmichael, 2008). Wood fuels alone are estimated to 

generate around 1.9 to 2.3 % of the global greenhouse gas emission (Bailis 

et al., 2015), and with a rapidly growing population in SSA, which is 

predicted to double by 2050 (Shepard, 2019), this also means the increase in 

demand and consumption of wood fuels if no appropriate interventions are 

implemented. 

Charcoal production is not considered a main economic activity for most 

SSA communities, but rather is practiced to obtain financial support during 

dry seasons when farming is not an option or when clearing vegetation 

during farm preparations (Mabele, 2019). These activities are often done 

without any form of licensing or permits and hence are not well documented 

or regulated (Sedano et al., 2016). Around this region, charcoal is produced 

mainly using traditional earth kilns with low efficiency of around 10 to 20 % 

depending on different parameters like humidity, the wood size used, and the 

overall control of the carbonization process (Schure et al., 2019), while 

improved kilns range between 30 to 42 % efficiency (Adam, 2009). Lack of 

technical know-how and poor technologies are the two main reasons for low 

productivity among traditional charcoal producers and low charcoal quality 

output (Adam, 2009). Because of this, much more wood is cleared to cover 

kiln inefficiencies and low charcoal selling prices due to poor charcoal 

quality, increasing deforestation and forest degradation rates. 

The harvesting of wood for charcoal production is usually done by two 

methods: i. Selective cutting, where specific tree species capable of 

producing high-quality charcoal are identified based on their dimensions and 

wood density (Chidumayo & Gumbo, 2013). Selective cutting may 

eventually lead to the degradation and disappearance of some species mostly 
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preferred for charcoal production (Silva et al., 2019), ii. Clear felling, where 

all vegetation is cut down irrespective of species. When clear-felling for farm 

preparation, the land is then used for crop cultivation; otherwise, it is left to 

regenerate over time, and open to other land uses like livestock grazing (Jew 

et al., 2016). Studies on how these two contrasting wood harvesting methods 

for charcoal production in miombo woodlands affect an ecosystem are still 

lacking, and the few available are mainly focused on the vegetation (FAO, 

2010; Kutsch et al., 2011; Zulu, 2010). However, studies from other 

ecosystems show that different soil characteristics, like physical and 

chemical properties, are reactive to variations in tree cover (Cui et al., 2005) 

and clearing sizes for charcoal wood harvest even without the presence of 

agricultural activities. There is still the need for studies in miombo 

woodlands aiming to understand the implication of charcoal production 

activities especially on the under-explored and yet important ecosystem 

component, the soil.  

1.4 The study hypotheses 

 

The general hypothesis was that in the miombo landscape, tree cover 

positively influences soil infiltration capacity, preferential flow, and soil 

organic carbon. I hypothesized that land uses within the miombo landscape 

affect soil hydrological properties and soil organic carbon and that the land 

use effect increases when more than one land use occurs simultaneously 

within the same area (figure 3). From these main hypotheses, I developed the 

following more specific hypotheses; 

Hypothesis 1: High tree cover improves soil hydrological properties across 

the studied land uses in miombo woodlands, and hence the 

more the tree cover, the more the infiltration capacity and 

preferential flow (Paper I & III). However, livestock grazing 

counteracts this effect (Paper I). 

Hypothesis 2: Soil organic carbon and hydrological properties in miombo 

woodlands decrease with increasing livestock grazing 

intensity, but more tree cover can counteract the negative 

effects of livestock (Paper I and II). 
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Hypothesis 3: Livestock grazing affects soil hydrological properties and soil 

organic carbon negatively in miombo forests, but these 

properties recover after excluding livestock and allow 

vegetation to recover (Paper I & II). 

Hypothesis 4: The studied land uses with less tree cover (agricultural land 

and forest clearings for charcoal production) have less soil 

organic carbon content than those with more tree cover 

(forests and fallows), but the level of grazing intensity 

influences this effect (Paper II and III). 

Hypothesis 5: Large forest clearings for charcoal production are more 

detrimental to soil hydrological properties and soil organic 

carbon than small clearings.   
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The overall aim of this thesis is to attain better understanding on how the 

major land uses and their collective effect influence soil hydrological 

properties and soil carbon in miombo woodlands. 

 

Specific objectives of the studies described in the papers were; 

 

• To analyze the effect of grazing intensity and tree cover on soil 

hydrological properties in protected and cultivated miombo 

woodlands (Paper I & III).  

  

• To assess and understand the effect of grazing intensity and tree 

cover on soil organic carbon in miombo woodlands (Paper I & 

II).  

 

• To assess how charcoal harvesting clearing size affects soil 

hydrological properties and soil organic carbon (Paper III). 

 

 

 

 

 

 

 

 

 

 

 

2. Objectives 
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3.1 Study sites 

Fieldwork was conducted in two different study sites (Figure 4). Paper I and 

II took place in Kitulangalo Forest Reserve (KFR), which is located in 

Morogoro Rural District, 35 km northeast of Morogoro Municipality along 

the Morogoro - Dar es Salaam highway. The study for paper III was 

conducted in Ulaya Mbuyuni village, Kilosa district, approximately 300 km 

inland from Dar es Salaam. I chose KFR and the surrounding area because it 

gave me not only the possibility to study different land uses within the 

miombo landscape but also the land cover management effect because of the 

presence of the forest reserve. Furthermore, I chose Kilosa because of the 

presence of the Transforming Tanzania’s Charcoal Sector project, which 

allowed me to study charcoal production with controlled clearing sizes of 

known time since harvesting. The soils of both study areas can generally be 

classified as ferralsols with sandy clay-loam texture (Msanya et al., 1995). 

These are weathered soils characterized by low inherent fertility (Kögel-

Knabner & Amelung, 2014).  

The vegetation of both study areas is typical of miombo woodlands and 

dominated by trees of the Fabaceae family (subfamily Caesalpinioedae 

within genera Brachystegia, Julbernardia, and Isoberlinia) (Kajembe et al., 

2013; Nduwamungu et al., 2009). 

3.1.1 Kitulangalo forest reserve 

Kitulangalo forest reserve covers the ridge between the Morogoro-Dar es 

Salaam highway and the Sangasanga River between an altitude of 350 – 774 

m above the mean sea level (Mwandosya et al., 1998). The climate of KFR 

3. Material and Methods 
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is tropical dry sub-humid with mean annual rainfall and temperature of 850 

mm and 24.3° C, respectively (Holmes, 1995). 

Kitulangalo forest reserve was established in 1955 for water catchment 

protection and conservation (SUA, 2018). The government first classified it 

as a “productive reserve”, denoting that wood harvesting is allowed under 

license. However, the status of KFR was changed in 1985, prohibiting any 

harvesting, although illegal encroachment for wood harvesting and livestock 

grazing still occurs (Hammarstrand & Särnberger, 2013). 

3.1.2 Ulaya Mbuyuni 

Ulaya Mbuyuni village is one of the 30 villages where the Sustainable 

Charcoal Project (SCP) is being undertaken as a pilot project within the 

TTCS. According to the village land use plan classification,  there were two 

land use classes within my study site; village land forest reserve set aside for 

protection purposes and forest management units (FMU) used for charcoal 

harvesting. Within the FMUs, I identified several small clearings (50 × 50 

m) of varying ages (harvested from 2016 onwards) in a checkerboard pattern 

and a large clearing (300 × 300 m) harvested in 2013. Both village land forest 

reserve and large clearing had small roads passing beneath them. 
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Figure 4. Map showing the location of the two study sites in Tanzania: a) LDSF site in 
Kitulangalo forest reserve and surrounding areas in Morogoro Rural District, b) Kilosa 
site in the Ulaya mbuyuni village in Kilosa District. 

3.2 Experimental design 

3.2.1 Papers I and II 

I designed the sampling protocol for papers I and II to assess the effect of 

livestock grazing, land uses, and tree basal area on steady-state infiltration 

capacity (Hillel, 2003), preferential flow, and SOC at a landscape level. I 

sampled at a landscape level to capture the effects of different land uses and 

land covers. I adopted the Land Degradation Surveillance Framework 

(LDSF), which is a hierarchical sampling protocol (Vågen & Winowiecki, 

2020), that involved the establishment of a 100 km2 (10 ×10 km) size site 

with a central coordinate 6° 38´1´´S, 37° 58´46´´E, covering the north-



38 

eastern KFR and the surrounding landscape. The site is divided into 16 (4 × 

4) tiles of 2.5 × 2.5 km; within each tile, random centroid locations for 

clusters were generated. Each cluster consisted of 10 plots of 1000 m2 size 

randomly stablished, making a total of 160 plots for the whole site. Each plot 

had four sub-plots, each with an area of 100 m2. 

I also designed a separate study to test the effect of total livestock exclusion 

by using two 12-years old fenced 30 × 90 m2 plots within the forest reserve. 

The two fenced plots were established by the Tanzania Forest Research 

Institute (TAFORI) in 2005, to investigate and quantify the effect of 

anthropogenic activities within the forest.  

I combined interviews with the communities in villages surrounding the KFR 

on the land use history and land cover changes with visual assessments. This 

enabled me to classify each LDSF plot into four primary land use and land 

cover types, namely: forest reserve, open-access forest, cropland under 

fallow, and cropland under cultivation. The classifications were based on the 

following definitions; 

- Forest reserve (FR):  These are areas classified and managed by the 

government as forest reserves that have not been cultivated for at 

least the last 30 years. 

- Open-access forest outside the reserve (OAF): These are areas 

outside the reserve that have not been cultivated for the last 30 years, 

mostly covered by natural vegetation and not under any official 

governance. 

- Cropland under fallow (CUF): Croplands that have not been 

cultivated for at least the past 5 years. 

- Cropland under cultivation (CUC): Areas that have been cultivated 

at least during the last growing season. 

For vegetation assessment, I measured and counted all trees (woody 

vegetation taller than 3 m and with DBH greater than 5 cm). I then used this 

data to calculate the basal area for each of the four land use and land cover 

types (Table 1).  

Table 1. Mean basal area (standard error, SE) of trees with diameter at breast height 
(DBH) >5 cm in the Kitulangalo Forest Reserve and surrounding areas (Tanzania), for 
the four land use and land cover types considered in the study of papers I and II.  
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Land use/  

land cover 

 

Basal area 

(m2ha-1) 

 

Stem 

density 

(stems ha-

1) 

Number of 

plots 

(paper I) 

Topsoil 

Number of plots paper II 

Topsoil Subsoil 

Forest 

reserve 
5.3 (0.6) 904 (22) 36 36 15 

Open 

access 

forest 

1.7 (0.1) 590 (13) 39 40 17 

Cropland 

under 

fallow 

0.6 (0.1) 285 (8) 46 35 14 

Cropland 

under 

cultivation 

0.2 (0.1) 81 (5) 38 38 13 

 

In each cluster of 10 plots, I took one soil infiltration capacity measurement 

and performed a blue dye tracer experiment in four randomly selected plots, 

totaling 64 plots for the entire site (Paper I). By the time I identified the 64 

plots, I did not have plots with a fallow time below five years; hence, 

croplands under fallow did not include shorter fallows. For paper I, I 

collected only the topsoil samples in all plots. For paper II, I collected topsoil 

soil samples in 149 plots after removing 11 plots that fell in a group with 

fallows below five years. Since I did not have the resources to collect subsoil 

samples for all 149 plots, I randomly selected 59 plots to collect subsoil 

samples. The 59 plots were selected randomly within land use based on the 

fractional representation of different land uses on all 149 plots to avoid 

oversampling of some land uses over others (Table 1). I also established 16 

pairs of sampling points inside and outside each of the exclosures for 

infiltration measurements and soil sample collection (papers I and II).   

3.2.2 Paper III 

I designed the sampling for paper III to test the effect of clearing sizes for 

charcoal production on soil infiltration capacity and SOC. I established four 

study treatments in the study area: Village land forest reserve, large clearing 

(300 × 300 m), small intact plots (50 × 50 m), and small clearings (50 × 50 

m). The small intact plots and small clearings were all within the 

checkerboard pattern harvested plots. For the village land forest reserve and 

large clearing, I established 6 parallel 90 m long transects, 50 m apart, 
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starting from a road. Along each transect, I located sampling plots at a 

distance of 10, 50, and 90 m from the road resulting in 18 sampling plots per 

site. For the checkerboard pattern harvested clearings, I established a total of 

44 sampling plots with a radius of 6 m at the center of both small clearings 

(22 plots) and small intact plots (22 plots). 

3.3 Field measurements and sampling 

3.3.1 Soil infiltration capacity and preferential flow 

In each sampling position, I measured infiltration capacity using a single-

ring infiltrometer with a height and diameter of 27 cm and 30 cm, 

respectively. I filled the ring and recorded the water level at an interval of 5 

minutes in the first half an hour, and then at an interval of 10 minutes until 

steady-state infiltration was reached (Hillel, 2003). After each data reading, 

I filled the ring to the original water level. I obtained an infiltration rate by 

subtracting the final reading of an interval from the original reading of the 

water level (200 mm) (Figure 5). 

After the infiltration capacity measurement, I used a dye solution to study 

the water flow pattern. I poured fourteen liters of Brilliant Blue FCF 

(C.I.42090) solution at a concentration of 4 g L-1 into the ring to a water level 

of 200 mm and let it infiltrate completely. Half an hour later, I dug a 0.45 m 

wide and 2 m long, and 0.6 m deep pit cut across the dye-stained surface to 

expose a vertical stained soil profile for photographing. Photos were taken 

using a Nikon D5200 camera with a 35 mm focal length mounted 1.5 m from 

the center of a graded frame with dimensions of 0.3 × 0.5 m2. 

3.3.2 Soil samples collection 

I collected soil samples by digging a 50 cm deep pit. Samples were collected 

from one of the pit walls at two consecutive depth intervals, 0 - 20 cm for 

topsoil and 20 – 50 cm for subsoil. I collected bulk density soil with a 

stainless cylinder of volume 98.17 cm3 (5 cm height and inner diameter) at 

the middle of the depth intervals for topsoil and subsoil. For the LDSF plots, 

I collected soil samples at the center of each of the four subplots within a 

plot, then mixed them to obtain a composite sample for the plot. 
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3.3.3 Grazing intensity 

I studied grazing intensity by establishing an index called grazing intensity 

score. The score rated the visible impacts of livestock grazing through 

observation of several indicators, which were; (i) signs of livestock presence 

(droppings, sounds, etc.); (ii) animal paths and hoof prints on the soil surface; 

and (iii) grazed vegetation. I assigned a value between 0 and 3 for each 

parameter separately according to its severity (where 0 = no sign observed, 

and 3 = severe condition observed).   

 

 

Figure 5. Land uses and experimental procedures for studying infiltration capacity and 
preferential flow: (a) Croplands (U. Ilstedt), (b) Wood stalking for charcoal production 
(U. Ilstedt), (c) Fenced plot/ exclosure (U. Ilstedt), (d) and (e) Livestock grazing in 
miombo woodlands, (f) Single ring infiltrometer, (g) Preparation of a stained soil profile 
for photo taking, (h) A graduated frame for photo taking, (i) Dye-stained soil profile 
ready for photographing, and (j) Classified dye-stained image.   
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3.4 Laboratory analyses 

3.4.1 Soil organic carbon, texture, and bulk density determination 

All soil samples for organic carbon determination were analyzed using the 

Walkey-Black wet oxidation method (Bremner & Jenkinson, 1960). Soil 

texture was determined with the hydrometer method that calculates the 

physical proportions of soil particles based on their setting rates in an 

aqueous solution (Bouyoucos, 1936). Bulk density samples were analyzed 

using the oven-dry method to constant weight at 105° C (Blake & Hartge, 

1986). 

3.5 Data analysis 

I performed all the analyses by using R-studio version 3.6.1 (R Core Team, 

2019). For papers I and II, because of the hierarchical nature of the sampling 

design, I started by checking for autocorrelation based on clusters as a 

random effect. I found an extremely low auto-correlation which allowed me 

to use regular regression models when analyzing steady steady-state 

infiltration capacity (paper I). However for paper II when studying soil 

organic carbon, I observed a correlation between observations within similar 

land uses, and hence I used a mixed effect model with land use as a random 

variable. 

3.5.1 Estimation of steady-state infiltration capacity and degree of 
preferential flow (Paper I, III, and IV) 

I estimated steady-state infiltration capacity from the measured infiltration 

rates using a self-starting SSphilip function from the “HydroMe” package in 

R (Omuto, 2013). I fitted and analyzed all measurements from the single-

ring infiltrometer to get the final steady-state infiltration capacity values for 

each plot. 

I classified all photographs from dye-stained soil profiles into stained and 

non-stained areas using supervised classification in ERDAS Imagine-version 

9.2 (Erdas Inc, 2008). Then, I used the classified image to calculate different 

preferential flow parameters, including total stained area (Flury et al., 1994), 

uniform infiltration depth (Van Schaik, 2009), preferential flow fraction 

(Van Schaik, 2009), and preferential flow at 45-50 cm (Lulandala et al., 

2021). 
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3.5.2 Statistical analysis of the livestock grazing, land use and tree 
cover effect on hydrological properties and soil organic carbon 
(paper I – III) 

I used different tools to analyze variations in soil hydrological properties and 

SOC with changes in land use, depending on the study's experimental setting. 

I used ANOVA to compare steady-state infiltration capacity, preferential 

flow indices, and SOC across different land use and land cover classes and 

different grazing intensities (papers I & II). To test the effect of tree cover 

on soil hydrological properties in the presence of livestock grazing, I used 

regression analysis, having tree cover and grazing intensity as interacting 

covariates (paper I). I also used a mixed-effects model having land use as a 

random effect to test the effect of interaction between basal area, varying 

grazing intensity, and land use on SOC (paper II). I used paired t-test to 

compare steady-state infiltration capacity and SOC between inside and 

outside of the fenced plots (papers I & II). 

In paper III, I used ANOVA to compare steady-state infiltration capacity and 

SOC across different charcoal production clearing sizes (large clearings, 

small clearings, small intact plots, and village land forest reserve). I also used 

ANOVA to test the variation in steady-state infiltration capacity, SOC, and 

basal area at different distances from the road into the forest and large 

clearing. Finally, I used the Mann-Whitney test to perform a pairwise 

comparison between distances from the road (paper III). 
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The three papers appended to this thesis investigated the influence of land 

use & land cover and livestock grazing intensity on soil hydrological 

properties and SOC in dry miombo woodlands and analyzed the underlying 

mechanisms. The following is a collective discussion of the main findings of 

the three papers. Further detailed information is found in the appended 

papers (I – III). 

 

 

Figure 6. Scatter plots showing the relationship between steady-state infiltration capacity 
(mm h-1) and basal area (m2 ha-1) in relation to different grazing intensity scores within 
the LDSF site in Kitulangalo, Morogoro, Tanzania. Numbers on top of the plot (0, 1, 2, 
and 3) represent grazing intensity scores.  

 

4. Results and Discussions 
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4.1 Effect of tree cover on soil hydrological properties 

Findings from my studies indicate a positive relationship between tree cover 

and soil hydrological properties (papers I & III). Data from paper I 

comparing different land use classes showed that steady-state infiltration 

capacity was highest in the forest reserve (284 ± 51 mm h-1; paper I), and 

village land forest reserve (400 ± 5 mm h-1; paper III) which also had the 

highest basal area (Table 1). Furthermore, regression analysis between 

steady-state infiltration capacity and tree basal revealed a positive 

association between the two (papers I and II), which was sometimes hard to 

see when mixed land uses are involved like the presence of livestock grazing 

in different land uses. Results from paper III indicate that in the village land 

forest reserve, where forest disturbance from wood harvesting was minimal, 

steady-state infiltration capacity was significantly higher than in both large 

and small clearings. 

Concurrently, I showed in paper I that different preferential flow indices like 

total stained area and preferential flow at 45-50, had more or less the same 

pattern as steady-state infiltration capacity being relatively higher in the 

forest reserve. Forest reserve had a higher total stained area than any other 

land use class as well as preferential flow at the bottom 5 cm of the profile, 

which was higher than any other land use/land cover. 

These findings agree with several other studies from different parts of the 

world showing that trees positively influence soil hydrology. This influence 

is a result of increased SOC from the addition of biomass from litter-fall, 

roots, and dead branches (Barros & Fearnside, 2016; Devi, 2021; Stockmann 

et al., 2015), increased soil porosity and aggregation through woody 

vegetation well-established root systems, and enhanced tree-associated soil 

fauna (Guo & Lin, 2018). Together, these mechanisms lead to increased soil 

infiltration capacity and preferential flow in the vicinity of trees (Bargués-

Tobella et al., 2020; Bargués-Tobella et al., 2014; Belsky et al., 1993; L. 

Benegas et al., 2014). This can also be seen in our study in paper II, which 

shows a positive relationship between SOC and tree basal area, as well as in 

paper I, where land uses with high SOC also have high infiltration capacity.  

My study revealed that the relationship between trees and soil hydrological 

properties may sometime not be observed, not because it is not there, but can 

be obscured by other land uses within the area since the relationship differs 

for different land uses (figure 6, paper I). This is important because, in 
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drylands where water availability is scarce, it is also where land use 

dynamics are highly pronounced. 

4.2 Effect of different land uses on soil hydrological 
properties and soil organic carbon 

My studies showed that land use has a significant influence on soil 

hydrological properties and SOC. Here I explain the effect of land uses that 

we observed in our study area and are most common in the miombo 

woodlands landscape setting. 

4.2.1 Livestock grazing 

Data from paper I show that steady-state infiltration capacity in areas with 

no visible signs of livestock grazing (357 ± 104 mm h-1) was more than 

double that in areas with the highest grazing intensity (160 ± 20 mm h-1). The 

same was observed in our study on exclosures (paper I), which showed that 

steady-state infiltration capacity inside the exclosures (442 ± 53 mm h-1) was 

almost double that of the outside (279 ± 49 mm h-1). I also showed that high 

grazing intensity overrides the positive effects of trees on soil infiltration 

capacity regardless of land use (Figure 6). 

All our preferential flow indices were affected by livestock grazing (paper 

I). Both total stained area and uniform infiltration depth decreased by 36 % 

and 37 % with increasing grazing intensity from 0 to 3 grazing intensity 

scores, respectively, while preferential flow fraction increased by 61 %. 

Preferential flow at 45-50 cm depth in areas where no visible signs of 

livestock grazing (score 0) was 6-times higher than in any other grazing 

intensity score (1-3). This suggests that although trees enhance the 

preferential flow and deep water drainage through the root activities, if the 

topsoil layer is disturbed and compressed, then the positive effect of trees is 

minimized.  

In our study, higher livestock grazing intensities were also associated with 

increasing soil disturbance and compaction, as indicated by increasing soil 

bulk density. For example, we observed a 10 % increase in bulk density with 

increasing grazing intensity from 0 to 3 intensity score (paper I), while up to 

40 % (18 tonnes ha-1) decrease in SOC was observed for the same change in 

grazing intensity across land uses (paper II). This change in soil properties 
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that led to declining soil hydrological functioning can be explained by the 

collapsing of soil structure as a result of excessive recurring trampling by 

grazing animals (Donkor et al., 2002; Dreccer & Lavado, 1993; Dudley et 

al., 2002), as well as reduced SOC as a result of overgrazed vegetation that 

is the source of SOC (Boerma & Koohafkan, 2007). Drylands have low 

primary productivity and relatively high decomposition rates during parts of 

the year, which makes them sensitive to livestock grazing. Our exclosures 

experiment further confirmed this, as shown by improved soil hydrological 

properties and SOC after the total exclusion of livestock grazing (paper 1). 

Changes in SOC as a result of livestock grazing may also be influenced by 

other factors, including climate, soil texture, and frequency and duration of 

grazing. According to a meta-analysis on the impact of livestock grazing, 

there is a persistent decline in SOC with heavy grazing intensity, particularly 

in more sandy than clayey soils, warmer than cold climates, and drier than 

wetter climates (Lai & Kumar, 2020). This suggests that tropical dryland 

soils are particularly vulnerable to heavy livestock grazing. Nevertheless, 

studies from wetter climates also show that low to moderate livestock 

grazing can enhance nutrient cycling and promote vigorous vegetation 

growth through animal dropping, which promotes healthy soils (Blache et 

al., 2016).    

4.2.2 Agricultural activities 

Findings from papers I and II indicate a decrease in soil hydrological 

functioning and SOC with changes in land use from forest land to croplands, 

which is in line with findings from (Fan et al., 2013; J. He et al., 2009; Ilstedt 

et al., 2007; Nyberg et al., 2012). Croplands under cultivation and fallows 

were the land uses with the lowest steady-state infiltration capacity (245 ± 

31 mm h-1 and 188 ± 22 mm h-1) and bulk density (1.34 ± 0.02 g cm-3 and 

1.4 ± 0.03 g cm-3, respectively) values (paper I).  The study in paper II 

showed up to a 55 % decrease in SOC in the forest as compared to croplands. 

Of all preferential flow indices, only the total stained area showed a clear 

declining trend from forest lands to croplands.  

A decline in soil hydrological properties and SOC in croplands can be 

explained by; i. reduced biomass inputs from vegetation that is cleared when 

opening up land for agricultural purposes (Aweto, 1981), this also leads to 

decreased soil fauna as well as root activities, ii. burning of the crop residues 

after harvest instead of incorporating them into the soil as biomass(Grogan 
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et al., 2013), iii. soil cultivation involving tillage, and leaching of dissolved 

carbon into water percolating downward (Nakhavali et al., 2021). Soil tillage 

causes soil disturbance and disrupts the capillary continuity that allows for 

the effective vertical movement of water (Gómez et al., 1999). This, together 

with the loss of vegetation cover that promotes soil aggregation, porosity 

enhancement, and litter addition, explains SOC's effective loss.  

Land use change from forest land to agricultural lands is associated with a 

60 % loss in SOC in temperate regions and up to 75 % or more in the tropics 

(Devi, 2021; Lal, 2004; Vågen et al., 2005). As explained earlier, the high 

percentage loss in SOC within the tropics is due to high temperatures that 

speed up decomposition and the low primary productivity particularly in 

tropical drylands compared to wet tropics. Considering this, and given that 

shifting cultivation is the predominant land use system in tropical drylands, 

agricultural practices within these areas significantly impact soil hydrology 

and the global carbon cycle in general.   

 

 

Figure 7. Means (red diamond) and boxplot (median, first and third quartile) of soil 
steady-state infiltration capacity (mm h-1) for the four different study treatments within 
the study area in Ulaya Mbuyuni village, Kilosa, Morogoro region, Tanzania. Green dots 
show the steady-state infiltration capacity (mm h-1) of plots at 10m from the road within 
the village forest reserve.  Yellow dots show the steady-state infiltration capacity (mm h-

1) of plots at 10m from the road within the large clearing. Gray dots show steady-state 
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infiltration capacity (mm h-1) in different treatments within the study area. Asterisks 
denote significance levels (‘***’= <0.001, ‘**’ = 0.001-0.01, ‘*’ = 0.01-0.05, ‘ns’ 
>0.05). 

4.2.3 Forest clearing for charcoal production 

The study on the impacts of harvesting for charcoal production and clearing 

sizes on soil hydrological properties and SOC (paper III), showed that it is 

not just the cutting of trees that matters but also how this is done. Findings 

from this paper indicated that large clearings (300 × 300 m) had the lowest 

mean steady-state infiltration capacity (121 ± 3 mm h-1) and SOC (12 ± 0.2 

tonnes ha-1) values, representing only 30% and 75 %, respectively, of those 

in the village land forest reserve. On the other hand, small clearings had 

significantly higher mean steady-state infiltration capacity (337 ± 4 mm h-1) 

and SOC (15 ± 0.2 tonnes ha-1) than large clearings, although still below 

mean values in the village land forest reserve and small intact plots (Figure 

7).  

Although the village land use plan dictates that, once harvested, these 

clearings should be protected from other land uses, especially livestock 

grazing, there are reports of grazing activities within these clearings, 

particularly during dry seasons (Mabele, 2019), that could influence the 

patterns we are observing.     

Small clearings in our study area had nearly three times higher steady-state 

infiltration capacity than large clearing, which is largely due to the ability of 

trees to influence their neighboring open areas through their root system, 

which extend beyond the canopy edge (Bargués-Tobella et al., 2014; 

Benegas, 2013). Studies show that the ratio of the canopy to root system 

radius in trees and shrubs can be as small as 1/10 (Lejeune et al., 2004). Small 

clearings benefit from the additive effect of tree roots and canopies from all 

sides of the clearing, enhancing the soil properties more efficiently than in 

large clearings. This has also been reported in other studies like studies in 

agroforestry parklands, which also reported higher preferential flow and 

deep water drainage in smaller open areas than in larger ones (Bargués-

Tobella et al., 2014 & 2020), and improvement in soil properties like SOC, 

bulk density, and porosity from the center to the edge of the forest gaps (He 

et al., 2015). 

Large clearings tend to leave a significant piece of land exposed to agents of 

degradation like direct rainfall, sun, rainfall, and wind. These can lead to the 

deterioration of soil qualities through increased surface runoff and soil 
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erosion (Haghnazari et al., 2015), which in turn might lead to reduced soil 

and underground water recharge (Bargués-Tobella et al., 2014). On the other 

hand, small clearings through relatively high infiltration capacity and soil 

protection show a promising potential for soil and groundwater recharge. 

Furthermore, in small clearings, there is a reduction in water loss through 

transpiration because of reduced tree density, while the infiltration capacity 

is maintained, which could result in improved groundwater recharge 

compared to large clearings or more dense forests (Ilstedt et al., 2016).  

 

 

Figure 8. The relationship between topsoil organic carbon (tonnes ha-1) and livestock 
grazing intensity (score 0-9) for each land use and land cover class (FR = forest reserve, 
OAF = open access forest, CUF = cropland under fallow, CUC = cropland under 
cultivation) in 149 plots across the 10 x 10 km study site in Kitulangalo, Morogoro, 
Tanzania. Circle sizes are relative to the plot tree basal area (m2 ha-1). Solid blue lines 
represent regression lines within each land use. Solid and dashed red lines shows mean 
topsoil and subsoil soil organic carbon (tonnes ha-1), respectively, in each land use class. 

4.3 The interactive effect of livestock grazing intensity and 
different land uses on soil hydrological properties and 
soil organic carbon 

My studies partly revealed that different land uses influence soil hydrological 

properties and soil organic carbon differently, and interactions between land 
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uses within the landscape tend to reduce or amplify their effects. Paper I 

showed a positive relationship between steady-state infiltration capacity and 

tree basal area in plots with no visible signs of livestock grazing (score 0); 

however, this relationship disappears with increasing grazing intensity 

(Figure 6). Although different studies have looked at the effect of land use 

on soil infiltration capacity (Fu et al., 2000; Shukla et al., 2003; Sun et al., 

2018; Yimer et al., 2008), and found a consistent decline in soil infiltration 

capacity with changes in land use from forested land to croplands. However, 

in the presence of moderate to high grazing intensity (score = 2 and 3) in our 

study area, these relationships could not be observed, and instead, all land 

uses/ land covers appeared to show more or less the same values of 

infiltration capacity (paper 1). When I compared steady-state infiltration 

capacities based on grazing intensity while disregarding land uses, plots with 

0-grazing intensity had the highest value of infiltration capacity. Preferential 

flow indices in paper I showed the same pattern with land uses as infiltration 

capacity, suggesting that livestock grazing intensity has a strong influence 

on soil hydrological properties that can override even the effects of other land 

uses. 

Findings from paper II showed that SOC varied greatly across land uses/ land 

covers, and that increasing livestock grazing intensity led to lower SOC in 

all land uses (Figure 8). Changes in SOC following the conversion of forests 

to cropland are well documented (Allen, 1985; Aweto, 1981; Grogan et al., 

2013; Szott et al., 2004; Walker & Desanker, 2004). Here I showed that, 

because of the interactions of these changes in land use and the presence of 

higher livestock grazing intensities, the outcome can become more 

detrimental, particularly in croplands with less tree cover. Within the forest 

reserve, areas with the highest grazing intensity (score = 3) had 82 % of the 

SOC that was found in areas where no livestock grazing signs were observed. 

In croplands under active cultivation, on the other hand, areas with no visible 

signs of livestock grazing had more than double the SOC found in areas with 

the highest grazing intensity. Interestingly, the mean SOC in areas with the 

highest grazing intensity within the forest reserve was 1.3 times higher than 

that in areas within croplands under cultivation with no signs of livestock 

grazing observed. 

Findings from paper III indicate that the negative effect of livestock grazing 

on SOC and soil hydrological properties is more severe in land uses with less 

tree cover. Concurrent changes from forest land to cropland and livestock 
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grazing have a combined effect that might lead to higher soil degradation and 

loss of soil hydrological function than conversions from forest to cropland 

alone. Since livestock grazing is an important component of the miombo 

ecosystem, it is important to consider implementing more adaptive solutions 

like silvopastoral systems that would encompass even the grazing needs and 

reduce pressure and degradation. 

4.4 Potential of trees to counteract the effects of 
livestock grazing 

Trees' positive influence on soil properties might explain the observed 

variations in the effect of livestock grazing in different land uses. Livestock 

grazing reduces vegetation cover when feeding on grass, herbs, and seedlings 

(Mtimbanjayo & Sangeda, 2018; Wang, 2014), and disrupts the soil structure 

by trampling (Li et al., 2015). However, trees can counteract this through 

increased inputs of litter-fall from above biomass and roots (Cui et al., 2005), 

the creation of niches with a favorable microclimate that enhance SOC 

(Thomas et al., 2018), and root activity, thereby enhancing soil aggregation 

and porosity, which in turn improves soil hydrological function (Benegas, 

2013).  However, results from papers I show that trees are ineffective in 

improving soil hydrological properties under high livestock grazing 

intensity.  
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In this thesis, I studied how land uses in miombo landscape affect soil 

hydrological properties (steady-state infiltration capacity and preferential 

flow) and soil organic carbon. First, I identified the most common land uses 

within the miombo landscape in our study area: crop cultivation (active 

cultivation and fallow land), livestock grazing, charcoal production, open 

access forest, and forest reserve. Then, I investigated how these land uses 

and tree cover affect the focus soil properties, individually or in combination.    

 

The main conclusions are: 

 

• High tree cover influenced soil hydrological properties positively 

(infiltration capacity and preferential flow) when livestock grazing 

intensity is low to moderate. However, at the highest grazing 

intensities, the positive influence of trees is removed. 

• Excessive grazing overrides the positive effects of trees on soil 

organic carbon and hydrological properties, but trees improve soil 

hydrological properties and soil organic carbon at low to moderate 

grazing intensities  

• Soil hydrological properties and soil organic carbon can be restored 

by the exclusion of livestock grazing in miombo forests. 

 

• Clearings of forests to croplands or for charcoal production leads to 

the loss of soil organic carbon, and the effect is more severe with 

increasing livestock grazing intensity (Paper II). Hence, the impact 

5. Conclusions 
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of livestock on soil properties is more negative in croplands than in 

forested lands. 

 

• Large forest clearings for charcoal production are more detrimental 

to soil hydrological properties and soil organic carbon than small 

clearings, which retain more favorable hydrological properties for 

preventing surface runoff of water, and erosion, and promoting 

groundwater recharge.   
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Understanding the consequences when different land uses in a landscape are 

combined is important for the accurate prediction of management outcomes 

and planning. This in turn can enable policymakers to make founded 

decisions and appropriate policy measures that could enhance the 

sustainability of natural and agricultural ecosystems.  

This thesis contributes to a deeper understanding of how major and common 

land uses within the miombo landscape influence their ecosystem separately 

and when they co-exist, an occurrence that is most of the time overlooked. 

However, more work is still needed. 

Results from this thesis contribute to the understanding of how overgrazing 

can negatively influence soil hydrology and soil organic carbon, and override 

even the positive restorative effect of trees. Considering the vast area of 

miombo woodlands and the increasing trend of livestock grazing in the 

miombo ecosystem, there is a need for further studies of appropriate 

measures to take, which may include; i. Determining the appropriate 

livestock stocking rate that would be environmentally friendly, and would 

work with either free or zero grazing, ii. because the complete control of 

livestock grazing may not be a possible option, there is a need for further 

studies of other agroforestry systems apart from agropastoral systems that 

would emphasize livestock pasture availability like silvopastoral system. 

This thesis established an important link between livestock grazing and soil 

hydrology. However, there is still a need for further understanding of the 

actual effects on the underground water recharge by measuring the quantities 

of recharging water associated with different grazing intensities as well as 

variation in tree cover within a landscape.  

This thesis explains the general effect of livestock as a whole, but most of 

the time there is a diversity of livestock, both browsers and grazers moving 

6. Future research directions 
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together. Since different livestock species have different feeding requirement 

and weights per animal, they would have a variation of impacts on both soil 

hydrology and organic carbon. Heavier and bigger animals would have more 

impact on the soil structure than small and lighter ones, while small animals 

like goats are browsers and hence they also feed on tree leaves and hence 

may have a significant impact on biodiversity as well in the long run. 

Forest clearing sizes proved to have an influence on soil hydrology and soil 

organic carbon. Since the study in this thesis had only two sizes to compare, 

it is not possible to establish an optimum clearing size and harvesting 

styles/patterns that would have an optimum effect on soil hydrology as well 

as soil organic carbon. There is a need for further study that would measure 

not only infiltration and preferential flow, but also the actual quantities of 

recharge of underground water in relation to a spectrum of clearing sizes and 

effects of the presence of livestock grazing in the clearings. 
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Miombo woodlands cover about 10 % of the African landmass and 100 

million rural and urban communities directly or indirectly depend on them 

for their livelihoods. These areas are drylands, where the main physical 

limitation for people and ecosystems is the availability of water. Around 80 

% of the population are agro-pastoralists, practicing livestock keeping and 

farming together with some wood harvesting for producing charcoal. Due to 

high levels of population growth, there has been a large expansion of arable 

and pastoral land. This together with poor management, has led to 

widespread degradation of both vegetation and soil quality, especially soil 

organic carbon and hydrological properties, which are important factors in 

ecosystem health and productivity. There is therefore increasing interest in 

the effects of different land uses and practices, including the restoration of 

degraded lands. Although these types of land uses rarely occur 

independently, their impacts have generally been studied separately. This is 

a problem since the effects on climate mitigation and water resources of 

different land uses when acting together could potentially be greater than the 

sum of their individual effects separately. Conversely, the positive effects of 

one land use could be canceled by another land use.  In my thesis, I, therefore, 

studied the collective effects of co-occurring land use on soil carbon and soil 

hydrological properties in dryland miombo woodland ecosystems in 

Tanzania. I showed that changes from the forest to croplands as well as 

excessive livestock grazing substantially reduce soil organic carbon. Higher 

livestock grazing intensities are more detrimental to soil organic carbon in 

croplands that do not have trees compared to forest lands. This shows the 

potential of trees to counteract the negative effects of livestock grazing. 

However, my results also show that for soil hydrological properties, the 

positive effects of trees disappeared where the grazing intensity was highest. 

Popular science summary 
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Restoration projects that use trees to restore soil and water resources may 

therefore be wasted if not controlling livestock. These results provide new 

insights into how to plan and manage dryland ecosystems, taking into 

account the increasing trend of grazing due to increased global demands for 

livestock products.  
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Miombo-skogarna täcker cirka 10 % av Afrikas landmassa, och 100 miljoner 

människor på landsbygden och i städerna är direkt eller indirekt beroende av 

dem för sin försörjning. Dessa områden är torra och den största fysiska 

begränsning för människorna och ekosystemen är vattentillgången. Omkring 

80 % av befolkningen är jordbrukspastoralister som bedriver boskapsskötsel 

och jordbruk samt viss avverkning för framställning av träkol.  På grund av 

den kraftiga befolkningsökningen har det skett en stor expansion av odlings- 

och betesmarkerna. Detta har tillsammans med dålig förvaltning lett till en 

omfattande försämring av både vegetation och markkvalitet, särskilt 

organiskt kol i marken och hydrologiska egenskaper, som är viktiga faktorer 

för ekosystemens hälsa och produktivitet. Det finns därför ett ökat intresse 

för effekterna av olika markanvändning och metoder, inklusive återställande 

av skadade marker. Trots att dessa typer av markanvändning sällan 

förekommer oberoende av varandra har deras effekter i allmänhet studerats 

separat. Detta är ett problem, eftersom effekterna på klimatet eller på 

vattenresurser av olika markanvändningar som samverkar kan vara större än 

summan av deras enskilda effekter separat. Omvänt kan positiva effekter av 

en markanvändning upphävas av en annan markanvändning.  I min 

avhandling har jag därför studerat de kollektiva effekterna av samverkande 

markanvändning på markens kol- och hydrologiska egenskaper i miombo-

ekosystem Tanzania. Mina resultat visade att förändringar från skog till 

åkermark samt överdrivet betande av boskap minskar det organiska kolet i 

marken drastiskt. Högre betesintensitet är mer skadligt för det organiska 

kolet i marken på åkermark utan träd jämfört med skogsmark. Detta visar på 

trädens potential att motverka de negativa effekterna av boskapsbete. Mina 

resultat visar dock också att när det gäller markens hydrologiska egenskaper 

försvann de positiva effekterna av träd där betesdriften var störst. 

Populärvetenskaplig sammanfattning 
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Restaureringsprojekt där träd används för att återställa mark- och 

vattenresurser kan därför vara bortkastade om man inte kontrollerar betet. 

Resultaten ger nya insikter om hur man kan planera och förvalta ekosystem 

i torra områden, med hänsyn till den ökande trenden betande boskap och 

globala efterfrågan på animaliska produkter. 
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Abstract

The increase in livestock grazing in African drylands such as miombo woodlands

threatens land productivity and ecosystem functioning. Trees have positive effects

on soil hydraulic properties, but few studies have looked at grazing intensity and

hydrological functioning in different land uses. Therefore, we conducted a biophysical

survey in Morogoro Rural District, Tanzania, where we identified four main land uses

and land cover types, that is, Forest reserve, open-access forest, cropland under fal-

low, and active cropland. We assessed grazing intensity, measured infiltration capac-

ity, and conducted dye tracer experiments to assess the degree of preferential flow

in 64 plots. We also tested the effect of grazing exclusion on infiltration capacity in

12-year-old fenced plots. Our results show that irrespective of land use or cover

type, soil bulk density increased by 10% from low to high grazing intensity, whereas

infiltration capacity and soil organic carbon decreased by 55% and 28%, respectively.

We found a positive relationship between infiltration capacity and tree basal area in

plots with lowest grazing intensities. However, at higher grazing, the infiltration

capacity remained low independently of the basal area. Preferential flow in deeper

soils was six-times higher in areas with no grazing, indicating higher deep soil and

groundwater recharge potential at low grazing intensities. We conclude that the neg-

ative impacts on soil hydrological functioning of excessive livestock grazing override

the positive effect of trees, but restricting grazing can reverse the impact.

K E YWORD S

grazing intensity, land use and land cover, miombo woodlands, preferential flow paths, ring
infiltrometer, steady-state infiltration capacity

1 | INTRODUCTION

Drylands cover approximately 40% of the World's land area and

support about two billion people, 90% of whom live in low and

middle-income countries (UN, 2020). Water limitation is the key

factor governing dryland ecosystem functioning and community

livelihood (Miller, 2005). Land use and (mis)management can fur-

ther exacerbate the stress on ecosystems and livelihoods

(Koch & Missimer, 2016). This pressure is expected to intensify

in the future due to increased water demand as a result of
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population growth, infrastructure development, and increased

demand for agricultural commodities (Jodha et al., 2012;

Mittal, 2013; Ripple et al., 2017). In addition, drylands are

extremely vulnerable to climatic variations and the impact of

human disturbances such as deforestation, overgrazing, and

unsustainable agricultural practices (Davies et al., 2012).

The influence of tree cover and land use on soil water dynamics

in tropical drylands is poorly understood (FAO, 2016). Soil hydrologi-

cal processes are complex, with high variability both spatially and tem-

porally. Tree cover has been shown to have a strong influence on two

of these processes in particular: infiltration capacity and preferential

flow. Infiltration capacity is defined as the maximum rate at which

water on the soil surface enters the soil (Ferré & Warrick, 2005;

Kirkham, 2014), while the preferential flow is a rapid and uneven

movement of water and solutes within the soil through regions of

higher flux such as cracks and root channels (Guo & Lin, 2018; Jarvis

et al., 2012). These two hydrological processes are affected by several

factors, including both inherent and management-dependent soil

properties such as soil texture and soil organic matter content, land

use, and vegetation cover (Lozano Baez, 2019). At the plot level, stud-

ies show that trees positively influence soil structure, aggregate stabil-

ity, and porosity through enhanced soil organic matter content and

the activity of roots and tree-associated soil fauna, which, in turn,

result in improved soil infiltration capacity and more preferential flow

through macropores (Bargués-Tobella et al., 2014; Belsky et al., 1993;

Benegas et al., 2014; Ekhuemelo, 2016; Eldridge & Freudenberger,

2005). Improvements in soil hydrological functioning caused by trees

can ultimately enhance deep soil and groundwater recharge (Bargués-

Tobella et al., 2014; Ilstedt et al., 2016). Improved preferential flow

has been found to be positively correlated to infiltration capacity in

several studies (Li et al., 2020; Zhang et al., 2018). However, under-

standing the main factors controlling soil hydraulic processes at the

landscape scale requires measuring soil hydraulic properties over large

areas beyond the plot level, and this is rather unusual due to the high

cost and time associated with these measurements (Demand

et al., 2019; Ilstedt et al., 2007; Zimmermann et al., 2006). This means

there is a need for approaches that can combine plot-level measure-

ments over several ecosystems or land uses at a scale of several

kilometres.

Livestock keeping and farming are the major economic activities

practiced by dryland communities (Powell et al., 2010; Scoones, 1991;

Singh, 2018). Livestock supports the livelihoods of about 70% of the

rural dryland population of West and East Africa. Twenty percent of

these livestock keepers depend exclusively on livestock (pastoralists),

while the rest derive a portion of their income from cropping (agro-

pastoralists) (Cornelis de, 2016). Because of this high dependency and

population increase, livestock grazing is exhibiting an increasing trend

in dryland ecosystems (Gumbo et al., 2018). While sustainable intensi-

fication of the animal population can have a positive influence on nat-

ural ecosystems (Blache et al., 2016; Harry et al., 2014; Kairis

et al., 2015; Saleem, 1998), poor management and lack of technical

know-how is common and has led to severe overgrazing in many dry-

lands (Busso & Pérez, 2019; Cortina et al., 2011; Yirdaw et al., 2017).

Overgrazing is considered a serious threat to ecosystem health due to

its negative impacts on land productivity and soil stability, particularly

on slopes, causing severe erosion and reducing the soil water holding

capacity (Czeglédi & Radácsi, 2005; Wang, 2014), as well as soil

organic carbon (Dlamini et al., 2016). High livestock grazing intensities

also reduce the regeneration of young woody plants (Kikoti

et al., 2015; Lohbeck et al., 2020) and increase soil compaction as a

result of trampling (Sharrow, 2007). The frequent and continuous

movement of large herds of livestock disrupts soil aggregates and can

create an impervious compaction layer within the topsoil (Russell &

Bisinger, 2015), which, in turn, can result in decreased soil infiltration

capacity (Hiernaux et al., 1999; Savadogo et al., 2007) and less prefer-

ential flow paths for deep soil water percolation (Dreccer &

Lavado, 1993). In tropical pasturelands, it has been shown that inter-

actions between trees and livestock lead to spatial variations in soil

hydraulic properties, with soil infiltration capacity and preferential

flow through macropores being greater in the vicinity of trees than in

adjacent open areas (Benegas, 2018). However, when anthropogenic

disturbances are high, the positive effects of trees may be diluted or

even suppressed. For example, results from Ghimire et al. (2014,

2013) show that reforestation of severely degraded land was not

effective in restoring soil hydraulic properties due to the heavy usage

of such land - including litter collection, livestock grazing, and

harvesting of fuelwood. However, the specific effects of varying tree

cover and livestock grazing intensities in dryland forests and wood-

lands have yet to be examined.

Miombo is a commonly used term for the seasonally dry decidu-

ous woodlands dominated by the genera Braychystegia, Julbernadia,

and/or Isoberlinia (Leguminosae, subfamily Caeasalpinioideae) which

are widespread across Africa (Williams et al., 2008). Miombo consti-

tutes the most extensive tropical seasonal woodland and dry forest

type in Africa, covering an area between 2.7 and 3.6 million km2

across the Central African Plateau and its escarpment (CIFOR, 1996).

Miombo extends from Tanzania and southern DRC in the north to

Zimbabwe in the south, and across the continent from Angola,

through Zambia, to Malawi and Mozambique (Walker &

Desanker, 2004). In Tanzania, miombo woodland accounts for the larg-

est dryland vegetation land cover, amounting to as much as 90% of all

forested land (MNRT, 2015). However, it faces intense pressure from

rapid deforestation and degradation through socioeconomic activities,

with a mean rate of decline of about 1.13% per year since the 1990s

(Abdallah & Monela, 2007; Sawe et al., 2014). Such deforestation is

mainly due to increased demand for firewood, charcoal production,

shifting cultivation, illegal lumber production for building materials, a

high frequency of wildfires, and livestock grazing, all coupled with

rapid population growth and urbanization (Manyanda et al., 2020;

Sangeda & Maleko, 2018). Since livestock grazing has been and still is

a growing practice in miombo woodlands (Abdallah & Monela, 2007;

Cauldwell et al., 1999; Sangeda & Maleko, 2018), understanding its

ecological implications is essential, in particular those related to water

security.

In this study, we determined how varying livestock grazing inten-

sity, forest protection, and land use influence soil hydraulic properties
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in miombo woodlands. We selected a 10 � 10 km2 study area, which

included a protected forest reserve and surrounding communities

practicing agriculture and livestock keeping. Across this landscape, we

measured a range of soil properties related to soil hydrological func-

tioning: bulk density, soil texture, and soil organic carbon. We exam-

ined 160 plots randomly distributed, but following a nested hierarchal

sampling design (Vågen et al., 2018; Vågen & Winowiecki, 2020). In

64 of these 160 plots, we also measured two additional key soil

hydraulic properties – soil infiltration capacity and degree of preferen-

tial flow. We classified the plots into four primary land use and land

cover types: forest reserve, open-access forest, cropland under fallow,

and cropland under cultivation. Within the forest reserve, we also

established a separate study to measure soil properties inside and out-

side two exclosures, from which livestock had been excluded for

12 years. In all plots, we assessed relative livestock grazing intensity

and hypothesized that (i) Infiltration capacity and preferential flow

increase with increased tree cover, (ii) Infiltration capacity and prefer-

ential flow decrease with increased intensity of grazing.

2 | MATERIALS AND METHODS

2.1 | Study site

We conducted this study within a 10 � 10 km2 site covering the

northeastern part of the Kitulangalo Forest Reserve (KFR) and

surrounding landscape, some 35 km northeast of Morogoro Munici-

pality in Morogoro Rural District, along the Morogoro – Dar es Salaam

Highway and 150 km inland from the city of Dar es Salaam, Tanzania

(central coordinates 6� 380 100 S, 37� 5804600 E, Figure 1). KFR covers

the ridge between the main road and the Sangasanga River from an

altitude of 350–774 m above mean sea level (Mwandosya et al.,

1998). The climate of the area is a tropical dry subhumid, with mean

annual rainfall and temperature of 850 mm and 24.3�C, respectively

(Holmes, 1995). The rainfall is unimodal, with a rainy season spread

over 5–6 months (November to May) and a dry season extending

from June to October.

The KFR was officially established in 1955 and declared in the

Government Gazette GN 198 of 3rd June 1955 as being designated

for conservation and water catchment protection purposes

(SUA, 2018). KFR was first classified by the government as a 'pro-

ductive reserve', meaning that wood harvesting is allowed by those

who obtain a license. Later, in 1985, harvesting was forbidden, even

though illegal encroachment for wood harvesting and livestock

F IGURE 1 Map showing the location of the 10 � 10 km2 study site in Morogoro, Tanzania. The site covers the northeastern part of the
Kitulanghalo Forest reserve. We used a nested hierarchical sampling design, following the land degradation surveillance framework (LDSF) (Vågen
et al., 2018; Vågen & Winowiecki, 2020). The map shows the location of the LDSF plots, 160 in total, and that of the two fenced plots where
livestock was excluded. Each LDSF plot is 1000 m2 in size and contains four subplots 100 m2 in size, as shown in the plot layout [Colour figure
can be viewed at wileyonlinelibrary.com]

TABLE 1 Mean (standard error, SE) for sand, clay, and silt content
(%) of the topsoil (0–20 cm) samples collected in the Kitulangalo
Forest Reserve and surrounding villages, Tanzania

Site/depth (cm) Sand (%) Clay (%) Silt (%)

Number of

samples (n)

0 to 20 67 (11) 22 (11) 11 (4) 160
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grazing still occurs (Hammarstrand & Särnberger, 2013; Njoghomi

et al., 2020). Vegetation cover in the KFR and surrounding areas is

typical open dry miombo woodland dominated by Julbernardia

globiflora, Brachystegia boehmii, and Pterocarpus rotundifolius, with a

canopy height of up to 20 m (Nduwamungu et al., 2009). Soil tex-

ture at our study site (Table 1) is relatively uniform and is classified

as sandy clay-loam. The KFR is surrounded by seven villages

(Gwata, Mazizi, Maseyu, Geza ulole, Lubondo, Mavulu, and

Lukwambe) with farming, animal herding, and charcoal production

as their main economic activities. The populations of these villages

depend greatly on the woodlands in and outside the reserve for

their livelihoods.

2.2 | Sampling design

In this study, we adopted the sampling design from the Land Degrada-

tion Surveillance Framework (LDSF) (Vågen & Winowiecki, 2020). The

LDSF is a hierarchical field survey and sampling protocol consisting of

sites 100 km2 in size (10 � 10 km), clusters within sites, and plots

within clusters. Each LDSF site is divided into 16 tiles 2.5 � 2.5 km2

in size, and random centroid locations for clusters within each tile are

generated. Each cluster, in turn, consists of 10 plots with randomized

center-point locations. Each plot is 1000 m2 in size and consists of

four subplots, 100 m2 in size (Figure 1).

To test the effects of total livestock exclusion, we designed a sep-

arate study using two 12-year-old fenced 30 � 90 m2 plots within the

forest reserve (Figure 1) that were established by the Tanzania Forest

Research Institute (TAFORI) in 2005. These exclosures were set out

to test and quantify the effects of anthropogenic activities within the

forest. At the time these plots were established, the two areas we

compared (inside and outside) were both affected by grazing and had

a similar disturbance level (Njoghomi et al., 2020).

2.3 | Land use and vegetation assessment

By combining interviews on the history of land use and land cover

changes with the communities in villages surrounding the KFR and

physical observation, each LDSF plot was classified into one of the

following classes:

1. Forest reserve (FR): These are areas classified and managed by the

government as forest reserves that have not been cultivated for at

least the last 30 years.

2. Open-access forest outside the reserve (OAF): These are areas

outside the reserve that have not been cultivated for the last

30 years, mostly covered by natural vegetation and not under any

official governance.

3. Cropland under fallow (CUF): Croplands that have not been culti-

vated for at least the past 5 years.

4. Cropland under cultivation (CUC): Areas that have been cultivated

at least during the last growing season.

Vegetation assessments were conducted at the subplot level, where

we measured and counted all trees (woody vegetation taller than 3 m

and with a DBH greater than 5 cm). These data were then used to cal-

culate the basal area for each of the four land use and land cover

types (Table 2).

2.4 | Soil sampling and analysis

At the center of each of the four subplots within an LDSF plot, we

dug a 50 cm deep soil pit from which to collect soil samples; these

were taken from the pit wall at 0–20 cm depth. We mixed the sam-

ples from all four subplots within a plot to obtain one composite sam-

ple. In the exclosures, we also collected one soil sample from each

sampling point (Figure 2). Additionally, we collected soil samples for

topsoil bulk density assessment. Bulk density samples were collected

using a stainless steel cylinder of volume 98.17 cm3 (5 cm height and

5 cm inner diameter) at the middle of the 0–20 cm depth interval on

one of the pit walls. One bulk density sample was collected at the cen-

ter of each of the four subplots within an LDSF plot and the center of

each sampling point in the exclosures. We choose to focus on just the

topsoil because of the nature of the parameters we are studying (graz-

ing effect and land use). Soil compression caused by grazing, which

we measured as an increased bulk density, occurs within the upper

20 cm of the topsoil. Land use, especially farming, in these areas does

not involve heavy machinery; instead, hand hoes are mostly used, and

these do not penetrate down to the subsoil. Using the samples, we

conducted laboratory analyses of soil organic carbon by the Walkley-

Black chromic acid wet oxidation method (Bremner &

Jenkinson, 1960), soil texture by the hydrometer method, and bulk

density.

2.5 | Soil infiltration capacity measurements

We measured soil infiltration capacity (also known as soil infiltra-

bility; Hillel, 2003) in 64 LDSF plots, one measurement per plot in

four randomly selected plots per cluster (Figure 1), and 16 paired

samples, with points inside and outside each of the exclosure

(Figure 2). However, we removed four plots from the 64 LDSF plots

TABLE 2 Mean basal area (standard error, SE) of trees with
diameter at breast height (DBH) > 5 cm in the Kitulangalo Forest
Reserve and surrounding areas (Tanzania), for the four land use and
land cover types considered in the study

Land use

Basal area

(m2ha�1)

Stem density

(stems ha-1)
Number

of plots (n)

Forest reserve 5.3 (0.6) 904 (22) 36

Open-access forest 1.7 (0.1) 590 (13) 39

Cropland under fallow 0.6 (0.1) 285 (8) 46

Cropland under

cultivation

0.2 (0.1) 81 (5) 38
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during the data cleaning phase because of errors in field measure-

ments, retaining 60 infiltration measurements that we used in our

analysis. We measured soil infiltration capacity at the center of each

selected plot using a single ring infiltrometer (Di Prima et al., 2018)

with an inner diameter and height of 30 and 27 cm, respectively. In

each of the plots, we inserted the ring 5 cm into the soil. We then

conducted prewetting by carefully pouring two liters of water into

the ring and allowing it to completely infiltrate before we started

recording infiltration rates. During the infiltration measurements, the

ring was carefully filled with water up to the 20 cm level, as stated in

the LDSF field guide (Vågen & Winowiecki, 2020). The water level

within the ring was recorded after 5 min, and the ring was immedi-

ately refilled to the initial start level (20 cm). This procedure was

repeated every 5 min during the first half-hour of the infiltration

experiment and every 10 min during the second half-hour for a mini-

mum period of 1 hr, depending on whether a steady infiltration rate

had been reached or not. During the 10-min interval period, we

stopped taking measurements once we obtained similar readings in

three consecutive measurements; sometimes, this took up to 70 min

in total. For each time interval, infiltration capacity rates were calcu-

lated by subtracting the final water level from the initial one and

dividing it by the time interval. Steady-state infiltration capacity was

estimated using the SSphilip function from the package 'HydroMe'

in R, which is a self-starting function for estimating infiltration

parameters in the Philips model (Omuto, 2013).

2.6 | Preferential flow

Following the completion of each infiltration measurement, we con-

ducted a dye experiment to study the water infiltration patterns. We

could only do this in the 64 LDSF plots, as we were not allowed to

disturb the soil further in the exclosures. After we finished taking infil-

tration measurements, 200 mm of a brilliant blue FCF (C.I.42090) dye

solution of concentration 4 g L�1 equivalent to 14.1 L was added into

the infiltration ring and allowed to soak completely. Thirty minutes

after complete infiltration of the dye solution, after the removal of the

infiltration ring, we carefully dug a 0.45 m wide by 2 m long and 0.6 m

deep pit cutting across the dye stained surface to expose a vertical

stained soil profile. The exposed face was then leveled carefully to

avoid smearing before taking photos. A Nikon D5200 camera with a

35 mm focal length and a graded frame with inner dimensions of

0.3 � 0.5 m2 (width and height, respectively) (Figure 3a) were used to

take the pictures of the stained soil profiles. The camera was placed

1.5 m from the centre of the photo frame. Photos (Figure 3b) were

taken in daylight under an umbrella to avoid direct radiation causing

too much reflection. Photos were then analyzed using ERDAS

IMAGINE-version 9.2 (ERDAS Inc., 2008) and ARC MAP-version 10.2

software (ESRI Inc., 2013). First, photos were preprocessed to correct

for geometric distortion, and then individual pixels were classified into

dye-stained and nonstained classes using supervised image classifica-

tion in ERDAS Imagine (Figure 3c).

After completing the classification, we created a shapefile in

ArcMap comprising 100 rectangular polygons of 15 cm2 (30 cm wide

and 0.5 cm high) that divided our images into grids. We then calcu-

lated the area within each of these rectangular polygons covered by

stained and nonstain pixels. From this, we calculated dye stained area

for each profile where; uniform dye stained area is 80% and more

while nonuniform stained areas are all below 80%. These figures were

then used to calculate the different indices of preferential flow. From

the classified images and corresponding dye coverage curves, the fol-

lowing preferential flow indices were calculated;

1. Total dye coverage (DC, %) (Flury et al., 1994); is the percentage

ratio of the dye-stained area to the total profile area (dye stained

and nondye stained). Soils with a higher degree of preferential flow

will have a low value of this parameter.

DC¼100 � D
DþND

� �
, ð1Þ

F IGURE 2 Layout of sampling points inside and outside the
exclosures/fenced plots to test the effects of livestock exclusion on
soil infiltration capacity in Kitulangalo Forest Reserve, Morogoro,
Tanzania. Thick black box line = fence around the 30 � 90 m2 plot,
dots = measuring points we established

F IGURE 3 Pictures covering the process from acquiring a picture
of a stained soil profile to obtaining the classified image (stained
vs. nonstained classes); (a) a camera and a graded frame for soil profile
photography, (b) photo of a stained soil profile, (c) classified soil
profile image showing the dye stained and nonstained area of the
profile [Colour figure can be viewed at wileyonlinelibrary.com]
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Where: DC (%) is percentage dye coverage, D is the dye coverage area

(cm2), and ND is the nonstained area

2. Uniform infiltration depth (UniFr, cm) (Van Schaik, 2009): the

depth at which the dye coverage decreases below 80%; this rep-

resents the depth of the uniform infiltration front where the infil-

tration process is dominated by the uniform flow. Below this

depth, it is assumed that the flow is preferential. Soils showing

high preferential patterns will therefore have low values of this

parameter.

3. Preferential flow fraction (Van Schaik, 2009): the fraction of the

total infiltration that flows through preferential flow paths.

PF� fr¼100 � 1�UniFr �30
TotStAr

� �
ð2Þ

Where: PF–fr is the preferential flow fraction (%), UniFr is the uniform

infiltration depth (cm), TotStAr is the total stained area (cm2), 30 is the

width in cm of our graded photo frame.

High values of this parameter are indicative of unevenness of pore

space distribution in a soil column. Thus, soils with a high degree of

preferential flow will have high values of this parameter
4. Preferential flow at 45–50 cm (PF45-50, %): this is the preferential

flow in deeper soils, it refers to the dye coverage percentage in the

45–50 cm depth range if this is below the uniform infiltration depth.

F IGURE 4 Boxplot (median, first and third quartile) of (a, b) steady-state infiltration capacity (mm hr�1), (c, d) bulk density (g cm�3), and (e, f)
soil organic carbon (%) for the different classes of grazing intensity (left column) and land use/land cover (right column) within a 10 � 10 km2 area
in Kitulangalo, Morogoro, Tanzania; significance values (p) are given. Red dots indicate the mean value. FR = forest reserve, OAF = open-access
forest, CUF = cropland under fallow, CUC = cropland under cultivation [Colour figure can be viewed at wileyonlinelibrary.com]
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This measure indicates the presence of preferential flow at this

depth when the uniform infiltration depth is above 45 cm, which

was the case in all our plots. The selection of this depth interval was

based on the dimensions of the frame we used (30 � 50 cm) but

can change depending on the height of the photo frame.

2.7 | Grazing intensity

We established a grazing intensity score to allow us to study the

effects of different livestock grazing intensities. In this study, the graz-

ing intensity score is related to the visible impacts of livestock grazing.

We based the scoring on individual observations of the following

parameters; (i) signs of livestock presence (droppings, sounds, etc.);

(ii) animal paths and hoof prints on the soil surface; and (iii) grazed

vegetation. We assigned a value between 0 and 3 for each parameter

separately according to its severity (where 0 = no sign observed and

3 = most severe condition observed); we then summed them to

obtain the overall plot score (0–9), which we then used to reclassify

grazing intensity into four distinct classes: 0 = no observations of the

parameters considered, 1 = 1–3, 2 = 4–6, 3 = 7–9.

2.8 | Statistical analyses

All statistical analyses were performed in R version 3.6.1 (R Core

Team, 2019). Before starting the analyses, we checked for data normal-

ity by plotting q-q plots. Given that the sampling design employed in

this study was hierarchical or nested, we first constructed linear mixed-

effects models using the lme() function from the package 'nlme' by Pin-

heiro, Bates, DebRoy, Sarkar, & R Core Team (2020), to estimate the

effects of different soil parameters, land use and land cover types, and

tree cover on steady-state infiltration capacity and preferential flow

indices. We used the hypothesis testing method suggested by Zuur

et al. (2009), with sigma2 = 0, where sigma2 is the variance of the ran-

dom intercept (clusters). In this case, we could not reject the null

hypothesis. We also compared the Akaike information criterion (AIC)

between models with different random effects structures (with and

without clusters as a random effect). The model without the random

effect was better. This suggested that there was no advantage in incor-

porating clustering as a random effect in the model. At the same time,

it revealed the presence of an extremely low correlation between

observations within the same cluster, confirming the absence of auto-

correlation and meaning that it was appropriate to use a regular linear

regression (fixed effects only). We ran regression analysis for infiltration

capacity and preferential flow using tree cover (basal area) and grazing

intensity as covariates. We used an ANOVA test (the aov() function in

R) to identify significant differences in infiltration capacity (mm hr�1),

bulk density (g cm�3), soil organic carbon (%), and all other preferential

flow indices (TotStAr, UniFr, PFfr, and PF45-50) between land use/land

cover types and different grazing intensities. We conducted the ANO-

VAs after checking for equality of variance among groups by using

Levene's test (the LeveneTest() function in R from the package 'car'),

confirming the absence of heteroscedasticity. A paired t-test (the t.test

() function in R) was used to compare infiltration capacity (mm hr�1),

bulk density (g cm�3), and soil organic carbon (%) between sampling

points located inside and outside the exclosures.

3 | RESULTS

3.1 | Infiltration capacity, soil organic carbon, and
bulk density

We observed no clear relationship between steady-state infiltration

capacity and land use/ land cover type (p = 0.29; Figure 4b). Instead,

across all land use and land cover classes, steady-state infiltration capac-

ity decreased with increasing livestock grazing intensity (p = 0.008;

Figure 4a); Mean steady-state infiltration capacity for plots with low

grazing intensity (score 0) was 357 mm hr�1 (SE ± 104), double that in

plots with high grazing intensity (160 ± 20 mm hr�1). Regression analysis

showed that there was a clear positive relationship between steady-state

infiltration capacity and tree basal area in locations with a grazing inten-

sity score of 0 (p = 0.02) (Figure 5, Table 3). However, this relationship

F IGURE 5 Scatter plots
showing the relationship between
steady-state infiltration capacity
(mm hr�1) and basal area (m2 ha�1)
in relation to different grazing
intensity scores within the LDSF
site in Kitulangalo, Morogoro,
Tanzania. Numbers at the top of
the plot (0, 1, 2, and 3) represent
grazing intensity scores. Regression
lines are shown [Colour figure can
be viewed at
wileyonlinelibrary.com]
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seemed to disappear in the presence of grazing (grazing intensity score

1, 2, 3; Figure 5). Mean bulk density increased from 1.32 ± 0.03 to 1.45

± 0.02 g cm�3 from grazing score 0–3 (p = 0.005; Figure 4c). However,

for bulk density, land use/land cover also had a significant effect

(p = 0.001; Figure 4d), with the highest bulk density (1.46

± 0.02 g cm�3) in open-access forest and the lowest in farms under culti-

vation (1.34 ± 0.02 g cm�3). Mean soil organic carbon decreased to 1/3

with increasing grazing intensity (p = 0.006; Figure 4e) from 0.72 ± 0.06

to 0.52 ± 0.02% (grazing score 0 to 3), but no clear relationship was

observed in relation to land use/land cover (p = 0.22; Figure 4f).

Soil properties generally improved with the exclusion of livestock

grazing. Mean steady-state infiltration capacity in paired plots inside and

outside grazing exclosures was near twice the level inside compared to

outside (p = 0.03; Figure 6a), that is, 442 ± 53 and 279 ± 49 mm hr�1,

respectively. Mean steady-state infiltration capacity for the paired plots

outside the exclosures was similar to that for the LDSF plots within the

forest reserve (Figure 4b) (284 ± 51 mm hr�1) where exclosures were

located. Mean bulk density was 1.64 ± 0.01 and 1.45 ± 0.04 g cm�3

outside and inside exclosures, respectively (p < 0.001; Figure 6b). Mean

soil organic carbon was about double (p < 0.001; Figure 6c) inside the

exclosures (1.46 ± 0.03%) compared to outside (0.72 ± 0.03%).

3.2 | Infiltration patterns and preferential flow

The degree of preferential flow was affected by livestock grazing inten-

sity but not by land use/land cover type (Figures 7 and 8). Both Total

stained area (Figure 7a) and Uniform infiltration depth (Figure 7b)

decreased with increasing grazing intensities (1065 ± 59 to 679

± 29 cm2; p < 0.001 and 30 ± 3 to 19 ± 1 cm; p = 0.004 for grazing

score 0–3 respectively). The preferential flow fraction increased with

increasing grazing intensity (p = 0.012; Figure 7c) from 18 ± 5% at graz-

ing score 0 to 29 ± 3% at grazing score 3. Preferential flow in the bot-

tom 5 cm of the profile (45–50 cm depth) was six-times higher in areas

where no grazing was observed (55 ± 5%) (p < 0.001; Figure 7d) than in

areas with grazing intensity score 3 (9 ± 1%), but did not show any clear

relationship with land use/land cover type (p > 0.05; Figure 7h). Regres-

sion analysis between preferential flow and basal area gave a very low

r2 value of 0.009, which suggests no correlation.

4 | DISCUSSION

We hypothesized that in a miombo dryland landscape, tree cover

would decrease soil bulk density and have a positive effect on steady-

state infiltration capacity, degree of preferential flow, and soil organic

carbon, while livestock grazing intensity would have the opposite

effects. As hypothesized, increasing grazing intensity led to higher

bulk density and lower steady-state infiltration capacity and soil

organic carbon, regardless of land use and land cover type. However,

it was observed that, in the absence of grazing (0 grazing intensity

score), there was a clear positive relationship between steady-state

F IGURE 6 Boxplot (median, first and third quartile) of infiltration
capacity (mm hr�1) (a), bulk density (g cm�3) (b), and soil organic
carbon (%) (c), inside and outside grazing exclosures in Kitulangalo
Forest Reserve, Morogoro, Tanzania. Significance values (p) are given.
Red dots indicate the mean value [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 3 Regression coefficients and p-values for the linear model showing the relationship between infiltration capacity (mm hr�1) and basal
area (g cm�3) associated with the different grazing intensity scores (gr1, gr2, and gr3) as treatments from the LDSF site in Kitulangalo, Morogoro,
Tanzania

Parameter BA gr1 gr2 gr3 BA*gr1 BA*gr2 BA*gr3

Coefficients 38.65 6.55 �95.56 �60.97 �43.94 �43.55 �37.56

p-values (0.02) (0.93) (0.27) (0.44) (0.02) (0.08) (0.05)
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infiltration capacity and basal area, which declined with grazing activi-

ties regardless of land-use class. This is the reason why all four land

use and land cover types, from the forest reserve to cropland under

cultivation, had similar steady-state infiltration capacity levels and

degree of preferential flow. The preferential flow indices, which con-

sidered the entire soil profile, indicated higher preferential flow at

high grazing intensities and little influence of land use and the land

cover type, the opposite situation to the one we hypothesized. How-

ever, preferential flow at 45–50 cm depth, which indicates deep pro-

file drainage, was six-times higher at the lowest grazing intensity

compared to areas with high grazing intensities.

Similar to our study, most studies have shown a positive effect of

trees on soil hydrological functioning; this has been attributed to their

well-established root systems, that improve porosity and soil aggrega-

tion and, consequently, increase infiltration and preferential flow

(Bargués-Tobella et al., 2014; Benegas et al., 2014; Cardwell, ; Cui

et al., 2019; Ekhuemelo, 2016; Kan et al., 2019; Liu et al., 2020; Lozano

Baez, 2019; Wu et al., 2021). Considering this, and recurring soil

disturbance that disrupts vertical pore continuity in agricultural lands,

forests have been reported to have higher soil infiltration capacity than

cultivated land (Fan et al., 2013; He et al., 2009; Ilstedt et al., 2007;

Nyberg et al., 2012; Yimer et al., 2008). This was the case in our study

area in the absence of grazing. We attribute the absence of a clear

effect of trees on soil hydraulic properties in the presence of intensive

grazing to the severe soil disturbance caused by livestock. Livestock

trampling has been reported to cause soil compaction, decrease soil

hydrological functioning (Donkor et al., 2002; Dreccer & Lavado, 1993;

Dudley et al., 2002), and reduce soil organic carbon (Dlamini

et al., 2016). Similarly, results from our study also indicate an increase

in soil bulk density and decreasing soil organic carbon with increasing

grazing intensity. In our study area and many other tropical drylands,

livestock grazing is mostly undertaken based on the convenience of

pasture availability regardless of the primary land use or land cover

(Boerma & Koohafkan, 2007). This, coupled with the low biomass pro-

duction capacity typical of dryland ecosystems, results in an overall

decrease in soil organic carbon across landscapes (De Deyn

F IGURE 7 Boxplot (median, first and third quartile), of the different preferential flow indices for the different classes of grazing intensity
(upper row) and land use/land cover (lower row) within a 10 � 10 km2 area in Kitulangalo, Morogoro, Tanzania; significance values (p) are given.
Red dots indicate the mean value of each index for the respective grazing intensity and land use/land cover class. (a, e) Total stained area (cm2),
(b, f) uniform infiltration depth (cm), (c, g) preferential flow fraction (%), and (d-h) preferential flow at 45–50 cm (%). FR = forest reserve,
OAF = open-access forest, CUF = cropland under fallow, CUC = cropland under cultivation [Colour figure can be viewed at
wileyonlinelibrary.com]
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et al., 2008), which, in turn, negatively impacts soil hydraulic properties.

At the same time, high wild forest fire incidence, mostly in woodlands

and forested land, reduces the amount of soil carbon, moving it towards

the levels similar to those of other less vegetated areas (Mganga

et al., 2015; Ryan et al., 2011). Frequent movement of grazing animals

over time causes the collapse of the soil structure, particularly in the

topsoil, creating a compaction layer, which leads to reduced and

uneven distribution of pore space down the soil column (Russell &

Bisinger, 2015). Since the rate of infiltration and flow through the soil

profile depends on soil porosity as a function of pore size and pore con-

tinuity (Osanyinpeju & Dada, 2018), infiltration becomes slower with

increasing soil compaction (Zhang et al., 2006).

Unexpectedly, three of four preferential flow indices showed an

increasing degree of preferential flow with increasing grazing inten-

sity. Most likely, this is an effect of soil compaction. Many soils have

infiltration patterns characterized by uniform flow close to the soil

surface and a higher degree of preferential flow at depth (Zhang

et al., 2019). When the topsoil is compacted or eroded, the area of

uniform flow is reduced, and in several preferential flow indices, this

would appear as an increase in the degree of preferential flow.

Another possible explanation for this observation is that uniform flow

is higher when there is an even distribution of pore space and water

can pass evenly through the soil column, whereas the opposite is the

case for preferential flow (Kan et al., 2019). Sandy soils, under normal

conditions, typically exhibit a uniform infiltration front due to their

coarse texture (Duley & Kelly, 1939). However, livestock trampling

may create nonuniform compression patterns in soils that we then

see as increasing preferential flow at the same time that infiltration

capacity decreases. Because livestock grazing is prevalent across vari-

ous land uses and land cover types, this could potentially also explain

F IGURE 8 Examples of classified
stained profiles (black: Dye stained
soil, white: nonstained soil) for
different classes of grazing intensity
and land uses/land cover from a
10 � 10 km2 area in Kitulangalo,
Morogoro, Tanzania
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the absence of land use and land cover effect in our observations. Our

findings, however, indicate that preferential flow at 45–50 cm depth

was six-times higher for the areas with a zero-grazing intensity score

than for the highest grazing intensity, showing the importance of

including indices of preferential flow that are independent of mea-

sures of dye cover in the topsoil.

Decreased soil infiltration capacity can result in increased surface

runoff and ponding of water on the soil surface (Haghnazari

et al., 2015) and, consequently, more erosion. Reduced infiltration

capacity and preferential flow may also lead to an increased residence

time of water in the soil surface and topsoil layer, with additional

exposure to evaporation (Bargués-Tobella et al., 2014). This translates

to reduced deep soil and groundwater recharge potential (Stako

et al., 2012). Our study indicates that there is significantly higher deep

drainage (preferential flow at 45–50 cm depth) in areas with zero

grazing intensity compared to those areas that are more affected by

livestock, and this can be explained by less compaction of the topsoil

and presence of vertical continuity of macro-pores at depth. Since

deep soil and groundwater recharge depend greatly on deepwater

percolation (David et al., 2016), these findings emphasize the need to

consider grazing as one of the key factors when managing drylands

for local and downstream water resources. While trees play a pivotal

role in enhancing soil hydraulic properties, they also use water

through evapotranspiration. If increases in tree cover do not lead to

enhanced soil hydraulic properties, the net impact of more trees on

groundwater recharge will always be negative. Because of this,

maintaining or restoring tree cover alone may be ineffective to

improve water availability if livestock grazing and other anthropogenic

activities that impact soils are not well managed (Ghimire et al., 2013,

2014). Reduced infiltration from high livestock grazing may be a more

serious problem in forest land than in other land uses since more

water is lost through evapotranspiration from trees. Thus, if tree-

based restoration activities in these areas disregard the need to

reduce livestock grazing intensity beyond the tree establishment

phase, the net impact of trees on local water availability may be

negative.

The effect of grazing exclosures was an increase in soil infiltration

capacity and soil organic carbon, while bulk density decreased. We

attribute the differences to the exclusion of livestock grazing, consid-

ering that the two areas (inside and outside the exclosures) had similar

properties when the exclosures were installed 12 years ago. Increased

infiltration capacity inside the exclosures resulted in increased ground

vegetation cover, which, together with tree roots and soil animals, can

restore the soil structure after removing the compression agent (live-

stock). Higher vegetation cover reduces surface runoff and adds plant

litter, which, in turn, increases soil carbon, improving soil water hold-

ing capacity and, eventually, soil and groundwater recharge

(Descheemaeker et al., 2006). Trees and other plants produce root

network systems that increase soil aggregation and stability and cre-

ate macropores that act as pathways for rapid water flow (Guo

et al., 2019; Johnson & Lehmann, 2006). This suggests that vegetation

might be most effective in improving soil hydrological functioning

when livestock grazing intensity is reduced. However, these fences

were simply used to test what happens when there is complete exclu-

sion of livestock grazing activities in a particular location. Because of

their limited spatial scale, distribution across land cover classes, and

number, results from these fenced areas cannot be extrapolated to

the whole study area.

5 | CONCLUSIONS

Unsustainable land-use practices in drylands may accelerate land deg-

radation and render drylands uninhabitable (Oba et al., 2000). We

show here that livestock grazing intensity along with tree density is

crucial in the sustainable management of water resources in miombo

drylands. Moreover, overgrazing could override the positive influence

of trees on infiltration capacity and eventually on drainage at deeper

soil depth. To maintain and enhance soil infiltration capacity and

water security, we recommend that: (i) Tree-based restoration efforts

in drylands involve the control of livestock grazing intensity beyond

the tree establishment phase; (ii) strong policies are put in place to

protect dryland forest reserves and other forested areas from exces-

sive livestock grazing; (iii) rangelands measures that restrict grazing

pressure and allow the soil to recover are implemented through rota-

tional grazing, enclosures, and so forth. Future research is needed to

understand and establish the appropriate grazing intensities manage-

ment that would benefit both dryland dwellers and ecosystem

sustainability.
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