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Abstract 

Background: Amplicon sequencing is an established and cost-efficient method for profiling microbiomes. However, 
many available tools to process this data require both bioinformatics skills and high computational power to process 
big datasets. Furthermore, there are only few tools that allow for long read amplicon data analysis. To bridge this gap, 
we developed the LotuS2 (less OTU scripts 2) pipeline, enabling user-friendly, resource friendly, and versatile analysis 
of raw amplicon sequences.

Results: In LotuS2, six different sequence clustering algorithms as well as extensive pre- and post-processing options 
allow for flexible data analysis by both experts, where parameters can be fully adjusted, and novices, where defaults 
are provided for different scenarios.

We benchmarked three independent gut and soil datasets, where LotuS2 was on average 29 times faster compared 
to other pipelines, yet could better reproduce the alpha- and beta-diversity of technical replicate samples. Further 
benchmarking a mock community with known taxon composition showed that, compared to the other pipelines, 
LotuS2 recovered a higher fraction of correctly identified taxa and a higher fraction of reads assigned to true taxa (48% 
and 57% at species; 83% and 98% at  genus level, respectively). At ASV/OTU level, precision and F-score were highest 
for LotuS2, as was the fraction of correctly reported 16S sequences.

Conclusion: LotuS2 is a lightweight and user-friendly pipeline that is fast, precise, and streamlined, using extensive 
pre- and post-ASV/OTU clustering steps to further increase data quality. High data usage rates and reliability enable 
high-throughput microbiome analysis in minutes.

Availability: LotuS2 is available from GitHub, conda, or via a Galaxy web interface, documented at http:// lotus2. earlh 
am. ac. uk/.
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Background
The field of microbiome research has been revolu-
tionized in the last decade, owing to methodological 
advances in DNA-based microbial identification. Ampli-
con sequencing (also known as metabarcoding) is one of 
the most commonly used techniques to profile microbial 

communities based on targeting and amplifying phyloge-
netically conserved genomic regions such as the 16S/18S 
ribosomal RNA (rRNA) or internal transcribed spac-
ers (ITS) for identification of bacteria and eukaryotes 
(especially fungi), respectively [1, 2]. The popularity of 
amplicon sequencing has been growing due to its broad 
applicability, ease-of-use, cost-efficiency, streamlined 
analysis workflows as well as specialist applications such 
as low biomass sampling [3].
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Alas, amplicon sequencing comes with several techni-
cal challenges. These include primer biases [4], chimeras 
occurring in PCR amplifications [5], rDNA copy num-
ber variations [6], and sequencing errors that frequently 
inflate observed diversity [7]. Although modern read error 
corrections can already significantly decrease artifacts of 
sequencing errors [8], some of the biases can be further 
corrected in the pre- and post-processing of reads and 
OTUs/ASVs, respectively. To process amplicon sequenc-
ing data from raw reads to taxon abundance tables, several 
pipelines have been developed, such as mothur [9], QIIME 
2 [10], DADA2 [8], PipeCraft 2 [11], and LotuS [12]. These 
pipelines differ in their data processing and sequence clus-
tering strategies, reflected in differing execution speed and 
resulting amplicon interpretations [12, 13].

Here, we introduce Lotus2, designed to improve repro-
ducibility, accuracy, and ease of amplicon sequencing 
analysis. LotuS2 offers a completely refactored installation, 
including a web interface that is freely deployable on Gal-
axy clusters. During development, we focused on all steps 
of amplicon data analysis, including processing raw reads 
to abundance tables as well as improving taxonomic assign-
ments and phylogenies of operational taxonomic units 
(OTUs [14]; or amplicon sequence variants (ASVs [15];) at 
the highest quality with the latest strategies available.

Pre- and post-processing steps were further improved 
compared to the predecessor “LotuS1”: the read filtering 
program sdm (simple demultiplexer) and the taxonomy 
inference program LCA (least common ancestor) were 
refactored and parallelized in C++. LotuS2 uses a ‘seed 
extension’ algorithm that improves the quality and length 
of OTU/ASV representative DNA sequences. We inte-
grated numerous features such as additional sequence 
clustering options (DADA2, UNOISE3, VSEARCH and 
CD-HIT), advanced read quality filters based on proba-
bilistic and Poisson binomial filtering, and curated ASVs/
OTUs diversity and abundances (LULU, UNCROSS2, 
ITSx, and host DNA filters). LotuS2 can also be inte-
grated in complete workflows. For instance, the micro-
biome visualization-centric pipeline CoMA [16] uses 
LotuS1/2 at its core to estimate taxon abundances.

Here, we evaluated LotuS2 in reproducing microbi-
ota profiles in comparison to contemporary amplicon 
sequencing pipelines. Using three independent data-
sets, we found that LotuS2 consistently reproduces 
microbiota profiles more accurately and reconstructs 
a mock community with the highest overall precision.

Materials and methods
Design philosophy of LotuS2
Overestimating observed diversity is one of the central 
problems in amplicon sequencing, mainly due to sequenc-
ing errors [7, 17]. The second read pair from Illumina 

paired-end sequencing is generally lower in quality [18] and 
can contain more errors than predicted from Phred quality 
scores alone [19, 20]. Additionally, merging reads can intro-
duce chimeras due to read pair mismatches [21]. The accu-
mulation of errors over millions of read pairs can impact 
observed biodiversity, so essentially is a multiple testing 
problem. To avoid overestimating biodiversity, LotuS2 
uses a relatively strict read filtering during the error-sensi-
tive sequence clustering step. This is based on (i) 21 qual-
ity filtering metrics (e.g., average quality, homonucleotide 
repeats, and removal of reads without amplicon primers), 
(ii) probabilistic and Poisson binomial read filtering [18, 
22], (iii) filtering reads that cannot be dereplicated (clus-
tered at 100% nucleotide identity) either within or between 
samples, and (iv) using only the first read pair from paired-
end Illumina sequencing platforms. These reads are termed 
“high-quality” reads in the pipeline description and are 
clustered into OTUs/ASVs, using one of the sequence clus-
tering programs (Fig. 1B).

However, filtered out “mid-quality” sequences are partly 
recovered later in the pipeline, during the seed extension 
step. LotuS2 will reintroduce reads failing dereplication 
thresholds or being of “mid-quality” by mapping these 
reads back onto high-quality OTUs/ASVs if matching at 
≥ 97% sequence identity. In the “seed extension” step, the 
optimal sequence representing each OTU/ASV is deter-
mined by comparing all (raw) reads clustered into each 
OTU/ASV. The best read (pair) is then selected based on 
the highest overall similarity to the consensus OTU/ASV, 
quality, and length, which can then be merged in case of 
paired read data. Thereby, the seed extension step ena-
bles more reads to be included in taxon abundance esti-
mates, as well as enabling longer ASV/OTU representative 
sequences to be used during taxonomic classifications and 
the reconstruction of a phylogenetic tree.

Implementation of LotuS2
Installation
LotuS2 can be accessed either through major software 
repositories such as (i) Bioconda, (ii) as a Docker image, or 
(iii) GitHub (accessible through http:// lotus2. earlh am. ac. 
uk/) (Fig. 1A). The GitHub version comes with an installer 
script that downloads the required databases and installs 
and configures LotuS2 with its dependencies. Alterna-
tively, we provide iv) a wrapper for Galaxy [23] allowing 
installation of LotuS2 on any Galaxy server from the Gal-
axy ToolShed. LotuS2 is already available to use for free on 
the UseGalaxy.eu server (https:// usega laxy. eu/), where raw 
reads can be uploaded and analysed (Supplementary Figure 
S1). While LotuS2 is natively programmed for Unix (Linux, 
macOS) systems, other operating systems are supported 
through the Docker image or the Galaxy web interface.

http://lotus2.earlham.ac.uk/
http://lotus2.earlham.ac.uk/
https://usegalaxy.eu/
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Input
LotuS2 is designed to run with a single command, 
where the only essential flags are the path to input files 
(fastq(.gz), fna(.gz) format), output directory, and map-
ping file. The mapping file contains information on 

sample identifiers, demultiplexing barcodes, or file paths 
to already demultiplexed files and can be either automati-
cally generated or provided by the user. The sequence 
input is flexible, allowing simultaneous demultiplexing 

Fig. 1 Workflow of the LotuS2 pipeline. A LotuS2 can be installed either through (i) Bioconda, (ii) GitHub with the provided autoInstaller script, 
or (iii) using a Docker image. Alternatively, (iv) Galaxy web servers can also run LotuS2 (e.g., https:// usega laxy. eu/). B LotuS2 accepts amplicon 
reads from different sequencing platforms, along with a map file that describes barcodes, file locations, sample IDs, and other information. After 
demultiplexing and quality filtering, high-quality reads are clustered into either ASVs or OTUs. The optimal sequence representing each OTU/
ASV is calculated in the seed extension step, where read pairs are also merged. Mid-quality reads are subsequently mapped onto these sequence 
clusters to increase cluster representation in abundance matrices. From OTU/ASV sequences, a phylogenetic tree is constructed, and each cluster 
is taxonomically assigned. These results are made available in multiple standard formats, such as tab-delimited files, .biom, or phyloseq objects 
to enable downstream analysis. New options in LotuS2 for each step are denoted with black colour whereas options in grey font were already 
available in LotuS

https://usegalaxy.eu/
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of read files and/or integration of already demultiplexed 
reads.

LotuS2 is highly configurable, enabling user-specific 
needs beyond the well-defined defaults. There are 63 
flags that can be user-modified, including dereplication 
filtering thresholds (-derepMin), sequencing platform 
(-p), amplicon region (-amplicon_type), or OTU/ASV 
post-processing (e.g., -LULU option to remove errone-
ous OTUs/ASVs [24]). In addition, read filtering criteria 
can be controlled through 32 detailed options via custom 
config files (defaults are provided for Illumina MiSeq, 
hiSeq, novaSeq, Roche 454, and PacBio HiFi).

Output
The primary output is a set of tab-delimited OTU/ASV 
count tables, the phylogeny of OTUs/ASVs, their taxo-
nomic assignments, and corresponding abundance tables 
at different taxonomic levels. These are summarized in 
.biom [25] and phyloseq objects [26], that can be loaded 
directly by other software, such as R and Python pro-
gramming languages, for downstream analysis.

Furthermore, a detailed report of each processing step 
can be found in the log files which contain commands of 
all used programs (including citations and versions) with 
relevant statistics. We support and encourage users to 
conduct further analysis in statistical programming lan-
guages such as R, Python, or MATLAB and using analysis 
packages such as phyloseq [26], documented in tutorials 
at http:// lotus2. earlh am. ac. uk/.

Pipeline workflow
Most of LotuS2 is implemented in Perl 5.1; computa-
tional or memory intensive components like simple 
demultiplexer (sdm) and LCA (least common ances-
tor) are implemented in C++ (see Fig. 1B for pipeline 
workflow). Demultiplexing, quality filtering, and derep-
lication of reads is implemented in sdm. Taxonomic 
post-processing is implemented in LCA. Six sequence 
clustering methods are available: UPARSE [18], 
UNOISE3 [27], CD-HIT [28], SWARM [29], DADA2 
[8], and VSEARCH [30].

In the “seed extension” step, a unique representative 
read of a sequence cluster is chosen, based on quality and 
merging statistics. Each sequence cluster, termed ASVs in 
the case of DADA2, OTUs otherwise1, is represented by 
a high confidence DNA sequence (see Design Philosophy 
of LotuS2 for more information).

OTUs/ASVs are further post-processed to remove 
chimeras, either de novo and/or reference based using 
the program UCHIME3 [31] or VSEARCH-UCHIME 

[30]. By default, ITS sequences are extracted using ITSx 
[32]. Highly resolved OTUs/ASVs are then curated 
based on sequence similarity and co-occurrence pat-
terns using LULU [24]. False-positive OTU/ASV counts 
can be filtered using the UNCROSS2 algorithm [33]. 
OTUs/ASVs are by default aligned against the phiX 
genome, a synthetic genome often included in Illumina 
sequencing runs, using Minimap2 [34]; and OTUs/
ASVs that produce significant matches against the phiX 
genome are subsequently removed. Additionally, the 
user can filter for host contamination by providing cus-
tom genomes (e.g., human reference), as host genome 
reads are often misclassified as bacterial 16S by existing 
pipelines [3].

Each OTU/ASV is taxonomically classified using 
one of RDP classifier [35], SINTAX [36], or by align-
ments to reference database(s), using the custom 
“LCA” (least common ancestor) C++ program. Align-
ments of OTUs/ASVs with either Lambda [37], BLAST 
[38], VSEARCH [30], or USEARCH [39] are compared 
against a user-defined range of reference databases. 
These databases cover the 16S, 18S, 23S, 28S rRNA 
genes, and the ITS region; by default, a Lambda align-
ment against the SILVA database is used [40]. Other 
databases bundled with LotuS2 include Greengenes 
[41], HITdb [42], PR2 [43], beetax (bee gut-specific 
taxonomic annotation) [44], and UNITE (fungal ITS 
database) [45]. In addition, users can provide refer-
ence databases (a fasta file and a tab-delimited tax-
onomy file, see  "–refdb" flag documentation in the 
LotuS2 help). These databases can be used by them-
selves or in conjunction with the bundled ones. From 
mappings against one or several reference databases, 
the least common ancestor for each OTU/ASV is cal-
culated using LCA. Priority is given to deeply resolved 
taxonomies, sorted by the earlier listed reference 
databases. LotuS2 can also be used to analyse ampli-
cons from other phylogenetically conserved genomic 
regions (e.g., Cytochrome c oxidase subunit I (COI) or 
dissimilatory sulfite reductase (dsr)). For these cases, 
users have to provide custom reference databases and 
taxonomic assignments (via -refdb flag, see above). For 
inferring phylogenetic trees, multiple sequence align-
ments for all OTUs/ASVs are calculated with either 
MAFFT [46] or Clustal Ω [47]; from these a maxi-
mum likelihood phylogeny is constructed using either 
fasttree2 [48] or IQ-TREE 2 [49]. User discretion is 
advised, as ITS amplicons might be less suitable for 
inferring reliable phylogenies.

If the pipeline should fail at any step, a comprehen-
sive error report with suggestions for follow up steps 
is automatically provided to the user; bugs should be 
submitted to “https:// github. com/ hilde bra/ lotus 2”.

1 Note that UNOISE3 uses the term zero-range OTUs (zOTUs); for brevity, 
this is omitted throughout the text.

http://lotus2.earlham.ac.uk/
https://github.com/hildebra/lotus2
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Benchmarking amplicon sequencing pipelines
To benchmark the computational performance and 
reproducibility, we compared LotuS2’s performance to 
commonly used amplicon sequencing pipelines includ-
ing mothur [9], PipeCraft 2 [11], DADA2 [8], and QIIME 
2 [10]. We relied, where possible, on default options or 
standard operating procedure (SOPs) provided by the 
respective developers (mothur: https:// mothur. org/ wiki/ 
miseq_ sop/;

PipeCraft 2: https:// pipec raft2- manual. readt hedocs. 
io/ en/ stable/ user_ guide. html; QIIME 2: https:// docs. 
qiime2. org/ 2021. 11/ tutor ials/ moving- pictu res/, and 
DADA2: https:// benjj neb. github. io/ dada2/ tutor ial. html). 
We benchmarked PipeCraft 2 using the demultiplexed 
raw reads from LotuS2. DADA2 cannot demultiplex 
raw reads and in these cases, LotuS2 demultiplexed raw 
reads were also used as DADA2 input.

Our benchmarking scripts are available at https:// 
github. com/ ozkurt/ lotus2_ bench marki ng (see Sup-
plementary information). Several sequence cluster 
algorithms were benchmarked, for LotuS2: DADA2 
[8], UPARSE [18], UNOISE3 [27], CD-HIT [28], and 
VSEARCH [30]; for QIIME 2: DADA2 and Deblur [50]; 
DADA2 supporting natively only DADA2 clustering; 
for mothur: OptiClust; for PipeCraft 2: VSEARCH, 
and for LotuS1: UPARSE. For taxonomic classification, 
SILVA138.1 [40] was used in all pipelines.

ITS amplicons were clustered with CD-HIT, UPARSE, 
and VSEARCH and filtered by default using ITSx [32] 
in LotuS2. ITSx identifies likely ITS1, 5.8S, and ITS2 
and full-length ITS sequences, and sequences not 
within the confidence interval are discarded in LotuS2. 
In analogy, QIIME 2-DADA2 uses q2-ITSxpress [51] 
that also removes unlikely ITS sequences.

Error profiles during ASV clustering were inferred 
separately for the samples sequenced in different MiSeq 
runs during DADA2 and Deblur clustering in all pipe-
lines. We truncated the reads into the same length (200 
bases, default by LotuS2) in all pipelines while analys-
ing the datasets. Primers were removed from the reads, 
where supported by the pipeline in question.

Measuring computational performance of amplicon 
sequencing pipelines
When benchmarking pipelines, processing steps were 
separated into 5 categories in each tested pipeline: (a) 
Pre-processing (demultiplexing if required, read filtering, 
primer removal, and read merging for QIIME 2-Deblur), 
(b) sequence clustering (clustering + refining of the clus-
ters and denoising for QIIME 2-DADA2, (c) OTU/ASV 
taxonomic assignment, (d) construction of a phyloge-
netic tree (the option is available only in mothur, QIIME 
2, and LotuS2 and applied only for the 16S datasets), and 

(e) removal of host genome (the option is available only 
in QIIME 2 and LotuS2). In mothur, sequence clustering 
and taxonomic assignment times were added since these 
pipeline commands are entangled (https:// mothur. org/ 
wiki/ miseq_ sop/).

Data used in benchmarking pipeline performance
Four datasets with different sample characteristics (with 
respect to, e.g., compositional complexity, target marker 
and region, and amplicon length) were analyzed: (i) Gut-
16S dataset [12]: 16S rRNA gene amplicon sequencing of 
40 human faecal samples in technical replicates that were 
sequenced in separate MiSeq runs, totalling 35,412,313 
paired-end reads. Technical replicates were created by 
extracting DNA twice from each faecal sample. Primer 
sequences were not available for this dataset [12]. Since 
the Illumina runs were not demultiplexed, pipelines had 
to demultiplex these sequences, as applicable (please see 
the Computational performance and data usage section 
for further details). (ii) Soil-16S dataset: 16S rRNA gene 
amplicon sequencing of two technical replicates (a sin-
gle DNA extraction per sample) from 50 soil samples, 
that were sequenced in separate MiSeq runs, totalling 
11,820,327 paired-end reads. PCR reactions were con-
ducted using the 16S rRNA region primers 515F (GTG 
YCA GCMGCC GCG GTAA) and 926R (GGC CGY CAA 
TTY MTTT RAG TTT). The soil-16S dataset was already 
demultiplexed, requiring pipelines to work with paired 
FASTQ files per sample. (iii) Soil-ITS dataset: ITS ampli-
con sequencing of 50 technical replicates of soil samples 
(a single DNA extraction per sample), sequenced in two 
independent Illumina MiSeq runs, totalling 6,006,089 
paired-end reads. The ITS region primers gITS7ngs_201 
(GGG TGA RTC ATC RAR TYT TTG) and ITS4ngsUni_201 
(CCTSCSCTTANTDATA TGC ) [52] were used to amplify 
DNA extracted from soil samples. The soil-ITS dataset 
was already demultiplexed.

(iv) Mock dataset [53]: This was a microbial mock 
community with known species composition, mock-16 
[53]. The mock dataset comprised a total of 59 strains 
of Bacteria and Archaea, representing 35 bacterial and 
8 archaeal genera. The mock community was sequenced 
on an Illumina MiSeq (paired-end) by targeting the V4 
region of the 16S rRNA gene using the primers 515F 
(GTG CCA GCMGCC GCG GTAA) and 806R (GGA CTA 
CHVGGG TWT CTAAT) [53]. This dataset was demulti-
plexed and contained 593,868 paired reads.

Benchmarking the computational performance 
of amplicon sequencing pipelines
To evaluate the computational performance of LotuS2 
in comparison to mothur, QIIME 2 [10], DADA2 

https://mothur.org/wiki/miseq_sop
https://mothur.org/wiki/miseq_sop
https://pipecraft2-manual.readthedocs.io/en/stable/user_guide.html
https://pipecraft2-manual.readthedocs.io/en/stable/user_guide.html
https://docs.qiime2.org/2021.11/tutorials/moving-pictures/
https://docs.qiime2.org/2021.11/tutorials/moving-pictures/
https://benjjneb.github.io/dada2/tutorial.html
https://github.com/ozkurt/lotus2_benchmarking
https://github.com/ozkurt/lotus2_benchmarking
https://mothur.org/wiki/miseq_sop/
https://mothur.org/wiki/miseq_sop/
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[8], and the last released version of LotuS [12] (v1.62 
from Jan 2020; called LotuS1 here), all pipelines were 
run with 12 threads on a single computer free of other 
workloads (CPU: Intel(R) Xeon(R) Gold 6130 CPU 
@ 2.10 GHz, 32 cores, 375 GB RAM). To reduce the 
influence of network latencies on pipeline execution, 
all temporary, input, and output data were stored on 
a local SSD hard drive. PipeCraft 2 is not designed 
for high performance computing cluster execution 
(https:// pipec raft2- manual. readt hedocs. io/ en/ stable/ 
insta llati on. html# windo ws) and was therefore excluded 
from computational performance benchmarking; how-
ever, the gut-16S and soil-16S datasets using default 
options and 6 cores where possible was executed in a 
laptop in > 8 h (excluding the demultiplexing step) and 
in > 24 h, respectively.

The remaining pipelines were run three times con-
secutively to account for pre-cached data and to obtain 
average execution time and maximum memory usage. To 
calculate the fold differences in execution speed between 
pipelines, the average time of QIIME 2, mothur, and 
DADA2 to complete the analysis was divided by the aver-
age time by all LotuS2 runs (using different clustering 
options). The average of these numbers across the gut-
16S, soil-16S, and soil-ITS datasets was used to estimate 
the average speed advantage of LotuS2.

Benchmarking reproducibility of amplicon sequencing 
pipelines
Technical replicates of the soil and gut samples were 
used to estimate the reproducibility of the microbial 
community composition between replicates. This 
was measured by calculating beta and alpha diver-
sity differences between technical replicate samples. 
To calculate beta diversity, either Jaccard (measur-
ing presence/absence of OTUs/ASVs) or Bray-Cur-
tis dissimilarity (measuring both presence/absence 
and abundances of OTUs/ASVs) were computed 
between technical replicate samples. Before comput-
ing Bray-Curtis distances, abundance matrices were 
normalized. Jaccard distances between samples were 
calculated by first rarefying abundance matrices to an 
equal number of reads (to the size of the first sample 
having > 1000 read counts) per sample using RTK [54]. 
Significance of pairwise comparisons of the pipelines 
in beta diversity differences was calculated using the 
ANOVA test where Tukey’s HSD (honest significant 
differences) test was used as a post hoc test in R.

To calculate alpha diversity, abundance data were first 
rarefied to an equal number of reads per sample. Signifi-
cance of each pairwise comparison in alpha diversity was 
calculated based on a paired Wilcoxon test, pairing tech-
nical replicates.

Analysis of the mock community
We used an already sequenced mock community [53] 
of known relative composition and with sequenced ref-
erence genomes available. Firstly, taxonomic abundance 
tables (taxonomic assignments based on SILVA 138.1 
[40] in all pipelines) were compared to the expected 
taxonomic composition of the sequenced mock commu-
nity. Precision was calculated as (TP/(TP + FP)), recall 
as (TP/(TP + FN)), and F-score as (2*precision*recall/
(precision+recall)), TP (true positive) being taxa present 
in the mock and correctly identified as present, FN (false 
negative) being taxa present in the mock but not identi-
fied as present, and FP (false positive) being taxa absent 
in the mock but identified as present. The fraction of 
read counts assigned to true positive taxa was calculated 
based on the sum of the relative abundance of all true 
positive taxa. These scores were calculated at species and 
genus levels.

Secondly, we investigated the precision of reported 
16S rRNA nucleotide sequences, representing each 
OTU or ASV, by calculating the nucleotide similar-
ity between ASVs/OTUs and the known reference 16S 
rRNA sequences. To obtain the nucleotide similarity, we 
aligned ASV/OTU DNA sequences from tested pipelines 
via BLAST to a custom reference database that contained 
the 16S rRNA gene sequences from the mock community 
(https:// github. com/ capor aso- lab/ mockr obiota/ blob/ 
master/ data/ mock- 16/ source/ expec ted- seque nces. fasta), 
using the –taxOnly option from LotuS2. The BLAST 
% nucleotide identity at > 50% horizontal OTU/ASV 
sequence coverage is subsequently used to calculate the 
best matching 16S rRNA sequence per ASV/OTU.

Results
We analyzed four datasets to benchmark the compu-
tational performance and reliability of the pipelines. 
The datasets consisted either of technical replicates 
(gut-16S, soil-16S, and soil-ITS) or a mock community. 
Technical replicates were used to evaluate the reproduc-
ibility of community structures and were chosen to rep-
resent different biomes (gut and soil) using different 16S 
rRNA amplicon primers (gut-16S and soil-16S), or ITS 
sequences (soil-ITS) as well as a synthetic mock commu-
nity of known composition.

Computational performance and data usage
The complete analysis of the gut-16S dataset was fast-
est in LotuS2 (on average 35, 12, 9, and 3.8 times faster 
than mothur, QIIME 2-DADA2, QIIME 2-Deblur, and 
native DADA2, respectively, Fig.  2A). Note that since 
DADA2 could not demultiplex the dataset, the average 
of LotuS2 and QIIME2 demultiplexing times were used 

https://pipecraft2-manual.readthedocs.io/en/stable/installation.html#windows
https://pipecraft2-manual.readthedocs.io/en/stable/installation.html#windows
https://github.com/caporaso-lab/mockrobiota/blob/master/data/mock-16/source/expected-sequences.fasta
https://github.com/caporaso-lab/mockrobiota/blob/master/data/mock-16/source/expected-sequences.fasta
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Fig. 2 Computational performance of amplicon sequencing pipelines. 16S rRNA amplicon MiSeq data from A gut-16S, B soil-16S, and C soil-ITS 
samples were processed to benchmark resource usage of each pipeline, run on the same system under equal conditions (12 cores, max 150 Gb 
memory). In all pipelines, OTUs/ASVs were classified by similarity comparisons to SILVA 138.1. In LotuS2, Lambda was used to align sequences 
for all clustering algorithms. Pipeline runs were separated by common steps (pre-processing, sequence clustering, taxonomic classification, and 
phylogenetic tree construction and/or off-target removal). Because native DADA2 cannot demultiplex reads, we used the average demultiplexing 
time of QIIME 2 and LotuS2 (LotuS2 demultiplexed, unfiltered reads were provided to DADA2). Since phylogenetic trees based on ITS sequences 
may lead to erroneous phylogenies [55], we did not include the phylogenetic tree construction step in the analysis of the soil-ITS dataset. LotuS2 
runs are labelled with red color. D, E, F Data usage efficiency of each tested pipeline, by comparing the number of sequence clusters (OTUs or 
ASVs) to retrieved read counts in the final output matrix of each pipeline. Note that mothur results for soil-16S are not shown, because the pipeline 
rejected all sequences at the default parameters
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instead. LotuS2 was also faster in the analysis of the soil-
16S dataset compared to the other tested pipelines (5.7, 
3.5, and 3.5 times faster than DADA2, QIIME 2-DADA2, 
and QIIME 2-Deblur, respectively, Fig.  2B). The differ-
ence in speed between LotuS2 and QIIME 2 was more 
pronounced in the analysis of the soil-ITS dataset, where 
LotuS2 was on average 69 times faster than QIIME 2 and 
DADA2 (Fig. 2C).

LotuS2 also outperformed other pipelines in the case 
of the gut-16S dataset (on average LotuS2 was 15 times 
faster) compared to the soil dataset (average 4.2). This 
difference stems mainly from the demultiplexing step, 
where LotuS2 is significantly faster. The sequence cluster-
ing step was fastest using the UPARSE algorithm with an 
average 60-fold faster run time than sequence clustering 
in other pipelines. Averaged over these three datasets, 
LotuS2 was 29 times faster than other pipelines.

Taxonomic classification of OTUs/ASVs was also faster 
in LotuS2 (~ 5 times faster for gut-16S and 2 times for 
soil-16S). However, this strongly depends on the total 
number of OTUs/ASVs for all pipelines. For example, 
the default naïve-Bayes classifier [56] in QIIME 2 is faster 
than the LotuS2 taxonomic assignment in this bench-
mark  (using  Lambda LCA against the SILVA reference 
database). Nevertheless, LotuS2 also offers  taxonomic 
classifications via RDP classifier [35]  or SINTAX [36], 
both of which are significantly faster.

Compared to LotuS1, LotuS2 was on average 3.2 times 
faster, likely related to refactored C++ programs that 
can take advantage of multiple CPU threads (Fig. 2A, B). 
In its fastest configuration (using “UPARSE” option in 
clustering and “RDP” to assign taxonomy), the gut and 
soil 16S rRNA datasets can be processed with LotuS2 in 
under 20 min and 12 min, respectively, using < 10 GB of 
memory and 4 CPU cores.

Despite using similar clustering algorithms (e.g., 
DADA2 clustering is available in DADA2, QIIME 2, and 
LotuS2), the tested pipelines apply different pre- and 
post-processing algorithms to raw sequence reads and 
clustered ASVs and OTUs, leading to differing ASV/
OTU numbers and retrieved reads (the total read count 
in the ASV/OTU abundance matrix) (Supplemen-
tary Table S1 and Fig.  2D–F). DADA2 typically esti-
mated the highest number of ASVs, but the number of 
retrieved reads varied strongly between datasets. QIIME 
2-DADA2 estimated fewer ASVs than DADA2, but more 
ASVs than LotuS2-DADA2, while mapping fewer reads 
than LotuS2. Although retrieving a smaller number of 
reads, QIIME 2-Deblur reported comparable numbers 
of ASVs to LotuS2, despite the differences in cluster-
ing algorithms. PipeCraft 2 using VSEARCH clustering 
retrieved slightly higher number of reads in the final out-
put matrix than LotuS2-VSEARCH; but it also reported 

a considerably higher number of OTUs (Supplemen-
tary Figure S2). Although retrieving a smaller number 
of reads, QIIME 2-Deblur reported comparable num-
bers of ASVs to LotuS2, despite the differences in clus-
tering algorithms. mothur performed differently in the 
gut-16S and soil-16S datasets, where it estimated either 
the highest number of OTUs or could not complete the 
analysis since all the reads had been filtered out, respec-
tively. Overall, LotuS2 often reported the fewest ASVs/
OTUs, while including more sequence reads in abun-
dance tables. This indicates that LotuS2 has a more effi-
cient usage of input data while covering a larger sequence 
space per ASV/OTU.

Benchmarking the reproducibility of community 
compositions
Next, we assessed the reproducibility of community 
compositions between pipelines analysing the gut-16S, 
soil-16S, and soil-ITS datasets. This was estimated by 
comparing beta diversity between technical replicates 
(Bray-Curtis distance, BCd and Jaccard distance, Jd). We 
found that Jd and BCd were the lowest in LotuS2, largely 
independent of the chosen sequence clustering algo-
rithms and dataset. This indicates a greater reproduc-
ibility of community compositions generated by LotuS2 
(Fig.  3A, B and Supplementary Figure S2). The lowest 
BCd and Jd were overall observed for LotuS2-UPARSE 
(Fig.  3A, B and Supplementary Figure S2) in both gut- 
and soil-16S datasets, though this was not always sig-
nificant between different LotuS2 runs (Supplementary 
Table S2).

Even using the same clustering algorithm, LotuS2-
DADA2 compositions were more reproducible compared 
to both QIIME 2-DADA2 and DADA2 (significant only 
on soil data). LotuS2-DADA2 denoises by default all 
reads (per sequencing run) together, while in the default 
DADA2 setup each sample is denoised separately; the 
latter strategy has a reduced computational burden but 
can potentially miss sequence information from rare 
taxa. Also, LotuS2-VSEARCH compositions were more 
reproducible than PipeCraft 2-VSEARCH, except in the 
Jd between the replicates of the soil-16S dataset. mothur 
showed poorer performance compared to other pipelines 
on the gut-16S dataset and did not give results for the 
soil-16S dataset.

We then calculated the fraction of samples being clos-
est in BCd distance to its technical replicate for each 
pipeline (Fig.  3D, E), simulating the process of identify-
ing technical replicates without prior knowledge. While 
LotuS1 resulted in the highest fraction of samples being 
closest to its replicate among all samples in the gut-16S 
dataset, it performed the worst in the soil-16S dataset. 
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On the other hand, in the mothur result, technical rep-
licates were the most unlikely to be closest to their tech-
nical replicate. LotuS2 with UNOISE3 clustering resulted 
in the highest fraction of samples being closest to its 
replicate in the soil-16S dataset. When this compari-
son was made with the non-default options in LotuS2 
(using different dereplication parameters, deactivating 
LULU, using UNCROSS2 or retaining taxonomically 
unclassified reads), BCd between the technical replicates 
remained largely unchanged, especially in the soil-16S 
dataset (Supplementary Figure S2, Supplementary Fig-
ure S3A, B and Supplementary information). However, 
retaining unclassified reads could significantly reduce 
the reproducibility of LotuS2 results on the gut-16S 
dataset. Furthermore, even starting the analysis with dif-
ferent read truncation lengths, LotuS2 still had the high-
est reproducibility in both gut- and soil-16S datasets 

(Supplementary Figure S4, Supplementary Figure S5 and 
Supplementary information).

Lastly, we calculated the reproducibility of reported alpha 
diversity between technical replicate samples in both gut-
16S and soil-16S datasets (Supplementary Figure S6A, B). 
In both datasets, LotuS2 alpha diversity was not signifi-
cantly different between technical replicates, as expected 
(6 of 8 comparisons, Wilcoxon signed-rank test). Although 
this was also the case for PipeCraft 2, in 6 of 6 cases, 
mothur, QIIME 2, and DADA2 had significant differences 
in the alpha diversity between technical replicates.

Thus, LotuS2 showed in our benchmarks a higher data 
usage efficiency and higher reproducibility of community 
compositions than mothur, PipeCraft 2, QIIME 2, and 
DADA2. These benchmarks also showed the importance 
of pre- and post-processing raw reads and OTUs/ASVs, 
since LotuS2-DADA2 and QIIME 2-DADA2 performed 

Fig. 3 Reproducibility from different amplicons sequence data analysis pipelines. Three independent datasets were used to represent different 
biomes and amplicon technologies, using A, D human faecal samples (16S rRNA gene, N = 40 replicates). B, E soil samples (16S rRNA gene, N = 
50 replicates), and C, F soil samples (ITS 2, N = 50 replicates). A–C Bray-Curtis distances among technical replicate samples were used to assess the 
reproducibility of community compositions by different pipelines. The pipeline with the lowest BCd in each subfigure is denoted with a star (*). The 
significance of pairwise comparisons of each pipeline was calculated using the Tukey’s HSD test (Supplementary Table S2). D–F Further, the fraction 
of technical replicates being closest to each other (BCd) was calculated to simulate identifying technical replicates without additional knowledge. 
Numbers above bars are the ordered pipelines performing best. Lower Bray-Curtis distances between technical replicates and a higher fraction of 
correct technical replicates indicate better reproducibility. LotuS2 runs are labelled with red color
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better than DADA2, despite using the same clustering 
algorithm. LotuS2-VSEARCH also performed better than 
PipeCraft 2-VSEARCH.

Benchmarking the soil‑ITS dataset
Compared to 16S rRNA gene amplicons, ITS ampli-
cons typically vary  more in length [4], thus  requiring a 
different sequence clustering workflow;  LotuS2 in ITS 
mode uses by default CD-HIT to cluster ITS sequences, 
and ITSx to identify plausible ITS1/2 sequences.

In terms of data usage, both LotuS2 and QIIME 
2-DADA2 retrieved similar numbers of reads, but for 
QIIME 2 these read counts were distributed across twice 
the number of ASVs (Fig.  2F). QIIME 2-DADA2 repro-
duced the fungal composition significantly worse in repli-
cate samples, compared to LotuS2-UPARSE, having higher 
pairwise BCd (Fig. 3C) and Jd (Supplementary Figure S2H, 
I). However, it spanned the highest fraction of samples 
closest to its technical replicate, although this fraction was 
overall very high for all the pipelines (0.978-1) (Fig.  3F). 
DADA2 showed a poor performance in comparison to 
the other pipelines, resulting in the lowest data usage effi-
ciency (Fig. 2F) (yielding the highest number of ASVs, low-
est retrieved read counts) and the lowest reproducibility 
(highest BCd) (Fig. 3C, Supplementary Table S2) between 
replicate samples. LotuS2 had overall the lowest BCd and 
Jd between replicates, using both UPARSE and CD-HIT 
clustering (Fig.  3C, Supplementary Figure S2H, I). The 
use of CD-HIT in combination with ITSx led to increased 
OTU numbers (from 947 to 1008) although read counts 
remained mostly the same in the final output matrix and 
BCd was largely similar (Supplementary Figure S3C). 
Here, deactivating LULU slightly decreased reproducibility 
(Supplementary Figure S3C).

Finally, we calculated the reproducibility of alpha diver-
sity between the technical replicate samples in the soil-
ITS dataset (Supplementary Figure S6C). All pipelines 
resulted in no significant difference between the techni-
cal replicate samples, thus alpha diversity was reproduc-
ible in all pipelines.

Benchmarking the dataset from the mock microbial 
community
To assess how well a known community can be recon-
structed in LotuS2, we used a previously sequenced 
16S mock community [53] containing 43 genera and 59 
microbial strains, where complete reference genomes 
were available.

All pipelines performed poorly at reconstructing the 
community composition (Pearson R = 0.43–0.67, Spear-
man Rho = 0.54–0.80, Supplementary Table S3 and Sup-
plementary Figure S7), possibly related to PCR biases 
and rRNA gene copy number variation. Therefore, we 

focused on the number of correctly identified taxa. For 
this, we calculated the number of reads assigned to true 
taxa as well as precision, recall, and F-score at genus 
level. LotuS2-VSEARCH and LotuS2-UPARSE had the 
highest precision, F-score, and fraction of reads assigned 
true positive taxa, (Fig.  4A and Supplementary Figure 
S8). LotuS1 had the highest recall, but low precision. 
When applying the same tests at species level, LotuS2-
DADA2 had overall the highest precision and F-score 
(Supplementary Figure S9). QIIME 2-Deblur had often 
competitive, but slightly lower, precision, recall, and 
F-scores compared to LotuS2, while mothur, PipeCraft 
2-VSEARCH, QIIME 2-DADA2, and DADA2 scores 
were lower (Fig. 4A).

Next, we investigated which software could best report 
the correct OTU/ASV sequences. For this, we calculated 
the fraction of TP OTUs/ASVs (i.e., OTUs/ASVs which 
are assigned to a species based on the custom mock refer-
ence taxonomy) with 97–100% nucleotide identity to 16S 
rRNA sequences from reference genomes in each pipeline 
(Fig.  4B). Here, LotuS2-VSEARCH and LotuS2-UPARSE 
reported OTU sequences were most often identical to the 
expected sequences, having 82.2% of the OTU sequences 
at 100% nucleotide identity to reference sequences. QIIME 
2-Deblur ASV sequences were of similar quality, but slightly 
less often at 100% nucleotide identity (78.2%). DADA2, 
QIIME 2-DADA2 and PipeCraft 2-VSEARCH ASV/
OTU sequences were often more dissimilar to the expected 
reference sequences. It is noteworthy that LotuS2-DADA2 
and LotuS2-VSEARCH outperformed these pipelines based 
on the same sequence clustering algorithm, likely related 
to the stringent read filtering and seed extension step in 
LotuS2.

The mock community consisted of 49 bacteria and 10 
archaea [53], with a total of 128 16S rRNA gene copies 
included in their genomes. If multiple 16S copies occur 
within a single genome, these can diverge but are mostly 
highly similar or even identical to each other [57]. Thus, 
the expected biodiversity would be 59 OTUs and ≤ 
128 ASVs. Notably, the number of mothur and QIIME 
2-Deblur TP ASVs/OTUs exceeded this threshold (N = 
370, 198, respectively), indicating that both pipelines over-
estimate known biodiversity. DADA2, QIIME 2-DADA2, 
and PipeCraft 2-VSEARCH generated more ASVs than 
expected per species (N = 94, 122, and 90 respectively), 
but this might be explained by divergent within-genome 
16S rRNA gene copies. LotuS2 was notably at the lower 
end in predicted biodiversity, predicting between 53 and 
61 OTUs or ASVs in different clustering algorithms (Sup-
plementary Table S4). However, these seemed to mostly 
represent single species, covering the present species best 
among pipelines, as the precision at species level was 
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highest for LotuS2 (Supplementary Figure S9), thus cap-
turing species level biodiversity most accurately.

Based on the mock community data, LotuS2 was 
more precise in the reported 16S rRNA gene sequences, 
assigning the correct taxonomy, and detecting biodi-
versity. Within-genome 16S copies were less likely to be 
clustered separately using LotuS2.

Discussion
LotuS2 offers a fast, accurate, and streamlined amplicon 
data analysis with new features and substantial improve-
ments since LotuS1. Software and workflow optimiza-
tions make LotuS2 substantially faster than all QIIME 2, 
DADA2, and mothur. On large datasets, this advantage 
becomes crucial for users: for example, we processed a 

Fig. 4 Benchmarking of amplicon sequence data analysis pipeline’s performance using a mock community with known species composition. A 
Accuracy of each pipeline in predicting the mock community composition at genus level. For benchmarking we compared the fraction of reads 
assigned to true genera and both correctly and erroneously recovered genera. Precision, Recall, and F-score were calculated based on the true 
positive, false positive, and false negative taxa identified. At species level, LotuS2 excelled also in these statistics (Supplementary Figure S9). B 
Percentage of true positive ASVs/OTUs having a nucleotide identity ≥ indicated thresholds to 16S rRNA gene sequences of genomes from the 
mock community. Pipeline(s) showing the highest performance in each comparison is denoted with a star (*). TP, true positive; ASV, amplicon 
sequencing variant; OTU, operational taxonomic unit. LotuS2-UPARSE and LotuS2-VSEARCH had the same result, therefore colors are overlaid
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highly diverse soil dataset consisting of > 11 million non-
demultiplexed PacBio HiFi amplicons (26 Sequel II librar-
ies) in 2.5 days on 16 CPU cores, using a single command 
(unpublished data). Besides being more resource and 
user-friendly, compositional matrices from LotuS2 were 
more reproducible and accurate across all tested datasets 
(gut 16S, soil 16S, soil ITS, and mock community 16S).

LotuS2 owes high reproducibility and accuracy to the 
efficient use of reads based on their quality tiers in dif-
ferent steps of the pipeline. Low-quality reads introduce 
noise and can artificially inflate observed biodiversity, 
i.e., the number of OTUs/ASVs [58]. Conversely, an 
overly strict read filter will decrease sensitivity for low-
abundant members of a community by artificially reduc-
ing sequencing depth. To find a trade-off, LotuS2 uses 
only truncated, high-quality reads for sequence cluster-
ing (except ITS amplicons), while the read backmapping 
and seed extension steps restore some of the discarded 
sequence data.

Notably, OTUs/ASVs reported with LotuS2 were the 
most similar (at > 99% identity) to the reference, com-
pared to other pipelines (Fig. 4B). This was mostly inde-
pendent of clustering algorithms used, rather resulting 
from  a combination of selecting high-quality reads for 
sequence clustering and the seed extension step select-
ing a high-quality read (pair) best representing each 
OTU or ASV. The seed extension unique to LotuS2 also 
decouples read clustering and read merging, avoid-
ing the use of the error-prone 3′ read end or the second 
read pair during the error sensitive sequence clustering 
step [18]. Decoupling sequence clustering length restric-
tions from other pipeline steps thus avoids limiting infor-
mation in computational steps benefitting from longer 
DNA sequences, such as taxonomic assignments or phy-
logeny reconstructions.

In conclusion, LotuS2 is a major improvement over 
LotuS1, representing pipeline updates that accumulated 
over the past 8 years. It offers superior computational 
performance, accuracy, and reproducibility of results, 
compared to the other tested pipelines. Importantly, it 
is straightforward to install, and programmed to reduce 
required user time and knowledge, following the idea 
that “less is more with LotuS2”.
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of having lower number of reads than the rarefaction depth) were 
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