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Simple Summary: Knowledge of the nutritive value of feeds is essential to feed animals with
adequate diets and to optimize production with minimal environmental impact. In vitro digestibility
might be an important source of information for nutritionists, because it is a cheap and fast way to
assess information on feed digestion for ruminants, notably when the main objective is to compare
feeds or diets. A rumen fermenter is a relatively new type of equipment which improves the
operational capacity of in vitro procedures. However, the lack of standardized procedures for in vitro
trials using rumen fermenters may compromise the reliability of information obtained, mainly due
to the high variability among laboratories. Hence, we proposed and evaluated a standard method
for in vitro digestion using rumen fermenters, through a collaborative study involving seven feed
analysis laboratories. On average, the method showed adequate performance, where the random
variation among laboratories was lower than the random variation within laboratories (i.e., error
variation). Considering that in vitro digestibility is an analytical entity that is defined by the method
itself, the proposed method was considered reproducible. Our results highlighted that, if the method
is followed exactly, its results present adequate levels of repeatability and reproducibility.

Abstract: Our objective was to propose and evaluate a standard procedure for the evaluation of
in vitro dry matter digestibility for ruminant feeds, using artificial fermenters. A collaborative study
was performed with seven feed analysis laboratories and four feeds (Tifton 85 hay, corn silage,
soybean hulls, and soybean meal). Two types of artificial fermenters were evaluated (DaisyII Ankom
and TE-150 Tecnal). Each laboratory received 80 sealed filter bags with samples (20 per feed), eight
blank filter bags, a plastic bag with buffer solution reagents, and instructions describing how to
conduct a 48 h in vitro assay using an artificial fermenter and how to collect bovine ruminal inoculum.
On average, the contribution of laboratory effect to the total random variance was 24%, being less than
the contribution of equipment (42%) and error (34%). The repeatability ranged from 3.34 to 5.79%,
across feeds. The reproducibility ranged from 5.93 to 8.94% across feeds, which implied Horwitz
ratios ranging from 2.94 to 4.10. Due to the specific characteristics of the analytical entity evaluated
here, which is defined by the method itself, the proposed method was considered reproducible. The
results highlighted that, if the method is followed exactly, its results are precise and present adequate
levels of repeatability and reproducibility.
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1. Introduction

Initially, in vitro digestibility assays were proposed in order to estimate forage in
in vivo digestibility [1]. However, currently the range of application of these kind of
techniques has increased, mainly for screening, discrimination, or direct comparison of
feeds and diets [2]. This kind of technique is mostly used because it is fast, relatively
inexpensive, and precise.

However, the apparent in vitro dry matter digestibility (or indigestibility) is an analyt-
ical entity defined by the method itself. Thus, they are methods that determine a value that
can only be obtained in terms of the method itself [3]. As there are no primary reference
standards for this type of method, they cannot be validated for accuracy in determining the
“true” value of the constituent. To minimize systematic errors (bias) among laboratories,
empirical methods must be followed exactly as described in the standard manuals. Even
slight variations in the method may result in the measurement of a different constituent [4].

The in vitro digestibility can be affected by several alterations in the standard pro-
cedures, such as laboratory instruments, vessel and filter bag types, buffer solutions,
headspace gas type, way of incubating samples, analyst working, inoculum sources, inocu-
lum donor diet, sample grinding, and others [2,5–11]. Any change either in the number
of steps or in any parameter of the analysis will result in different in vitro methods whose
digestibility estimates cannot be directly compared with each other.

Indeed, the among-laboratory variation tends to be greater for empirical methods (i.e.,
type I methods), because analysts often perform these methods in nonstandard ways that
do not follow the official method. In addition, quality assurance programs established
to verify results in laboratories are often inadequate or even nonexistent. Sometimes,
the limitations of methods and the background for specific steps in a method have not
been published or have not been appropriately communicated to the analyst. Most of the
among-laboratories variation is associated with the analysts’ desire to improve efficiency
by shortening times, eliminating steps, or failing to follow the details of a method and
assuming that those deviations could not be significant enough to affect the results. These
sometimes well-intentioned deviations ignore the fundamental property of the empirical
methods, which requires that they be followed exactly [4].

Compared to conventional methods, the utilization of artificial rumen fermenters
and filter bags simplifies in vitro digestibility measurement, eliminating the need for filter-
ing samples after digestion, which is often one of the most labour-intensive steps in the
conventional procedure. The incubation of several samples within a jar also reduces the
need for individual inoculation of samples in tubes [5]. Despite those aspects, a standard
and widely applied method for evaluating in vitro digestibility of ruminant feeds and
diets using rumen fermenters that produces reliable and comparable results, would allow
minimizing the variability among laboratories and carrying out a more reliable comparison
among feeds and diets offered to cattle and other domestic ruminants.

In order to do this, the study director’s laboratory at the Brazilian National Institute
of Science and Technology in Animal Science (INCT-CA) developed several studies to
establish standard methods of in vitro and in situ digestibility for ruminant feeds or diets
(e.g., [2,10,12,13]). An integrated method using rumen fermenters was derived from those
studies and has been successfully applied within the study director’s laboratory. In order
to check the adequacy and reproducibility of that method, a collaborative study to estimate
the in vitro dry matter digestibility for ruminant feeds was conducted, following the
standard procedure proposed by the Brazilian National Institute of Science and Technology
in Animal Science.

2. Materials and Methods

All animal care and handling procedures applied in this work were approved by
Ethics Committee on the Use of Production Animals of the Universidade Federal de Viçosa
(protocol number 029/2019).
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2.1. Standardization of the Machine-Rinsing Procedure for Filter Bags

Prior to the collaborative study, a separate experiment was performed, aiming to
define a standard machine-rinsing procedure for filter bags after incubation. The results
obtained in this experiment were posteriorly incorporated into the in vitro digestibility
method. The theoretical background for this experiment will be adequately presented in
Section 3. The experiment was carried out at the Animal Nutrition Laboratory (the Study
Director’s laboratory) of the Animal Science Department of the Universidade Federal de
Viçosa, Viçosa, Minas Gerais, Brazil.

Four feed samples were used: Tifton 85 hay (Cynodon sp.), corn silage (Zea mays), soy-
bean meal, and soybean hulls. These feeds were chosen to create a small but representative
group of feeds, used to feed ruminants in the tropics. Corn silage sample was oven-dried
(55 ◦C) and, along with the other feeds, was processed in a knife mill to pass through
a 1-mm screen sieve. The samples were quantified regarding dry matter (DM) content
(oven-drying at 105 ◦C for 16 h, method G-003/1; [14]).

The in vitro digestibility assay was performed in an artificial fermenter (TE-150, Tecnal
Equipamentos Científicos, Piracicaba, São Paulo, Brazil; [2]). Twenty 500 mg test portions
per feed were weighed and stored in heat-sealed filter bags (non-woven textile 100 g/m2;
4 × 4.5 cm; [12]). A rumen-cannulated bull, fed a sugarcane- and concentrate- (220 g of
crude protein/kg DM) based diet with a forage-to-concentrate ratio of 80:20, was used as
the inoculum donor. The animal had free access to water and a mineral mixture (90 g/kg
of phosphorus), and was adapted to the diet for 14 days prior to rumen inoculum collec-
tion [15]. The ruminal inoculum (liquid and solid digesta) was collected at several points
in the rumen, shortly before the beginning of incubation. Ruminal inoculum was stored
in preheated (39 ◦C) thermal bottles and then mixed for a few seconds, using a blender
(NL-26,400 W, Mondial, Conceição do Jacuípe, Bahia, Brazil), to homogenize liquid and
solid phases. The fluid was then filtered through four layers of cheesecloth. The steps
from rumen inoculum collection to incubation onset were conducted within 20 min in a
climate-controlled room (39 ◦C). The artificial fermenter possessed four jars (3200 mL), and
each jar randomly received all test portions of each feed and two blank bags. In each jar,
400 mL of ruminal inoculum and 1600 mL of McDougall’s buffer solution were added. The
preparation of buffer solution followed the procedures described by Camacho et al. [10].
Carbon dioxide was flushed into the headspace of each jar, which was closed and placed
into the preheated (39 ◦C) artificial fermenter. After 48 h of incubation, the filter bags were
superficially washed with distilled water and gently pressed to remove gases.

All bags were placed in a washing machine (Turbilhão 5 kg model, Suggar, Belo
Horizonte, Minas Gerais, Brazil). The machine was filled with clean tap water and a rinse
cycle of 1 min of agitation (delicate setting) was used [16]. After that, the residual water was
drained and bags were gently pressed to remove excess of liquid, oven-dried (55 ◦C/24 h
and 105 ◦C/16 h, sequentially), placed in a desiccator, and weighed. This rinsing procedure
was repeated seven times with all filter bags.

The apparently undigested DM residue was estimated as follows:

UR =
R− B

M
× 100 (1)

where UR is the apparently undigested residue (% DM), M is the incubated mass of DM (g),
R is the undigested residue inside the bag (g), and B is the residual DM in blank filter
bags (g).

The UR was submitted to an analysis of variance, including the fixed effects of feeds
and rinsing and their interaction. The sequential rinses were considered as repeated
measures. The (co)variance residual matrix was modeled according to a heterogenous com-
pound symmetry structure. This choice was based on the Akaike information criterion with
correction. The least-square estimates of UR were compared in terms of differences between
sequential rinses using the Tukey-Kramer approach, according to the following hypotheses:
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H0 : µi − µi+1 = 0 (2)

Ha : µi − µi+1 6= 0 (3)

where i denotes the rinse number.
Degrees of freedom were estimated using the Kenward-Roger approach. Statistical

analysis was performed using the GLIMMIX procedure of SAS. Significance was declared
at p < 0.05.

2.2. Collaborative Study

The collaborative study was performed in seven feed-analysis laboratories in Brazil:
the Study Director’s laboratory; Universidade Federal Rural da Amazônia, Parauapebas,
Pará; Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, São Paulo; Vet-
erinary Medicine College, Universidade Federal de Minas Gerais, Belo Horizonte, Minas
Gerais; Animal Science and Veterinary College, Universidade Federal da Bahia, Salvador,
Bahia; Universidade Federal de Lavras, Lavras, Minas Gerais; and Agricultural and Envi-
ronmental Sciences Institute, Universidade Federal de Mato Grosso, Sinop, Mato Grosso.

The laboratories were chosen based on the following criteria: 1. They must be associ-
ated with the Brazilian National Institute of Science and Technology in Animal Science 2.
The following items should be available in the laboratory: rumen-cannulated bovines, CO2
cylinder, and either a DaisyII (ANKOM Technology Co., Macedon, NY, USA) or a TE-150
(Tecnal Equipamentos Científicos, Piracicaba, SP, Brazil) artificial fermenter.

The feeds used in the previous experiment were also used as the study materials
for the collaborative study. The DM (dried overnight at 105 ◦C, method G-003/1), crude
protein (Kjeldahl procedure, method N-001/2), and neutral detergent fibre (NDF; method
F-013/1) contents were analyzed in the Director’s laboratory of the Brazilian National
Institute of Science and Technology in Animal Science, according to its standard analytical
procedures [14] (Table 1). In particular, the NDF analysis was performed using a heat-
stable α-amylase (Liquozyme Supra 2.2X, Novozymes, Araucária, Paraná, Brazil), omitting
sodium sulphite, and expressed inclusive of residual ash and protein.

Table 1. Chemical composition of feeds used for evaluating in vitro dry matter digestibility.

Feed Dry Matter 1 Crude Protein 2 Neutral Detergent Fibre 2

Tifton 85 hay 90.6 6.68 74.5
Corn silage 24.9 6.23 50.1

Soybean meal 88.4 47.9 24.0
Soybean hulls 88.0 15.4 66.4

1 % as fed. 2 % of dry matter.

For the in vitro assay, test portions of 500 mg of each feed were weighed and stored
in heat-sealed filter bags (non-woven textile 100 g/m2; 4 × 4.5 cm; [12]). Moreover, all
reagents necessary to compose 10 L of McDougall’s buffer solution [10] were weighed and
stored in labelled plastic bags.

Each laboratory received 80 sealed filter bags with test portions (20 per feed), eight
blank filter bags, a plastic bag with buffer solution reagents, and instructions describing
how to conduct a 48 h in vitro assay using an artificial fermenter and how to collect bovine
ruminal inoculum. The complete method is fully described in the Supplementary Material.
Briefly, as both types of artificial fermenters possess four jars each, the laboratories were
instructed to use one jar for each feed (including two blanks per jar). After in vitro incuba-
tion, the laboratories superficially washed the filter bags with distilled water, and gently
pressed them to remove gases. The bags were then oven-dried (55 ◦C/48 h) and sent back
to the Study Director’s laboratory to estimate in vitro dry matter digestibility (IVDMD).

The filter bag rinsing procedure was performed in the Study’s Director laboratory, as
in the previous experiment. The bags were placed in a washing machine (Turbilhão 5 kg
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model, Suggar, Belo Horizonte, Minas Gerais, Brazil). The machine was filled with clean
tap water and a rinse cycle of 1 min of agitation (delicate setting) was set. The residual
water was then drained. This procedure was repeated three times. After this, the bags
were gently pressed to remove excess of liquid, oven-dried (55 ◦C/24 h and 105 ◦C/16 h,
sequentially), placed in a desiccator, and weighed.

The apparent IVDMD was estimated as follows:

IVDMD =
M− (U − B)

M
× 100 (4)

where IVDMD is the in vitro dry matter digestibility (% DM), M is the incubated mass of
DM (g), U is the undigested residue in the bag (g), and B is the residual DM in the blank
filter bags (g).

The initial basic statistical model used to analyze IVDMD was:

Yijkl = µ + Fi + Ej + L(j)k + εijkl (5)

where Yijkl is the IVDMD of the test portion l of feed i, measured in the laboratory k, using
the equipment j; µ is the general constant (fixed effect); Fi is the random effect of feed i,
assumed NIID (0, σ2

F); Ej is the random effect of equipment type j (i.e., artificial fermenter),
assumed NIID (0, σ2

E); L(j)k is the random effect of laboratory k nested within the equipment
j, assumed NIID (0, σ2

L/E); and εijkl is the random error, assumed NIID (0, σ2
ε).

Despite the equipment effect being only two levels (i.e., DaisyII or TE-150), we decided
to keep it as a random effect, as many other artificial fermenter brands are available on
the market. Additionally, the laboratory effect was considered to be a nested effect of the
equipment, in order to estimate the differences among laboratories without any further
bias caused by using different artificial fermenters.

Initially, we performed an outlier evaluation on the overall dataset. Three different
criteria were defined in order to identify outliers: 1. Restricted likelihood distance > 0.3,
COVRATIO < 0.8, and externally studentized residue (module) >2.5. An observation was
considered as an outlier if it met at least two of those criteria. After this, only four obser-
vations were eliminated from the dataset (Table 2). The residues showed a clear pattern,
agreeing with the assumption of a normal and homoscedastic distribution (Figure 1).

Table 2. Average in vitro dry matter digestibility (%) of different feeds, according to the laboratories
participating in the collaborative study.

Feed 1,2

Laboratory Tifton 85 Hay Corn Silage Soybean Meal Soybean Hulls

1 49.1 ± 0.70 58.0 ± 0.96 89.0 ± 0.89 79.6 ± 1.14
2 42.4 ± 0.85 48.5 ± 0.94 86.3 ± 0.61 65.3 ± 1.20
3 45.9 ± 0.57 3 51.4 ± 0.76 94.2 ± 0.59 73.5 ± 0.87
4 56.2 ± 0.57 63.1 ± 0.46 97.4 ± 0.64 79.6 ± 0.61
5 47.8 ± 0.49 53.2 ± 0.54 85.1 ± 0.78 76.5 ± 0.91
6 51.6 ± 0.66 61.5 ± 0.67 93.2 ± 0.41 75.4 ± 0.74
7 52.6 ± 0.59 64.0 ± 0.65 4 93.4 ± 0.76 3 78.3 ± 0.76

Overall 49.4 ± 0.43 57.1 ± 0.56 91.2 ± 0.43 75.4 ± 0.52
1 Mean ± standard error. 2 Unless stated, within laboratories, the average values were calculated on n = 20.
3 n = 19. 4 n = 18.
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Figure 1. Descriptive pattern of studentized residues for in vitro dry matter digestibility after residual
evaluation and outlier elimination.

In order to improve the understanding on the pattern of the results, the IVDMD was
also evaluated for each individual feed, according to the model

Yijk = µ + Ei + L(i)j + εijk (6)

where Yijk is the IVDMD of the test portion k, measured in the laboratory j, using the
equipment i; µ is the general constant (fixed effect); Ei is the random effect of equipment
type i (i.e., artificial fermenter), assumed to be NIID (0, σ2

E); L(i)j is the random effect of
laboratory j nested within the equipment i, assumed to be NIID (0, σ2

L/E); and εijk is the
random error, assumed to be NIID (0, σ2

ε).
From the adjustment of the models (5) and (6), the following technical performance

indicators of the method were estimated [4,17–19]:
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Sr =
√

σ̂2
ε (7)

r =
Sr

Y
× 100 (8)

SR =
√

σ̂2
L/E + σ̂2

ε (9)

R =
SR

Y
× 100 (10)

SRe = 2× C0.85 (11)

Re = 2× C−0.15 (12)

HotRat =
R
Re

(13)

where sr is the standard deviation of repeatability (intra-laboratorial variability), r is the
repeatability (%), σ̂2

ε is the estimate of error variance, Y is the average IVDMD (% DM),
sR is the standard deviation of reproducibility (inter-laboratorial variability), R is the
reproducibility (%), σ̂2

L/E is the estimate of the variance among laboratories, sRe is the
expected standard deviation of reproducibility, Re is the expected reproducibility (%), C is
the average IVDMD (g/g DM), and HorRat is the Horwitz ratio.

Moreover, an adapted value of the Z-score [9] was calculated for each level of the
random effects within each feed, according to the equation

Z =
eBLUP

SEp
(14)

where Z is the adapted Z-score for the respective level of random effect (dimensionless),
eBLUP is the empirical best linear unbiased predictor of the respective level of random
effect, and SEp is the standard error of prediction associated with the eBLUP.

The laboratory eBLUPs were also used for applying a ranking laboratory performance
test by adapting the protocols described by Wernimont and Spendley [20]. It must be
noted that the test was applied using eBLUPs, rather than average IVDMD, as the former
is adjusted for the effect of different equipment, which could bias the rank of laboratories
within different feeds.

All statistical evaluations were performed using the MIXED procedure of SAS 9.4. The
components of variance were estimated according to the restricted maximum likelihood
method. When pertinent, significant results were declared at p < 0.05.

3. Results and Discussion
3.1. Standardization of the Machine-Rinsing Procedure for Filter Bags

One of the steps of the in vitro assays which is more dependent on analyst work
is the rinsing procedures of filter bags. Practical recommendations sometimes rely on
hand-rinsing procedures, the endpoint of which is subjectively defined by the water clar-
ity [21]. In this sense, replacing hand-rising with a standard machine-rising procedure
may reduce both the subjectivity of this method step and the variability among and within
analysts. Despite the fact that some standardizations have been suggested for in situ
procedures [16,22], a machine-rising procedure for filter bags used in in vitro assays has
not yet been adequately defined.

The analysis of variance indicated an interaction between feeds and number of rinses
(p < 0.01). However, despite the interaction effect, all evaluated feeds showed the same
pattern, as there was no significant change (p > 0.05) in UR after three rinses (Figure 2).
In addition to the UR decrease as the number of rinses increased, the variance among
replicates also decreased and was minimized from the third rinse (Figure 3).
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residue, according to the number of rinses after in vitro incubation.

The average UR pattern across feeds behaved similarly to a first-order kinetics model
(Figure 2), with the differences (i.e., decrease in UR) between sequential rinses becom-
ing smaller as the number of rinses increased. A similar pattern was also observed by
Coblentz et al. [22] when evaluating the quantity of contaminants solubilized in the wash-
ing water of filter bags used for an in situ degradation assay. According to those authors,
the main components of that contamination would include the particles of rumen digesta
adhering to the bags and the ruminal microbes attached to feed particles.
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The UR pattern obtained here disagrees with the statements of Vanzant et al. [16], who
recommended a five-cycle (1 min each) rinsing procedure for bags used for in situ incuba-
tion in ruminants. However, that disagreement could be caused by differences between
incubation environments. The bags used in situ are more susceptible to particle attachments
caused by the direct contact with rumen contents, whereas rumen inoculum for in vitro
procedures is filtered and also diluted in a clean buffer solution. Considering this, it seems
logical that outside-bag contamination should be less for in vitro procedures, which would
demand a lower number of rinses for cleaning when compared with in situ procedures.

Besides the UR decrease as the number of rinses increased, the variance among repli-
cates also decreased (Figure 3), which brought evidence for the influence of contaminants
on the random variation of the results, and that an adequate rinsing procedure can con-
tribute to increasing experimental precision and repeatability. In general, the variance
among replicates became stable and was minimized from the third rinse on, agreeing
with the behavior of the UR across sequential rinses. This pattern brings into evidence
another operational advantage of a machine-rising procedure. As it does not depend on
hand operation, a standardized mechanical rinsing seems to act more homogenously on
replicates and thus increases precision. It agrees with the statement by Paine et al. [23],
who found smaller standard errors on average DM degradation when using a machine
rinsing compared to a hand-rinsing procedure.

In summary, we concluded that a minimum of three 1 min cycles of machine rinsing are
recommended for ruminal in vitro assays, which assures obtaining a stabilized apparently
undigested residue with a minimized variance among replicates. This recommendation
was added as a standard procedure in the method evaluated in the collaborative study.

3.2. Collaborative Study

The total random variance of data was estimated as the sum of variances associated
with equipment type, laboratories, and error (Figure 4). Even for the overall dataset, we did
not include variance among feeds as a component of the total random variance. Variance
between feeds is expected to occur, and it does not influence the performance of the method,
as do equipment type or laboratory. On average, equipment type corresponded to 42% of
the total random variance. A particular pattern was observed for soybean meal, where the
model did not detect a positive variance between equipment type.
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This high contribution of equipment to the total random variance shows that equip-
ment features can affect in vitro digestion estimates. On the other hand, this is a positive
aspect in terms of method standardization and application, as this kind of influence can
be anticipated and used to interpret and adjust the IVDMD estimates. Overall, the TE-150
had a positive effect, whereas DaisyII caused a negative effect on the IVDMD estimates
(Figure 5). This pattern agreed with Silva et al. [2], who found greater IVDMD using TE-150
compared to DaisyII. Those fermenters presented some physical differences, including
variations concerning jar rotation rate. This difference is critical, as it may affect the con-
tact between filter bags and inoculum and, consequently, alter the IVDMD estimates. On
average, the absolute difference between IVDMD obtained with DaisyII and TE-150 was
5.6 percentage points.
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Figure 5. Adapted Z-scores for the in vitro dry matter digestibility for the evaluated equipment types
with different feeds (TH, Tifton 85 hay; CS, corn silage; SM, soybean meal; and SH, soybean hulls).
For details, see Equation (14).

On average, the contribution of laboratory effect to the total random variance was
24% (Figure 4), being lower than the contribution of equipment (42%) and error (34%).
This is the first evidence indicating that the method proposed here is reproducible and
able to be adequately applied by different laboratories. It is important to notice that no
laboratory behaved as an outlier (p > 0.05) according to the ranking performance test
(Table 3), indicating aspects of robustness of the method, as laboratories did not exhibit a
pronounced systematic error [20].

The individual performance of the laboratories was also evaluated, using the adapted
Z-scores (Figure 6). Typically, the Z-scores are produced from the difference between each
laboratory IVDMD and the overall mean of IVDMD divided by the standard deviation
for each feed. However, in our study, there was a second factor contributing to differ-
ences among laboratories, which was the two types of artificial fermenters. Therefore, an
adapted Z-score was calculated from eBLUPs, which were previously adjusted for the
equipment type effect, allowing an unbiased comparison among laboratories regarding
their performance.
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Table 3. Ranking of the empirical best linear unbiased predictors for the effects of laboratories on
in vitro dry matter digestibility of different feeds.

Feed

Laboratory Tifton 85 Hay Corn Silage Soybean Meal Soybean Hulls Sum 1

1 6 5 5 2.5 18.5
2 5 6 6 7 24.0
3 3 4 2 1 10.0
4 1 2 1 2.5 6.5
5 7 7 7 5 26.0
6 4 3 4 6 17.0
7 2 1 3 4 10.0

1 Approximate two-tailed limits for the sum of ranking scores: 5, 27 (4 feeds, 7 laboratories, α = 0.05). For details,
see Wernimont and Spendley [20].
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Figure 6. Adapted Z-scores for in vitro dry matter digestibility expressed according to different
laboratories (L1–L7) and feeds (TH, Tifton 85 hay; CS, corn silage; SM, soybean meal; and SH,
soybean hulls). For details, see Equation (14).

As a general rule in a collaborative study, a satisfactory result is achieved when
|Z| ≤ 2. Moreover, due to inherent and unavoidable variability among laboratories, a
frequency of 80% of satisfactory results among laboratories is considered a successful
performance [9]. However, the number of laboratories was limited in our study. Recom-
mendations on the number of laboratories for a collaborative study range from a minimum
of eight [24], to between eight and fifteen [25], to as many as possible [20]. Nonetheless,
due to the characteristics of the proposed method, only seven laboratories made up the
laboratory sample in our study.

Despite this, the Z-scores exhibited a sigmoidal pattern, which is an inherent charac-
teristic of the normal distribution (Figure 6). Two of the Z-scores assumed marginal values
very close to two (L5-TH and L7-CS). Assuming that those marginal values can be rounded
down to two, then only five of the Z-scores showed unsatisfactory values. This means that
approximately 82% of the Z-scores were found to be satisfactory, which provided further
evidence of the adequate reproducibility of the evaluated method.
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The repeatability ranged from 3.34 to 5.79% across feeds (Table 4) and fell within a
range similar to that observed by other authors [2,10]. A common empirical approach in
feed analysis laboratories is to consider that a replicate IVDMD analysis is acceptable if
a maximum difference of 5% among duplicate aliquots is observed. Despite being a rule
of thumb rather than a scientific approach, following this empirical reasoning leads to the
conclusion that the observed repeatability for the proposed method is considered adequate
in practical terms.

Table 4. Estimates of variance components and technical indicators of the proposed method for
in vitro dry matter digestibility, according to the evaluated feed.

Feed

Overall Tifton 85 Hay Corn Silage Soybean Meal Soybean Hulls

Variance components [(%)2]
Laboratories 11.07 9.43 15.63 20.00 8.74

Error 15.63 8.19 10.41 9.28 16.57
Technical indicators 1

aIVDMD
(%) 68.3 49.4 57.1 91.2 75.4

sr 3.95 2.86 3.23 3.04 4.07
r (%) 5.79 5.79 5.65 3.34 5.40

sR 5.17 4.20 5.10 5.41 5.03
R (%) 7.57 8.50 8.94 5.93 6.67
r/R 0.76 0.68 0.63 0.56 0.80
sRe 1.45 1.10 1.24 1.85 1.57

Re (%) 2.12 2.22 2.18 2.02 2.09
HorRat 3.57 3.83 4.10 2.94 3.19

RL - 11.8 14.3 15.1 14.1
∆max

2 - 8.0 (68) 10.5 (73) 12.0 (79) 7.5 (53)
1 aIVDMD, average in vitro dry matter digestibility; sr, standard deviation within laboratories; r, repeatability; sR,
standard deviation among laboratories; R, reproducibility; sRe, expected standard deviation of reproducibility;
Re, expected reproducibility; HorRat, Horwitz ratio; RL, reproducibility limit (RL = 2.8 × sR); ∆max, maximum
difference among the eBLUPs for IVDMD. 2 Values among parentheses expressed ∆max as % of RL.

On the other hand, the reproducibility ranged from 5.93 to 8.94% across feeds (Table 4).
At first glance, the observed reproducibility was very high when compared with the
expected values of R predicted by the Horwitz equation [18].

In simple terms, the Re determined that the mean coefficient of variation among
laboratories (i.e., reproducibility) increases by powers of two as the analyte level decreases
by a power of 10. In other words, the Re doubles for every decrease of two orders of
magnitude in the analyte concentration (expressed as a mass fraction). Such a pattern
should be independent of either the nature of the analyte or the analytical technique that is
used to make the measurement [17,18].

A direct evaluation of the observed R is obtained by calculating the HorRat, whose
acceptable values must lie between 0.5 and 2.0 [17]. For the proposed method, HorRat
ranged from 2.94 to 4.10 across feeds (Table 4). Generally, this would indicate that the
proposed method is unacceptable concerning precision (i.e., reproducibility). However,
it must be understood that the aforementioned limits for HorRat are not absolute, as
transgressions are occasionally permitted in both directions [18].

To understand the patterns of observed R and HorRat, a broader evaluation of the tech-
nical indicators of the method must be performed. Firstly, despite the fact that Re decreases
as analyte concentration increases, the reproducibility expressed as absolute variation (i.e.,
as a standard deviation) must show a positive relationship with the concentration [17].
In fact, both sR and sRe showed a very similar pattern, according to IVDMD estimates
(Figure 7), including very similar slopes (0.022 versus 0.018, respectively). Despite sR
being, on average, 3.3 percentage units higher than sRe, their similar sensibility to analyte
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concentration variation indicates a functional agreement with the theoretical pattern of
reproducibility parameters.
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expected reproducibility (sRe) according to average values of in vitro dry matter digestibility (the
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Secondly, r should ordinarily be approximately one-half to two-thirds of R [17]. This
pattern was observed for the three feeds here evaluated, excepting soybean hulls (Table 4),
which directly implied a high r/R for the overall dataset. At first glance, the r/R of 0.80
for soybean hulls could indicate that intra-laboratorial replications are so poor that they
swamp the between-laboratory variation. However, a closer evaluation of the soybean hull
IVDMD variability shows that the high r/R was not caused by a high sr (Table 4), and this
pattern seems simply to reflect some particularity of this feed, which may affect that ratio
without causing the variance of levels above that considered as normal and standard across
feeds. Thus, despite the particular pattern of soybean hulls, the r-to-R ratios once more
indicated that the proposed method has an adequate reproducibility.

However, the main aspect to be highlighted when interpreting both R and HorRat
is the nature of the proposed method. The IVDMD is an analytical entity defined by the
method itself (i.e., Type I method; [3]). A HorRat greater than two is commonly observed for
this type of analytical entity, such as crude fat [26] and fibre [19]. This pattern is attributed
to the fact that the Horwitz model does not apply to empirical analytes (i.e., those that are
method-dependent), whose composition is ill-defined and whose concentration estimate
depends on the specific details of the method [19]. In these cases, the fact that HorRat is
>2.0 does not invalidate the method [26].

Due to differences in the cell wall digestibility and cell contents, the apparent undi-
gested residue (Equation (4)) is mainly formed of fibrous compounds [27]. According
to Horwitz et al. [19], fibre-related analytes are not chemically defined. In the presence
of such an identity problem, the methods are necessarily empirical and accompanied by
methodological and internal quality control problems that are reflected in high R values.
Total gas production at fixed incubation times is strongly correlated with the extent of
substrate digestion [28]. Some collaborative studies have found R values for gas production
of 26.3% at 24 h, 15.4% at 48 h [29], and 8.2–9.4% at 72 h of incubation [30]. From this, the
observed R values for IVDMD found in our study (3.34–5.79%, Table 4) can be considered
low, and corroborate the reproducibility of the proposed method.
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Moreover, the reproducibility limit represents the maximum acceptable difference
between two single tests on identical test material with the same method in different
laboratories with different operators using different equipment [31,32]. For all feeds, the
maximum difference between laboratories did not exceed the reproducibility limit (Table 4),
varying from 53 to 79%. This pattern adds to our previous arguments about the adequate
reproducibility of the proposed method.

4. Conclusions

A standardized method for evaluating in vitro dry matter digestibility for ruminant
feeds and diets was proposed and evaluated through a collaborative study with seven
laboratories. The results highlighted that, if the method is followed exactly, its results are
precise, and present adequate levels of repeatability and reproducibility.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ani12202842/s1, The method to evaluate in vitro dry matter digestibility
is included as an Supplementary Material.
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