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Abstract

Prostate cancer (PCa) is the most common cancer form in males in many European

and American countries, but there are still open questions regarding its etiology.

Untargeted metabolomics can produce an unbiased global metabolic profile, with the

opportunity for uncovering new plasma metabolites prospectively associated with

risk of PCa, providing insights into disease etiology. We conducted a prospective

untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics analy-

sis using prediagnostic fasting plasma samples from 752 PCa case-control pairs

nested within the Northern Sweden Health and Disease Study (NSHDS). The pairs

were matched by age, BMI, and sample storage time. Discriminating features were

identified by a combination of orthogonal projection to latent structures-effect pro-

jections (OPLS-EP) and Wilcoxon signed-rank tests. Their prospective associations

with PCa risk were investigated by conditional logistic regression. Subgroup analyses

based on stratification by disease aggressiveness and baseline age were also con-

ducted. Various free fatty acids and phospholipids were positively associated with

overall risk of PCa and in various stratification subgroups. Aromatic amino acids were

positively associated with overall risk of PCa. Uric acid was positively, and glucose

negatively, associated with risk of PCa in the older subgroup. This is the largest untar-

geted LC-MS based metabolomics study to date on plasma metabolites prospectively

associated with risk of developing PCa. Different subgroups of disease aggressive-

ness and baseline age showed different associations with metabolites. The findings

suggest that shifts in plasma concentrations of metabolites in lipid, aromatic amino

Abbreviations: ATBC, Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study; CI, confidence interval; CLR, conditional logistic regression; CV-ANOVA, cross-validated analysis of variance;

EPIC, European Prospective Investigation into Cancer and Nutrition Study; HMDB, Human Metabolome Database; LC-MS, liquid chromatography-mass spectrometry; MSI, metabolomics

standards initiative; NSHDS, Northern Sweden Health and Disease Study; OPLS-EP, orthogonal projection to latent structures-effect projections; PCa, prostate cancer; PCs,

phosphatidylcholines; PI3K, phosphoinositide 3-kinase; PLCO, Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial; PSA, prostate-specific antigen; PTEN, phosphatase and tensin

homolog; QToF, quadrupole-time-of-flight; SMs, sphingomyelins; T2D, type 2 diabetes; VIP, variable importance on projection; XIC, extracted ion chromatograms.

Previous publication: Some of the data has previously been published in a doctoral thesis by co-author Johnny R. Östman.

Received: 11 October 2021 Revised: 13 June 2022 Accepted: 29 June 2022

DOI: 10.1002/ijc.34223

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2022 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

Int. J. Cancer. 2022;151:2115–2127. wileyonlinelibrary.com/journal/ijc 2115

 10970215, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ijc.34223 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [18/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-4773-3474
https://orcid.org/0000-0002-8527-4873
https://orcid.org/0000-0002-3372-8423
https://orcid.org/0000-0001-9581-3845
https://orcid.org/0000-0003-0994-3972
mailto:ali.moazzami@slu.se
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/ijc
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fijc.34223&domain=pdf&date_stamp=2022-08-12


UKDRI-5001
acid, and glucose metabolism are associated with risk of developing PCa during the

following two decades.

K E YWORD S

liquid chromatography-mass spectrometry, nested case-control study, prostate cancer, risk
biomarkers, untargeted metabolomics

What's new?

The identification of novel metabolic risk factors is a critical step in the advance of prevention

strategies for prostate cancer. In the present study, using untargeted liquid chromatography-mass

spectrometry metabolomics, the authors examined prospective associations between circulating

metabolites and prostate cancer risk. The analyses uncover positive associations between prostate

cancer risk and aromatic amino acids, free fatty acids, uric acid, and phospholipids. Meanwhile,

glucose was negatively associated with risk among older participants. The findings cast light on

potentially clinically relevant associations between prostate cancer risk and plasma concentrations

of metabolites generated by aromatic amino acid, lipid, and glucose metabolism.

1 | INTRODUCTION

Prostate cancer (PCa) is the most common form of cancer in males in

many countries, especially in Europe and the United States.1 PCa has

large geographical variation in its reported incidence, which may be

related to differences in the intensity of screening and/or exposure to

etiologically relevant environmental and lifestyle factors.

PCa is a complex disease, and efforts have been made to identify

genetic and adjustable risk factors in order to improve understanding

of how PCa develops.2 The World Cancer Research Fund lists and

evaluates over 50 potential PCa risk factors, related to diet, nutrition,

and physical activity, in its updated 2018 report, but the body of evi-

dence and number of identified risk factors are still meager.3 The

human metabolome, composed of the pool of metabolites, is the final

read-out of gene-environment interactions4 and can be analyzed to

generate new insights into the etiology of PCa by identifying novel

metabolic risk factors, which is an important step for establishing pre-

vention strategies.

Attempts have been made to identify prospective associations

between prediagnostic concentrations of plasma and serum metabo-

lites and risk of PCa incidence5-14 or death due to PCa.15-17 Glycero-

phospholipids have been associated with risk of PCa, although to

varying degrees.9-12 In addition, higher prediagnostic concentrations

of metabolites from redox (inversely) and dipeptide (positively) path-

ways have been associated with risk of lethal PCa.17 Previous studies

have differed with regard to metabolomics methodologies, disease

subtype categorization, size, outcome, and handling of follow-up time

and time since last meal (fasting status at the time of sampling). Vary-

ing time since last meal18,19 and presence of subclinical PCa at the

time of sample collection (baseline)12 can induce variations in the con-

centrations of metabolites, which are not directly related to estima-

tion of disease risk.

In a previous nested case-control study,10 we attempted to

reduce these unrelated variations by using only subjects sampled after

overnight fasting and by using only cases with a follow-up time (time

between sample collection and diagnosis) of at least 5 years (follow-

up time ≥5 years). In that study (n = 777 pairs), which was nested in

the Northern Sweden Health and Disease Study (NSHDS), we used

targeted mass spectrometry and nuclear magnetic resonance (NMR)

metabolomics to screen prospectively for prediagnostic associations

between plasma metabolites and risk of developing PCa.10 We identi-

fied several glycerophospholipids that were positively associated with

overall risk and risk of aggressive PCa, with a strong association for

lysophosphatidylcholine 17:0.10

One limitation of the targeted metabolomics approach is the lim-

ited number of metabolites and limited range of metabolite classes

that can be detected. In order to increase the metabolite coverage, in

the present study we used an untargeted mass spectrometry-based

metabolomics approach for prospective investigation of associations

between prediagnostic concentrations of plasma metabolites and PCa

risk in the same nested case-control study previously analyzed using a

targeted metabolomics approach.10

To our knowledge, our study, with a follow-up time of at least

5 years (maximum follow-up time = 20 years), is the largest prospec-

tive study to date of prediagnostic plasma metabolites and PCa risk

using untargeted mass spectrometry-based metabolomics.

2 | MATERIALS AND METHODS

2.1 | Study cohort

We used blood plasma samples from the Northern Sweden Health

and Disease Study (NSHDS).20 The present study was conducted as a

nested case-control study within the longitudinal population-based

NSHDS cohort, to investigate prospective associations between

plasma metabolites and risk of developing PCa. In brief, all residents in

Västerbotten County, Sweden, were asked to enroll in the cohort at

2116 ÖSTMAN ET AL.
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40, 50, and 60 years of age. Upon enrolment, the participants were

asked to undergo a baseline examination after overnight fasting, fill in

a food frequency questionnaire, and donate a blood sample for future

research purposes. The blood samples were heparinized, centrifuged

and stored at �80�C within 1 hour of sampling (94.5% of blood sam-

ples collected 07:30-10:00 AM).20

2.2 | Study design

The study design is described in detail in our previous targeted meta-

bolomics study.10 To summarize, of the heparinized blood samples

available in the NSHDS, 777 male case-control pairs were selected

(follow-up period until 2012) using the following four inclusion criteria

for case selection: (a) overnight fasting, (b) no previous cancer diagno-

sis of any kind, (c) at least 5 years between enrolment and PCa diag-

nosis, and (d) no type 2 diabetes diagnosis at baseline. The cases and

controls were matched by age, freezer storage time, and body mass

index (BMI). The controls were also overnight fasting with no type

2 diabetes diagnosis at baseline. Due to insufficient sample volume in

either the case or control sample, the final case-control set in the

study was reduced to 752 pairs. Baseline characteristics are compiled

in Table 1.

The cases were also stratified into subgroups that were analyzed

independently (statistically), based on baseline age (at enrolment) (40-

and 50-year-olds, and 60-year-olds) and by aggressive and nonaggres-

sive PCa at diagnosis.21 Cases fulfilling at least one of the following

criteria were considered as being aggressive PCa: Tumor poorly differ-

entiated (Gleason score 8-10 or grade 3 in the former three-level

World Health Organization grading system, in which grade 3 indicates

the lowest level of differentiation),21-23 tumor nonlocalized (T3-4),

bone metastases present (M1), lymph node metastases present (N1),

serum prostate-specific antigen (PSA) level >50 ng/mL at time of diag-

nosis or fatal PCa (ICD-10 code C61) by January 2017 regardless of

tumor state at diagnosis. All other cases were classified as being non-

aggressive PCa. In total, 587 cases were classified as nonaggressive

PCa, while 165 were considered aggressive (Table 2). Due to the low

numbers of PCa cases enrolled and sampled at age 40, this subgroup

(45 pairs) was merged with the subgroup of 50-year-olds (281 pairs).

The younger subgroup (40- and 50-year-olds) thus consisted of

326 pairs, while the older subgroup of subjects (aged 60 years at

baseline) contained 426 case-control pairs.

2.3 | Sample preparation and liquid
chromatography-mass spectrometry

The plasma samples were prepared according to the method

described by Evans et al24 with minor modifications. Each plasma

sample was measured with both positive and negative ionization

mode. The two-paired samples were analyzed immediately after each

other, with case-control injection order randomized in order to mini-

mize any impact of instrument drift.25 Chromatographic separation T
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was carried out on Waters BEH C18 (1.7 μm, 2.1 � 100 mm) columns

(Waters, Milford, Massachusetts). For positive mode separation,

(A) 0.1% formic acid in water and (B) 0.1% formic acid in methanol

were used as eluents. For negative mode separation, (A) 6.5 mM

ammonium bicarbonate in water and (B) 6.5 mM ammonium bicarbon-

ate in methanol (ammonium bicarbonate soluble upon sonication)

were used as eluents. The following gradient profile was used in both

modes: 2% B to 70% B in 4 minutes, 70% to 98% B in 1.5 minutes,

98% B for 2.9 minutes, 2% B in 1 minutes, and 2% B for 2.6 minutes.

Mass spectrometry analyses were carried out on an electrospray

quadrupole-time-of-flight (QToF) mass spectrometer (Bruker maXis

impact, Bruker Daltonics, Bremen, Germany). Positive and negative

ionization mode profile sample spectra in the range 50 to 1200 m/z

were collected. The samples were analyzed in four batches in both

positive and negative mode. MS2 spectra were also collected, in order

to assist in annotation of metabolite features found to be significantly

associated with PCa risk. Positive and negative ionization mode

collisional-induced dissociation (CID) fragment ion spectra (MS2) were

collected for all filtered features, irrespective of the chromatographic

conditions in which the feature was first detected. The [M+H]+ and

[M�H]�-adducts of all filtered features were individually isolated (iso-

lation width 0.5 m/z) and fragmented. For additional details of sample

preparation, reversed phase chromatography and high-resolution

mass spectrometry conditions, see Supporting Information Materials

and Methods.

2.4 | Data processing

The liquid chromatography-mass spectrometry (LC-MS) profile spec-

tra raw data were converted to centroided mzML format using

Bruker CompassXport (v. 3.0.9.2) and processed using the R (https://

www.r-project.org/, v. 3.5.1) package XCMS (v. 3.4.2).26 Data proces-

sing included peak picking, grouping, and filling of zero intensity fea-

tures (for XCMS parameters, see Supporting Information Materials

and Methods). The processing resulted in a peak table in which the

spectral features in each sample were assigned an m/z-value, a reten-

tion time value, and an intensity value. Data processing was applied

separately on the four batches for each polarity.

An in-house algorithm27 was used to find correspondence

between (metabolite) features in the different batches. The procedure

was defined as follows: (a) All possible matches within adequately

defined median retention time (RT) and m/z-thresholds were identi-

fied batch-wise. This resulted in clusters, including features from the

four batches, and in interbatch alignment of both RT and m/z. (b) In

each cluster, only features that matched features in all other batches

were allowed (ie, cliques), while the rest were deleted. (c) In cases of

match multiplicity, a penalization score was created to decide the best

match. This score was defined after batch-to-batch alignment as the

Euclidean distance of RT and m/z difference (both normalized)

between each of the features in the match. Processing was performed

separately on the positive and negative mode datasets and allowed

only features present in all four batches. The two resulting datasets

(one for the four batches analyzed in positive mode and one for the

four batches analyzed in negative mode) were then merged, resulting

in a single dataset containing the 1100 metabolite features in total

detected in all four positive-mode and four negative-mode batches.

The data were not adjusted for intrabatch instrument drift, since all

statistical comparisons were made pair-wise, with the two paired sam-

ples being analyzed consecutively in randomized order.25

TABLE 2 Characteristics of prostate cancer (PCa) cases at the time
of diagnosis

All PCa

(n = 752)

Nonaggressive

PCa (n = 587)

Aggressive

PCa (n = 165)

Tumor gradea

High 111 0 111

Low/intermediate 635 583 52

Missing 6 4 2

Primary tumor

Nonassessed (TX) 14 13 1

Nonpalpable (T1) 422 391 31

Localized (T2) 236 178 58

Nonlocalized

(T3, T4)

74 0 74

Missing 6 5 1

Lymph node metastases

Nonassessed (NX) 657 520 137

Not present (N0) 84 63 21

Lymph node (N1) 6 0 6

Missing 5 4 1

Bone metastases

Nonassessed (MX) 394 360 34

Not present (M0) 309 223 86

Bone metastases (M1) 44 0 44

Missing 5 4 1

Serum PSA

≤50 ng/mL 681 582 99

>50 ng/mL 66 0 66

Missing 5 5 0

Fatal PCa outcome by January 2017

Fatal outcome 39 0 39

Disease aggressivenessb

Nonaggressive 587 587 0

Aggressive 165 0 165

aTumors were considered high grade if they were given Gleason sum

score ≥8, or G3 according to the former three-level WHO grading system.

Tumors graded low/intermediate had Gleason sum score ≤7, or G1-G2

according to the former WHO grading system.
bProstate cancer cases were considered aggressive if they fulfilled at least

one of the following criteria: High tumor grade, nonlocalized tumor (T3-4),

bone metastasis (M1), lymph node metastasis (N1), serum prostate-

specific antigen (PSA) >50 ng/mL or fatal prostate cancer outcome by

January 2017.

2118 ÖSTMAN ET AL.
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2.5 | Identification of discriminating features

As an initial step to identify features discriminating between cases

and controls, conservative multivariate and univariate statistical

analyses were applied on the full dataset of 752 case-control pairs,

and separately on the individual subgroups of disease aggressiveness

(587 nonaggressive/165 aggressive pairs) and baseline age

(326 younger/426 older pairs). Prospective associations between

discriminating features (identified in previous steps) and PCa risk

were evaluated by conditional logistic regression (CLR) (for details of

CLR, see Section 2.6).

An extension of the multivariate orthogonal projection to latent

structures model (OPLS) optimized for analysis of paired or matched

samples, named OPLS-effect projections (OPLS-EP),25 was used to

identify features that discriminated the cases from their respective

controls (paired). Intensity differences between cases and their

respective controls for each feature (x-variables) were unit variance-

scaled and modeled toward an all-ones y-vector. For each of the strat-

ifications (all, nonaggressive, aggressive, younger, older), three models

were constructed: a model containing all cases, a model excluding the

extreme 1% of cases based on Hotelling's T2 range, and a model

excluding the extreme 5% of cases. The three different models were

considered, in order to ensure that all features in the dataset with sig-

nificant differences between cases and controls were included, while

also accounting for the impact of potential outliers. The significance

of the models was determined using 7-fold cross-validated analysis of

variance (CV-ANOVA), with a P-value <.05 considered significant.28

Features with variable importance on projection (VIP) values ≥1.5 and

VIP lower 95% confidence interval (CI) >0 in at least one of the three

models were considered as discriminating between cases and con-

trols.29 Multivariate statistical analyses were performed using SIMCA

16 (Sartorius Stedim Data Analytics AB, Umeå, Sweden).

In the conservative univariate analysis, two-sided Wilcoxon

signed-rank test was used to find discriminating features. The thresh-

old for statistical significance was set at P < 4.55 � 10�5, based on

Bonferroni correction for 1100 tests. Univariate statistical analyses

were performed using R 3.5.1.

2.6 | Metabolite feature filtering

The discriminating metabolite features obtained in multivariate or uni-

variate statistical analyses were subjected to a four-step filtering pro-

cess in order to identify features significantly prospectively associated

with PCa risk (filtered features) in each dataset (full dataset, aggres-

sive/nonaggressive, younger/older). The filtering process, and the

number of features remaining after each step, are graphically summa-

rized in Figure 1.

1100 detected features 

 All PCa (752 pairs) Non-aggressive PCa (587 pairs)  Aggressive PCa (165 pairs) 

OPLS-EP Univariate 

147 46 

159 

CLR P-value <.05  

65 

Covariates effecting?b 

64 

Removal of isotopes and adductsc 

39 

Visual inspection of extracted ion chromatograms 

30 

30 features 

OPLS-EP Univariate 

171 17 

172 

39 

38 

25 

18 

18 features, 3 uniqued 

OPLS-EP Univariate 

0a 6 

6 

2 

2 

1 

0 

0 features 

Younger (326 pairs)  Older (426 pairs) 

OPLS-EP Univariate 

138 13 

138 

14 

14 

12 

7 

7 features, 6 uniqued 

OPLS-EP Univariate 

146 29 

151 

99 

97 

60 

30 

30 features, 12 uniqued 

Merging of discriminating features 

F IGURE 1 Flowchart showing the workflow in extracting and filtering metabolite features significantly associated with overall future prostate
cancer (PCa) development and after stratification by disease aggressiveness and baseline age [younger (40- and 50-year-olds); older (60-year-
olds)]. aOrthogonal projections to latent structures-effect projections (OPLS-EP) models not significant via cross-validated analysis of variance

(CV-ANOVA), P > .05. bFeatures were excluded if the conditional logistic regression (CLR) P-value rose above .05 or if the odds ratio changed by
more than 10% after inclusion of the covariates exact age, body mass index, alcohol consumption (<10, 10-19, 20-39, ≥40 g/day), and smoking
status (no, past, current, unknown) in the CLR model. cIsotope and adduct filtering was done by assessing whether features with the same
retention time differed in m/z corresponding to 13C isotope differences (Δ = n � 1.0033), Na+-adducts (Δ = 21.9819) or in-source H2O
(Δ = 18.0153) or NH3 (Δ = 17.0266)-loss, retaining (by decreasing priority) the [M ± H]± adduct, the lowest m/z isotopologue, or an in-source
fragment rather than sodium adduct. dUnique features are features which were not found to be significantly associated in the full dataset of 752
pairs.
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Step 1: The prospective association between each discriminating fea-

ture and the risk of future PCa was evaluated by CLR. The feature

intensities were log2-transformed prior to analysis, in order to relate

the resulting odds ratios to a doubling of signal intensity in the sam-

ples. The analysis was performed using the procedure PHREG in SAS

(version 9.4, SAS Institute, Cary, North Carolina), with the case-

control pair number (pairing identifier) as stratum. Discriminating fea-

tures with a CLR P-value >.05 were excluded.

Step 2: The remaining features were further tested for association with

covariates. Each CLR model was adjusted for exact age, BMI, smoking

status (no, past, current, unknown), and alcohol consumption (<10, 10-

19, 20-39, ≥40 g/day).10,12 Features for which the CLR P-value

exceeded .05 or the odds ratio (OR) changed by more than 10% after

covariates adjustment were excluded. For the remaining features, the

results from the unadjusted CLR models are presented in the Section 3.

Step 3: The remaining features were further filtered by manual

removal of features with the same origin (13C isotopes, Na+-adducts,

and in-source losses). Isotope and adduct filtering was performed by

assessing whether features with the same retention time differed

in m/z corresponding to 13C isotope differences (Δ = n � 1.0033),

Na+-adducts (Δ = 21.9819) or in-source H2O (Δ = 18.0153) or NH3

(Δ = 17.0266) loss, retaining (by decreasing priority) the [M ± H]±

adduct, the lowest m/z isotopologue or an in-source fragment rather

than an Na+-adduct.

Step 4: As a final quality control step, extracted ion chromatograms

(XIC) of the remaining features were plotted using the R package

peakPantheR (v 1.0.0).30 The XICs of features were visually inspected

to remove those with non-Gaussian peaks and to validate the results

of the peak picking process.

Features exceeding all filtering criteria found within a subgroup (non-

aggressive/aggressive or younger/older) were further investigated for

possible differential associations (heterogeneity). The features were

allowed different associations with PCa risk for the two categories

within aggressiveness and age group, respectively. Comparisons were

made using a Wald test for equal regression coefficients, on the log2-

transformed feature data in SAS 9.4.

2.7 | Annotation of filtered metabolite features

Metabolite feature annotation was based on accurate mass of the par-

ent ion and accurate masses of the CID fragments in both positive

and negative mode (when applicable). When two different phospho-

lipid features with the same sum of side-chain carbons and unsatura-

tions were annotated, they were given an additional (A) or (B) suffix.

The annotation of individual side-chain fatty acids was determined

based on the accurate masses of detected free fatty acid, lysopho-

sphatidylcholine or lysosphingomyelin CID fragments (when

applicable). The relative positions of side-chain fatty acids in phospha-

tidylcholines (PCs) were suggested (when applicable) based on CID

fragment signal intensities, with the stronger of the two potential

lyso-fragment signals corresponding to the more stable secondary

carbocation retaining the fatty acid on carbon 3/sn � 1. Comparisons

of spectral data with databases (Human Metabolome Database

[HMDB], METLIN, mzCloud, Lipid Maps, MassBank) were conducted

in order to aid annotation. For details regarding annotation

procedures, see Supporting Information Materials and Methods.

3 | RESULTS

3.1 | Baseline and case characteristics

The baseline characteristics of the PCa cases and controls are pre-

sented in Table 1 for the whole set of 752 case-control pairs and for

the four subgroups (nonaggressive, aggressive, younger, older). The

factors used for sample matching (age and BMI) were evenly distrib-

uted between the cases and controls, as intended by the study design.

The data used for assessing the degree of aggressiveness of the

752 PCa cases are presented in Table 2, including data for the full set

of 752 cases and for the subgroups of nonaggressive and aggressive

PCa individually. In total, 587 cases were classified as nonaggressive,

while 165 cases (22% of cases) were considered aggressive, based on

tumor grade, tumor stage, serum PSA level, and fatal PCa by January

2017. Within the younger subgroup, 43 cases (13.2%) were deemed

aggressive, while in the older subgroup 122 cases (28.6%) were con-

sidered aggressive.

3.2 | Identification of discriminating metabolite
features, feature filtering, and differential associations

Discriminating features were first identified with multivariate and uni-

variate statistics (OPLS-EP and two-sided Wilcoxon signed-rank test,

followed by Bonferroni correction) in each of the five datasets (full,

nonaggressive/aggressive, younger/older) (Figure 1, Table S1). The

features found by multivariate and univariate statistics were merged

and subjected to a four-step filtering process, in order to identify fea-

tures prospectively associated with PCa risk in each of the five data-

sets (Figure 1, Table S1) (for a summary of the number of

discriminating metabolite features found using multivariate statistics,

univariate statistics or both, see Figure S1). Metabolite features iden-

tified as discriminating by the multivariate statistics, and their VIP

values and corresponding odds ratios, are compiled in Table S2. Fea-

tures identified as discriminating by the univariate statistics, and their

P-values and corresponding odds ratios, are compiled in Table S3.

There were differential associations between the disease aggressive-

ness categories for none of 18 features and for 16 out of 37 features

after stratification by baseline age (Table S4).

3.3 | Annotation of filtered features

The features prospectively associated with PCa risk that remained

after the filtering process were annotated using accurate mass and
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F IGURE 2 Odds ratios for prostate cancer (PCa) risk by log2 of metabolite feature signal intensities. The odds ratios and 95% confidence
intervals (CIs) are derived from a conditional logistic regression, *P < .05, **P < .01, ***P < .001. The metabolites presented also showed variable
importance on projection (VIP) ≥1.5 and VIP 95% CI >0 in orthogonal projection of latent structures-effect projections (OPLS-EP) models, and/or
statistical significance (P < .05) after Bonferroni correction in a two-sided Wilcoxon signed-rank test. Adjustment for age, body mass index,

smoking status, and alcohol consumption did not significantly affect the odds ratio. Upper left panel: results for all 752 matched case-control pairs
(overall), upper right panel: results for the nonaggressive subset (587 pairs), lower left panel: results for the younger subset (326 pairs) with a
baseline age of 40 and 50 years, and lower right panel: results for the older subset (426 pairs) with a baseline age of 60 years. Two unannotated
features (m/z 216.9227**), odds ratio (confidence interval) 5.49 (1.56-19.3) and m/z 206.8938*, 3.13 (1.23-7.96) were excluded from the younger
subgroup plot, due to large CI (for details, see Table S6). Note the linear x-axis. FA, fatty acid; PCaa, diacyl-phosphatidylcholine; SM,
sphingomyelin.
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MS2 data. For details of how the annotation of different features was

supported by databases and MS2 (in both ionization modes), see

Table S5. In the following, PCs are presented with the total number of

carbons and double bonds in their side-chain fatty acids and sphingo-

myelins (SMs) are presented with the total number of carbons and

double bonds in their sphingosine backbone (ie, fatty acid plus sphin-

gosine), unless detailed information on fatty acid composition was

available. For details on assignment of individual side-chain fatty acids

and tentative assignment of their relative positions (when applicable),

see Table S5.

Of the 50 unique features found to be prospectively associated

with PCa risk, 18% were annotated at MSI level 2, 58% at level 3, and

24% at level 4. The parent ion m/z error of identification for all fea-

tures was 2.69 ± 1.76 ppm (mean ± 95% CI).

3.4 | Prospective association of filtered features
with risk of prostate cancer

The odds ratios for the significantly associated features in the full

dataset of PCa cases and the three subgroups (nonaggressive, youn-

ger, older) are graphically summarized in Figure 2. All features exhibit-

ing a significant association with future PCa risk were positively

associated with future disease development except for glucose, which

was significantly negatively associated (odds ratio 0.54) for the older

subgroup.

Thirty features were positively associated with risk of overall PCa

(full dataset of 752 pairs) including aromatic amino acids, phosphati-

dylcholines, sphingomyelins, free fatty acids, and cholesterol (the odds

ratios ranged between 1.13 and 1.68). Eighteen features were

F IGURE 3 Network plot of filtered metabolite features prospectively associated with prostate cancer (PCa) risk for the full set of 752 case-
control pairs (overall) and after stratification by disease aggressiveness (587 nonaggressive pairs) or baseline age (326 younger pairs (40- and
50-year-olds) and 426 older pairs (60-year-olds)). The edge widths are weighted according to odds ratios by log2 of feature signal intensities.
Edges with positive associations are shown in gray, while inverse associations are shown in orange. Model nodes are represented by white circles
and feature nodes by squares colored by chemical class: Diacyl-phosphatidylcholines (PCaas) (olive), sphingomyelins (SMs) (blue), amino acids
(turquoise), fatty acids (red), others (purple), and unidentified (green).
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positively associated with risk of nonaggressive PCa (dataset of

587 pairs) including phosphatidylcholines, sphingomyelins, and free

fatty acids (the odds ratios ranged between 1.21 and 1.53). No signifi-

cant association was found between metabolite features and risk of

aggressive PCa (dataset of 165 pairs). Seven features were positively

associated with risk of PCa in the younger subset of cases (dataset of

326 pairs) including (of those identified) a sphingomyelin and a free

fatty acid (the odds ratios ranged between 1.23 and 5.49). Twenty-

nine features (including phosphatidylcholines, sphingomyelins, free

fatty acids, and uric acid) were positively and one feature (glucose)

was inversely associated with risk of PCa in the older subset of cases

(data set of 426 pairs) (the odds ratios for positive associations ranged

between 1.14 and 2.27). A summary of statistical and annotation data

for all filtered features prospectively associated with PCa risk is pro-

vided in Table S6. A network plot of all 50 unique features showing

features in common between the subsets and the full dataset is pre-

sented in Figure 3.

4 | DISCUSSION

4.1 | Main findings

In this nested case-control study, untargeted high-resolution mass

spectrometry-based metabolomics was employed to explore prospec-

tive associations of plasma metabolites with risk of PCa. Associations

were also investigated after stratification of cases by baseline age and

disease aggressiveness. A range of phospholipids, that is, diacyl-

phosphatidylcholines (PCaas) and SMs, and several free fatty acids

were found to be positively associated with the risk of overall and

nonaggressive PCa, and with the risk of PCa among younger and older

subsets of cases. These phospholipids included both saturated and

unsaturated odd- and even carbon fatty acid chains. Uric acid was

found to be positively associated in the older subgroup, while glucose

was found to be negatively associated.

4.2 | Strengths and limitations

The present study is the largest prospective study (follow-up

5-20 years), which uses an untargeted LC-MS metabolomics

approach to look for circulating metabolites associated with risk of

PCa. The prospective nature of study enables generating insight for

better understanding PCa etiology, which paves the way for estab-

lishing prevention strategies. The use of an untargeted approach

also expanded the number of metabolites investigated in associa-

tion with risk of PCa. In addition, we only used overnight fasting

plasma samples in our study, in order to reduce the variation in

metabolite concentrations because of differences in recent food-

stuff consumption and variations in time since last meal. We also

used a follow-up time of at least 5 years (follow-up time ≥5 years)

to reduce metabolic variations due to potential presence of subclini-

cal PCa at baseline.

Our study had a number of limitations. The use of only untar-

geted LC-MS, as compared to also using gas chromatography mass

spectrometry metabolomics, limited the detection of some catego-

ries of metabolites. The study was also limited by the nonquantita-

tive nature of untargeted LC-MS metabolomics and the fact that

some metabolite features remained unidentified even after MS2

analysis. In addition, only one blood sample was measured per par-

ticipant. This can affect the results if a single measurement does

not represent long-term measurement. However, reasonable mid-

term (ie, a period of 4-48 months) reproducibility of metabolite

concentrations has been shown.31,32 Moreover, our study was also

limited by including participants only from a cohort of individuals

from a single European country (ie, NSHDS, Sweden), not consider-

ing the effects of some other confounding factors in the model (ie,

family history of PCa and physical activity) and low number of

aggressive PCa cases.

5 | OTHER STUDIES

Eleven other prospective studies (six different cohorts) investigating

the association of metabolite levels with PCa risk have been published

(referred to as “the 11 studies” hereafter).5-14,16 These studies dif-

fered in their experimental design and analytical methodologies. One

study was nested in the Prostate, Lung, Colorectal and Ovarian Can-

cer Screening Trial (PLCO),8 one in the NSHDS,10 three in the Alpha-

Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC),5-7 three

in the European Prospective Investigation into Cancer and Nutrition

Study (EPIC),9,11,12 two in SU.VI.MAX,13,14 and one in Cancer Preven-

tion Study-II Nutrition Cohort.16 Of the three EPIC studies, one was

conducted within the EPIC-Heidelberg cohort9 and two were overlap-

ping multicenter studies.11,12

Our previous study nested within the NSHDS10 and the three

EPIC studies9,11,12 employed a targeted methodology, a kit-based LC-

MS2 assay (Biocrates, Innsbruck, Austria). The three ATBC studies,5-7

one of the SU.VI.MAX studies,14 the PLCO study,8 and Cancer Pre-

vention Study-II Nutrition study16 employed an untargeted MS plat-

form and included only identified metabolites prior to statistical

analysis. No previous study employed the (untargeted) analytical

methodology used in the present study, that is, LC-high-resolution

MS with untargeted data processing using XCMS prior to the feature

identification.

In our previous targeted MS analysis on the same nested

cohort, we observed positive associations between several phospho-

lipids, that is, acyl-ether phosphatidylcholines (PCaes) and acyl-

lysophosphatidylcholines (LPCas), and risk of PCa.10 In the present

study, we found positive associations with risk of PCa for several PCs

and SMs, but these were not the same PCs as in our previous study.

We previously observed a positive association between LPCa 17:0

and risk of overall and aggressive PCa for different age groups,10 but

LPCa 17:0 was not among the filtered features found in the present

study. However, we observed associations between several other

phospholipids with odd-chain fatty acids in their structure and risk of
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PCa, that is, PCaa 33:2, PCaa 35:2, PCaa 35:4, PCaa 33:1, SM 33:1

and SM 41:2.

Differences between our present and previous study can be

partly attributed to differences in the analytical procedures used,

including: (a) lower sensitivity of the QToF method used in the pre-

sent study compared to the triple quadrupole method used in our pre-

vious study (ie, relevant also for LPCa 17:0); (b) none of the PCs and

SMs with odd-chain fatty acids among the filtered features in the pre-

sent untargeted metabolomics study were included in the list of

metabolites measured by the targeted methodology used in our previ-

ous study,10 and (c) the untargeted and targeted methods used in the

present and previous study, respectively, differed in their analytical

selectivity due to differences between the present LC-high-resolution

MS approach and the previous flow injection analysis-low-resolution

triple quadrupole approach.33 To elaborate, in a low-resolution triple

quadrupole approach, the feature annotated as, for example, PCaa

33:1 in the present study might potentially overlap with what is

reported as PCae 34:1 (36 mDa mass difference).

In the larger EPIC study11 including the case-control sets from

the smaller EPIC study,12 none of multivariate components represent-

ing different groups of metabolites was associated with overall, local-

ized, nonaggressive, low-intermediate or high-grade PCa, according to

the authors. However, that study11 found inverse associations

between components representing phospholipids and risk of

advanced stage PCa. In the present study, we found positive associa-

tions between several phospholipids and risk of overall and nonag-

gressive PCa. However, we did not observe any association between

metabolites and risk of aggressive PCa (possibly because of small sam-

ple size). The experimental design in the present study differed from

that in EPIC multicenter studies by using (a) only overnight fasting

plasma samples (compared to also including nonfasting in EPIC multi-

center studies) and (b) inclusion of both nonlocalized (T3-4/N1-3/M1)

and high-grade (Gleason sum score ≥8) tumors in aggressive disease

subtype as in some previous studies5,6,8 (compared to only nonloca-

lized in advanced stage subtype in EPIC multicenter studies). These

differences might partly explain the differences in the observed

associations.

None of the PCs reported in the PLCO and ATBC cohort studies

were found to be significant after correction for multiple testing,5,7,8

but positive associations between PCaa 34:3 and risk of nonaggres-

sive PCa were observed in both the present study and the PLCO

study.8 PCaa 36:2 (A) and PCaa 34:2, which were positively associated

with overall PCa risk in the present study, showed an inverse associa-

tion (P < .05) with overall and T3 PCa in the ATBC studies.5,7 One of

the ATBC studies found a positive association (although not after cor-

rection for multiple testing) between SM(d18:1/18:0) and risk of T3

PCa.7 This SM was possibly found for the full set and older subgroup

in the present study, in the form of SM 36:1. No associations were

found for any sphingomyelins in the other four previous studies.6,8-10

In the present study, tyrosine and tryptophan were the two fea-

tures exhibiting the highest odds ratios in the full dataset. Positive

associations between tyrosine and risk of overall PCa have been

reported previously in one SU.VI.MAX study13 and inverse

associations between tryptophan (not after correction for multiple

testing) and risk of overall and aggressive PCa in the PLCO study.34

In the present study, palmitic acid was found to have a significant

positive association with future PCa risk for both the full set (overall)

and the nonaggressive and older subgroups. Palmitic acid was not

found to be significantly associated with PCa risk after correction for

multiple testing in any of the previous 11 studies, but inverse associa-

tions were found for both nonaggressive and aggressive PCa in the

ATBC cohort.5,6 In the present study, several of the annotated phos-

pholipids associated with future PCa risk contained palmitate side-

chains (Tables S5 and S6). Previous studies investigating the fatty acid

composition of plasma phospholipids have consistently reported posi-

tive associations between higher amounts of palmitate in phospho-

lipids and risk of overall PCa,35,36 and as part of a pattern of three

fatty acids in phospholipids positively associated with risk of higher-

grade PCa (ie, Gleason sum score ≥ 7).37

Uric acid was found to be positively associated with future PCa

risk in the older subgroup in our study, but no such association was

found in any of the 11 previous (metabolomics) studies. Other previ-

ous studies (those not using metabolomics analysis) have presented

conflicting results regarding uric acid and risk of PCa. A positive asso-

ciation with PCa risk has been found in a prospective cohort of

Japanese men in Hawaii,38 while some studies show no associa-

tion.39,40 A large Austrian study found higher uric acid to be associ-

ated with overall cancer, but not with genital cancers (including

PCa).41 Interestingly, elevated uric acid has previously been shown to

be associated with PCa risk in a smaller Swedish study.42

The inverse association between glucose and PCa risk in the pre-

sent study (using an untargeted approach) is consistent with the

inverse association found between impaired glucose tolerance and

risk of PCa in our previous study10 and lower risk of subsequently

developing PCa in patients with type 2 diabetes (T2D).43-45

6 | SUGGESTED MECHANISM

In the present study, plasma lipids (ie, phospholipids and free fatty

acids) and uric acid positively, and plasma glucose inversely, were

associated with risk of PCa. It is important to investigate if these met-

abolic alterations can lead the research to upstream gene and signal-

ing pathways with significance in etiology of PCa. Here, we suggest a

common upstream signaling pathway, with potential implications in

risk of PCa, may have contributed to the metabolic alterations

observed in the present study.

Uric acid is a byproduct of purine catabolism. Although excess

cancer risk in association with higher concentration of uric acid has

been attributed to induction of proinflammatory responses, no signifi-

cant causality between serum uric acid and incidence of several dis-

tinct malignancies, that is, PCa has been evidenced in Mendelian

randomization studies.46 Blood concentration of uric acid is deter-

mined by endogenous production and urinary excretion. Intriguingly,

it has been shown that the reabsorption of uric acid in kidneys, which

results in its reduced urinary expression, is increased by activation of
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PI3K-Akt signaling pathway.47 This pathway is also a very important

signaling pathway for regulating glucose homeostasis and its activa-

tion can reduce circulating glucose concentration.48 A relatively higher

activity of PI3K-Akt pathway in cases compared to controls can

potentially induce a metabolic phenotype similar with that observed

in the present study, that is, higher lipids (possibly because of higher

endogenous biosynthesis) and uric acids (because of lower urinary

excretion) and lower glucose in fasting plasma. Higher activity of

PI3K-Akt singling is also etiologically important in the development of

PCa.49 Therefore, here we propose a prospectively higher activity of

PI3K-Akt singling in PCa cases compared to controls. PI3K-Akt activ-

ity is reduced by phosphatase and tensin homolog (PTEN),48 a tumor

suppressor protein also involved in PCa development49 and glucose

metabolism.48 Intriguingly, PTEN can be measured in prospective

plasma as an important regulator of PI3K-Akt singling pathway.48

7 | CONCLUSIONS

The present study, which is the largest prospective untargeted meta-

bolomics study to date focusing on PCa risk, identified new metabolic

PCa risk factors observable in blood plasma at least 5 years before

diagnosis. Positive associations with PCa risk were found for aromatic

amino acids, free fatty acids, uric acid, and a range of phospholipids,

while inverse associations were found for glucose. The differential

associations were observed based on stratification of cases by base-

line age (eg, for glucose and uric acid), highlighting the importance of

considering subtyping in investigations of PCa etiology and its under-

lying causes. These findings suggest a possible role for lipid and glu-

cose metabolism in PCa etiology. Future studies are needed on the

origins of these new risk factors and whether they are adjustable or

genetic, using research material with a higher number or proportion of

aggressive cases. Understanding the origins of these risk factors will

open new doors for establishing prevention strategies.50
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