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Abstract
Background: Zoonotic spillover from animal reservoirs is responsible for a significant global public 
health burden, but the processes that promote spillover events are poorly understood in complex 
urban settings. Endemic transmission of Leptospira, the agent of leptospirosis, in marginalised urban 
communities occurs through human exposure to an environment contaminated by bacteria shed in 
the urine of the rat reservoir. However, it is unclear to what extent transmission is driven by variation 
in the distribution of rats or by the dispersal of bacteria in rainwater runoff and overflow from open 
sewer systems.
Methods: We conducted an eco- epidemiological study in a high- risk community in Salvador, Brazil, 
by prospectively following a cohort of 1401 residents to ascertain serological evidence for lepto-
spiral infections. A concurrent rat ecology study was used to collect information on the fine- scale 
spatial distribution of ‘rattiness’, our proxy for rat abundance and exposure of interest. We devel-
oped and applied a novel geostatistical framework for joint spatial modelling of multiple indices of 
disease reservoir abundance and human infection risk.
Results: The estimated infection rate was 51.4 (95%CI 40.4, 64.2) infections per 1000 follow- up 
events. Infection risk increased with age until 30 years of age and was associated with male gender. 
Rattiness was positively associated with infection risk for residents across the entire study area, but 
this effect was stronger in higher elevation areas (OR 3.27 95% CI 1.68, 19.07) than in lower eleva-
tion areas (OR 1.14 95% CI 1.05, 1.53).
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Conclusions: These findings suggest that, while frequent flooding events may disperse bacteria in 
regions of low elevation, environmental risk in higher elevation areas is more localised and directly 
driven by the distribution of local rat populations. The modelling framework developed may have 
broad applications in delineating complex animal- environment- human interactions during zoonotic 
spillover and identifying opportunities for public health intervention.
Funding: This work was supported by the Oswaldo Cruz Foundation and Secretariat of Health 
Surveillance, Brazilian Ministry of Health, the National Institutes of Health of the United States (grant 
numbers F31 AI114245, R01 AI052473, U01 AI088752, R01 TW009504 and R25 TW009338); the 
Wellcome Trust (102330/Z/13/Z), and by the Fundação de Amparo à Pesquisa do Estado da Bahia 
(FAPESB/JCB0020/2016). MTE was supported by a Medical Research UK doctorate studentship. FBS 
participated in this study under a FAPESB doctorate scholarship.

Editor's evaluation
In their work, the authors present a novel geostatistical framework allowing for modelling complex 
animal- environment- human interactions during zoonotic spillover. The presented case relates to 
zoonotic spillover of Leptospira infections in a marginalised urban setting in Salvador, Brazil. The 
outcomes of such applications could contribute to inform public health interventions. The method-
ological approach is to be applauded and can be of benefit beyond the study of zoonotic spillover.

Introduction
Zoonotic spillover, the transmission of pathogens from infected vertebrate animals to humans, is 
responsible for a significant public health burden globally. Understanding the processes that promote 
spillover transmission is essential for improving our ability to predict and prevent spillover events, 
but for many zoonoses, such as Leptospira interrogans, Escherichia coli O157 and Giardia spp., they 
are poorly understood (Plowright et al., 2017). This is due to the complex nature of the spillover 
system, in which the probability of transmission is governed by dynamic interactions in space and 
time between ecological, epidemiological, behavioural, and immunological factors that determine 
pathogen pressure, exposure and host susceptibility. Zoonotic spillover research must explore inter-
actions between the environment, disease reservoirs and local epidemiology, presenting two central 
challenges: (i) the need for transdisciplinary studies at the animal- human disease interface (a One 
Health approach) that accurately collect data on multiple components of the spillover process at 
common temporal and spatial scales at which these events take place; (ii) the development of inte-
grative approaches to jointly analyse these diverse datasets within a spatially and temporally explicit 
framework (Plowright et al., 2017; Becker et al., 2019; Dhewantara et al., 2019).

Leptospirosis, a neglected zoonotic disease caused by pathogenic bacteria from the genus Lepto-
spira, is an important example of zoonotic spillover. Globally, it is estimated to cause more than one 
million cases and over 58,000 deaths each year (Costa et al., 2015a), with an annual global burden of 
2.9 million disability- adjusted life years (DALYs) (Torgerson et al., 2015). This burden falls heavily on 
marginalised urban populations in low- and middle- income countries who live in areas characterised 
by high population density, poor quality housing and inadequate provision of healthcare, sanitation, 
and waste management services. In these settings, leptospiral infection occurs through contact with 
water or soil contaminated with leptospires shed in the urine of the principal reservoir, the Norway rat 
(Rattus norvegicus; Bierque et al., 2020). These areas produce the socio- ecological conditions that 
allow rodent populations to proliferate and leptospires to persist for long periods in the environment 
(Goarant, 2016). Residents consequently have frequent, intense and largely unavoidable exposure 
to the contaminated environment, often exacerbated by their geographical vulnerability to flooding 
events (Lau et al., 2010). In response, the World Health Organisation (WHO) has convened the Lepto-
spirosis Burden Epidemiology Reference Group (LERG) which has recommended ‘Targeted interven-
tion based on the improved knowledge of disease ecology’ (WHO, 2010), highlighting the current 
knowledge gap for Leptospira transmission mechanisms and target points for effective intervention.

Multiple studies have helped to elucidate key aspects of the Leptospira transmission cycle in urban 
settings, identifying socioeconomic vulnerability, household environment and behavioural exposures 
as important determinants of infection risk (Reis et al., 2008; Felzemburgh et al., 2014; Hagan et al., 
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2016; Khalil et al., 2021; Barcellos and Sabroza, 2000; Barcellos and Sabroza, 2001; Mwachui 
et al., 2015; Keenan et al., 2010; Goarant, 2016; Prabhakaran et al., 2014; Briskin et al., 2019). 
However, these variables have been unable to explain fine- scale spatial variation in risk (Reis et al., 
2008; Hagan et al., 2016). This is likely to be driven by the high spatial and temporal heterogeneity 
in environmental risk, observed in recent studies of Leptospira in soil, and surface and sewage waters 
(Schneider et al., 2018; Casanovas- Massana et al., 2018; Bierque et al., 2020). These findings lead 
to two key questions: (i) to what extent does environmental contamination by localised rat shedding 
drive infection risk, rather than exposure to leptospires that have been dispersed by rainwater runoff 
and overflowing sewer systems; and (ii) how does this change across the geography of a community, 
for example at different elevation levels?

Establishing a dynamic link between rats, the environment and Leptospira transmission is compli-
cated by the difficulty of measuring and modelling the rat contamination process. However, urban 
Norway rats have been found to have high Leptospira prevalence and shedding rates worldwide 
(Pellizzaro et al., 2019; Costa et al., 2014a; Boey et al., 2019; Yusof et al., 2019; Krøjgaard et al., 
2009; Costa et al., 2015b; de Faria et al., 2008). This suggests that rat abundance may be predic-
tive of environmental risk, and could be used as a proxy for this shedding process. While several 
studies have identified associations between infection risk and household rat sightings and infestation 
(Reis et al., 2008; Costa et al., 2014b; Hagan et al., 2016; Costa et al., 2021; Pellizzaro et al., 
2019; Bhardwaj et al., 2008), their ability to explore fine- scale spatial variation in risk was limited 
by a reliance on household infestation surveys or aggregation of incidence and abundance indices 
to a common coarse spatial scale. All modelled abundance as a regression covariate, thereby not 
accounting for uncertainty in its measurement. The absence of methods applied to formally integrate 
abundance and spillover infection data is an issue for rodent- borne zoonoses more widely (Bordes 
et al., 2015; Dhewantara et al., 2019).

There is no gold- standard index of abundance and field teams use a range of imperfect indices, 
such as traps, infestation surveys and track plates. In our previous work, we developed a multivariate 
generalized linear geostatistical model for joint spatial modelling of multiple imperfect abundance 
indices (Eyre et al., 2020). We use the term ‘abundance’ here to denote all ecological processes 
that are associated with animal abundance and measured by abundance indices, for example animal 
presence, density and activity, and that may be useful to quantify exposure to a zoonotic disease of 
interest. This methodology was then used to model the spatial distribution of ‘rattiness’, our proxy for 
rat abundance, at a fine scale within a community in Salvador, Brazil (Eyre et al., 2020). The spatial 
distribution of rattiness was highly heterogeneous, suggesting that it could be a driver of micro- 
heterogeneity in infection risk.

To analyse reservoir host abundance (as defined previously) and infection data at fine spatial scales, 
we propose that a framework should (i) account for spatial correlation in human and reservoir host 
data; (ii) jointly model multiple imperfect indices of abundance while accounting for the appropriate 
sampling distribution of each index; (iii) account for uncertainty in abundance indices, (iv) allow for the 
prediction of abundance and infection risk at all locations within the study area, and (v) quantify the 
uncertainty associated with those predictions. Several studies have attempted to model spatial asso-
ciations between disease reservoir or vector abundance and human infection for leptospirosis (Hurd 
et al., 2017; Lau et al., 2016; Mayfield et al., 2018), tularemia (Rotejanaprasert et al., 2018) Lyme 
disease (Nicholson and Mather, 1996) West Nile Virus (Winters et al., 2008) dengue fever (Crom-
well et al., 2017) and Lassa fever (Fichet- Calvet et al., 2007). However, none of the approaches used 
satisfy all five of the above conditions. The development of new tools for the joint spatial analysis of 
abundance and human infection may consequently be beneficial for the study of other zoonoses and 
vector- borne diseases (Eisen and Eisen, 2008).

The aim of this study was to develop a flexible modelling framework for zoonotic spillover to 
explore whether rattiness, acting as a proxy for local leptospiral contamination by Norway rats, can 
explain spatial heterogeneity in leptospiral transmission in a high- risk urban community in Brazil where 
80% of rats are estimated to be actively shedding the bacteria (Costa et al., 2015b; de Faria et al., 
2008). We extend the rattiness framework of Eyre et al., 2020 to include human infection risk. We 
describe findings from a transdisciplinary eco- epidemiological study which comprises a prospective 
community- based cohort study with two serosurveys and a fine- scale rat ecology study. The ecology 
study was used to collect information on the spatial distribution of rat abundance, our exposure of 
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interest, in the period between the two surveys using multiple abundance indices. Then, we explore 
associations between infection risk, rattiness and a range of measured environmental and individual 
risk factors.

Materials and methods
Study design
Study area
The study was conducted in Pau da Lima community (13°32’53.47” S; 38°43’51.10” W), a marginalised 
informal settlement located in the city of Salvador, Northeast Brazil. The study site has an area of  0.25km2  
and is characterised by three connected valleys with large elevation gradients, high population density 
and a heterogeneous environment of vegetation, paved surfaces and exposed soil (Figure 1). There are 
significant gradients in socioeconomic status and infrastructure quality over small elevation increases - 
with the most marginalised members of the community living at lower elevations. The community suffers 
from low quality housing, poor provision of waste management services and inadequate drainage and 
sanitation systems (Hagan et al., 2016; Hacker et al., 2020). Residents are consequently often unable 
to avoid intense exposure with mud and floodwater. These factors result in abundant rat populations 
(Eyre et al., 2020) and a high estimated annual Leptospira infection rate of 35.4 (95% CI, 30.7, 40.6) 
infections per 1000 annual follow- up events (Hagan et al., 2016). For this reason, Pau da Lima has 
become an exemplar for investigating urban Leptospira transmission in Brazil over the last 15 years.

Serosurveys
We conducted a prospective community cohort study with two serosurveys carried out in August- 
October 2014 and January- April 2015. After an initial census of the study site, all ground floor 

Figure 1. Study site and timeline. (A) Map of the three valleys within the study site in Pau da Lima, with household locations for the serosurveys marked 
as orange circles. Locations sampled in the the rat ecology study are shown for each of the rat abundance indices as follows: Plates & Signs (track plates, 
burrows, faeces and trails), Traps & Signs (traps, burrows, faeces and trails) and Signs only (burrows, faeces, and trails); (B) Land cover classification 
map (impervious cover is defined as man- made structures e.g. pavement and buildings); (C) Study timeline for the two community serosurveys and rat 
ecology study.
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households were visited and inhabitants who met the eligibility criteria of ≥5 years of age who had 
slept ≥3 nights in the previous week in a study household were invited to join the study. This study 
focussed on ground floor households because they are vulnerable to flooding and consequently at 
high risk for leptospiral transmission. The criterion for determining whether a resident is currently 
living at a household location is commonly applied in this context to account for resident mobility.

During each survey trained phlebotomists collected blood samples from participants and admin-
istered a modified version of the standardised questionnaire used previously (Costa et al., 2014b; 
Hagan et al., 2016). Information was collected on demographic and socioeconomic indicators, house-
hold environmental characteristics and exposures to potential sources of environmental contamina-
tion in the previous six months (the average time between the two serosurveys). Study data were 
collected and managed using REDCap electronic data capture tools (Harris et  al., 2009) and all 
individual data were anonymised. The locations of sampled households are shown in Figure 1 - panel 
A. If an individual was not found during a sample collection visit their house was revisited at least five 
times on different days of the week.

The microscopic agglutination test (MAT) was used to determine titers of agglutinating antibodies 
against pathogenic Leptospira in sera obtained from the blood samples collected in each serosurvey. 
Serological samples were reacted with a panel of two Leptospira reference strains that are dominant in 
Pau da Lima: Leptospira interrogans serovars Copenhageni (COPL1) and Cynopteri 3522 C (C3522C). 
These two strains have been shown to have the same performance in identifying MAT seroconver-
sion in our prospective studies as the WHO recommended battery of 19 reference serovars. When 
agglutination was observed at a dilution of 1:50, the sample was titrated in serial twofold dilutions to 
determine the highest agglutination titer. The study outcome of leptospiral infection was defined as 
seroconversion, an MAT titer increase from negative to ≥1:50, or a fourfold increase in titer for either 
serovar between paired samples from cohort subjects. All laboratory analyses were performed in the 
Laboratory Pathology and Molecular Biology at Fiocruz, Salvador. As part of quality control proce-
dures two independent evaluations were conducted by Yale University for all infected subjects and 8% 
of all samples, with high concordance between results.

Rat ecology study
To estimate exposure risk due to local rat contamination between the two serosurveys, a cross- 
sectional rat ecology study was conducted from October to December 2014. As has been described 
previously (Eyre et al., 2020), the aim of this study was to collect data on the fine- scale spatial varia-
tion in rat reservoir population abundance. Data were collected for five indices of rat abundance: live 
trapping, track plates, number of active burrows present, presence of faecal droppings and presence 
of trails. Rat trapping was carried out at 189 locations, randomly distributed across the study area 
(see Panti- May et al., 2016). Two traps were deployed for 4 consecutive 24 hr trapping periods at 
each location. Trapping success and trap closure without a rat, a common malfunction, were recorded 
after each 24 hr period. Track plates were placed at 415 locations for two consecutive 24 hr periods 
following the standardised protocol for placement and survey developed and validated previously 
(Hacker et al., 2016), with five plates placed at each location in the shape of a ‘five’ on a die. After 
each 24 hr period, plates were repainted and any lost plates were recorded and replaced. On the first 
day of trapping or plate placement, a survey for signs of rat infestation, adapted from the Centers 
for Disease Control and Prevention, 2006 and validated in the study area (Costa et al., 2014b), 
was conducted within an area of 10 m radius around each trapping or plate location to record the 
number of active burrows and the presence of faecal droppings and trails. In total, 595 independent 
locations were sampled for traps, track plates and the three survey indices for signs of rat infestation. 
The spatial distribution of these locations is shown in Figure 1 - panel A. At 21 locations, theft and 
local gang violence meant that data for track plates and traps was not collected and only the three 
survey indices for signs of rat infestation were used.

Environmental data
In addition to the environmental survey conducted at each household location, we also collected 
information for three spatially continuous environmental variables: elevation relative to the bottom of 
each valley, distance to large public refuse piles and the proportion of land cover classified as imper-
vious (man- made structures) within a 30 m radius. The land cover variable was created from Digital 
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Globe’s WorldView- 2 satellite imagery (8 bands) taken on February 17, 2013 which was classified using 
a maximum likelihood supervised algorithm and validated with ground truthed data collected from 
20 randomly selected sites of size 5 m by 5 m. The classification map is shown in Figure 1 - panel B.

Ethics
Participants were enrolled according to written informed consent procedures approved by the Insti-
tutional Review Boards of the Oswaldo Cruz Foundation and Brazilian National Commission for Ethics 
in Research, Brazilian Ministry of Health (CAAE: 01877912.8.0000.0040) and Yale University School of 
Public Health (HIC 1006006956).

For the rat ecology study, the ethics committee for the use of animals from the Oswaldo Cruz Foun-
dation, Salvador, Brazil, approved the protocols used (protocol number 003/2012), which adhered 
to the guidelines of the American Society of Mammalogists for the use of wild mammals in research 
(Sikes and Gannon, 2011) and the guidelines of the American Veterinary Medical Association for the 
euthanasia of animals (Leary et al., 2013). These protocols were also approved by the Yale Universi-
ty’s Institutional Animal Care and Use Committee (IACUC), New Haven, Connecticut (protocol number 
2012–11498).

Joint modelling rat abundance and human infection: the rattiness-
infection framework
The developed geostatistical modelling framework jointly models multiple rat abundance indices as 
measurements of a common latent process, called rattiness. Rattiness at each household location 
contributes to the risk of infection for all inhabitants, in addition to other measured individual or 
household- level explanatory variables.

We model the rat abundance data following a similar structure to that previously outlined (Eyre 
et al., 2020). Let  R(x)  denote a spatially continuous stochastic process, representing rattiness. The rat 
data then consist of a set of outcomes  Yi = (Yi,k : k = 1, . . . , 5) , for  i = 1, . . . , Nr , collected at a discrete 
set of locations  X = {xi : i = 1, ..., Nr} . The outcome variables  Yk : k = 1, ..., 5  are the set of five rat 
abundance indices that provide information about  R(x) : traps ( k = 1 ), track plates ( k = 2 ), number of 
burrows ( k = 3 ), presence of faecal droppings ( k = 4 ) and presence of trails ( k = 5 ).

Human data are collected from  Nh  households and consist of an infection outcome  Zi,j  for indi-
vidual  j  at household location  i , for  i = Nr + 1, . . . , Nr + Nh , collected at a discrete set of locations 

 X = {xi : i = Nr + 1, ..., Nr + Nh} .
Let ‘[·]’ be a shorthand notation for ‘the probability distribution of .’ We write  Y = (Y1, . . . , YNr ) , 

 Z = (ZNr+1, . . . , ZNr+Nh )  and  R = (R(x1), . . . , R(xNr+Nh )) . We assume that the  Yi,k : k = 1, ..., 5  and  Zi,j  are 
conditionally independent given  R(xi) , from which it follows that

 [Y, Z|R] =
∏Nr

i=1
∏5

k=1[Yi,k|R(xi)]
∏Nr+Nh

i=Nr+1
∏Ji

j=1[Zi,j|R(xi)].  (1)

where  [·]  is a shorthand notation for ‘the distribution of’ and  Ji  denotes the number of individuals at 
household  i . This model structure is shown schematically in Figure 2. The conditional independence 
assumption in Equation 1 is reasonable for a vector- borne disease or one that is transmitted indirectly, 
in which context the observed rat indices are to be considered as noisy indicators of the unobservable 
spatial variation in the extent to which the environment is contaminated with rat- derived pathogen. 
It would be more questionable for applications in which the disease of interest is spread by direct 
transmission from rat to human.

Rattiness
We define rattiness at location  x  as

 R(xi) = d⊺r (xi)βr +
√
ψ S(xi) +

√
1 − ψ Ui.  (2)

The terms on the right- hand side of Equation 2 have the following interpretations:  dr(xi)  is a vector 
of explanatory variables with associated regression coefficients  βr  is a set of independently and iden-
tically distributed zero- mean Gaussian variables with unit variance;  S(xi)  is a stationary and isotropic 
spatial Gaussian process;  ψ ∈ (0, 1)  regulates the relative contributions of spatially structured varia-
tion,  S(xi) , and unstructured random variation,  Ui , to  R(xi) .

https://doi.org/10.7554/eLife.73120
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Figure 2. Directed acyclic graph (DAG) of the rattiness- infection model framework.  R(x)  is the value of a spatially continuous stochastic rattiness 
process at location  x . The outcome variables  Yk : k = 1, ..., 5  are the set of five rat abundance indices that provide information about  R(x) : traps 
( k = 1 ), track plates ( k = 2 ), number of burrows ( k = 3 ), presence of faecal droppings ( k = 4 ) and presence of trails ( k = 5 ). The outcome variable  Zi,j  
is the observed health outcome, in this case this represents infection status. The terms dh and dr represent the sets of spatially continuous explanatory 
variables which contribute to spatial variation in infection risk in humans and  R(x) , respectively. The terms dh and dr are not mutually exclusive groups of 
explanatory variables and the same variables may contribute to both infection risk and  R(x) . The term  e  represents a set of individual- and household- 
level explanatory variables which contribute to variation in infection risk. Square objects correspond to observable variables, and circles to latent 
random variables.

https://doi.org/10.7554/eLife.73120
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For the Gaussian process,  S(xi) , we specify an exponential spatial correlation function:

 Corr(S(x), S(x)) = e−u/ϕ
  where  u = ||x − x′||  is the Euclidean distance between  x  and  x′ , and  ϕ  regu-

lates how fast the spatial correlation decays to zero with increasing distance u.

Rat abundance outcomes
The variable  Yi,1 , conditionally on  R(xi) , is a binomial variable representing the number of traps, out of 

 ni,1 , in which rats were captured. We assume that the times of rat captures from a trap follow a time- 
varying inhomogeneous Poisson process with intensity  tiµ1(xi) , where ti is the time (in days) for which 
a trap is operative and  log{µ1(xi)} = α1 + σ1R(xi) . It follows that the probability of capturing a rat is

 1 − exp{−tiµ1(xi)}.  

If a trap is found closed without a rat, we assume that the trap was disturbed and set  t = 0.5 . In all 
other cases,  t = 1  day. We conducted a sensitivity analysis for this assumption (see ‘Appendix 6’) and 
found that it did not materially affect rattiness parameter estimates (Appendix 6—table 1).

 Yi,2 , is the number of track- plates, out of  ni,2 , that show presence of rats. We model this as a bino-
mial variable with  ni,2  trials and probability  µ2(xi)  where  log{µ2(xi)/(1 − µ2(xi))} = α2 + σ2R(xi) .

 Yi,3 , is the number of active rat burrows found at location xi. We model this as a Poisson variable 
with rate  µ3(xi)  where  log{µ3(xi)} = α3 + σ3R(xi) .

The variables  Yi,4  and  Yi,5  are binary indicators taking value 1, if at least one faecal dropping or trail, 
respectively, was found at location xi and 0 otherwise. We model the probability of finding a sign of faecal 
droppings or trails,  µ4(xi)  and  µ5(xi) , using logit- linear regressions  log{µ4(xi)/(1 − µ4(xi))} = α4 + σ4R(xi)  
and  log{µ5(xi)/(1 − µ5(xi))} = α5 + σ5R(xi) .

Human infection outcome
Conditionally on  R(xi) , we model the binary human infection outcome  Zi,j  as a Bernoulli variable with 
the probability,  pj(xi) , that individual  j  at location  i  is infected. This is modelled with a logit link func-
tion and the following linear predictor

 
log

{
pj(xi)

1−pj(xi)

}
= αh + d⊺h (xi)βh + e⊺i,jγ + ξ(xi)R(xi) + Vi  (3)

where:  dh(xi)  is a vector of spatially continuous explanatory variables with associated regression 
coefficients  βh  is a vector of household- level and individual- level explanatory variables with associated 
regression coefficients  γ ;  Vi  is a set of independently and identically distributed zero- mean Gaussian 
variables with variance  σ2  representing unexplained household- level variation;  ξ(xi)  regulates the 
contribution of rattiness to risk of infection.

Parameterising to test for an interaction with relative elevation
To explore variation in the role of local rat populations in transmission within sections of the study 
area with different flooding risk profiles, ξ was parameterised to test for an interaction between 
rattiness and a categorical parameterisation of household elevation relative to the bottom of the 
valley (modelled as a piecewise constant function with breaks at 6.7 and 15.6 m, resulting in three 
categories: low, medium and high elevation levels.) on human infection risk. This was implemented 
by first dividing the study area into three elevation categories with different flooding risk profiles 
(as observed during our work in the study area over the last 15 years): low ( 0 − 6.7m  from bottom 
of valley; high flooding risk with maintenance of floodwater for long periods), medium ( 6.7 − 15.6m ; 
moderate flooding with high water runoff), and high ( > 15.6m ; limited flooding and water runoff). Our 
study was then designed to evenly sample across this elevation gradient and minimum and maximum 
values for each elevation category were chosen to include an equal number of households in each 
level. We then define the set of household locations in each low, medium, and high elevation category 
as  xlow ,  xmed , and  xhigh , respectively. Three values of ξ were then estimated such that:

 

ξ(xi) =





ξlow at locations xi ∈ xlow

ξmed at locations xi ∈ xmed

ξhigh at locations xi ∈ xhigh  (4)

https://doi.org/10.7554/eLife.73120
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Variable selection
Predictors of rattiness
The exploratory analysis for the rattiness model followed the steps developed and described previ-
ously (Eyre et al., 2020). Firstly, we explored the functional form of the relationship between rattiness 
and three continuous explanatory variables: relative elevation, distance to large refuse piles and land 
cover type. To do this, we fitted a simplified rattiness model that did not include covariates or account 
for spatial correlation. Rattiness is consequently modelled purely as unstructured random variation; 
hence  R(xi) = Ui  (Eyre et al., 2020). We then computed the predictive expectation of this simplified 
rattiness process,  ̂Ui , at all locations for which rat index measurements were observed. A generalized 
additive model (GAM) (Hastie and Tibshirani, 1987) was then fitted to the  ̂Ui  with the three explan-
atory variables and the shape of each fitted smooth function was used to assess whether the relation-
ship between each variable and rattiness was linear. Non- linear relationships were modelled using 
linear splines based on the identified functional form, with knots placed at relative elevations of 8 m 
and 22 m, and at a distance from large refuse piles of 50 m (see Appendix 1—figure 1). For variable 
selection, linear models with all combinations of these variables were fitted and ranked by their Akaike 
Information Criterion (AIC) value (Bozdogan, 1987). The model with the lowest AIC included all of the 
variables and their linear splines (Appendix 2—table 1).

Following the methodology outlined previously (Eyre et al., 2020), we fitted the full geostatis-
tical rattiness model using the variables selected in ‘Predictors of rattiness’. We then plugged in 
the maximum likelihood estimates and made predictions for rattiness at all human household loca-
tions; here, the predictive target is  T(x) = dr(x)⊺βr +

√
ψS(x)  rather than  R(x)  as defined by Equation 

2 because the predicted value of the spatially uncorrelated  U(x)  at any location  x  where rat abun-
dance indices have not been recorded is zero. The expectation of this predictive distribution was then 
computed to provide an estimate of mean predicted rattiness at all household locations. This was then 
used as an exploratory covariate in the following section.

Risk factors for human infection
All explanatory variables were grouped into the following four domains: social status, household envi-
ronment, occupational exposures and behavioural exposures (see Table 2 for the full list of considered 
variables by group). A group of a priori confounding variables was then identified, with age, gender 
and household per capita income selected based on previous findings (Hagan et al., 2016; Reis et al., 
2008; Felzemburgh et  al., 2014), and valley also included to account for otherwise unmeasured 
differences between the three valley regions within the study area. In the household environment 
domain, two variables were used to capture risk due to sewer flooding close to the household: (i) the 
presence of an open sewer within 10 metres of the household location and (ii) a binary ‘unprotected 
from open sewer’ variable which identified those households within 10 metres of an open sewer that 
did not have any physical barriers erected to prevent water overflow. Three high- risk occupations were 
included in the occupational exposures domain as binary variables. Construction workers and refuse 
collectors have direct contact with potentially contaminated soil, building materials and refuse in areas 
that provide harbourage and food for rats. Travelling salespeople have regular and high levels of 
exposure to the environment (particularly during flooding events) as they move from house to house 
by foot. Two other binary occupational exposure variables were included that measured whether a 
participant worked in an occupation that involves contact with floodwater or sewer water.

The relationship between continuous explanatory variables and infection risk (on the log- odds 
scale) was assessed for linearity by fitting a GAM while controlling for the four confounders. As before, 
non- linear relationships were modelled using linear splines based on the identified functional form. 
Age was modelled with a knot at 30 years old, education at 5 years and relative elevation at 20 m 
(Appendix 1—figure 2). A univariable analysis was conducted to explore the relationship between 
each explanatory variable and infection risk while controlling for the four a priori confounding vari-
ables. Crude and adjusted odds ratios were estimated using a mixed effects logistic regression with a 
random effect to account for unexplained variation at the household- level.

For the multivariable model, variable selection was conducted within each domain separately. 
Mixed- effect logistic regression models were fitted for all combinations of the variables in each domain 
and were ranked by their Akaike Information Criterion (AIC) value (Appendix 2—table 2). Variables in 
the model with the minimum AIC value were selected for each domain. Age, gender, household per 

https://doi.org/10.7554/eLife.73120
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capita income and valley were controlled for in all models throughout this process. Then, the variables 
selected from each domain were combined and the mean predicted rattiness estimate (obtained in 
‘Predictors of rattiness at each household location’) was included with an interaction with relative 
elevation category. This set of variables was reduced once more following the same process and all 
selected variables were included in the final multivariable model (‘Appendix 3’).

Model fitting
All rat and human variables selected in ‘Variable selection’ were then included in the full joint model 
defined in Equation 2 and Equation 3. We fit this model using the Monte Carlo maximum likelihood 
(MCML) method (Christensen, 2004) as described in ‘Appendix 4’, and compute 95% confidence 
intervals by re- fitting the model for 1000 parametric bootstraps. A formal diagnostic investigation of 
randomized quantile residuals (Dunn and Smyth, 1996; Smyth et al., 2021) is included ‘Appendix 
7’. We found no evidence in the diagnostic plots (Appendix 7—figure 1) to suggest that there were 
issues with our modelling approach.

Prediction maps
The maximum likelihood parameter estimates were then used to make prediction maps for rattiness 
and infection risk as follows.

To map a general predictive target,  T(x)  say, we first define  T
∗ = (T(x∗1 ), . . . , T(x∗H)) , where 

 X
∗ = {x∗1 , ..., x∗H}  is a finely spaced grid of locations to cover the region of interest. We then draw 

samples from the predictive distribution of  T∗ , that isits conditional distribution given all relevant data. 
These samples can then be used to compute any desired summary of the predictive distribution. In 
our analysis, we used as summaries the expectation and 95% prediction interval.

Our first predictive target is rattiness, for which  T(x) = d⊺r (x)βr +
√
ψS(x) . Our second is human 

infection risk, for which  T(x) = d⊺h (x)βh + e⊺γ + ξ(xi)R(x) + Vi . In either case, we first sample from 

 [R|W; θ,ω]  using the same sampling algorithm as for maximizing the likelihood in ‘Joint modelling 
rat abundance and human infection: the rattiness- infection framework’, with the parameters θ and 
ω fixed at their maximum likelihood estimates. After obtaining samples  r(b) ,  b = 1, . . . , B , we then 
sample from  [T

∗|r(b)] , which in both cases follows a multivariate Gaussian distribution with mean and 
covariance matrix easily obtained from their joint Gaussian distribution,  [R, T∗] . The resulting values, 

 t(b)(x∗h ), h = 1, . . . , H; b = 1, . . . , B , constitute  b  samples drawn from  [T∗|W]  as required. Note that each 

 t(b)(x∗h ), h = 1, . . . , H   is a sample from the joint predictive distribution of the complete surface of  T(x)  
over the whole of the region of interest and can therefore be used to make inferences about spatially 
aggregated properties of  T(x)  if required.

Data and code accessibility
Data and code used in this analysis are publicly available at https://github.com/maxeyre/Rattiness- 
infection-framework, (copy archived at swh:1:rev:e7953d38269ce97221dbdd83c0be2c65d92dff40, 
Eyre, 2022) and have been published (Eyre et  al., 2021). However, household coordinates and 
valley ID have been removed from the human data to ensure participant anonymity. The analysis 
was conducted using R (R Development Core Team, 2016) and the following packages: tidyverse 
(Wickham, 2017), mgcv (Wood and Wood, 2015), PrevMap (Giorgi and Diggle, 2017), MuMIn 
(Barton, 2020), lme4 (Bates et al., 2007), and statmod (Smyth et al., 2021). We also include a step- 
by- step explanation of the model building process to guide future users of the rattiness- infection 
framework in 'Appendix 8'.

Results
Study overview
In Pau da Lima, we identified 3179 eligible residents using a baseline community census, household 
visits and through other members of the household. Of these, 2018 (63.4%) individuals consented 
to join the study and provided a blood sample in the first serosurvey (August- October 2014). As a 
result of loss to follow- up, only 1401 (69.4%) of these participants (from 669 households) completed 
the second serosurvey (January- April 2015). Individuals were lost to follow- up because they could 
not be found after at least five attempts (44.4%), had moved out of the study area (31.1%) or did not 

https://doi.org/10.7554/eLife.73120
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 Research article      Epidemiology and Global Health

Eyre et al. eLife 2022;11:e73120. DOI: https://doi.org/10.7554/eLife.73120  11 of 34

Figure 3. The study participant flow chart in line with the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement 
(http://www.strobestatement.org).

https://doi.org/10.7554/eLife.73120
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wish to provide a second blood sample (19.8%). An overview of participant recruitment is provided in 
Figure 3. Individuals lost to follow- up were similar in age to those who remained in the study cohort 
(mean 29.0 and 28.8 years old, respectively, t- value  = −0.37 ,  df = 1288.5 ,  p = 0.7 ) but were more likely 
to be male (49.8% male compared to 42.6%,  χ

2 = 8.5 ,  df = 1 ,  p < 0.01 ). A full description of the study 
cohort is included in Appendix 5—table 1.

Between the two serosurveys there was serological evidence of 72 leptospiral infections in the 
cohort, with an overall infection rate of 51.4 (95%CI 40.4, 64.2) infections per 1,000 follow- up events. 
Valleys 2 and 3 had high estimated infection rates with 66.4 (95%CI 47.3, 90.2) infections per 1000 
follow- up events and 49.6 (95%CI 33.6, 69.9) 
infections per 1000 follow- up events, respectively, 
compared to 23.2 (95%CI 9.2, 46.9) infections per 
1000 follow- up events in Valley 1. The number 
of infected participants in each household are 
mapped in Figure 4 - panel A, with relative eleva-
tion shown for reference in Figure 4 - panel B.

In the rat ecology study a rat was captured 
in 129 (9.0%) out of 1,512 trapping- days, 263 
(37.4%) out of 703 track plate days had at least 
one positive plate and 28.5%, 19.7%, and 25.9% 
of the 580 sampled locations had at least one sign 
of active burrows, faecal droppings and trails, 
respectively.

Exploratory analysis and model 
selection
The results from the exploratory multivariable 
analysis of rattiness are shown in Table  1. The 
linear splines used were informed by the func-
tional forms shown in Appendix 1—figure 1. The 
relationship between rattiness and relative eleva-
tion demonstrates a trade- off between the high 
availability of food sources at the bottom of the 
valley and high risk of flooding which prevents the 
establishment of burrows. In the lowest elevation 

Figure 4. Household infection and elevation maps. (A) Map of participant household locations with the number of leptospiral infections in each 
household marked (grey circle - no infections; orange square - 1 infection; red diamond - 2 infections; pink triangle - 3 infections) and contours marking 
low, medium, and high relative elevation category; (B) Elevation (metres) relative to the bottom of the valley with contours marking low, medium, and 
high relative elevation levels.

Table 1. Multivariable linear regression analysis 
of predictors for rattiness (note that rattiness is a 
unit- variance random variable when interpreting 
the magnitude of effect estimates).

Variable
Estimate 
(95% CI) *

Relative elevation (per 1 m 
increase)†

0–8 m 0.04 (0.00, 0.07)

8–22 m –0.04 (- 0.09, 0.01)

>22 m 0.06 (0.00, 0.10)

Distance to large refuse piles (per 
10 m increase)†

0–50 m –0.07 (- 0.13,–0.01)

>50 m 0.02 (- 0.05, 0.09)

Impervious land cover (per 10% 
increase)

–0.05 (- 0.08,–0.01)

*CI, Confidence interval.
†The effects of relative elevation and distance to refuse 
are modelled as broken linear models with transitions 
at 8m and 22m, and 50m, respectively. This was 
informed by the relationship described by Generalized 
Additive Modelling in Appendix 1—figure 1.

https://doi.org/10.7554/eLife.73120
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areas (0–8 m above the bottom of the valley), relative elevation and rattiness were positively asso-
ciated with an increase of 0.04 (95%CI 0.00, 0.07) rattiness units per 1  m; when interpreting the 
magnitude of effect estimates note that, by definition, rattiness is defined so as to have variance one. 
Rattiness then peaked at an elevation of 8 m before declining with increasing elevation by 0.04 (95%CI 
–0.09, 0.01) units until an elevation of 22 m. Rattiness started to increase again above this elevation 
by 0.06 (95%CI 0.00, 0.10) units per metre. Rattiness decreased with increasing distance from large 
refuse piles, a source of food and harbourage, by 0.07 (95%CI −0.13,–0.01) units per 10 m distance 
until a distance of 50 m, beyond which there was a smaller increase in rattiness of 0.02 (95%CI –0.05, 
0.09) per 10 m. Impervious land cover (defined as the proportion of the area within a 30 m radius 
around each sampling location classified as pavement or building) was negatively associated with 
rattiness, decreasing by –0.05 (95%CI −0.08,–0.01) units for every 10% increase in impervious cover.

In the community cohort data, the univariable analysis identified several risk factors that increased 
a resident’s risk of leptospiral infection (Table 2). Variables in two of the four domains (demographic 
and social status and behavioural exposures) had estimated effect sizes with 95% confidence intervals 
that did not include an odds ratio of one (statistically significant at the conventional 5% level). Within 
the demographic and social status domain, risk of infection increased with age and was found to be 
higher for male participants and those living in Valleys 2 and 3. In the behavioural exposures domain, 
participants who had had frequent contact with floodwater in the last six months were more likely 
to be infected. Two individuals were excluded from the multivariable analysis (n=1399) because of 
missing data for the floodwater exposure survey question.

In the exploratory results from the multivariable model there was strong evidence of an inter-
action between rattiness and household relative elevation category on human infection risk (see 
Appendix 3—table 1 for all parameter estimates for this model). In the high elevation category area, 
a unit increase in mean predicted rattiness at the household location was estimated to increase the 
odds of infection by 6.92 (95%CI 1.88, 25.47). In contrast, in the low and medium elevation cate-
gory areas there was no evidence of a relationship between rattiness and infection risk, as shown in 
Figure 5. Consequently, this interaction effect was also included in the rattiness- infection joint model.

The explanatory variables selected in the rat and human multivariable analyses were then entered 
into the full rattiness- infection joint model with the functional forms included in Table 1. To test for 
residual spatial correlation in the human infection data after controlling for explanatory variables and 
rattiness, we fitted the joint model with an additional spatial Gaussian process in the human infection 
linear predictor. The estimated value for the scale of spatial correlation for this Gaussian process was 
less than 1 m and indistinguishable from household- level variation. We consequently fitted the joint 
model specified in Equation 3 which assumes that there is no residual spatial correlation in the human 
infection data.

Joint rattiness-infection model
Human infection risk factors, rattiness predictors and other model parameters estimated using the 
joint rattiness- infection model are shown in Table 3. Infection risk was strongly associated with age, 
with an individual experiencing an increased odds of infection of 1.09 (95%CI 1.04, 1.19) for every year 
of life up until 30 years of age, and 1.02 (95%CI 0.92, 1.09) for each additional year thereafter. Male 
participants were more likely to be infected than female participants (OR 2.69 95% CI 1.58, 5.89). 
Compared with individuals living in Valley 1, those living in Valley 2 had a higher estimated odds of 
infection (OR 2.91 95% CI 1.03, 20.82). Individuals living in the medium (OR 0.77 95% CI 0.31, 1.66) 
and high (OR 0.67 95% CI 0.11, 1.64) elevation areas had a lower estimated odds of infection relative 
to those living in the low relative elevation category area where there are open sewers and flooding 
risk is higher, however these confidence intervals included an odds ratio of one (not statistically signif-
icant at the conventional 5% level).

Infection risk was positively associated with rattiness for households situated in all three levels of 
the relative elevation category variable. However, while the effect size (per unit increase in rattiness) 
was similar in the low (OR 1.14 95% CI 1.05, 1.53) and medium (OR 1.25 95% CI 1.08, 1.74) elevation 
areas, in the high elevation area the effect of increasing rattiness on infection risk was significantly 
stronger (OR 3.27 95% CI 1.68, 19.07). This interaction effect between rattiness and household rela-
tive elevation category on human infection risk was confirmed with a test for evidence against the null 
hypothesis that  ξlow = ξmed = ξhigh  ( p = 0.026 ,  χ

2 = 7.33 ,  df = 2 ).

https://doi.org/10.7554/eLife.73120
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Table 2. Univariable mixed effects logistic regression analysis of human risk factors for leptospiral 
infection.

Variable OR (95% CI)* aOR (95% CI)*

Demographic and social status

Age (per year)†

  0–30 years old 1.08 (1.03, 1.13) 1.09 (1.04, 1.15)

  >30 years old 1.02 (0.96, 1.09) 1.02 (0.95, 1.08)

Male gender 2.22 (1.31, 3.85) 2.78 (1.56, 4.96)

Daily per capita household income (US$/day) 1.01 (0.89, 1.11) 0.92 (0.80, 1.05)

Valley

  1 REF REF

  2 3.35 (1.33, 10.37) 3.52 (1.23, 10.05)

  3 2.39 (0.93, 7.38) 2.53 (0.88, 7.27)

Adult illiteracy 1.34 (0.61, 2.79) 0.66 (0.29, 1.49)

Education (per year of education)†

  0–5 years 1.05 (0.85, 1.32) 1.14 (0.91, 1.44)

  >5 years 0.96 (0.73, 1.27) 0.96 (0.75, 1.26)

Household environment

Impervious land cover (per 10% increase) 0.87 (0.76, 0.99) 0.82 (0.71, 0.95)

Relative elevation (per 1 m increase)†

  0–20 m 0.94 (0.89, 0.99) 0.93 (0.88, 0.99)

  >20 m 1.12 (0.98, 1.29) 1.12 (0.97, 1.29)

Relative elevation category ‡

  Low (0–6.7 m) REF REF

  Medium (6.7–15.6 m) 0.72 (0.37, 1.39) 0.72 (0.36, 1.44)

  High (>15.6 m) 0.58 (0.27, 1.20) 0.51 (0.23, 1.11)

Open sewer within 10 m 1.60 (0.85, 3.17) 1.69 (0.85, 3.37)

Unprotected from open sewer 1.00 (0.55, 1.79) 1.11 (0.61, 2.03)

Live on hillside 0.99 (0.52, 1.86) 0.89 (0.46, 1.71)

Occupational exposures

Work in construction § 1.36 (0.51, 3.21) 0.62 (0.23, 1.67)

Work as travelling salesperson § 4.81 (1.12, 18.78) 2.97 (0.71, 12.40)

Work in refuse collection § 2.95 (1.04, 7.89) 1.57 (0.56, 4.42)

Work involves contact with floodwater § 0.89 (0.04, 5.61) 0.52 (0.05, 4.96)

Work involves contact with sewer water § 3.61 (0.45, 20.38) 1.92 (0.29, 12.80)

Behavioural exposures

Contact with floodwater in last 6 months

  Never/rarely REF REF

  Sometimes 0.61 (0.27, 1.25) 0.66 (0.30, 1.47)

  Frequently 2.14 (0.91, 4.94) 2.84 (1.18, 6.86)

Contact with sewer water in last 6 months

Table 2 continued on next page
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Parameter estimates for the rattiness variables were very similar to the estimates from the explor-
atory linear regression (Table 1), with a slightly higher effect size for the distance to refuse piles and 
land cover variables. There was evidence of small- scale spatial correlation in rattiness ( ϕ  = 9.23m 
95% CI 3.21, 18.24 m) corresponding to a spatial correlation range (the distance at which the correla-
tion reduces to 5%) of approximately 28 m. The estimate for  ψ  of about 0.67 (95%CI 0.29, 1.00) 

Variable OR (95% CI)* aOR (95% CI)*

  Never/rarely REF REF

  Sometimes 0.55 (0.19, 1.31) 0.67 (0.25, 1.78)

  Frequently 1.42 (0.51, 3.50) 1.63 (0.61, 4.41)

*OR, Odds ratio; aOR, Adjusted odds ratio; CI, Confidence interval; REF, Reference level.
†The effect of age, education and relative elevation are modelled as broken linear models with transitions at 
30 years old, 5 years of education and an elevation of 20m. This was informed by the relationship described by 
Generalized Additive Modelling (Appendix 1—figure 2).
‡Relative elevation category consists of three discrete groups representing three regions with different floodingrisk 
profiles.
§Binary variable with reference category of ‘no occupational exposure’.

Table 2 continued

Figure 5. Predicted relationship between rattiness and infection risk from the multivariable mixed effects logistic regression demonstrating evidence 
of an interaction with relative elevation category (low, medium and high). Shown on the log- odds scale with shaded areas corresponding to 95% 
confidence intervals.

https://doi.org/10.7554/eLife.73120
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indicates that the majority of the unexplained 
variation in rattiness is spatially structured, with 
the remainder modelled as a nugget effect.

Spatial prediction
There was heterogeneous spatial variation in 
predicted rattiness. The numerous small regions 
of high rattiness in Figure 6 - panel A are indic-
ative of the small- scale spatial correlation in 
the data. The low elevation areas in the central 
length of each valley (relative elevation is shown 

Table 3. Parameter estimates for the full joint 
rattiness- infection model.

Parameter
Estimate 
(95% CI)

Human infection risk factors OR

Age (per year)

  0–30 years old
1.09 (1.04, 
1.19)

  >30 years old
1.02 (0.92, 
1.09)

Male gender
2.69 (1.58, 
5.89)

Daily per capita household income 
(US$/day)

0.93 (0.74, 
1.05)

Valley

  1 REF

  2
2.91 (1.03, 
20.82)

  3
2.28 (0.86, 
14.00)

Relative elevation category

  Low (0–6.7 m) REF

  Medium (6.7–15.6 m)
0.77 (0.31, 
1.66)

  High (>15.6 m)
0.67 (0.11, 
1.64)

Work as travelling salesperson
3.16 (0.38, 
20.57)

Contact with floodwater in last 
6 months

  Never/rarely REF

  Sometimes
0.62 (0.18, 
1.39)

  Frequently
2.47 (0.67, 
7.41)

Rattiness (per unit rattiness)

   ξlow 
1.14 (1.05, 
1.53)

   ξmed  
1.25 (1.08, 
1.74)

   ξhigh 

3.27 (1.68, 
19.07)

 σ2 (variance of household- level 
random effect)

1.36 (0.23, 
5.35)

Rattiness variables

Relative elevation (per 1 m increase)2

  0–8 m 0.05 (- 0.01, 
0.13)

Table 3 continued on next page

Parameter
Estimate 
(95% CI)

  8–22 m
–0.06 (- 0.16, 
0.02)

  >22 m
0.05 (- 0.03, 
0.14)

Distance to large refuse piles (per 10 m 
increase)3

  0–50 m
–0.10 (- 0.21, 
0.02)

  >50 m
0.03 (- 0.11, 
0.17)

Impervious land cover (per 10% 
increase)

–0.07 (- 0.14,–
0.01)

Rattiness parameters

 αtraps 
–2.94 (- 3.27,–
2.65)

 αplates 
–2.06 (- 2.50,–
1.74)

 αburrows 
–1.41 (- 1.67,–
1.16)

 αfaeces 
–2.82 (- 3.83,–
2.32)

 αtrails 
–2.22 (- 2.96,–
1.76)

 σtraps 
0.72 (0.45, 
0.97)

 σplates 
2.37 (2.05, 
2.68)

 σburrows 
1.28 (1.08, 
1.45)

 σfaeces 
2.36 (1.80, 
3.34)

 σtrails 
2.43 (1.85, 
3.12)

 ψ 
0.67 (0.29, 
1.00)

 ϕ 
9.23 (3.21, 
18.24)

Table 3 continued
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in Figure  6 - panel E with the contours marking the low, medium and high elevation areas) had 
high mean predicted rattiness. High rattiness was also predicted in several high elevation areas, for 
example the northern tip of Valley 3 and several small hotspots along the three valley’s high elevation 
sides.

To illustrate the spatial variation in infection risk within the study area, prediction maps are shown in 
Figure 6 - panel B for a 30- year- old male participant with a household per capita income of USD$1 /
day who never or rarely had contact with floodwater in the previous six months and did not work as 
a travelling salesperson. Infection risk was low across most of Valley 1 (<2.5%), with marginally higher 
average values found in the central low elevation area (2.5–5%). Risk was consistently higher across 
most of Valleys 2 and 3 (7.5–15%), with the effect of elevation on risk clearly visible. In areas with 
higher and more spatially heterogeneous predicted infection risk, for example in the central region 
of Valley 2, this was driven by high levels of predicted rattiness. The stronger estimated effect of 
rattiness on infection risk in higher elevation areas was particularly visible in Valleys 2 and 3, as seen 
in the three hotspots with risk reaching 20% and the moderate risk hotspots along the sides of both 
valleys. Prediction intervals were relatively narrow across most of the study area (Figure 6 - panel C 
and Figure 6 - panel D) with greater uncertainty in the high risk areas.

Discussion
We developed and applied a novel framework for joint spatial modelling of disease reservoir abun-
dance and human infection risk to a community- based cohort study and fine- scale rat ecology study. 
We found that higher levels of rattiness, our proxy for rat abundance, at the household location 
were associated with a higher risk of leptospiral infection for residents across the entire study area. 

Figure 6. Joint rattiness- infection model predictions. (A) Mean predicted rattiness; (B) Mean predicted leptospiral infection risk for 30- year- old 
male participants with a household per capita income of USD$1 /day who never/rarely have contact with floodwater and do not work as a travelling 
salesperson; (C) lower 95% prediction interval for predicted infection risk; (D) upper 95% prediction interval for predicted infection risk.
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Importantly, we found that a unit increase in rattiness in high elevation areas was associated with an 
almost three times higher odds ratio for infection than in low and medium elevation areas. To our 
knowledge, this is the first study to jointly model rodent abundance and human infection data for 
a rodent- borne zoonosis. The findings provide new insights into how the dominant mechanisms of 
Leptospira transmission within complex urban settings may vary over small distances, as a result of 
interactions between rats, the environment, geography, and local epidemiology.

The finding that rattiness was associated with infection risk indicates that the spatial distribution 
of rat populations was an important driver of transmission close to the household across the entire 
study area. This is consistent with a recent study investigating the predictive power of household rat 
infestation scores for human infection (Costa et al., 2021). There was no residual spatial correlation 
in the infection data after accounting for rattiness in our analysis, possibly suggesting that previously 
unexplained spatial heterogeneity in risk could be driven by variation in rattiness (Hagan et al., 2016). 
Our model also predicted high average rattiness across the low elevation areas where leptospiral 
transmission is high (Hagan et al., 2016; Reis et al., 2008). This supports the hypothesis that abun-
dant rat populations are responsible for high levels of observed environmental contamination across 
these lower areas (Casanovas- Massana et al., 2018; Casanovas- Massana et al., 2022), and conse-
quently increased infection risk.

The identified interaction between elevation and rattiness on infection risk suggests that relatively 
small changes in environment and topography can modify transmission pathways within an urban 
community. The weaker effect of rattiness on infection risk at low and medium elevation areas relative 
to high elevation areas may be explained by differences in their hydrological profiles. While high rat 
abundance in low and medium areas results in high leptospiral contamination, these areas are prone 
to high levels of water runoff and flooding. This disperses the pathogen across low elevation areas. 
The ability of leptospires to persist in the environment for weeks or months means that this process 
can significantly increase environmental risk in low elevation areas for long periods. This process 
disconnects shedding and infection events in space and time (Plowright et al., 2017) and obscures 
the relationship between infection risk and rattiness in low and medium elevation households.

In contrast, high elevation areas have lower levels of water runoff and flooding due to improved 
drainage and sewage systems, and a smaller upstream catchment area for rainfall. Leptospires are 
consequently less likely to be washed away from the location at which they were shed, and environ-
mental risk remains more localised and strongly associated with the spatial distribution of rats. This 
hypothesised role of hydrology in the aggregation and dispersal of leptospires (Plowright et  al., 
2017) is supported by a recent study in low elevation areas of Pau da Lima which found that soil 
contamination was not associated with local rat activity (Schneider et al., 2018). However, our finding 
that rattiness was associated with infection in low and medium elevation areas suggests that the 
spatial distribution of environmental risk in these areas is not entirely determined by water dispersal.

Interestingly, a previous study of surface waters in Pau da Lima found that the probability of a 
sample being positive for Leptospira was highest in low elevation areas and lowest in medium eleva-
tion areas, with no significant difference between low and high elevation areas (Casanovas- Massana 
et al., 2018). This is consistent with our findings and suggests that there may be a ‘washing out’ of 
locally deposited leptospires in medium elevation areas but not in high elevation areas.

This has several implications for disease control strategies which aim to reduce environmental risk. 
Improving drainage systems at all elevation levels can reduce the dispersal of leptospires from high to 
low elevation areas. Closure of sewer systems, which generally run through low elevation areas, can 
protect local residents from exposure and reduce the introduction of additional contamination from 
upstream sewer water. Paving over soil surfaces can reduce the surface area over which leptospires 
can persist (Bierque et al., 2020), reducing environmental risk further.

A reduction in the dispersal and accumulation of bacteria will result in more localised environmental 
risk, as was observed in the high elevation areas in this study. Higher risk will then be found in areas 
with a high abundance of infected rats. This may also reduce environmental exposure for rats, thereby 
lowering shedding rates and acting as a feedback loop into the Leptospira transmission cycle (Minter 
et al., 2018). Given the limited and short- term impact of chemical rodenticide campaigns on Norway 
rat abundance in these settings (de Masi et al., 2009), longer- term environment management strate-
gies targeted at rattiness hotspots may also be needed to reduce the availability of key predictors of 
rattiness, such as large refuse piles and vegetation and soil land cover. Funding and political will for 
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large- scale infrastructural interventions is often limited in marginalised urban settings and small- scale 
community- based interventions which target these mechanisms should be evaluated.

Transmission is dynamic in space and time and the alignment of conditions which enable spill-
over infection can vary over time (Plowright et al., 2017). Our study was designed to explore the 
spatial variation in rattiness and infection risk in Pau da Lima during the driest period of the year, 
and it may not be representative of transmission mechanisms during the rainy season. There is some 
evidence, however, that this may not necessarily be the case, with two recent studies in Pau da Lima 
reporting low seasonal variation in both rat abundance (Panti- May et al., 2016) and spatial infec-
tion risk patterns (Hagan et al., 2016). Nonetheless, future studies across different time periods are 
needed to establish the role of rat abundance in Leptospira transmission.

In this study we used household location to link rattiness to an individual, under the assumption 
that the majority of their exposure occurs close to home. Given the spatially heterogeneous distri-
bution of rattiness and environmental contamination (Casanovas- Massana et al., 2018) within the 
community, future epidemiological studies of leptospirosis and zoonotic spillover could benefit from 
trying to pinpoint key sources of infection away from the household using GPS mobility data, as has 
been attempted in a small study previously (Owers et al., 2018). The rattiness- infection framework 
could then be extended to model cumulative environmental exposure to the rattiness surface by inte-
grating along a person’s trajectory as they move around the community.

Our framework did not account for disease dynamics within rat populations. Given that 80% of rats 
are estimated to be actively shedding Leptospira in Pau da Lima (Costa et al., 2015b; de Faria et al., 
2008) and prevalence in rats is generally high in urban areas globally (Pellizzaro et al., 2019; Costa 
et al., 2014a; Boey et al., 2019; Yusof et al., 2019; Krøjgaard et al., 2009), the use of rattiness as 
a proxy for rat shedding appears reasonable and it may be a useful proxy in other epidemiological 
studies. Despite this, non- shedding rats may be spatially clustered and future work would benefit 
from the collection of georeferenced rat infection data. For other zoonotic spillover systems where 
pathogen release does not occur at a high and homogeneous rate across the reservoir host popula-
tion, accounting for spatially heterogeneous or time- varying (Davis et al., 2005) disease dynamics will 
be important.

A possible limitation of this study is the titre rise cut- off values used for classifying seroconversion 
and reinfection in the cohort that determine the sensitivity and specificity of the infection criteria. 
However, these criteria were used because they are the standard definitions for serological determi-
nation of infection that are commonly applied for leptospirosis and a wide range of other infections, 
and they enable the comparison of results with other previous leptospirosis studies.

The rattiness- infection modelling framework is a flexible tool for exploring the spatial association 
between reservoir abundance, the environment and human health outcomes. It provides a statistically 
principled method for joint spatial modelling of infection risk and multiple indices of reservoir abun-
dance, pooling data between indices and directly accounting for uncertainty in their measurement in 
all parameter estimates and predictions. The framework’s geostatistical structure includes spatially 
continuous predictors for abundance and accounts for spatial correlation, enabling mapping of both 
infection risk and rattiness. This can be useful for identifying high- risk areas and targeting control. 
One inherent limitation is its dependence on the availability of spatially continuous environmental 
variables and abundance data, both of which are prone to high measurement error. This can result 
in high uncertainty in the model parameter estimates and predictions, as demonstrated by the wider 
confidence intervals for risk factors in the joint model compared to the standard mixed- effects logistic 
regression analysis. An additional benefit of the geostatistical structure is that abundance measure-
ments do not have to be taken at the household location, providing some flexibility in the design 
of eco- epidemiological studies and indices used. The framework may have important applications 
beyond the study of zoonotic spillover, with the rattiness component replaced by other exposure 
measures for example mosquito density or ecological indices (such as pollution, where there are 
multiple, related measures of air or groundwater quality) to model associations with human or animal 
health outcomes.

In conclusion, we have developed a framework that may have broad applications in delineating 
complex animal- environment- human interactions during zoonotic spillover and identifying opportu-
nities for public health intervention. We demonstrate its potential by applying it to Leptospira in an 
urban setting, finding evidence that the extent to which local rat shedding drives spillover transmission 
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is moderated by elevation, most likely a proxy for water runoff. Future work examining these trans-
mission mechanisms in similar settings and across different time points will be key to establishing how 
generalisable these results are.
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Appendix 1

Functional form of continuous explanatory variables

Appendix 1—figure 1. Generalized Additive Model (GAM) partial dependence plots for the unstructured random 

variation in rattiness,, ̂Ui  plotted against the continuous explanatory variables considered in the analysis (shaded 

areas correspond to 95% confidence intervals). (A) elevation relative to the bottom of valley, (B) distance to large 

refuse piles, (C) impervious land cover in 20 m radius buffer around sampling point. are estimated using a non- 

spatial model which excludes all covariates. (D) is a variogram computed from  ̂Ui  using a non- spatial model that 

includes all of the covariates; the dashed lines correspond to 95% confidence intervals under the assumption of 

spatial independence.

A single knot point for the distance to refuse piles variable was chosen at 50  m to account 
for the expected decay in the effect of food resources up to a rat home range distance, beyond 
which little effect would be expected. We did not include an additional knot point at 145 m despite 
there being a visible change in gradient in Appendix 1—figure 1 - panel B for two reasons. Firstly, 
the home range of Norway rats is estimated to be less than 100 m in these urban settings (Feng 
and Himsworth, 2014; Davis et  al., 1948; Byers et  al., 2019), meaning that rat abundance is 
very unlikely to be affected by the availability of anthropogenic food sources beyond this distance, 
particularly given the high availability of food across the study area. Secondly, we could offer no 
scientific rationale for why rattiness would start to increase again beyond 50 m before peaking at a 
very large distance of 145 m from a refuse pile and decreasing thereafter.

https://doi.org/10.7554/eLife.73120
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In contrast, the mechanisms by which rattiness varies with elevation are more complex, with 
significant changes in the environment occurring at different elevations. For example, the relationship 
identified in Appendix 1—figure 1 - panel A can be explained by the high risk of flooding at the 
bottom of the valley, which carries resources down to lower elevations (resulting in a peak of rattiness 
at about 7 m) but makes the very lowest elevations unsuitable for rat burrows. The highest elevations 
in our study area are close to a main road with food markets where large quantities of food waste 
are left out in the street for collection. Although there is large uncertainty about this relationship, it 
is highly possible that this may be driving the positive relationship between 23 m and 40 m.

Appendix 1—figure 2. Generalized Additive Model (GAM) partial dependence plots for human infection risk 
plotted against the continuous explanatory variables considered in this analysis (shaded areas correspond to 95% 
confidence intervals). (A) age, (B) household per capita income (in USD), (C) years of education, (D) household 
elevation relative to the bottom of valley, (E) impervious land cover in 20 m radius buffer around household.

Single knot points were considered for age at 30 years (Appendix 1—figure 2 - panel A), education 
at 5 years (Appendix 1—figure 2 - panel C) and relative elevation at 20 metres (Appendix 1—figure 
2 - panel D) based on the value of the explanatory variable at which the gradient of the relationship 
changed in these plots.
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Appendix 2
Model selection tables

Appendix 2—table 1. AIC fit of the five highest ranked multivariable rattiness models (’+’ indicates 
that a variable was selected in the model).
Model Dist. refuse (0–50) Dist. refuse (>50) Land cover Elevation (0–8 m) Elevation (8–22 m) Elevation (>22 m) df* AICc *

M1 + + + + + + 8 1476.48

M2 + + + + 6 1479.31

M3 + + + + + 7 1481.01

M4 + + + + + 7 1481.99

M5 + + + + + 7 1482.97

*df, degrees of freedom; AICc, corrected Akaike Information Criterion.

Appendix 2—table 2. AIC fit of the five highest ranked multivariable human infection models (’+’ 
indicates that a variable was selected in the model).
Model Age (0–30) Age (>30) Sex Valley Floodwater Income Land cover Salesperson Elevation level Rattiness Ratt:Elev df* AICc *

M1 + + + + + + + + + + 16 523.14

M2 + + + + + + + + + 15 523.52

M3 + + + + + + + + + + + 17 523.72

M4 + + + + + + + + + + 16 524.11

M5 + + + + + + + + + 14 525.04

M*† + + + + + + + + 13 532.13

*df, degrees of freedom; AICc, corrected Akaike Information Criterion
†Model M* was ranked outside of the top 5 models but is included here for reference to demonstrate the improvement in model fit when rattiness is included.
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Appendix 3
Exploratory multivariable analysis of human risk factors

Appendix 3—table 1. Multivariable mixed effects logistic regression analysis of risk factors for 
leptospiral infection in community members. 

Note: there was missing information for the contact with floodwater question for two individuals and 
consequently only 1399 participants from 668 households were included in this analysis.

Variable OR (95% CI)

Demographic and social status

Age (per year)*

  0–30 years old 1.10 (1.04, 1.16)

  >30 years old 1.02 (0.96, 1.09)

Male gender 2.90 (1.59, 5.28)

Daily per capita household income 
(US$/day) 0.93 (0.81, 1.06)

Valley

  1 REF

  2 3.91 (1.33, 11.68)

  3 2.26 (0.74, 6.93)

Household environment

Relative elevation level

  High (>15.6 m) REF

  Medium (6.7–15.6 m) 0.71 (0.30, 1.70)

  Low (0–6.7 m) 1.08 (0.44, 2.62)

Occupational exposures

Work as travelling salesperson † 3.38 (0.77, 14.87)

Behavioural exposures

Contact with floodwater in last 
6 months

  Never/rarely REF

  Sometimes 0.64 (0.28, 1.43)

  Frequently 2.48 (1.02, 6.02)

Rattiness

Rattiness at high elevation level (per 
unit rattiness) 6.92 (1.88, 25.47)

Elevation level: Low × rattiness 0.10 (0.02, 0.62)

Elevation level: Medium × rattiness 0.15 (0.02, 0.91)

 σ2  (variance of household random 
effect) 1.78

*The effect of age is modelled as a broken linear 
model with a transition at 30 years old, as informed 
by the relationship described by Generalized Additive 
Modelling (Appendix 1—figure 2).
†Binary variable with reference category of ‘no 
occupational exposure’.
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Appendix 4
Model fitting
To fit the joint model, we proceed as follows. Let  W = (Y, Z)  and  θ = (α1, ...,α5,αh,σ1, ...,σ5,βh, γ, ξ,σ2)  
and  ω = (βr,ϕ,ψ)  be the vector of unknown parameters associated with  [R]  and  [W|R] . The likelihood 
function is then given by

 
L(θ,ω) = [W; θ,ω] =

ˆ

RN
[R;ω][W|R; θ]gtdR

  
(5)

The integral in Equation 5 cannot be solved analytically so we approximate it using Monte 
Carlo methods. Specifically, let  θ0  and  ω0  be our initial best guesses for θ and ω, respectively. 
Since  [R;ω][W|R; θ] ∝ [R|W;ω]  we re- write the integral in Equation 5 using an importance sampling 
distribution  [R;ω0][W|R; θ0]  to give

 

L(θ,ω) ∝
´
RN

[R;ω][W|R;θ]
[R;ω0][W|R;θ0] [R|W; θ0,ω0] dR

= E
[

[R;ω][W|R;θ]
[R;ω0][W|R;θ0]

]
,

  
(6)

where the expectation is taken with respect to the distribution of  [R|W;ω0] .
Based on Equation 6, we then approximate Equation 5 with

 L(θ,ω) ≈ 1
B
∑B

b=1
[r(b);ω][W|r(b);θ]

[r(b);ω0][W|r(b);θ0]  (7)

where  r(b)  is the  b - th sample from  [R|W;ω0, θ0] . To obtain the maximum likelihood estimates for θ 
and ω, we maximize Equation 7 using numerical optimization. To simulate from  [R|W; θ0,ω0] , we use 
the Laplace sampling algorithm described in detail by Christensen, 2004 and Giorgi and Diggle, 
2017. We draw 110,000 samples from  [R|W; θ0,ω0] , with a burn in of 10,000 samples and thin by 10%, 
leaving 10,000 MCMC samples.

To improve the approximation of the likelihood function, we also update our guesses  ω0  and  θ0  
by plugging their estimated values into the denominator of Equation 7 and iterate its maximization 
until convergence.
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Appendix 5
Baseline cohort characteristics

Appendix 5—table 1. Summary of demographic, socioeconomic and environmental risk factors.

Variable
No. or Median 
(% or IQR) *

Demographic and social status

Age (years) 27 (15–41)

Male gender 597 (42.6%)

Daily per capita household income (US$/
day) 1.6 (0.8–2.8)

  Valley 1 259 (18.5%)

  Valley 2 557 (39.8%)

  Valley 3 585 (41.8%)

  Literacy 1125 (80.3%)

Education (years) 6 (4- 9)

Household environment

Impervious land cover (%) 49.6 (35.1–70.6)

Relative elevation (metres) 11.0 (5.9–16.3)

Elevation level

  Low (0–6.7 m) 474 (33.8%)

  Medium (6.7–15.6 m) 524 (37.4%)

  High (>15.6 m) 403 (28.8%)

Open sewer within 10 m 926 (66.1%)

Unprotected from open sewer 666 (47.6%)

Live on hillside 453 (32.4%)

Occupational exposures

Work in construction 105 (7.5%)

Work as travelling salesperson 24 (1.7%)

Work in refuse collection 61 (4.4%)

Work involves contact with mud 27 (1.9%)

Work involves contact with floodwater 23 (1.6%)

Work involves contact with sewer water 16 (1.1%)

Behavioural exposures

Contact with floodwater in last 6 months

  Never/rarely 986 (70.5%)

  Sometimes 299 (21.4%)

  Frequently 114 (8.1%)

Contact with sewer water in last 6 months

  Never/rarely 1120 (80.2%)

  Sometimes 180 (12.9%)

  Frequently 97 (6.9%)

* No., number; IQR, interquartile range; Percentages are 
calculated without missing values. All variables had ≤ 5 missing 
values.
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Appendix 6
Sensitivity analysis for disturbed trap modelling assumption
In the rattiness- infection framework we assumed that a trap was disturbed when it was found closed 
without a rat and set  t = 0.5  (see ‘Rat abundance outcomes’) in the equation for the probability of 
capturing a rat

 1 − exp{−tiµ1(xi)}.  

This occurred in 554 (36.6%) out of 1,512 trapping- days. To ascertain the potential impact of this 
on model parameter estimates we conducted a sensitivity analysis as follows:

1. Draw values for t from  U(0, 1)  for all trap observations that were found closed.
2. Fit a simplified rattiness model with covariates that did not account for spatial correlation by 

setting  ψ = 0  in Equation 2 in ‘Rattiness’.
3. Repeat steps 1–2 a total of 1,000 times.
4. Estimate the between- imputation standard error for each parameter, defined as:

 SEimp =
√∑B

i=1(θi−θ̄2)
B−1   

for imputation  i  of a total  B  imputed datasets.
The results for each parameter can be seen in Appendix 6—table 1 below. Estimated between- 
imputation standard errors were small relative to parameter estimates, indicating that uncertainty 
due to the missing trap disturbance information is unlikely to have significantly affected parameter 
estimates in the full rattiness- infection model.

Appendix 6—table 1. Trap disturbance sensitivity analysis: non- spatial rattiness model parameter 
estimates and between- imputation standard errors.

Parameter Estimate  SEimp 

 αtraps –2.8274 0.0128

 αplates –1.9058 0.0004

 αburrows –1.3794 0.0008

 αfaeces –2.8617 0.0027

 αtrails –2.1538 0.0023

 σtraps 0.7010 0.0120

 σplates 2.4016 0.0004

 σburrows 1.3820 0.0008

 σfaeces 2.6704 0.0031

 σtrails 2.6431 0.0036

Relative elevation (per 1 m increase)2

  0–8 m 0.0525 0.0001

  8–22 m –0.0583 0.0001

  >22 m 0.1112 0.0002

Distance to large refuse piles (per 10 m increase)3

  0–50 m –0.1090 0.0002

  >50 m 0.0405 0.0001

Impervious land cover 
(per 10% increase) –0.0592 0.0001

https://doi.org/10.7554/eLife.73120
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Appendix 7
Residual diagnostics
To examine the fit of the full rattiness- infection model to the human infection data, a formal 
diagnostic investigation was conducted using randomized quantile residuals (Dunn and Smyth, 
1996; Smyth et al., 2021). The residual plots in Appendix 7—figure 1 exhibit no trends between 
quantile residuals and fitted values (Panel A) or variables in the model (Panels B- H).

Appendix 7—figure 1. Residual diagnostic plots showing randomised quantile residuals plotted against: (A) fitted 
values; (B–H) variables in the model.

https://doi.org/10.7554/eLife.73120
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Appendix 8
Model building guidance
To help guide the model building process for future users of the rattiness- infection framework 
we outline the following key steps (to be viewed with the available R code at https://github.com/ 
maxeyre/Rattiness-infection-framework):

1. Set up the rat (or any other animal reservoir) component of the model [script: 1- rat- explore.R]:
a. Fit the non- spatial rattiness model with no explanatory variables and predict rattiness at 

all sampled rat locations.
b. Explore the relationship between predicted mean rattiness and explanatory variables 

using Generalized Additive Models (GAMs) to decide on their functional form. Note: all 
variables considered must also be measured at household locations

c. Conduct model selection using a linear model with mean predicted rattiness as the 
dependent variable.

d. Fit the non- spatial rattiness model with selected explanatory variables and compute the 
empirical variogram to check for evidence of residual spatial autocorrelation. If the vario-
gram shows no signs of residual correlation, consider confirming this result by fitting the 
model in the following step - the estimated scale of spatial correlation  ϕ  should be close 
to zero (it may also not be able to estimate its value, with the value changing considerably 
between iterations).

e. Fit the spatial rattiness model with selected explanatory variables and predict mean ratti-
ness at household locations to create an exploratory rattiness variable. To improve model 
convergence use parameter estimates from the non- spatial model as the first guess for 
the parameters and repeat model fitting by plugging in previous estimates.

2. Set up the human infection component of the model [script: 2- human- explore.R]:
a. Explore the relationship between infection risk and explanatory variables using General-

ized Additive Models (GAMs) to decide on their functional form.
b. Conduct model selection
c. Explore the relationship between infection risk and mean predicted rattiness using Gener-

alized Additive Models (GAMs) and consider interactions where relevant.
d. Test for residual spatial correlation after controlling for selected variables and mean 

predicted rattiness (we recommend using the PrevMap package).
3. Using the joint rattiness- infection framework:

a. Fit the joint model [script: 3- fit- joint- model.R]. In the ‘control’ file, the inclusion of a 
household- level random effect (or ‘nugget’) and an additional spatial Gaussian process (if 
there was evidence of residual spatial correlation after controlling for explanatory varia-
bles and rattiness in the previous step) in the human linear predictor can be controlled. We 
recommend monitoring parameter estimates from each iteration to assess how well the 
model is converging. If parameters for the spatial Gaussian processes are not converging 
then this may indicate that the data do not support the inclusion of an additional spatial 
Gaussian process in the human component and a simpler model should be considered. 
This model fitting process can be time consuming and ideally should be run on a high- end 
computing network.

b. Conduct a residual diagnostic analysis for the full rattiness- infection model [script: 
5- revision subanalyses.R].

c. Bootstrap to estimate uncertainty in parameter estimates [script: 3- fit- joint- model.R]
d. Create prediction maps for rattiness, infection risk and spatial Gaussian processes (if 

required) [script: 4- spatial- prediction.R]. The prediction grid for your study area must 
include values for all variables included in the model.
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