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A B S T R A C T   

Predicting areas of severe biomass loss and increased N leaching risk under climate change is critical for applying 
appropriate adaptation measures to support more sustainable agricultural systems. The frequency of annual 
severe biomass loss for winter wheat and its coincidence with an increase in N leaching in a temperate region in 
Germany was estimated including the error from using soil and climate input data at coarser spatial scales, using 
the soil-crop model CoupModel. We ran the model for a reference period (1980–2010) and used climate data 
predicted by four climate model(s) for the Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5. The 
annual median biomass estimations showed that for the period 2070–2100, under the RCP8.5 scenario, the entire 
region would suffer from severe biomass loss almost every year. Annual incidence of severe biomass loss and 
increased N leaching was predicted to increase from RCP4.5 to the 8.5 scenario. During 2070–2100 for RCP8.5, 
in more than half of the years an area of 95% of the region was projected to suffer from both severe biomass loss 
and increased N leaching. The SPEI3 predicted a range of 32 (P3 RCP4.5) to 55% (P3 RCP8.5) of the severe 
biomass loss episodes simulated in the climate change scenarios. The simulations predicted more severe biomass 
losses than by the SPEI index which indicates that soil water deficits are important in determining crop losses in 
future climate scenarios. There was a risk of overestimating the area where “no severe biomass loss + increased N 
leaching” occurred when using coarser aggregated input data. In contrast, underestimation of situations where 
“severe biomass loss + increased N leaching” occurred when using coarser aggregated input data. Larger annual 
differences in biomass estimations compared to the finest resolution of input data occurred when aggregating 
climate input data rather than soil data. The differences were even larger when aggregating both soil and climate 
input data. In half of the region, biomass could be erroneously estimated in a single year by more than 40% if 
using soil and climate coarser input data. The results suggest that a higher spatial resolution of especially climate 
input data would be needed to predict reliably annual estimates of severe biomass loss and N leaching under 
climate change scenarios.   

1. Introduction 

Current agricultural production systems in many parts of the world 
are degrading land and water resources, biodiversity and climate (Foley 
et al., 2011). There is therefore a need to secure food for a growing 
population and, at the same time, to reduce the impact of the food 
production systems on the environment (Godfray et al., 2010). Climate 
change may aggravate these problems, with projected increases in the 
frequency of severe droughts, heatwaves and extreme precipitation 
events likely to affect crop production. Many previous studies have 

focused on how future climate change may affect crop production (e.g. 
Challinor et al., 2010; Frieler et al., 2017; Webber et al., 2018) but fewer 
studies have investigated the effects on both crop production and the 
environment (e.g. Congreves et al., 2016; Blanke et al., 2017; He et al., 
2018). 

Nitrogen leaching to ground- and surface water results in several 
negative impacts on the environment, mainly in the form of eutrophi-
cation, acidification and toxicity of drinking water (Jones et al., 2014). 
Changes in the pattern and intensity of precipitation as well as changes 
in temperature due to climate change are expected to affect N leaching. 
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In many cases predictions have shown an increase of N leaching (e.g. 
Berit et al., 2005; Stuart et al., 2011) and different mechanisms may be 
responsible for this increase. Summer drought will probably increase the 
accumulation of N in soils (due to decreased run off and plant N uptake), 
which can later be mobilized by intense heavy autumn or spring rains 
(Loecke et al., 2017). Another likely mechanism for increased N leaching 
is that an increase in the frequency of large rainfall events during spring 
and summer, can delay sowing, plant emergence and establishment 
causing larger water fluxes through soil (Bowles et al., 2018). 

Impacts of climate change will differ across regions. In northern 
Europe, the change in climate may have both positive and negative 
impacts. It may increase crop productivity by extending the length of the 
growing season and increasing the areas suitable for crop cultivation 
(SOU, 2007; Fogelfors et al., 2009). However, it is also expected that N 
leaching will increase (Olesen and Bindi, 2002). In contrast, in southern 
Europe, the effects of climate change will be mostly negative. An in-
crease in extreme weather events and water shortage may result in lower 
yields, higher yield variability and a decrease in the area suitable for 
traditional crops (Hristov et al., 2020). 

To identify and apply cost-effective mitigation measures it is neces-
sary identify most vulnerable areas properly. Spatial modelling is a 
useful approach to identify the areas more vulnerable for losses in crop 
production and increased N leaching potential for present conditions 
and future climate scenarios. Crop models have been widely used in 
agricultural research, for example in developing more resilient crop 
varieties or analysing how management practices affect yields (e.g. 
Dettori et al., 2011; Wang et al., 2012). These crop models were origi-
nally developed and tested for individual fields represented by spatially 
homogeneous input data. Recent applications of crop models are linked 
to the need to explore and analyse agricultural production and envi-
ronmental effects at a regional or global scale to face the challenges of 
climate change (e.g. Rosenzweig et al., 2014; Martre et al., 2015). Issues 
such as the mitigation of N and P loads to waterbodies, and future food 
security under climate change are a concern for decision- and 
policy-makers at watershed, regional, national and global scales (Han-
sen and Jones, 2000). The problem is that detailed soil, weather and 
management data needed for large-scale crop model applications are 
usually lacking. Spatial and temporal resolution of data on soil, climate 
and land management often differ and need to be disaggregated or 
aggregated by different methods to the desired resolution of the study 
concerned (Ewert et al., 2011). Such changes and differences in spatial 
scales might affect simulation results. In different studies for a temperate 
and a Mediterranean region (e.g. Hoffmann et al., 2016a; Grosz et al., 
2017; Constantin et al., 2019; Maharjan et al., 2019), the error in 
regional yields obtained from aggregating soil and climate input data 
increased with decreasing spatial resolution. These studies found hot 
spots with very large yield differences, both positive and negative (− 2 to 
2 t ha-1 for winter wheat in North Rhine Westphalia, Germany), where 
the aggregation of soil data was the main driver of the induced aggre-
gation errors (Maharjan et al., 2019). All these studies have focused on 
the errors in regional model output variables (e.g. yield, drainage, soil 
organic carbon) for 30-year averages of a reference period (describing 
recent climate conditions), whereas, to the best of our knowledge, no 
studies could be found that focused on the effects of soil and climate data 
aggregation under climate change scenarios. 

Adaptation to climate change (e.g. whether or not to invest in a new 
irrigation system) requires knowledge of both long-term changes (long 
term changes in precipitation patterns, invest or not in a specific irri-
gation system) and short-term changes (precipitation variability and 
extremes) due to climate change (Neil Adger et al., 2005). Moreover, it is 
relevant to identify the regional crop production risk under climate 
change, to provide a basis for estimating food security during these 
episodes (Webber et al., 2020). It might become more common that poor 
production in one area/region needs to be compensated by higher yields 
elsewhere at the national, EU or global scale. In this case, it is necessary 
to properly identify the areas where crop failure might occur and 

especially when synchronous crop failures will occur (Anderson et al., 
2019). In the same way, identifying areas vulnerable to N leaching 
would be important to select and apply best management practices. As 
an example, more variable weather conditions in the future are expected 
to reduce the effectiveness of conservation practices to control N losses. 
However, Congreves et al. (2016) found a greater sensitivity of N loss to 
future weather extremes under conventional systems than under best 
management systems. 

Drought is expected to increase in frequency and intensity in many 
regions of the world due to climate change (Trnka et al., 2019), which in 
turn will negatively affect the production of wheat causing more often 
and spatially spread crop failures. Predicting drought events is therefore 
important to be able to forecast crop losses. A useful and widely used 
index to predict drought based on meteorological variables is the SPEI 
index (Vicente-Serrano et al., 2010). The effect though of a meteoro-
logical drought on crop growth will also be dependent on the water 
storage capacity of soils, which may buffer or not the impacts of drought 
and on the coincidence of the drought event with sensitive phenological 
periods of the crop (Tijdeman and Menzel, 2020). Exploring the use of 
SPEI can give a first glance on how important soils in the region might be 
in a changing climate. 

The overall aim of this study is to investigate how climate change 
might affect severe biomass loss and N leaching in a temperate climatic 
region. The specific aims are to (i) estimate the change in frequency of 
annual severe biomass loss and its coincidence with an increase in N 
leaching using a crop model (ii) evaluate the use of a meteorological 
drought index to estimate severe biomass loss as compared to simula-
tions with a process-based crop model, and (iii) study the role of soil and 
climate input data resolution in climate change impact assessments of 
severe biomass loss and N leaching. 

2. Material and methods 

2.1. Study region 

The study region was the federal state of North-Rhine Westphalia 
(NRW, 6.0–9.5◦E, 50.0–52.5◦N), in west-central Germany, which has an 
area of 34 098 km2. Half of the region is located in the flat plains of the 
Westphalian Lowland and Rhineland, which extend broadly into the 
North German Plain. The topography rises from the northwest towards 
the southeast with elevations ranging up to 842 m above sea level 
(Fig. 1). Predominant soil types are Cambisols, Luvisols and Stagnosols 
(FAO key reference soil groups: CM, LV, ST, respectively; FAO, 2015). 
NRW has a humid, temperate climate with an annual mean temperature 
in the period 1980–2010 of 8.1 ◦C and a mean annual precipitation of 
591 mm. About 60% of the area is used by agriculture, with winter 
wheat and silage maize being the main crops. In this study, we assumed 
the entire region to be agricultural land cultivated with winter wheat, 
following an approach used in previous studies (Hoffmann et al., 2015; 
Zhao et al., 2015; Constantin et al., 2019). Further background infor-
mation on the region can be found in different studies. Zhao et al. (2016) 
present a summary of climate and soil information in the form of maps of 
daily mean temperature, annual precipitation, global solar radiation as 
well as soil properties such as soil water holding capacity down to – 1.5 
m depth and area-dominant soil types at a spatial resolution of 1 km. 

2.2. Model input data 

2.2.1. Climate data 
Climate data for the baseline period of 1980–2010 (P0) was taken 

from the Joint Research Centre’s (JRC) Agri4Cast gridded dataset. It 
included daily records of minimum, average and maximum air tem-
perature, precipitation, wind speed, global radiation, and actual air 
vapour pressure measured at standard meteorology stations and aggre-
gated to a 25 km x 25 km grid resolution. 

The reference climate time series differed from that applied in 
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previous NRW-studies (Hoffmann et al., 2015, 2016a; Grosz et al., 2017; 
Constantin et al., 2019), due to different approaches for spatial inter-
polation between meteorological stations, the use of different stations 
and also a different geographical mesh for the grid-resolution at 25 km. 
Therefore, the gridded 25 km reference rainfall for NRW was lower in 
this study compared to the time-series applied in the previous -studies. 
The difference in mean annual precipitation for a 25 km2 grid cell 
ranged from 16 mm yr-1 to 174 mm y-1 annually in the period 
1982–2010 (annual mean difference was 93 mm y-1), resulting in lower 
rainfall of 2709 mm for the whole period over all grid cells. However, 
the crop parameterisation of the CoupModel, which was calibrated to 
observed average regional grain yield in these previous studies, was not 
changed in order to simulate the same crop and to be comparable with 
the ensemble of soil-vegetation models applied in the series of former 
studies of the NRW-region (Hoffmann et al., 2015; Hoffmann et al., 
2016). 

The future climate projections cover two periods, 2040–2069 (period 
2, P2) and 2070–2099 (period 3, P3) as generated by five GCM models 
(GFDL-CM3, GISS-E2-R, HadGEM2-Es, MIROC5, and MPI-ESM-MR) 
under two forcing scenarios (RCP 4.5 and RCP 8.5). For RCP 2.6, pro-
jections from only two GCMs (HadGEM2-ES and MPI-ESM-MR) were 
available for the study. The climate projections were available at a 0.5◦

resolution and downscaled to the 25 km grid resolution corresponding 
to that of the baseline data. The climate projections were created using 
an enhanced delta change method (Ruane et al., 2015) where correction 
factors are added (air temperature) or multiplied (precipitation) to the 
baseline daily weather data series. The climate data is further described 
by Webber et al. (2015) and can be accessed at 
http://open-research-data-zalf.ext.zalf.de/ResearchData/DK_59.html. 
The impact of increased CO2 concentrations on crop growth was not 

accounted for in our study. 
The annual mean temperatures are projected to increase in a range of 

0.9–3.7◦ in the period 2040–2070 (P2) and from 0.9◦ to 5.6◦ in the 
period 2070–2100 (P3), depending on the RCP-GCM scenario. Con-
cerning precipitation, there are no differences in the projected mean 
annual values compared to the baseline period for the grouped RCP 4.5 
and 8.5 in P2. In the RCP 2.6 P2, mean annual precipitation is projected 
to decrease by 2%. In P3, the differences are also small, being the largest 
in the RCP 4.5 scenarios with an increase of 2% in mean annual pre-
cipitation. Seasonal variations in the projected changes are presented in  
Fig. 2 for all 24 scenarios. With scenarios representing the results from 
12 different RCP-GCM combinations for periods P2 and P3. Projections 
of monthly precipitation in NRW vary widely between the RCP-GCM 
scenarios, especially in P3. Although not being consistent, there is a 
tendency for projected monthly precipitation to increase during the 
winter and decrease during the summer in most scenarios. Projected 
monthly temperatures show an increase for all climate scenarios and 
periods. 

2.2.2. Soil data 
Soil data for NRW (texture, soil layer thickness, gravel content) were 

obtained in a first step at a 300 m resolution by aggregating mapping 
units by areal majority using a soil map (scale 1:50,000) from the 
Geological Service North-Rhine Westphalia (Geological Service NRW, 
2004). Soil data was then aggregated to 1 km resolution by selecting the 
predominant soil type present in the 300 m resolution map (Hoffmann 
et al., 2016a). Other soil parameters (e.g. water holding capacity, topsoil 
organic carbon, pH, top soil CN-ratio) were obtained as explained in 
Hoffmann et al. (2016a). The complete set of soil properties can be 
found in Hoffmann et al. (2016b) and the list of soils used specifically in 

Fig. 1. Location and elevation of the state of North Rhine Westphalia (NRW), Germany. The region is coloured in pink in the smaller map of Europe (right bottom 
corner). Digital terrain model with 200 m grid cell obtained from the Federal Agency for Cartography and Geodesy, Germany (http://www.bkg.bund.de). 
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this exercise is included in the Supplementary material (Table S2). In a 
second step, soil data at the 25, 50 and 100 km2 resolution were ob-
tained by aggregating soil data available at a resolution of 1 km. Soils 
showed a wide range of texture, from clay soils (with up to 55% clay in 
topsoil and 75% clay in subsoil) to sandy soils (with up to 92% sand in 
both topsoil and subsoil). Soil organic carbon in topsoil ranged from 
1.1% to 15% (average of 2.3%) and CaCO3 ranged from 0% to 20% 
(average of 0.3%). For the 25 km, resolution grids there are 63 dominant 
soils and associated parameter sets. The number decreases to 23 and 8 
for the 50 km and 100 km resolutions respectively. At the coarser res-
olutions (50 and 100 km) some of the soils appearing at a resolution of 
1 km were also present but in different proportions. 

2.3. Soil-crop model and its parameterization 

The soil-crop model used, CoupModel 5.0 (Jansson, 2012), is a 
one-dimensional process-based ecosystem model simulating heat, water, 
C and N transfer in the soil-plant-atmosphere system. It can be used to 
explore the potential changes in crop growth and N-leaching in relation 
to different climate, soil properties and management practices. The 
model is driven by daily meteorological data (i.e. solar radiation sum, 
precipitation sum, mean wind speed and mean air relative humidity), 
and simulates soil temperature, moisture content and water flow, 
evapotranspiration, soil C and N dynamics, and plant development, 
growth and N uptake. 

Simulations were conducted and evaluated for a situation in which 
production is limited by N, water, temperature and radiation. The model 
was run constraining the maximum root depth to the maximum soil 

depth (unrestricted root growth). Soil physical parameters (used as 
input to the soil-crop model) were estimated by applying pedotransfer 
functions developed for German soils (Eckelmann et al., 2005). Further 
explanations of the data sources and the methods to derive several soil 
properties are given in Hoffmann et al. (2016a). Sowing day was 
considered constant (10-Nov). Nitrogen fertilization application was 
also constant. Three applications of 130 kg ha-1, 52 and 26, were applied 
on days 60,105 and 152, respectively. Two crop residues were handled 
in the model, straw was removed and stubbles were left on the field 
(10% of the aboveground total biomass and the roots). 

The model parameterization of crop growth for winter wheat applied 
in this study is presented in further detail in Table S2. The model 
parameterization is the same as used in the multi-model scaling exercise 
reported by Hoffmann et al. (2016a). As described in detail in Couche-
ney et al. (2018) most parameters were assumed to be spatially uniform 
and either set to their default values (Jansson and Karlberg, 2013), taken 
from previous applications representing arable land in Northern Europe 
(Conrad and Fohrer, 2009a, 2009b; Gustafsson et al., 2004) or adjusted 
to fit mean observations for the region. Other parameters varied 
spatially depending on soil properties and based on the information in 
the NRW soil database (Hoffmann et al., 2016b). The calibration pro-
cedure is further explained in Hoffmann et al. (2016a) and was applied 
in previous studies (Coucheney et al., 2018; Maharjan et al., 2019; 
Kuhnert et al., 2017; Constantin et al., 2019; Grosz et al., 2017). In 
summary, the model was calibrated at 1 km resolution by using one 
typical sowing and harvest date to match the regional average of 
observed yields for the region. For further detailed information on the 
model parameterization, we refer to appendix 1 in Coucheney et al. 

Fig. 2. Projected monthly change for temperature (left) and precipitation (right) derived from 12 different climate scenarios for NRW. The change was calculated for 
the future periods 2 (P2: 2041–2070) and 3 (P3: 2071–2100) compared to the reference period (1981–2010) and presented as absolute difference for temperature and 
relative change for precipitation. In blue different GCMs under RCP2.6, in green different GCMs under RCP4.5 and in red different GCMs under RCP8.5. 
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(2018), which presents a detailed description of the model options and 
parameters that were adjusted and the steps in which these were 
modified. 

The effect of different aggregation levels were explored by aggre-
gating soil and climate data to spatial resolutions of 25 (82 grid cells), 50 
(27 grid cells) and 100 (9 grid cells) km, respectively (see Fig. S1 in 
Supplementary material for maps with the grid scheme). The aggregated 
data were used as model input for simulations of winter wheat growth. 
Combinations of input data at different aggregation levels are abbrevi-
ated as Sy x Cz (where Sy is the soil data at resolution y and Cz is the 
climate data at resolution z). Simulations were carried out for every grid 
cell for each of the combinations of aggregated soil and climate input, as 
presented in Table 1. A graphical outline of the design of the modelling 
exercise is presented in Supplementary material (Fig. S2). 

2.4. Data analysis 

Two output variables were used to assess the vulnerability of agri-
cultural production to climate change and associated environmental 
impacts: (i) total above ground biomass (kg D.W. ha-1 y-1) and (ii) annual 
nitrate leaching (kg N ha-1 y-1) at a depth of 1.5 m, or in the case of 
shallower soils, at the bottom of the soil profile. 

Above-ground biomass was considered as the output variable rather 
than yield because it is a more general indicator of production. It should 
also be more closely related to N-leaching, which is more directly 
controlled by N-uptake by the biomass and less by the yield. 

2.4.1. Impact of climate change on output variables 
The change in biomass, N leaching and drainage, respectively, in 

response to each climate scenario was estimated as the relative change 
compared with the baseline simulation (P0, 1980–2010) 

Relative change =
Absolute change

XP0
=

XRCP GCM P2,3 − XP0

XP0  

Where, XRCP-GCM P2,3 is the output value in the future scenarios (P2: 
2041–2070, P3: 2071–2100) and XP0 is the output value in the reference 
scenario (P0: 1981–2010). 

An annual biomass reduction of more than 30% for a specific grid 
cell, year and scenario, as compared with the grid cell specific 30-yr 
biomass average in the baseline period, was considered as a severe 
biomass loss. This threshold is similar to that used by de Toro et al. 
(2015) when identifying effects of extreme weather events on crop 
yields in counties in Sweden. The fraction of grid cells in the region with 
a reduction of more than 30% in biomass was then used as a measure of 
severe biomass loss (describing strongly diminished or even absent 
biomass) for a certain scenario. 

The increase or decrease of N leaching was evaluated, similar to the 
biomass change, as the percentage change with respect to the grid- 
specific 30-year average in the baseline period. 

2.4.2. Estimation of drought 
To evaluate water scarcity in the region, we used the Standardized 

Precipitation Evaporation Index (SPEI) (Vicente-Serrano et al., 2010) 
that quantifies drought intensity at various time scales. The SPEI is based 
on the climatic water balance (D), estimated as the difference between 
monthly sums of precipitation (P) and potential evapotranspiration 
(PET).  

D = P – PET                                                                                        

The SPEI was computed for the 3- and 6-month periods April− June 
and January− June, respectively, thus, describing the accumulated sur-
face water balance prior to harvest. We classified drought severity into 
three classes: moderate (SPEI between − 1.5 and − 1), severe (between 
− 2 and − 1.5) and extreme (below − 2). To calculate PET we used the 
Thornthwaite equation (Thornthwaite, 1948). 

2.4.3. Scaling effects 
To analyze the scaling effect, describing the change in the observa-

tion variables due to a change in the resolution of the model’s input data, 
we calculated the single cell-single yearly differences between the dis-
aggregated output from coarser resolutions and those simulated at the 
highest reference resolution (i.e. 25 km2): 

Δj =
x′j − xj

xj
x 100  

Where, Δj is the percentage difference between an output variable 
(biomass production or N leaching) from a simulation using aggregated 
input data (x´) and the same variable obtained from a simulation with 
input data at 25 km resolution to the variable at 25 km (x) at a grid cell 
(j) calculated for each year. 

3. Results 

3.1. Impacts of climate change on the growing season 

Harvest days based on the reference resolution (S25xC25) for the 
periods P2 (2041–2070) and P3 (2071–2100) for RCP2.6 were 17 and 16 
days earlier, respectively, compared to the median harvest day for the 
baseline period (1981–2010) (Fig. 3). For RCP4.5, median harvest days 
were 27 (P2) and 29 (P3) days earlier than in the baseline period, 

Table 1 
Overview of simulations. Spatial resolutions in climate and soil input data.  

Resolution Soil 
(km2) 

Resolution 
Climate (km2) 

Combination 
Code 

Aggregation 

25  25 S25 x C25 No aggregation – 
reference simulations 

25  50 S25 x C50 Climate 
25  100 S25 x C100 Climate 
50  25 S50 x C25 Soil 
100  25 S100 x C25 Soil 
50  50 S50 x C50 Soil and climate 
100  100 S100 x C100 Soil and climate  

Fig. 3. Estimated harvest days for baseline and future periods under the 
RCP2.6, RCP4.5 and RCP8.5 scenarios. RCPs scenarios contain median days of 
harvest for 2 (RCP2.6) and 5 (RCP4.5 and RCP8.5) GCM. Each boxplot contain 
annual harvest values for all 30 years and for every grid cell in the reference 
resolution (s25xc25). The solid line within the box is the median, the boundary 
of the box closest and farthest to zero indicates the 25th percentile and 75th 
percentile, respectively. Whiskers to the left and right indicate the 10th and 
90th percentiles. The black dots indicate the 5th and 95th percentiles. 
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respectively, while for RCP8.5, the corresponding values were 37 (P2) 
and 73 (P3) days. The interannual variation in the day of harvest was 
largest for RCP8.5 and smallest for RCP2.6. Harvest days were similar 
between P2 and P3 for both RCP2.6 and RCP4.5, whereas for RCP8.5, 
the difference between P2 and P3 was substantial (36 days earlier in P3 
compared to P2). The median harvest day of P3, was day number 124 (i. 
e. 3rd - 4th May), which was 73 days earlier than in the baseline period. 

Harvest days based on simulations with aggregated input data were 
similar to those based on the reference (finest) resolution. The largest 
differences (4 days delay compared with the reference resolution) were 
found for RCP8.5 scenario simulations, where the climate input data had 
been aggregated to 100 km2 grid resolution (i.e. S25xC100 and S100xC100; 
Table S3). 

3.2. Simulated biomass and N leaching 

The regional NRW average biomass of all grids and all years for the 
reference simulation resolution (25 km2) was 7.4 t DM ha-1 y-1 (median 
was 7.5 t DM ha-1 y-1). For the other (coarser) soil and climate resolution 
combinations the averages were slightly higher than for the reference 
(7.5–7.7 t ha-1 y-1), whereas minimum values were considerably higher 
in most cases and maximum values lower (Table 2). N leaching was 
more affected by the spatial aggregation of input data than biomass 
(except for S25xC100). As an example, at a coarser soil resolution 
(S50xC25) the maximum total annual N leaching ranged from 150.1 kg N 
ha-1 y-1 in the coarsest resolution (S100xC100) to 191.3 kg N ha-1 y-1 in the 
reference (S25xC25; Table 2). 

Probability distributions of present and future biomass values as 
obtained when using input data at the different spatial resolutions show 
that simulated biomass was highest in the baseline period (Fig. S4a) and 
decreased in the future climate scenarios. For scenario RCP2.6, the 
biomass was similar for P2 and P3, whereas larger differences were 
found between P2 and P3 for RCP4.5 and RCP8.5. The probability of the 
biomass being lower than 1 t DM/ha, was close to zero (Baseline), 0.10 
(P2 and P3 RCP2.6), 0.2 (P2 RCP4.5), 0.25 (P3 RCP4.5), 0.3 (P2 RCP8.5) 
and 0.75 (P3 RCP8.5) (Fig. S4a). 

The distributions of simulated biomass were very similar for all the 
input data resolutions (data not shown) in the baseline period, whereas 
for the P3 RCP8.5 scenario the biomass was larger for the reference 
resolution compared to the coarser resolutions (Fig. S4b). For P3 
RCP4.5, the probability of the biomass being > 6 t DM ha-1 was higher 
for the reference resolution than for the coarser resolutions (data not 
shown). The opposite occurred for P3 RCP8.5 (the high-end climate 
change scenario), where the probability of biomass < 6 t DM ha-1 was 
higher for the reference resolution than for the aggregated resolutions 
(Fig. S4b). The probability of biomass being < 1 t DM ha-1 was close to 
0.75, whereas for the aggregated resolutions this probability was around 
0.6 (Fig. S4). 

Cumulative N leaching at the end of the simulation period differed 
less than 11% and 5% among the aggregation levels, for the baseline 
period and the P3 RCP8.5 scenario (Fig. S4), respectively. Overall, the 
mean accumulated N leaching was larger in the reference resolution 
than in the coarser resolutions (Table 3). In the baseline period and in 
P2, larger differences (reductions) in N leaching resulted from the ag-
gregation of soil properties than from the aggregation of climate input 
variables. However, these differences were small compared with the 
accumulated N leaching, at most 11% for the coarsest soil and climate 
input data (resolution S100xC100). In period 3, differences were larger 
when both soil and climate data were aggregated at 50 km2. Yet, several 
cases of larger N leaching were also observed (in seven out of 42 cases). 
In these few cases N leaching in coarser resolutions were larger 
compared to the finest resolution. This effect was stronger (or more 
apparent) when aggregating only climate input data in P2 simulations, 
whereas in P3 simulations it was stronger when aggregating only soil 
data. 

The average harvested aboveground biomass of the NRW region for Ta
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the whole baseline period was only slightly higher when using spatially 
aggregated soil and climate model input data, while the interannual 
variation (expressed by CV) was smaller (Table 2). The effects of ag-
gregation on an annual basis (expressed as the difference in absolute 
value) was larger when both climate and soil data were aggregated, 
being largest for the 100 km resolution aggregation. This was the case 
for almost all years in the baseline period (Fig. 4a) as well as in the future 
scenarios (RCP 2.6, 4.5 and 8.5; Fig. 4b-d). In all cases, aggregation of 
soil data (S50xC25 and S100xC25) caused a smaller median percentage 
difference than aggregation of climate in all cases. During the baseline 
period, the annual difference was less than 10% in most of the years, 
except for the coarsest resolution S100xC100 where the difference was 
larger than 10% in half of the years. The largest difference compared 
with the reference resolution was simulated in 1996, ranging from 12% 
(only soil S50xC25 and S100xC25) to 21% (both soil and climate aggre-
gated S100xC100). Other years that showed large effects of aggregation on 
biomass production, as compared with the reference resolution, were 
1990, 1997, 2006, 2007 and 2008 (Fig. 4). 

For the future periods (P2 and P3, 2041 − 2100) with different 
emission scenarios, the effects of aggregating only soil inputs (i.e. 
S50xC25 and S100xC25) on biomass production were less than 10% for all 
years (Fig. 4b-d). The largest annual differences occurred, as in the 
baseline period, when aggregating both soil and climate input data. For 

these resolutions the median regional difference in a single year could be 
up to 40% (as was the case in year 2082 for RCP4.5). This means that for 
half of the grid cells of the NRW region, the regional biomass was 
erroneously estimated by more than 40% with respect to the reference 
resolution. Analysis of means (ANOVA test) of the median annual 
biomass difference for NRW (Fig. S5) showed that in all scenarios (i.e. 
baseline, RCP 2.6, RCP 4.5 and RCP 8.5) the mean values from the 
different aggregated resolutions were significantly different 
(P < 0.0001). A post-hoc analysis of the means (Tukey HSD test) showed 
that median annual difference in biomass (%) due to aggregation of soil 
and climate data at 100 km (S100xC100) was the largest and significantly 
different than in all of the other resolutions in future scenarios (RCP 4.5 
and RCP 8.5). In RCP 2.6, resolutions S100xC100 and S50xC50 were not 
significantly different. In all scenarios (present and future), the differ-
ence in biomass was significantly smaller when only soil was aggregated 
(S50xC25 and S100xC25) than aggregation of climate data alone as well as 
aggregation of both soil and climate data. The spread in the annual 
difference in the latter cases was the smallest in contrast with the largest 
spread, which was found when climate was aggregated to the coarsest 
resolution (S25xC100 and S100xC100). 

Single cell-single year errors could be quite large, ranging from 
+ 10.32 t DM ha-1 y-1 to − 13.26 t DM ha-1 y-1. In practice, this means 
that a simulated biomass of 10 t DM ha-1 year-1 for a reference grid cell 

Table 3 
Simulated cumulative nitrate leaching. Median cumulative nitrate leaching over NRW for each of the soil and climate combinations at the end of each of the periods, P0 
(1980–2010), P2 (2040–2070), P3 (2070–2100) and under RCP 2.6, 4.5 and 8.5.    

Period 0 Period 2 Period 3    

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 

Combination  Cumulative N leaching (at end of period) (kg N ha-1) 
S25xC25  4395 5558 5910 6666 5542 6223 7911 
S25xC50 Difference to reference resolution -400 -136 -71 + 8 -133 + 51 -6 
S25xC100  -156 + 111 + 147 -169 -212 -106 -23 
S50xC25  -326 -430 -344 -390 -223 -54 -314 
S100xC25  -363 -452 -346 -390 + 85 + 276 + 250 
S50xC50  -378 -447 -362 -437 -472 -382 -417 
S100xC100  -482 -558 -612 -598 -129 -53 + 67  

Fig. 4. Scaling effects on annual above 
ground biomass. Annual percentage 
difference (eq. 2) between aggregated 
resolutions and the reference resolution 
(s25xc25). Median values of percentage 
differences of all grid cells for the region 
NRW are shown. (a, upper left) Present 
conditions P0 = 1981–2010; (b-d) 
Future conditions P2 = 2041–2070 & 
P3 = 2071–2100, where in (b) (upper 
right) shows results based on the low 
emission scenario RCP2.6, (c) (lower 
left) moderate emission scenario 
RCP4.5, and, (d) (lower right) high 
emission scenario RCP8.5.   
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could be estimated as 0 t DM ha-1 y-1 at the disaggregated coarser res-
olution. For the resolutions with only soil aggregation (S50xC25 and 
S100xC25), a higher number of grid cell values deviated substantially 
from that of the reference grid cells. The fraction of large differences in 
simulated grid cell values between soil data aggregations, decreased 
between P2 and P3 and with a higher emission scenario being least in P3 
under RCP8.5. For resolutions with aggregated climate data there were 
slightly more cases of overestimation but the percentage was similar to 
that for underestimations. 

The scaling effect of aggregating both soil and climate input data is 
presented for mean 30 year-values for each grid cell (NRW region) 
(Supplementary material, Figs. S6-8) when soil and climate data are 
aggregated (S50xC50 and S100xC100). In all cases (except for P2 RCP 2.6), 
the scaling effect was larger than 24% in at least one of the grid cells of 
the region. Aggregation at 100 km caused larger regional 30-yr errors 
than aggregation at a smaller scale (50 km). 

3.3. Relative changes in biomass and N leaching in response to climate 
change 

Relative changes were analysed as annual average change over the 
period and all grid-cells. The above ground biomass decreased due to 
climate change most in RCP8.5 P3 (− 83%) and least in RCP2.6 P3 
(− 22%) compared to the reference period. For the other scenarios the 
decrease was − 24 % (RCP2.6 P2), − 35 % (RCP4.5 P2), − 29 % (RCP4.5 
P3) and − 51% (RCP8.5 P2). The climate change effects in scenario 
RCP2.6 were on average similar for the P2 and P3, both for biomass and 
N leaching. In contrast to biomass production, simulated N leaching 
increased due to climate change. The largest and smallest responses 
were also for the RCP8.5 P3 (+73 %) and RCP2.6 P3 (+25 %) scenarios. 
For the other scenarios the increase was + 25 % (RCP2.6 P2), + 37 % 
(RCP4.5 P2), + 33 % (RCP4.5 P3) and + 52 % (RCP8.5 P2). 

3.4. Severe reductions in biomass production 

The mean projected proportion of grid cells in the region experi-
encing severe biomass loss during the future 30-year period increased 
from 8.3% in the baseline period to 34 %, 49 % and 65 % by 2040–2070 
for RCP2.6, RCP4.5 and RCP8.5, respectively (Fig. 5a). There were no 
significant changes (α = 0.01) by 2070–2100 in the RCP2.6 and RCP4.5 
scenarios compared to the period 2040–2070, whereas for RCP8.5 the 
area suffering severe biomass loss increased significantly to 94 % by the 
end of the century. However, significant differences were found between 
P2 and P3 for RCP8.5. The annual median values suggest that from 
2070, in the RCP8.5 scenario, the entire region will suffer from severely 
reduced biomass compared with the baseline period (Fig. 5). Significant 
differences among the RCPs scenarios were found in both periods and 
the divergence among them becomes greater during 2070 − 2100. 

3.5. Correlation of severe biomass loss and increases in N leaching 

The distribution of the annual area of NRW that suffers from different 
categories of risks is presented in Fig. 6. The fractional area predicted to 
suffer from severe biomass loss with an accompanying increase in N 
leaching increased in all scenarios (all future periods and emission 
scenarios). Severe biomass loss associated with decreased N-leaching 
was similar across scenarios (median ranged between 6 % and 9 % in all 
the RCPs and periods). The proportions of grid cells in the different risk 
categories are similar in both future time scenarios (P2 and P3) for RCP 
2.6. During 2070–2100 for RCP 4.5 and 8.5, the worst-case situation 
(severe biomass loss + increased N leaching) will be the most common 
situation affecting more than half of the region. During 2070 − 2100 for 
RCP8.5, in more than half of the years an area of 95% is projected to 
suffer from both severe biomass loss and increased N leaching (30-year 
median). 

3.6. Implications of aggregation of input data 

To assess the risk of under- or overestimating we compared the 
output from all resolution to the reference resolution scales at the 25 km 
grid cell level (S25xC25). The median annual fractional areas of each risk 
category derived from each type of input data aggregation and period 
are presented in Table 4. The results from the aggregated resolution 
were compared to the reference resolution. The differences in the esti-
mation of “No severe biomass loss + increased N leaching” were larger 
than for any of the other risk categories. The annual number of grid cells 
that belonged to this category was consistently larger for the dis-
aggregated results than for the reference, which means that aggregating 
input data overestimates the occurrence of “No severe biomass loss 
+ increased N leaching”. The median annual difference in the fractional 
area affected by “no severe biomass loss and N leaching increase” was up 
to 45 % when comparing the disaggregated coarser resolution 
(S100xC100) to the original reference resolution (S25xC25) (Table 4). 
There was a risk of overestimating situations of “no severe biomass loss 
+ increased N leaching” when using aggregated input data. In contrast, 
situations of “severe biomass loss + increased N leaching” were more 
frequent in the original reference resolution compared to the 

Fig. 5. Estimated proportion of grid cells for the reference resolution (s25xc25) 
showing severe biomass loss under present and future climate. (a) Distribution 
of the fractional area affected by severe biomass loss based on all years and grid 
cells. (b) Annual median values of the fractional area affected by severe biomass 
loss under the reference climate (P0 = 1980–2010, shown in the upper axis) 
and under different emission scenarios (mean of simulations with 2 GCMs for 
RCP2.6 and 5 GCMs for RCP4.5 and RCP8.5) for P2 (2041–2070) and 
P3 (2071–2100). 
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disaggregated outputs from aggregated resolutions. Underestimation of 
the worst-case scenario (“severe biomass loss and N leaching increase”) 
might occur in up to 15% of the area (combination S50xC25, P3 RCP4.5). 
For results derived from aggregated soil and climate data (S50xC50 and 
S100xC100) the situation was the opposite, that is, a larger fractional area 
was estimated from the disaggregated resolutions than from the refer-
ence resolution (Table 4). 

For the other two risk categories, representing a decreased N 
leaching (“no biomass loss + decreased N leaching” and “biomass loss +
decreased N leaching”) the difference between the annual fractional 
areas in the disaggregated and the reference was smaller. The difference 
was similar with respect to different soil and climate aggregations, but 
was highest for the coarsest resolution (S100xC100). The overestimation/ 

underestimation was larger when N leaching increased compared to 
when N leaching decreased. 

3.7. Use of a meteorological indicator to predict severe biomass loss and N 
leaching 

Annual mean SPEI values for the NRW region are presented in Fig. 7. 
In the baseline period SPEI3 values were larger than − 1.5 except for one 
year (1988) only. In this year, 71 % of the grid cells in the region suffered 
from severe drought (SPEI<− 1.5). Values were below − 1 (moderate 
drought) in only two other years (1996 and 2010). 

In the period 2040–2070, SPEI3 values decreased compared with the 
baseline period (Fig. 7) indicating an increase in the number of drought 
events and in their severity. The fraction of the region that suffered from 
severe drought also increased, being up to 90% in one year (2047). A 
large fraction of the region is projected to suffer from severe drought 
(>80%) in that same year, under all RCPs. During P2 the differences 
between RCP4.5 and RCP8.5 were small. The mean SPEI3 values fall into 
the same drought category for these two emission scenarios, every year. 
In the period 2070 − 2100 (P3), differences between RCP4.5 and 
RCP8.5 were larger. For RCP8.5, the number and intensity of drought 
events increased. In 17 years during the 30-year period, SPEI3 was 
below − 1.0 (moderate drought) and in 10 years of the period, more 
than half of the region SPEI3 was below − 1.5. 

3.7.1. Relation between SPEI and simulated severe biomass loss and N 
leaching 

The simulated annual mean biomass was significantly smaller when 
SPEI3 < − 1.5 compared to when SPEI > 1.5, for all periods and sce-
narios (Table S5). The annual regional mean N leaching was also 
significantly smaller when SPEI3 < − 1.5 in all scenarios except for P0 
and P3 RCP8.5, although mean values were similar in both groups. 

The relation between simulated severe biomass loss and SPEI was 
explored for different SPEI values for the reference resolution S25xC25 
(Table 5). Results showed that the coincidence between SPEI and severe 

Fig. 6. Distribution of the annual fraction of grid cells in the reference reso-
lution (S25xC25) in the NRW region representing a combination of risk with 
respect to biomass loss and N-leaching, as simulated over 30 years based on 2 
GCMs (RCP2.6) or 5 GCMs (RCP4.5 and RPC8.5). 

Table 4 
Grid cells in each of the crop failure and N leaching groups for different RCPs and periods (annual median percentage is given). The number of grid cells are the same in 
all of the resolutions as the results were disaggregated to the reference resolution prior to the calculations.    

P0 P2 P3   

NA RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 

S25 x C25 No Biomass Loss +
Decreased N leaching  

55  21  10  5  20  13  5 
S25 x C50  60  15  7  4  11  6  2 
S25 x C100  48  21  11  9  17  11  6 
S50 x C25  56  27  13  10  15  7  2 
S100 x C25  57  28  12  11  16  9  6 
S50 x C50  59  30  16  12  23  16  10 
S100 x C100  66  30  29  16  21  16  10 
S25 x C25 No Biomass Loss +

Increased N leaching  
40  44  35  27  51  18  9 

S25 x C50  46  59  49  35  60  48  18 
S25 x C100  49  59  61  63  65  60  48 
S50 x C25  46  49  39  28  54  35  12 
S100 x C25  44  48  39  27  59  44  16 
S50 x C50  51  50  39  33  60  43  22 
S100 x C100  50  55  61  57  67  63  50 
S25 x C25 Biomass Loss +

Increased N leaching  
5  24  48  71  27  67  95 

S25 x C50  21  16  43  70  13  55  93 
S25 x C100  9  22  45  79  49  67  94 
S50 x C25  7  23  46  67  24  52  88 
S100 x C25  7  21  45  67  18  54  88 
S50 x C50  23  57  59  79  44  68  94 
S100 x C100  15  62  68  84  41  67  100 
S25 x C25 Biomass Loss +

Decreased N leaching  
7  7  7  6  9  6  6 

S25 x C50  10  2  5  4  4  5  5 
S25 x C100  10  10  10  7  9  10  6 
S50 x C25  10  11  12  9  6  9  9 
S100 x C25  11  11  13  10  9  7  10 
S50 x C50  10  15  12  10  15  10  10 
S100 x C100  13  29  29  15  18  15  15  
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biomass loss events was greater with respect to moderate drought (SPEI 
<− 1) instead of severe drought (SPEI < − 1.5). The use of longer time 
scales to define a drought episode, i.e. 3 or 6 months of accumulated 
precipitation and ET data, did not have a large effect on the coincidence 
with severe biomass loss. The prediction of severe biomass loss episodes 
could be expected to be best represented by SPEI3 and most frequently 
associated with moderate drought (SPEI3 < − 1). In this study, the SPEI3 
predicted 55% of the severe biomass loss episodes simulated for the P3 
RCP8.5 (Table 6). The poorest correlation between simulated severe 
biomass loss episodes and SPEI3-predictions was obtained for P3 with 
RCP4.5. 

Overall, the results showed that there was a larger number of severe 
biomass loss episodes according to the simulations than was defined by 
SPEI3 (Table S6). The number of times when severe biomass loss was 
simulated but SPEI predicted “no drought” increased with higher RCP 
scenarios in all resolutions, being larger in RCP8.5 considering both P2 
and P3. 

4. Discussion 

4.1. Crop growth stages changes 

Using climate change scenarios the CoupModel predicted between 
two (RCP2.6) and five weeks (RCP8.5) earlier harvest dates for winter 
wheat compared with the baseline period. The earlier harvest dates are 
in accordance with other studies (Olesen et al., 2012; He et al., 2020), 
and in magnitude similar to projections by Semenov (2009), who pre-
dicted that maturity date would occur 21 days earlier under projected 
climate change in 2050 in England and Wales. A simulation study from 
an arid climate showed that the crop-growing season will be shortened 
by 10.7–21.6 days under RCP-4.5 and by 25.8–45.5 days under RCP-8.5 
(Nouri et al., 2016). 

The temperature sum needed for achieving maturity was set to the 
same value as the one used in previous studies of the NRW region, which 
had been adjusted to fit the observed regional harvest date of the 
baseline period (1980–2010) (Hoffmann et al., 2015; Coucheney et al., 
2018). Thus, the scenarios assumed the winter wheat cultivar to remain 
unchanged in the future scenarios, as concerns its phenology response to 
climate. It is, however, expected that any cultivar adjustment to 
increased temperature would be to reduce its temperature sensitivity 
(Rezaei et al., 2018). Therefore, our approach might have exaggerated 
earlier harvest dates. The simulated harvest date response to increased 
temperature corresponded to a sensitivity of 12–13 days per 1 ◦C, for 
both RCP2.6 and RCP4.5, and 2040–2070 and 2070–2100. In the high 
emission scenario (RCP8.5) the corresponding sensitivity was a few days 
larger (14–17 days per 1 ◦C; Table S3 and Table S4). This seems to be an 
essentially higher sensitivity than observed in Swedish practical agri-
culture (1988–2010), where the date of winter wheat DC 31-develop-
ment stage was estimated for regional differences to be 6 days ◦C-1 

(Eckersten and Kornher, 2012). In a European study, Olesen et al. (2012) 
assumed some adaptation of different crop varieties by relating the 
required temperature sums demands to long-term mean temperature at 
the specific location. They projected advances in flowering and maturity 
by 1–2 weeks for winter wheat depending on climate change scenario 
(two GCM/RCM representing the low and high end of the range of 
projected patterns for period 2030 − 2050) and region, which is also 
about half the response to climate change as compared to our study. 
Eckersten and Kornher (2012) projected about one and a half to two and 
a half weeks advanced development stages under climate change. 

4.2. Severe biomass loss 

The crop yield simulations projected that the majority of the NRW 
region would suffer from severe biomass loss in some years. This was 
especially true for the high emission scenario of period 3 (RCP8.5), but 
also for the scenario RCP2.6 the incidence of severe biomass loss 

Fig. 7. Annual evolution of the drought index SPEI3 in present climate con-
ditions, 1980–2010 (above) and in future climate scenarios, 2040–2100 
(below), depending on assumed RCP scenario. Bars represent mean annual 
values of SPEI 3 (three months accumulated values in June every year. That is 
April, May and June) over North-Rhine Westphalia at a 25 × 25 km grid cell 
resolution. Triangles represent the % grid cells in a year in which SPEI3 < − 1. 

Table 5 
Simulated crop failure with CoupModel for different drought intensities esti-
mated with the SPEI index in resolution 25 × 25 km. Number of years and grid 
cells in NRW for which each estimation is made is calculated. Results for coin-
cidence of crop failure and SPEI index in a given year is given in form of % over 
the total number of crop failure episodes. RCPs are median values of 2 (RCP2.6) 
and 5 (RCP4.5, RCP8.5) GCMs. SPEI is calculated for 3 months (SPEI3) of 
accumulated data (April, May, June) and for 6 months (SPEI6) of accumulated 
data (January to June).  

Resolution Period 
RCP 

SPEI3 (<
− 1.5) 

SPEI3 (<
− 1) 

SPEI6 (<
− 1.5) 

SPEI6 (<
− 1)   

(%) 
S25xC25 Baseline 18  46  37  47  

P2 
RCP2.6 

24  40  22  41  

P2 
RCP4.5 

25  41  26  48  

P2 
RCP8.5 

20  35  22  38  

P3 
RCP2.6 

24  41  20  37  

P3 
RCP4.5 

17  32  21  38  

P3 
RCP8.5 

38  55  40  54  
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increased by up to 32% during 2041 − 2070. This is in line with a 
European-scale study by Blanke et al. (2017) who predicted an increased 
trend of yield uncertainty during 2031 − 2050 in the western part of 
NRW (recorded from maps). On the other hand, other studies have 
projected overall simulated yield increases in Northern Europe (Olesen 
and Bindi, 2002) which is in contrast to the decrease in biomass simu-
lated in our study. 

Drought has been identified as an important factor that cause severe 
biomass loss. Especially severe droughts have been predicted to cause 
widespread crop failures (Leng and Hall, 2019; Webber et al., 2020). 
Trnka et al. (2019) projected that severe water scarcity events might 
affect several world major crop production areas simultaneously under 
climate change (especially towards the end of 21st century). Estimations 
by Trnka et al. (2019) were based on the precipitation-evaporation SPEI 
index, which predicted a stronger drought influence on crop growth 
during the later stages (spring and summer), rather than in the earlier 
stages of the plant cycle (autumn and winter). In our study, results 
showed that the SPEI3 index (estimated for 3 months prior to expected 
harvest date) was more strongly correlated with biomass than SPEI 
indices estimated for longer timescales. The SPEI6 index (6 months prior 
harvest date) predicted severe biomass loss similar to those by SPEI3 
index. Similarly, Ribeiro et al. (2019) found that remote sensing and 
multi-scalar meteorological indicators displayed greatest influence on 
yield losses during the later stages of the plant cycle. 

When comparing the simulated crop yield failures with those pre-
dicted by the SPEI index it was found that the simulations predicted 
severe biomass loss more often than the SPEI index, especially for 
RCP8.5 scenarios. One explanation might be that soil water deficit be-
comes more important in defining simulated severe biomass loss using 
dynamic simulation approaches, whereas the SPEI index (which, being 
based on the climatic water balance, does not explicitly consider the 
effects of soil water conditions effects on crop growth) did not take into 
soil-type specific drought responses. How different types of soils influ-
ence the crop under climate change have been studied by e.g. Nouri et al. 
(2016) who predicted more frequent harvest failure to occur on 
finer-textured soils, in a simulation study using CSM-CERES-Wheat v.4.6 
model. In our study it was difficult to evaluate effects of different soil 
types, since each grid cell had both a specific soil and a specific climate, 
and effects of soil conditions could not be separated from those of 
climate. Another possible explanation of the discrepancies could be that 
climate-related catastrophes are a result of compound events (e.g. 
drought and heat) (Zscheischler et al., 2018). Thus, severe biomass 
losses are not being caused solely by drought but by a combination of 
different processes, such as the interactions between temperature and 
drought (Matiu et al., 2017). In a study in Germany, Webber et al. 
(2020) associated severe drought with past annual severe biomass loss 
whenever the failures were widespread across crops but could not 
identify a single driver or combination of drivers associated with annual 
severe biomass loss whenever these were more localized and spread in 
space. 

Our study suggests that mitigation and adaptation measures will be 
needed to reduce the impacts of climate change on the agriculture and 
the environment in this region by increasing agricultural productivity 

and thereby contributing to food security. Different approaches can be 
used to improve crops such as the use of new crop varieties that are 
better adapted to the variability of climate conditions (e.g. van Etten 
et al., 2019); use of more drought resistant crops (Daryanto et al., 2017), 
or even change of crops. Combining winter crops with cover crops is also 
an alternative to protect bare soils and reduce drainage and N-leaching 
(Kaye and Quemada, 2017). Olesen et al. (2011) studied a range of 
future adaptation strategies for European environmental zones such as 
cultivation timing, tillage and fertilisation practices, use of new culti-
vars, crop protection, seasonal weather forecasting or crop insurance. 
They observed that farmers across Europe are already adapting to 
climate change, in terms of changing the timing of cultivation and 
selecting different crop species and cultivars. They also found that 
climate change effects would still be mostly negative in most regions 
across Europe even when considering a wide range of adaptation op-
tions. The impact of increased CO2 concentrations on crop growth was 
not accounted for in our study. However, it is unlikely to have signifi-
cantly affected the simulations of the occurrence of severe biomass loss, 
especially considering the large uncertainties and differences among 
GCM-RCM future climate scenarios with respect to precipitation 
amounts. 

4.3. N leaching 

Simulated N leaching was larger in the high emission scenario 
(RCP8.5) as compared to RCP4.5, similar to the results of He et al. 
(2020). The increase in N leaching was probably caused by an increase 
in temperature, which, on average, was 4 ◦C higher in the RCP8.5 sce-
nario than in the baseline scenario. This response could be explained by 
an increased N mineralization in response to higher temperature and 
thus larger amounts of mobile nitrate in the soils, but also reduced plant 
N uptake due to reduced growth and earlier harvest dates. Another 
factor contributing to increases in N leaching could be an increase in 
water drainage. However, increases in N leaching were weakly corre-
lated with increases in soil water percolation in the majority of the grid 
cells (median values were <0.6 for all scenarios and resolutions). Also 
He et al. (2020) found no relation between increases in soil water 
drainage and increases of nitrate leaching even if in their study N 
leaching did not increase significantly from the baseline period. 

Annual precipitation showed no large projected changes (Table S4), 
although changes in the annual pattern could contribute to N leaching 
increases. Projected total precipitation decreased during June- 
September and slightly increased during January-May and November- 
December (Fig. 2). The weak relative changes of precipitation might 
be a reason for the low correlation between changes in precipitation 
sums and changes in N leaching. In addition, other simulation studies 
have shown that in Northern Europe, simulated N leaching is affected 
more strongly by temperature than precipitation changes (Børgesen and 
Olesen, 2011). This was the case even in a Mediterranean climate in 
Australia, although mainly for sandy soils (where larger N leaching 
usually occurs), whereas heavier clay soils were more vulnerable to 
reduced rainfall (Ludwig and Asseng, 2006). 

During the baseline period the most common cases (considering all 

Table 6 
Coincidence of prediction of simulated crop failure and SPEI3 drought (<− 1). % of coincidence over total crop failure episodes.  

Combination (soil x climate resolution)  

S25xC25 S25xC50 S25xC100 S50xC25 S100xC25 S50xC50 S100xC100 

(%) 
Baseline  46  42  50  40  40  39  47 
P2 RCP2.6  40  35  36  39  39  33  34 
P2 RCP4.5  41  37  38  40  40  37  39 
P2 RCP8.5  35  36  35  35  35  37  35 
P3 RCP2.6  41  37  37  41  41  35  36 
P3 RCP4.5  32  34  35  37  34  31  36 
P3 RCP8.5  55  57  63  56  56  59  63  
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years and grids) in NRW were the ones characterized by “no severe 
biomass loss + decrease in N leaching”. In the future scenarios, however, 
the cases with combined negative impacts (severe biomass loss and/or 
increase in N-leaching) became more frequent. In RCP2.6, environ-
mental impacts (i.e. increased N-leaching) were more frequent than crop 
production impacts (i.e. reduced crop yield). In the RCP4.5 and RCP8.5 
scenarios, both crop production and environmental impacts became 
more frequent and widespread during 2040–2100. This is in contrast to 
the results from Blanke et al. (2017), who showed that N-leaching 
simulated with LPJ-GUESS global vegetation model was lower in 
RCP4.5 as compared with the high emission scenarios. Our study sug-
gests that increases in N-leaching would be more frequent and wide-
spread than severe biomass loss in the lower emission scenarios 
(RCP2.6). In RCP4.5 and RCP8.5, crop production and environmental 
impacts together would become more frequent and widespread during 
2040–2100. 

4.4. Aggregation effect 

The use of coarser spatial resolution of input data in the climate 
change impact assessments had less influence on the predictions of 
regional averages than on single grid cells outputs, and a higher influ-
ence on annual outputs than period averages. Previous simulation 
studies of the same region during the baseline period (1980–2010) 
showed similar effects of scaling of climate inputs in the region and also 
that scaling and management effects were more obvious when analysing 
impacts for individual years than on the 30-year mean (Kuhnert et al., 
2017). The use of coarser climate data is of particular importance when 
predicting the impacts of climate change on agroecosystems since the 
data aggregation might result in either underestimations or over-
estimations of impacts, as shown in our study. Morrison et al. (2019) 
also suggested that the effects of climate change may be overestimated 
or underestimated when using coarse climate data. The greater impact 
of climate input data over soil input data on yield outputs under climate 
change that was seen in the present study contrasts with other results 
from the same region where soil input data had a greater effect on 
simulated yields (Hoffmann et al., 2016; Maharjan et al., 2019). This 
suggests that aggregation of climate input data is more important in 
climate change assessments, while aggregation of soil input data has a 
greater impact on simulations of yield in the present climate. 

When estimating the impacts of both severe biomass loss and N 
leaching at the different spatial resolutions, there was a greater error in 
the estimations for those cases (year and/or grid cell) when N leaching 
was higher than the regional/period average (Table S7). The fraction of 
area that was incorrectly estimated was especially large for cases of “no 
severe biomass loss + increased N leaching”. Similarly, (Coucheney 
et al., 2018) showed how aggregation of climate input data had a greater 
effect on N-leaching than other output variables such as yield and 
drainage. 

This study is a first approach to studying soil and climate input data 
aggregation error under climate change and therefore, there are several 
limitations that need to be explored in future studies. A number of soil- 
crop models should be used to understand the sources of uncertainty in 
the severe biomass loss and N leaching projections. For instance, the 
sensitivity to e.g. drought might differ between models. Different re-
gions should also be used as the dominant source of uncertainty could be 
different in different locations. While in some locations the main un-
certainty is GCMs in other locations is crop models (Wang et al., 2020). 

The simulated soil water availability was lower than in previous 
studies for the region (Hoffmann et al., 2016a; Maharjan et al., 2019). In 
addition, the sensitivity of the CoupModel to changes in water avail-
ability resulted in systematically smaller biomass for the 
25 km-resolution reference climate in this study, compared to these 
previous studies and the observed yields for the 1 km-resolution refer-
ence climate. Theoretically, such a lower biomass has much lower N 
demand and hence N uptake. Consequently, the applied amount of 

fertilizer in the simulations was actually too high and therefore, high 
amount of N was available for leaching. Therefore, the absolute N 
leaching rate are probably overestimated. We decided to retain the 
original representation of the crop to compensate for changes in weather 
input data that might be due to the new reference-climate data only 
being available at 25 km-resolution. The focus of this study is on 
“relative changes in biomass and N-losses” between the reference and 
the future climate scenarios and not on absolute values. The future 
climate scenarios also imply a large variation between GCMs and 
therefore large uncertainties in terms of future rainfall amounts and 
changes in temperature. This study demonstrates a method for how the 
vulnerability to climate change with respect to agricultural productivity 
and environmental impact, could be studied for a region. 

5. Conclusions 

Simulations with the soil-crop model CoupModel suggested that se-
vere biomass loss will become more frequent by the end of the century 
(2070–2100) under the high emission scenario (without any climate 
change mitigation). In the worst-case scenario, the majority of the re-
gion was predicted to suffer simultaneously from severe biomass loss in 
many consecutive years, which might have implications for food secu-
rity, for the food market and for the economy of smallholder farmers. 
Moreover, in all future scenarios predictions showed an increase of the 
area fraction across the region that will suffer from both severe biomass 
loss and increased N leaching. Adaptation measures to climate change 
would need to aim towards a maintenance of crop productivity as well as 
a decrease in N leaching. The results presented in this study showed how 
climate change might exacerbate several problems at the same time, 
which are of importance in the identification of mitigation and adaption 
strategies to support a more sustainable agriculture. The use of a 
meteorological index SPEI to predict severe biomass losses have high-
lighted the importance of considering the effects of soil properties on 
drought risk. More severe biomass losses were predicted by the simu-
lations than by the SPEI index which indicates that soil water deficits are 
important in determining crop losses in future climate scenarios. 

Aggregation of soil and climate data showed that regional biomass 
estimates for the reference resolution were similar to those estimated at 
coarser resolutions. Larger errors due to data aggregation were obtained 
in annual biomass and N leaching values, where aggregating climate 
data rather than soil data caused larger errors and underestimated the 
area affected by severe biomass loss and the increase of N leaching. 
Special attention should be paid to the resolution of climate and soil data 
when making annual assessments of crop production and environmental 
impacts in future climate scenarios. Annual assessments are important 
when studying the impacts of extreme events and results from this study 
showed that half of the grid cells in a region could have an error in 
predicted biomass of more than 40% with respect to the reference 
resolution. 
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