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Abstract: The plant- and soil-associated microbial communities are critical to plant health and their
resilience to stressors, such as drought, pathogens, and pest outbreaks. A better understanding
of the structure of microbial communities and how they are affected by different environmental
factors is needed to predict and manage ecosystem responses to climate change. In this study, we
carried out a country-wide analysis of fungal communities associated with Pinus sylvestris growing
under different environmental conditions. Needle, shoot, root, mineral, and organic soil samples
were collected at 30 sites. By interconnecting the high-throughput sequencing data, environmental
variables, and soil chemical properties, we were able to identify key factors that drive the diversity
and composition of fungal communities associated with P. sylvestris. The fungal species richness
and community composition were also found to be highly dependent on the site and the substrate
they colonize. The results demonstrated that different functional tissues and the rhizosphere soil of
P. sylvestris are associated with diverse fungal communities, which are driven by a combination of
climatic (temperature and precipitation) and edaphic factors (soil pH), and stand characteristics.

Keywords: Scots pine; fungal community; environmental conditions; needles; shoots; roots; soil

1. Introduction

Changing climate induces multiple abiotic and biotic risks to forests and forestry
worldwide. Indeed, climate change affects the location, composition, structure and function
of forests in many parts of the world, including high-latitude forests dominated by boreal
species [1]. Nevertheless, forests may respond to climate change in various ways driven
by local environmental conditions and the adaptive potential of the trees. Climate change
is also changing the local environments, affecting local microbial communities and, thus,
their metabolic activity and capacity [2]. Yet, climate, tree composition, or the distribution
of the host tree do not always explain spatial patterns in the above- and below-ground
microbial communities. This is important to consider because different parts of terrestrial
plants, including forest trees, harbor several communities of microorganisms that form
complex associations and play important roles that can determine the functioning and
health of their hosts. There are many ways to tackle the challenges of climate change,
including adaptation and mitigation strategies. However, little attention has been given
to microbial adaptation [3]. Although microorganisms tend to adapt rapidly to changing
environmental conditions [4], little is known about how these changes will feed back into
plant–microbe interactions [5]. The overall effects of plant-associated microbes on host
health and fitness are determined by a number of factors, including host and microbial
genotypes, interactions within microbiota, and various abiotic factors [6]. The main abiotic
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factors that determine the diversity of tree microbiome include temperature, light, nutrient
and water availability, and soil pH [7]. However, the role of abiotic factors in determin-
ing the microbiome structure of forest trees, especially in different habitats, is not well
understood [8]. Tree-associated microbes occupy specific habitats, which are referred to
as rhizosphere, rhizoplane, phyllosphere, or endosphere [9]. Microbes in these habitats
can establish beneficial, neutral, or detrimental associations of varying intimacy with their
hosts [10]. Fungi are among the dominant groups of plant-associated microorganisms as
they play key roles in regulating plant health, maintaining interactions between plants and
other organisms, and maintaining the functioning of entire ecosystems [11,12]. Maintaining
functional tree-microbial interactions has been shown to be important for tree growth and
development and for adaptation to the changing environment [13]. Given that different
fungal species and functional groups are driven differently by climatic, nutritional, or biotic
factors, it is expected that different fungal guilds may also react differently to changes in
environmental conditions [14].

Some of the most complex microbiomes are found in soils [15]. Fungi are of partic-
ular interest as they represent a significant fraction of the soil microbial community and
influence several ecosystem processes [16]. The abundance of fungal functional groups in
the soil changes in response to forest disturbance and indicates a close interaction between
the above-ground plant community and the below-ground soil biological community [14].
Moreover, structural and functional modifications in the soil microbiota have a crucial
impact on above-ground ecosystems [17]. A global meta-analysis found that forest degra-
dation reduces soil C and N content, increases soil pH, and increases C decomposition rates.
The study also found a decrease in soil fungal biomass in disturbed sites but increased
species diversity [18]. Changes in soil pH were also shown to be significantly correlated
with changes in the fungal community composition in the soil [19]. Besides, the loss of
host species and forest disturbance can also cause the direct loss of mycorrhizal and other
rhizosphere fungi [20].

Several previous studies have examined the effects of individual disturbances on
soil fungal composition, focusing on ectomycorrhizal (ECM) fungi [21–24] but largely
excluding other fungal guilds with which they interact and synergize to perform multiple
ecosystem processes [25,26]. ECM fungi are widely associated with trees in natural forests
and plantations [27]. They are a key component of the forest soil microbiome, forming
symbioses with ca. 60% of trees on Earth [28]. Their importance increases with the decrease
of soil fertility and under harsh environmental conditions as they improve the host trees’
nutrition and stress resistance [20,29]. As previous studies have shown, fungal communities
associated with tree roots show pronounced differences compared with the communities of
the surrounding soil [7]. Differences between root and rhizosphere microbial communities
have been found to be influenced by the seasonal production of roots and a variation in
their activity [30] and stand age [31]. Root-associated fungal communities are also known
to depend on environmental parameters [32–34], such as climatic conditions [35], soil
chemical composition, especially pH, and the content of organic matter [36]. Soil and/or
root-associated fungi can also be pathogenic [37] or interact as saprotrophs involved in
nutrient recycling [38]. Pathogenic fungi can interfere with tree growth and alter the
diversity and composition of the plant community [39].

Different above-ground functional tissues of forest trees can also host diverse com-
munities of fungi [7]. For example, living needles of coniferous trees are associated with
a diverse fungal community, and these fungi may have various effects on their host [40].
Such fungi commonly include endophytes and epiphytes that colonize the interior and
exterior surfaces of living needles, respectively [41]. Besides, their abundances in needles
vary depending on seasonal precipitation and temperature [42]. There are several factors
that influence the composition of the foliar fungal community. These factors include the
host species, nutrient content in the needles, needle age, air temperature, precipitation,
and air pollution [43,44]. Recent studies also show that the fungal community of pine
trees growing in a common environment show host species-specific structures [45]. The
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importance of endophytic and other wood-inhabiting fungi has also been emphasized.
Endophytes are common in living tree tissues [46–48] and may influence many biotic
processes in trees, but under certain conditions, they may shift to pathogenic or saprophytic
lifestyles [7]. Therefore, they can also be involved in the early decomposition of deadwood,
which is an important carbon stock in forest ecosystems [49,50] and an important habitat
for many forest living organisms [51].

As fungi play a vital role in the structural and functional dynamics of terrestrial
ecosystems [52], it is important to understand how the above- and below-ground fungal
communities will respond to changing environmental conditions. Furthermore, exploring
the impacts of local variables on the structure of fungal communities can help to better
understand the ecological functions of fungi in different habitats. The focus of the present
study was a Scots pine (Pinus sylvestris L.), which is one of the most economically and
ecologically important tree species in Europe [53]. Still, climate change is likely to affect its
survival and growth differently in different parts of its distribution range [54]. The aim of
the present study was to study the diversity and composition of above- (needles, shoots)
and below-ground (roots, soil) fungal communities associated with P. sylvestris, and to
evaluate the impact of abiotic factors on these fungal communities. We hypothesized that
above- and below-ground fungal communities will change in quantity and composition
along with the changes in environmental factors (temperature, precipitation, soil chemical
properties) and stand age. Furthermore, due to the importance of soil fungi for the estab-
lishment and function (nutrient uptake) of P. sylvestris, we also hypothesized that changes
in soil fungal communities will have a greater impact on aboveground fungal communities
than changes in aboveground fungal communities on fungi in the soil. Understanding these
structural associations between above- and below-ground fungal communities will provide
a relevant information about important functions linked to resilience and ecosystem func-
tioning of P. sylvestris forests in the future. The results were also expected to provide new
knowledge on overall fungal biodiversity associated with P. sylvestris that can contribute to
the development of sustainable forest management strategies to effectively maintain forest
biodiversity and different ecosystem services.

2. Materials and Methods
2.1. Study Sites and Sampling

The study included thirty sampling sites, each of which was 500 m2 in size, situated
at least 100 m away from the forest edge, at least 15 km apart from each other, and
followed the principal distribution of P. sylvestris in Lithuania (Figure 1). Information
on the stand characteristics for each site is in Table 1. In each site, the health status of
30 trees was assessed by evaluating the proportion of dry branches, dechromation, and
defoliation [55,56]. The sampling of needles, shoots, roots, and the rhizosphere soil was
carried out between April and May 2019. At each site, five P. sylvestris trees were randomly
selected, and from each tree, five branches that were ca. 17 m above the ground and
growing out from the main stem were cut using a telescopic pruner. These branches were
used to collone-year-old old, i.e., from the previous growing season (2018), needles and
shoots. Four random needles were taken from each branch and put together, making
one representative sample per tree consisting of 20 needles. For a sampling of shoots,
needles were removed, and ca. 5 cm-long segment of a one-year-old shoot was randomly
taken from each branch, making one representative sample per tree that consisted of
five shoots. For a sampling of soil, the litter layer was removed, and three individual
samples were taken down to 25 cm depth in the vicinity of five P. sylvestris trees using
a 2.5 cm diameter soil core, which was carefully cleaned between individual samples.
The positions of sampled soil cores were at the northern, northeastern, and southwestern
sides of each tree and within a distance of 0.25 m of the tree trunk. After the collection,
organic and mineral layers were separated and sieved (mesh size 2 mm × 2 mm) to remove
larger particles and roots, and each layer from different samples pooled together. For
soil chemical analyses, five additional sub-samples per site were taken in the vicinity of
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P. sylvestris trees and processed as described above. Soil chemical analyses were carried out
at the Agrochemical Research Laboratory of the Lithuanian Research Centre for Agriculture
and Forestry, Kaunas, Lithuania. Fine roots (lateral with root tips) were excavated within
a distance of 0.5 m from the stem of five P. sylvestris trees and separated from the soil and
other particles. All equipment was thoroughly cleaned between individual samples. After
the collection, individual needle, shoot, root, and soil samples were placed in sterile plastic
bags, labeled, placed on dry ice, the same day transported to the laboratory, and stored at
−20 ◦C until further processing. In total, there were 150 needles, 150 shoots, 150 roots, and
180 soil samples collected. Climate data were obtained from the nearest meteorological
stations.
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Figure 1. Map of Lithuania showing the sampling sites in Pinus sylvestris forest stands. The green
color on the map shows the distribution of P. sylvestris stands and its abundance (%) in different areas.

2.2. DNA Work

Prior to DNA extraction, root samples were carefully washed in sterile water to remove
any of the remaining soil and cut into ca. 5 mm-long segments. All needle, shoot, root,
and soil samples were freeze-dried for 48h using Labconco FreeZone Benchtop Freeze
Dryer (Cole-Parmer, Vernon Hills, IL, USA). Then, ca. 0.5 g of freeze-dried material was
taken from each sample and individually ground to a fine powder using a Fast prep
shaker (Montigny-le-Bretonneux, France). Approximately 30 mg of this powder per sample
was used for DNA extraction. The total DNA was extracted using the CTAB method as
described by Marčiulynas et al. [6]. Extracted DNA was quantified using a NanoDrop™
One spectrophotometer (Thermo Scientific, Rochester, NY, USA). PCR amplification of
ITS rRNA region using barcoded primers gITS7 [57] and barcoded primers ITS4 [58] was
performed according to the protocol of [59]. Within the same site, samples of the same
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substrate (needles, shoots, roots, and the soil) were amplified using primers with the same
barcode, resulting in these samples pooling together following PCR. Individual PRRs
were performed to increase the representativeness of each site. PCR amplification was
performed in 50 µL reactions using an Applied Biosystems 2720 thermal cycler (Foster City,
CA, USA). The PCR program started with an initial denaturation step at 94 ◦C for 5 min,
followed by 30 cycles of 94 ◦C for 30 s, and annealing at 56 ◦C for 30 s and 72 ◦C for 30 s,
followed by a final extension step at 72 ◦C for 7 min. The PCR products were assessed
using gel electrophoresis on 1% agarose gels stained with GelRed (Biotium, Fremont, CA,
USA). The PCR products were purified using 3 M sodium acetate (pH 5.2) (Applichem
GmbH, Darmstadt, Germany) and 96% ethanol mixture (1:25). After quantification of PCR
products using a Qubit fluorometer 4.0 (Life Technologies, Stockholm, Sweden), samples
were pooled in an equimolar mix and used for PacBio sequencing using two SMRT cells at
the SciLifeLab in Uppsala, Sweden.

Table 1. Principal information on the 30 sampling sites in Pinus sylvestris forest stands.

Site Position Tree Species Age Soil Chemical Parameters Climate Data

No. Longitude
(N)

Latitude
(E)

Composition,
% * (y) pH, mol/L

(KCl)
P2O5,
mg/kg

K2O,
mg/kg

Ca,
mg/kg

Mg,
mg/kg

Cl,
mg/kg

Salts,
ms/cm

Average
Annual

Temp. ◦C

Precipitation,
mm/year

1 55◦37′14′′ 25◦11′25′′ 100P 60 4.0 345 25 155 48 3.6 2.55 8.0 508.8
2 53◦58′52′′ 23◦56′56′′ 100P 98 4.2 93 31 212 36 3.6 1.61 8.0 484.6
3 53◦58′27′′ 24◦25′48′′ 100P 53 4.2 123 25 256 74 3.6 1.89 8.0 484.6
4 54◦8′20′′ 24◦11′51′′ 100P 53 4.4 64 23 260 60 3.6 1.44 8.0 484.6
5 54◦52′40′′ 23◦42′17′′ 80P,20B 67 4.1 60 19 205 50 3.6 2.18 8.3 614.9
6 55◦10′27′′ 24◦26′43′′ 100P 57 4.0 139 19 234 55 5.3 2.41 8.3 614.9
7 55◦1′10′′ 24◦12′56′′ 100P 71 3.5 19 57 181 45 5.3 2.71 8.6 519.8
8 54◦52′15′′ 23◦26′41′′ 100P 49 3.9 18 61 298 62 3.6 3.45 8.9 491.7
9 56◦11′40′′ 21◦28′13′′ 100P 59 3.8 34 65 643 115 5.3 4.45 8.9 491.7
10 56◦1′1′′ 21◦6′45′′ 90P,10S 47 4.0 92 31 246 46 3.6 1.74 8.3 643.6
11 55◦45′36′′ 24◦41′38′′ 70P,20S,10B 72 3.4 13 36 191 50 3.6 3.07 8.1 479.8
12 55◦45′36′′ 24◦41′38′′ 80P,20B 68 5.9 71 60 4100 670 6.9 20.2 8.1 505.5
13 56◦11′12′′ 22◦23′4′′ 100P 58 4.2 25 86 2081 272 5.3 5.18 8.0 480.4
14 54◦52′16′′ 25◦41′56′′ 100P 65 4.1 41 57 339 68 3.6 2.81 8.0 755.4
15 54◦34′28′′ 23◦57′2′′ 100P 47 4.0 115 41 243 57 3.6 2.21 8.6 595.2
16 55◦28′16′′ 23◦26′39′′ 100P 55 4.2 70 39 373 66 5.3 2.08 7.8 458.0
17 55◦29′54′′ 21◦57′21′′ 70P,20S,10B 65 2.8 138 381 1171 271 7.1 15.9 7.7 514.6
18 56◦3′26′′ 25◦42′28′′ 90P,10S 59 3.9 10 51 208 41 3.6 3.02 8.4 617.0
19 55◦1′46′′ 22◦42′14′′ 70P,20J,10B 36 3.9 78 30 178 53 3.6 1.78 8.6 519.8
20 54◦17′17′′ 25◦39′41′′ 90P,10S 50 3.9 44 44 191 54 5.3 3.29 8.0 530.6
21 55◦10′12′′ 25◦41′56′′ 100P 65 4.4 57 13 97 28 3.6 2.62 7.4 669.2
22 55◦19′38′′ 22◦27′14′′ 70P,20B,10S 60 3.5 16 174 834 281 3.6 5 8.6 591.3
23 55◦45′34′′ 21◦43′12′′ 70P,20S,10B 65 3.4 30 83 383 81 5.3 4.29 8.0 598.7
24 54◦44′58′′ 24◦41′59′′ 100P 58 5.9 271 67 1624 215 3.6 8.49 7.3 614.9
25 54◦56′54′′ 24◦41′46′′ 100P 55 4.9 104 29 399 68 5.3 3.19 8.0 535.8
26 55◦10′47′′ 24◦42′10′′ 100P 50 3.9 130 36 183 52 3.6 2.72 8.0 506.9
27 55◦19′1′′ 25◦42′54′′ 100P 65 4.5 37 48 675 97 5.3 4.86 7.7 505.4
28 54◦25′23′′ 24◦57′33′′ 90P,10B 48 4.1 14 33 180 44 5.3 2.5 8.0 593.2
29 54◦25′39′′ 24◦27′15′′ 90P,10B 70 4.3 38 48 323 66 3.6 3.88 8.0 540.9
30 54◦7′57′′ 23◦41′50′′ 100P 69 5.3 62 40 1053 115 3.6 4.03 8.4 565.2

* P—Pinus sylvestris, S—Picea abies, B—Betula pendula, J—Alnus glutinosa. Tree species composition is based on
volume.

2.3. Bioinformatics

Sequence quality control and clustering were performed using the SCATA NGS
sequencing pipeline (http://scata.mykopat.slu.se, accessed on 14 April 2021). Quality
filtering was done by removing short sequences (<200 bp), sequences with low read
quality (Q < 20), primer dimers, and homopolymers, which were collapsed to 3 base
pairs (bp) before clustering. Sequences that did not have a tag or primer were excluded,
but information about linking the sequence to the sample was stored as metadata. The
sequences were clustered into different OTUs using single-linker clustering based on

http://scata.mykopat.slu.se
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98% similarity. For each cluster, the most common genotype (real read) was used to repre-
sent each OTU. For clusters with only two sequences, a consensus sequence was created.
Fungal OTUs were taxonomically identified using both the RDP classifier available at
https://pyro.cme.msu.edu/index.jsp, accessed on 18 May 2021 (Centre for Microbial Ecol-
ogy, Michigan State University, East Lansing, MI, USA) and the GenBank (NCBI) database
using Blastn algorithm. The criteria used for identification were: sequence coverage >80%,
similarity to species level 98–100%, and similarity to genus level 94–97%. Representative se-
quences of fungal non-singletons as the Targeted Locus Study project have been deposited
in GenBank under accession number KFVY00000000. Taxonomical information was also
associated with each cluster using the SH mapping feature using the UNITE database
(https://unite.ut.ee/analysis.php, accessed on 26 July 2021). Fungal functional groups
were assigned using the FUNGuild database (https://github.com/UMNFuN/FUNGuild,
accessed on 26 July 2021) according to Nguyen et al. [60] and Tedersoo et al. [61].

2.4. Statistical Analyses

The effects of the substrate, environmental variables, and soil characteristics at a site
level on OTU richness were assessed using generalized linear mixed-effect models using
the glmmTMB function from the glmmTMB package [62]. Correlation between predictor
variables was assessed using the cor function in R [63]. When a correlation coefficient
between two variables was higher than 0.7, only one variable was selected to be used in
the final model. A final model contained the following variables: tree composition, age,
defoliation (stand characteristics), air temperature, precipitation (environmental variables),
and soil pH, P2O5, K2O, and Ca (soil variables). Interactions between each variable and
the substrate were included in the model to assess if the effects of a variable are consis-
tent across all substrates. The site was included in the model as a random factor. All
continuous variables were scaled using the function scale in R [63]. Truncated Poisson
distribution for errors was assumed as all samples contained fungi. Model predictions
were calculated using ggpredict from the package ggeffects [64] in R and plotted using
the ggplot function from the ggplot2 package [65]. Non-metric multidimensional scal-
ing (NMDS) based on Bray-Curtis dissimilarity was used to visualize fungal community
structure among different substrates (needles, shoots, roots, and the mineral and organic
soil). Prior to NMDS analysis, which was completed using a metaMDS function from the
vegan package [66] in R, fungal reads were rarefied to 500 reads per sample to remove
the effect of a differential sequencing depth. This eliminated 39 out of 148 samples from
the data set. We used the permutational multivariate analysis of variance (PERMANOVA)
with the Bray–Curtis distance metric to assess the significance of community similarity as
a function of the substrate. PERMANOVA was done using the adonis2 function from
the vegan package [66] in R. Pairwise comparisons between substrate levels were per-
formed using pairwise.perm.manova function from the RVAideMemoire [67] package in R
with 999 permutations. The Benjamini & Hochberg method was used for the adjustment
of p-values for multiple comparisons [68]. The Shannon diversity index and qualitative
Sørensen similarity index were used to characterize the diversity of fungal communi-
ties [69,70]. The nonparametric Mann–Whitney test in Minitab v. 18.1 (State College,
PA, USA) was used to test if the Shannon diversity index among different samples was
statistically similar or not.

3. Results

A total of 277,050 reads passing quality control were clustered into 2914 non-singleton
OTUs (Table 2), while singletons were removed. Among the non-singletons, the most
abundant were fungi, with 2602 (89.3%) OTUs (Table 2). Non-fungal OTU were removed
from further analyses. The Shannon diversity index of fungal OTUs varied between 1.6 and
5.1 for different samples and sites, with the lowest found in root samples and the highest
in soil samples (Table 2). The Shannon diversity index of fungal OTUs was significantly
higher in needles than in roots, in shoots than in roots, and in the mineral and organic soil
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than in roots (p < 0.05) (Figure 2). In a similar comparison, other samples did not differ
significantly from each other (Figure 2).

Table 2. The number of high-quality sequences and fungal OTUs from each study site.

Site No. of High-Quality Sequences/OTUs Shannon Diversity Index (H)

No. Roots Shoots Needles Soil O * Soil M * Soil O + M Roots Shoots Needles Soil O * Soil M * Soil O + M

1 6569/74 271/43 1117/136 3165/283 209/77 3374/311 2.28 2.78 3.78 4.20 3.84 4.29

2 2558/117 224/59 1529/134 414/85 639/148 1053/193 2.83 3.34 3.26 3.35 4.06 4.19

3 2189/91 597/61 2518/125 1092/145 863/193 1955/279 3.21 2.61 2.99 3.58 4.57 4.34

4 1107/50 3779/134 870/61 3205/237 1962/131 5167/312 2.60 2.91 2.82 3.64 3.53 3.91

5 907/67 458/93 770/85 3180/273 742/87 3922/305 3.04 3.88 3.06 3.20 3.05 3.40

6 139/33 49/30 1846/182 236/101 390/136 626/191 3.06 3.25 4.03 4.05 4.00 4.27

7 3026/108 517/104 1974/174 1/1 21/8 22/9 2.93 3.81 3.54 - 1.59 1.70

8 2390/97 1006/125 479/76 708/142 1609/157 2317/246 3.30 3.53 3.35 4.34 3.70 4.31

9 969/88 708/119 2286/180 1427/234 1888/208 3315/322 3.18 3.84 3.75 4.47 4.02 4.42

10 1309/126 1715/222 4841/325 39/29 2407/184 2446/198 3.04 4.19 4.24 3.24 3.80 3.85

11 411/104 3032/248 1058/128 382/97 191/57 573/125 3.76 4.06 3.78 3.82 3.50 4.05

12 885/89 3134/237 689/97 1074/223 731/80 1805/253 3.18 4.03 2.58 4.66 2.93 4.37

13 75/36 2018/169 3590/188 6088/242 3955/262 10043/371 3.30 3.80 3.01 3.81 4.08 4.09

14 5076/103 1726/156 677/102 1275/267 1018/202 2293/367 2.47 3.68 3.23 4.86 4.65 5.11

15 223/56 1252/115 4097/219 1508/152 1339/137 2847/245 3.28 3.56 3.83 3.71 3.20 4.02

16 79/14 4344/221 3936/232 168/75 87/46 255/107 1.97 3.67 3.77 3.71 3.48 4.02

17 75/30 3770/194 3037/178 883/123 640/138 1523/231 3.04 3.85 3.29 3.73 4.10 4.42

18 841/51 5417/202 3649/209 113/48 285/78 398/106 1.97 3.68 3.87 3.15 3.54 3.75

19 174/50 5273/186 5146/204 27/21 152/79 179/93 3.21 3.36 3.37 2.97 3.97 4.12

20 139/38 2440/150 3122/140 1355/242 574/106 1929/289 3.00 3.43 3.28 4.81 3.86 4.84

21 121/42 913/86 2819/189 701/142 234/92 935/210 3.18 3.18 3.19 4.18 4.17 4.61

22 -/- 2368/153 4445/216 87/54 61/31 148/83 - 3.37 3.71 3.70 3.35 4.04

23 169/33 4620/233 1885/137 1047/128 1752/200 2799/286 2.56 3.67 2.86 3.47 4.40 4.54

24 219/41 2890/158 2572/148 68/16 136/35 204/45 2.65 3.89 3.39 1.84 1.65 1.88

25 2193/61 1490/155 682/89 4009/345 1721/159 5730/396 1.62 3.93 3.26 4.39 4.06 4.57

26 149/35 4207/239 397/89 1575/183 553/112 2128/245 2.52 3.95 3.66 3.57 3.37 3.74

27 1395/88 4081/159 417/71 3611/321 2120/148 5731/392 2.71 3.36 3.08 4.40 3.48 4.44

28 1868/109 652/85 1102/119 1257/166 1188/195 2445/298 3.12 3.32 3.18 3.62 4.34 4.39

29 699/58 5143/217 710/91 1960/242 2598/218 4558/364 2.58 3.47 3.48 4.56 4.21 4.67

30 -/- 10667/233 776/100 1502/166 1234/183 2736/276 - 2.78 3.42 3.83 4.13 4.27

Total 35954/734 78760/907 63031/953 42117/1440 31254/1233 73371/1854

* O—organic layer, M—mineral layer.

Ascomycota was the most abundant phylum in all substrates and sites, accounting for
75.4% of all sequences, followed by Basidiomycota (21.4%), Zygomycota (2.9%), Chytrid-
iomycota (0.2%), and Glomeromycota (<0.1%) (Supplementary Table S1). Venn diagram
revealed the common and unique fungal OTUs among different substrates (Figure 3). There
were 109 (4.21%) OTUs that were shared among all samples. Soil harbored the highest
percentage of unique OTUs (32.1%, 832 OTUs), followed by roots (8.9%, 232 OTUs), shoots
(7.1%, 183), and needles (5.8%, 150 OTUs). A high percentage of unique OTUs in the soil
indicates substrate-specific fungal communities. Species accumulation curves of different
sample types (needles, shoots, roots, and the soil) were approaching the asymptote, show-
ing the sequencing depth was largely sufficient and that nearly all OTUs were detected
(Figure 4).
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Figure 2. Differences in the Shannon diversity index of fungal OTUs among different substrates. In
the Mann–Whitney test, p-values were: roots vs. shoots p < 0.05, roots vs. needles p < 0.05, roots vs.
organic soil p < 0.05, root vs. mineral soil p < 0.05, shoot vs. needles p = 0.97, shoots vs. organic soil
p = 0.06, shoots vs. mineral soil p = 0.23, needles vs. organic soil p = 0.06, needles vs. mineral soil
p = 0.06, and organic soil vs. mineral soil p = 0.99.
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Figure 3. Venn diagram showing the diversity and overlap of fungal taxa in different sample types
from P. sylvestris stands. Different colors represent different substrates: Yellow—Soil (organic and
mineral combined), Orange—Needles, Blue—Shoots, and Gray—Roots.
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Figure 4. Species accumulation curves showing the relationship between the cumulative number
of fungal OTUs and the number of ITS rRNA sequences shown as Yellow—Soil, Orange—Needles,
Blue—Shoots, and Gray—Roots.

At the class level, 19 dominant classes were identified, accounting for 99.4% of
all high-quality reads (Figure 5). The distribution and relative abundance of fungal
classes varied among different substrates. The most dominant fungal classes in shoot
samples were Eurotyomycetes (33.0%), Dothideomycetes (31.0%), and Leotiomycetes
(10.9%), in needle samples—Dothideomycetes (49.4%) and Eurotyomycetes (15.1%), in roots
samples—Agaricomycetes (31.6%), Leotiomycetes (27.1%), and Mucoromycotina_Incertae
sedis (9.6%), while in soil samples—Agaricomycetes (21.1%), Dothideomycetes (19.5%),
Leotiomycetes (11.4%), Archaeorhizomycetes (11.3%), and Eurotyomycetes (10.0%).

Identification at least to genus level was possible for 1396 (53.7%) out of 2602 fungal
OTUs. Information on the 30 most common fungal OTUs representing 50.0% of all high-
quality reads is in Table 3. Among these, nine OTUs representing 14.6% of all high-quality
reads could not be identified to the species or genus level. The most common OTUs in
all the samples were Dothideomycetes sp. 5208_5 (6.9%), Unidentified sp. 5208_1 (5.5%),
Archaeorhizomyces sp. 5208_0 (4.3%), Unidentified sp. 5208_2 (3.9%) and Helotiales sp.
5208_17 (2.5%). The most common OTUs in the needle samples were Unidentified sp.
5208_5 (20.4%), Phacidium lacerum (4.5%), Unidentified sp. 5208_2 (4.4%), Unidentified sp.
5208_1 (4.3%), and Sydowia polyspora (3.4%). The most common OTUs in the shoot samples
were Unidentified sp. 5208_1 (12.8%), Unidentified sp. 5208_2 (7.1%), Rhinocladiella sp.
5208_3 (6.4%), Helotiales sp. 5208_17 (6.1%). The most common OTUs in root samples were
Phialocephala fortinii (11.1%), Mycena cinerella (8.9%), Archaeorhizomyces sp. 5208_0 (8.4%),
and Penicillium camemberti (5.3%). The most common OTUs in the soil samples (organic and
mineral soil combined) were Archaeorhizomyces sp. 5208_0 (9.0%), Unidentified sp. 5208_5
(2.6%), Umbelopsis nana (2.5%), and Malassezia restricta (2.4%).

Among the most common fungal OTUs, there were several for which the relative
abundance varied significantly among the 30 sampling sites and substrates (Table 3).
For example, in shoots, these were Leptosphaeria sp. 5208_64, Lecania naegelii, and Rhin-
ocladiella sp. 5208_3. In roots, these were P. camemberti, Mucor abundans, M. hiemalis, and
Armillaria ostoyae.
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Other represented fungal classes with a relative abundance of <1%. The data from the 30 different
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Table 3. Relative abundance (%) of fungal OTUs associated with needles, shoots, roots, and organic
and mineral soil of Pinus sylvestris. All study sites are combined.

Fungal OTU Phylum * Genbank/UNITE
Reference

Sequence
Similarity,

%

Needles,
%

Shoots,
%

Roots,
%

Soil O **,
%

Soil M **,
%

Soil all,
%

All,
%

Dothideomycetes sp.
5208_5 A KX908472 99 20.445 3.389 0.039 3.217 1.709 2.575 6.953

Unidentified sp.
5208_1 A KP891398 100 4.314 12.786 0.017 1.363 1.654 1.487 5.530

Archaeorhizomyces sp.
5208_0 A MH248043 100 1.231 0.382 8.352 8.393 9.839 9.009 4.257

Unidentified sp.
5208_2 A MN902367 100 4.406 7.096 0.011 2.275 1.814 2.078 3.940

Helotiales sp. 5208_17 A KY742593 100 1.577 6.136 0.011 0.617 0.573 0.598 2.497
Rhinocladiella sp.

5208_3 A KM056296 98 0.398 6.435 0.008 0.769 0.518 0.662 2.313

Phacidium lacerum A MN588163 100 4.515 0.113 0.036 3.039 1.248 2.276 1.839
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Table 3. Cont.

Fungal OTU Phylum * Genbank/UNITE
Reference

Sequence
Similarity,

%

Needles,
%

Shoots,
%

Roots,
%

Soil O **,
%

Soil M **,
%

Soil all,
%

All,
%

Phialocephala fortinii A MN947395 100 0.160 0.041 11.056 0.468 0.458 0.463 1.771
Scoliciosporum

umbrinum A KX133008 100 0.887 4.247 0.003 0.477 0.694 0.570 1.722

Sydowia polyspora A MN900630 100 3.428 1.894 0.031 0.567 0.467 0.525 1.612
Mycena cinerella B KT900146 100 0.024 0.009 8.847 1.135 0.205 0.739 1.491

Malassezia restricta B LT854697 100 1.228 0.670 0.456 1.854 3.180 2.419 1.291
Microsphaeropsis

olivacea A MT561396 100 2.588 0.819 0.111 0.803 1.641 1.160 1.261

Penicillium camemberti A MT355566 100 0.159 0.024 5.326 1.648 1.037 1.387 1.215
Phaeomoniella
pinifoliorum A MK762595 100 0.982 1.769 0.006 0.558 0.483 0.526 0.956

Unidentified sp.
5208_36 A MG828311 100 0.695 2.051 0.008 0.480 0.368 0.432 0.945

Cladosporium
herbarum A MT635288 100 1.826 0.432 0.631 0.784 0.848 0.811 0.921

Chaetothyriomycetidae
sp. 5208_56 A KX589170 98 0.227 2.400 - 0.078 0.483 0.251 0.883

Leptosphaeria sp.
5208_64 A JQ044439 97 0.252 2.417 - 0.024 0.022 0.023 0.828

Unidentified sp.
5208_39 A MT242010 100 1.599 1.023 0.006 0.380 0.262 0.330 0.820

Hyaloscypha variabilis A MT469925 100 0.057 - 3.221 1.099 1.142 1.118 0.802
Umbelopsis dimorpha Z MT138616 100 0.114 0.004 0.028 1.885 3.209 2.449 0.749

Chaetothyriales sp.
5208_15 A KP400572 100 0.836 1.346 0.019 0.297 0.381 0.333 0.732

Trechispora sp.
5208_19 B JX392812 99 0.002 - 3.919 0.582 0.477 0.537 0.718

Unidentified sp.
5208_12 A FJ553582 100 0.062 0.004 0.006 2.123 2.726 2.380 0.713

Unidentified sp.
5208_32 B MN902363 100 2.189 0.325 - 0.252 0.070 0.174 0.702

Cenococcum geophilum A HM189724 100 0.010 - 2.517 0.560 1.817 1.096 0.683
Unidentified sp.

5208_72 A MN902396 100 1.637 0.458 0.014 0.525 0.224 0.397 0.673

Unidentified sp.
5208_23 A MT237078 100 1.109 0.684 0.006 0.565 0.461 0.521 0.646

Unidentified sp.
5208_69 A MN902387 100 1.474 0.543 - 0.216 0.083 0.159 0.587

* A—Ascomycota, B—Basidiomycota, Z—Zygomycota; ** O—organic layer, M—mineral layer.

The assessment of fungal functional groups showed that most fungal OTUs could
not be assigned to any functional group, primarily because these could not be identified
to the genus or species level. Among the remaining OTUs, 7.6–10.7% per site constituted
plant pathogenic fungi, 9.5–14.0%—saprotrophs, and 2.0–14.9% endophytic fungi (Figure 6).
In terms of sequence reads, in different samples, fungi of the unknown functional group
constituted 54.6–81.4% of reads, pathogens—6.5–12.4%, saprotrophs–6.1–11.7%, and en-
dophytic fungi—2.0–20.4% (Figure 6). Consequently, the distribution of fungal functional
groups substantially differed when compared between OTUs and sequence reads.

Generalized linear mixed effect models showed that species richness of fungal OTUs
associated with roots increased with the increase of stand age while the opposite was the
case for fungi in needles and organic soil (Chisq = 89, df = 4, p < 0.05). The stand age did not
have an effect on the fungal species richness in shoots or the mineral soil (Figure 7A). In both
organic and mineral soil, the species richness increased with the increase of defoliation,
while the opposite relationship was in needles, shoots, and roots (Chisq = 133, df = 4,
p < 0.05) (Figure 7B). Climatic variables also showed a significant effect on the species
richness that varied depending on the substrate (Chisq = 95, df = 4, p < 0.05 and Chisq = 252,
df = 4, p < 0.05 for temperature and precipitation, respectively) (Figure 7C,D). In needles,
the fungal species richness increased with the increase in temperatures and precipitation.
The opposite was for shoots and soil fungi, i.e., the species richness decreased with the
increase of temperature and precipitation. In roots, the fungal species richness increased
with the increase in temperature, but no effect of precipitation was found (Figure 7C,D).
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Figure 7. The relationship between the species richness of fungal OTUs in different substrates
(needles, shoots, roots, mineral, and organic soil) of Pinus sylvestris and different stand (A,B) and
climatic (C,D) parameters. The semitransparent field around each curve denotes the size of the
deviation from the mean value.
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The soil parameters significantly affected the species richness (Figure 8). The increasing
concentration of P2O5 increased the fungal species richness in needles but decreased in
the shoots and mineral soil (Chisq = 88, df = 4, p < 0.05) (Figure 8A). For the roots and
organic soil, the concentration of P2O5 had no significant effect (Figure 8A). The increasing
concentration of K2O increased the fungal species richness in shoots but decreased in other
substrates, i.e., needles, roots, minerals, and organic soil (Chisq = 24, df = 4, p < 0.05)
(Figure 8B). Soil pH had a similar effect on fungal species richness in the needles, minerals,
and organic soil, i.e., species richness decreased with the increase in pH (Chisq = 127, df = 4,
p < 0.05). The opposite was in the shoots, while the fungal species richness in roots was
generally unaffected (Figure 8C). In all substrates, the fungal species richness increased
with the increase of Ca concentration (Chisq = 23, df = 4, p < 0.05) (Figure 8D).
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Figure 8. The relationship between the species richness of fungal OTUs in the different substrates
(needles, shoots, roots, mineral, and organic soil) of Pinus sylvestris and different soil parameters
(A–D). The semitransparent field around each curve denotes the size of the deviation from the
mean value.

The type of substrate (needles, shoots, roots, or soil) had a strong effect on the com-
position of the fungal communities as the fungal communities associated with different
substrates differed significantly from each other (PERMANOVA: df = 4, SumOfSqs = 12.554,
R2 = 0.32793, F = 12.687, p < 0.001) (Table 4). An exception was the fungal communities in
organic and mineral soil, which were similar (p > 0.05). Similarly, differences in the fungal
communities among different substrates were also indicated by the NMDS of Bray–Curtis
dissimilarity based on the OTU-level abundance (stress = 0.15) (Figure 9). PERMANOVA
has shown that the fungal community composition varied among study sites, which ex-
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plained almost as much variation in the fungal community composition as it was explained
by the substrate (df = 29, SumOfSqs = 8.055, R2 = 0.210, F = 1.179, p < 0.01).

Table 4. Pairwise comparison of the fungal communities among different substrates (needles, roots,
shoots, mineral soil, and organic soil) of Pinus sylvestris.

Substrate
Needles Roots Shoots SoilM

R2 F p R2 F p R2 F p R2 F p

Roots 0.37 24.19 0.0011 - - - - - - - - -
Shoots 0.23 14.86 0.0011 0.36 22.06 0.0011 - - - - - -
SoilM 0.26 15.64 0.0011 0.20 8.25 0.0011 0.25 14.50 0.0011 - - -
SoilO 0.21 11.88 0.0011 0.18 7.68 0.0011 0.20 11.29 0.0011 0.02 0.90 0.591
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4. Discussion

As climate change is expected to affect the natural distribution of forest tree species,
entire forest ecosystems are likely to be subjected to major changes to adapt to new condi-
tions. However, it is less clear whether and how global fungal biodiversity will respond
to changes in the distribution range of the host trees. In the present study, to get a deeper
understanding of these questions, the impact of abiotic factors on the above- and below-
ground diversity and composition of fungal communities were studied in 30 P. sylvestris
sites. Using the high-throughput sequencing data, different environmental variables, and
soil chemical properties, we identified key factors that drive the diversity and composi-
tion of fungal communities associated with P. sylvestris. Moreover, by linking the fungal
community data and different substrates, we have demonstrated that the fungal species
richness and community composition depend on the substrate they colonize. Such patterns
of fungal specificity for the substrate have already been shown in Picea abies stands [71].
Besides, the fungal species richness can be different in the same tissues depending on
their life stage, e.g., living or dead wood [49]. In addition, we have shown that the fungal
species richness is highly dependent on the site. The site-specific composition of fungal
communities was shown previously for soil, root, or foliage samples [72–75]. Overall, our
results demonstrated that different functional tissues and the rhizosphere soil of P. sylvestris
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are associated with diverse fungal communities driven by a combination of climatic and
edaphic factors, thereby providing insights into possible ecological responses of fungal
communities to climate change in northern Europe.

Climate is one of the main factors influencing fungal development, either directly or
indirectly, by triggering tree responses [12]. However, the diversity of fungal communities
can be influenced by a variety of factors, including tree species composition, stand age,
habitat conditions, and edaphic factors [76]. Despite many studies on interactions between
soil fungi and their hosts, the interactions between fungi and above- and below-ground
tree traits are less studied. It is emphasized that when assessing the interaction of above-
and below-ground communities, it is important to identify the dynamics of soil microbial
communities that reflect changes in forest age and soil properties [77]. Our findings
suggest that the fungal species richness in needles, organic soil, and roots of P. sylvestris
change with the stand age. In agreement with other studies [78], the greatest positive
effect of stand age was on fungal species richness in roots. Such results could be due to
the accumulation of fungal species over time as well as due to changes in nutrient supply
by host trees [71,78]. Several studies have also reported a strong effect of tree age on
fungal communities, as the litter quality and understory vegetation in young stands differ
markedly from older stands [79]. It was shown that fungal communities in roots might be
specifically shaped at the fine scale, but this may disappear when averaged across an entire
landscape, obscuring the specific environmental conditions and species interactions that
drive fungal diversity [80]. Indeed, the assembly of root-associated fungi has been shown
to be regulated by a wide range of spatial and temporal variables [81].

Fungal communities are dynamic components of terrestrial ecosystems and exhibit
temporal and spatial variation [77]. Across the range of a single host tree species, the fungal
community may change in response to climatic factors [82]. It is also known that moisture
and temperature influence the growth of fungi and that characteristic weather conditions
favorable for fungi may be used to predict their abundance and richness in habitats with
different climatic conditions [83]. Although climatic factors such as temperature and pre-
cipitation were found to promote fungal richness globally [84], our results suggest that the
richness of fungal OTUs in the organic soil layer decreases with the increase in temperature
and precipitation. Temperature is one of the main factors determining soil microorganisms’
activity [85]. It is known that temperature enhances microbial metabolic activity, potentially
leading to an accelerated litter decomposition rate [86]. Low temperature is considered
to be one of the dominant forces protecting soil C from decomposition [87]. However, it
seems likely that soil organic C will decrease with increasing temperature due to climate
change [88]. With an increase in temperature, evaporation is enhanced, and plant pro-
ductivity is reduced, ultimately resulting in a decrease in soil organic carbon input [89].
Finally, shifts in the amount of above- and below-ground organic matter inputs to the soil
may also shape the composition and activity of fungal communities [89,90]. Studies by
Dang et al. [77] have also shown that the abundance of dominant fungal communities is
significantly correlated with organic C, total N, C: N, available N, and available P, indicating
the dependence of these microbes on soil nutrients. Therefore, it could be assumed that
as the temperature increases and the C content decreases, the abundance of microbial
communities is prone to decrease. Yet, large knowledge gaps remain that feed uncertainty
around the temperature and sensitivity of soil microbial processes [91].

Recent studies have shown that the decrease in the abundance of saprotrophic fungi
may have been a direct result of forest disturbance or an indirect result of changes in soil pH
and soil P [92]. Furthermore, the dominant P-solubilizing saprotrophic fungi are replaced by
diverse facultative pathogenic fungi with weaker C decomposition ability. These changes
potentially indicate a shift from soil phosphate limitation to carbon limitation following
deforestation [92].

Some belowground properties, including plant richness and plant diversity, total
carbon, total nitrogen, soil pH, and nutrient content, change simultaneously with changes
in the aboveground structure [77]. Furthermore, these indices eventually influence the
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function and structure of the soil microbial community [77]. Our study has shown that
P. sylvestris fungal communities in the soil, roots, and shoots negatively respond to the
increase in soil pH. The effects of soil pH on the soil microbial community assembly occur
through the availability of nutrients and carbon and the solubility of metals, which are
strongly influenced by changes in soil pH concentration [19]. Previous studies also confirm
that soils with lower pH concentrations increase the rate of fungal growth in contrast to
soils with higher pH [93]. Decreased fungal species richness in forest soils with increasing
pH is also associated with decreased availability of carbon [93,94]. The increase in soil pH
also reduces the rhizosphere priming effect, which leads to an increase in the accumulation
of carbon in the soil, which may also be one of the reasons for the decrease in fungal
richness in the soil [94]. It is also important to mention that soil pH is closely related to
vegetation and strongly influences the degree of ectomycorrhizal colonization. In particular,
it has been observed that a decrease in pH results in a shift in vegetation, leading to
an increase in ectomycorrhizal fungi [95].

In the present study, the most common fungal phyla among different P. sylvestris
substrates were Ascomycota and Basidiomycota, which are known to dominate among
fungi colonizing soils and terrestrial plant tissues [7,11,96,97]. Interestingly, P. sylvestris
needles showed a higher relative abundance of fungal OTUs belonging to Helotiales than
Dothideales, confirming the hypothesis that Helotiales are dominated in gymnosperms
and Dothideales in angiosperms [47]. The major differences between the above- and
below-ground communities were the dominance of the Dothideomycetes in shoots and
needles, while Archaeorhizomyces dominated in roots and soil samples. This is not surprising
as representatives of both Dothideomycetes and Archaeorhizomyces were among the most
commonly found fungal classes in pine forests [98–101].

Fungi colonizing different P. sylvestris tissues accounted for only a fraction of all fungal
OTUs. As a result, communities of soil fungi had higher diversity than those inhabiting the
aboveground parts, and in the organic soil, the abundance of fungi was higher than in the
mineral soil. Numerous studies indicate that soil is the primary source of microbiomes in
terrestrial habitats [102]. Since resource availability is a key factor regulating biodiversity
and ecosystem functioning [103], it could be that soil harbors a greater diversity of microbes
by providing more enriched or easily accessible resources and being an ecotone for both
above- and below-ground communities. It has previously been shown that plant species
can modify the soil environment and support rhizosphere microbes, which in turn can
provide feedback that promotes plant health and growth [104]. The study by Bulgarelli
et al. [105] on Pinus ponderosa sampled from several locations around the globe revealed
minimal geographic differentiation of phyllosphere bacterial communities, which supports
the concept that the host plant species is a determinant for the structure of the phyllosphere
community. In comparison to other tissues and the soil, P. sylvestris needles were more
often colonized by plant pathogens. It is important to emphasize that foliar pathogens,
while infecting and causing the disease to the needles or leaves, can also, especially at
high infection levels, cause growth reduction, increase susceptibility to biotic and abiotic
stresses, and in severe cases, cause tree mortality [106,107]. This may also suggest that
fungal communities in needles and roots, which are the primary functional tissues of trees,
respond faster to biotic and abiotic stresses, while in the soil and shoots, these changes are
slower [108].

Among soil and root-associated fungi, ectomycorrhizal fungi (ECM) represent a key
component needed for the successful establishment and growth of P. sylvestris trees. Among
these, Suilloid fungi are of key importance for pines, especially those of the Suillus and
Rhizopogon genera [109]. Despite the key importance of these ECM fungi, they occupied
only 0.5% of the total diversity in the soil and 0.1% in the roots of investigated samples.
Suilloid fungi represent species of early succession and, with the age of the stand, are
often replaced by other ECM fungi, which leads to the fact that they become less com-
mon [110,111]. Besides, a higher proportion of this group of fungi is usually found after
forest disturbance [109]. For example, Rhizopogon species were found to dominate ECM
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communities associated with pine roots in post-fire sites [112]. Among other more fre-
quently detected fungi was Umbelopsis nana, which accounted for 2.7% of the total fungal
diversity. Members of the genus Umbelopsis are common soil fungi that are found in
forest ecosystems around the world [113,114]. This species appears to be an indicator
of the mineral soil habitats in many northern forests [115]. Studies in Swedish clear-cut
P. sylvestris forests also revealed that U. nana was one of the most common species of soil
fungi [116]. In previous studies, members of this genus were also detected in the roots of
P. sylvestris [101], P. abies [117], Picea mariana [115], Pseudotsuga menziesii, Pinus ponderosa [114],
and Quercus sp. [118]. Umbelopsis fungi are also known to synthesize polyunsaturated fatty
acids, which are important in plant stress defense [119] and can be important in the process
of climate change due to the increase of stressors. Phacidium lacerum, which was frequently
detected in the soil and shoot samples, is widely distributed throughout Europe, where
it commonly occurs on P. sylvestris [120], but it is not known to cause the disease on this
host [121]. However, it was recently reported to be the causal agent of postharvest rot
in apples and pears [122]. Therefore, the pathogenic nature of pines should not be ex-
cluded. Sydowia polyspora, often found in needles and shoots, is commonly associated
with conifers worldwide and is considered a pathogen on several hosts [123]. Moreover,
Cleary et al. [124] recently found S. polyspora in asymptomatic seeds of several Pinus spp.
obtained across Europe and North America, including P. pinaster, P. radiata, P. strobus,
P. sylvestris, P. mugo, and P. pinea. Fungus is also vectored by insects [125] and very often
reported as an endophyte or a saprophyte [126]. The endophytic way of life of pathogenic
fungi can be a starting point at an early stage of the infection process before transitioning
to a pathogenic lifestyle [127].

5. Conclusions

Our study has shown that P. sylvestris forests in Lithuania are associated with a high
diversity of above- and below-ground fungal communities, which are strongly influenced
by interrelated environmental factors and stand characteristics. Patterns of fungal com-
munity composition were strongly associated with particular substrates, showing that
they provide different ecological niches that are preferred by different fungal species. To
maintain the availability and suitability of ecological niches for different fungal species,
it is essential to maintain an appropriate soil pH and the availability of soil nutrients.
Disturbances related to climate change are likely to affect these important factors and, thus,
may indirectly affect the structure and diversity of fungal communities. On the practical
side, forest management and planning in the future will have to adapt to changing climatic
conditions to ensure ecosystem services through the introduction of new management
approaches. This is particularly important for maintaining soil health. In the future, the
stands with other, possibly non-native, tree species, which better tolerate climate change,
may also become unavoidable to maintain the diversity of microorganisms and ensure the
growth and sustainability of forest stands.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jof8101112/s1, Table S1: Relative abundance (%) of fungal taxa
associated with needles, shoots, roots, and the rhizosphere soil of Pinus sylvestris in Lithuania.
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