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A B S T R A C T   

Forest inventories are essential to accurately estimate different dendrometric and forest stand parameters. 
However, classical forest inventories are time consuming, slow to conduct, sometimes inaccurate and costly. To 
address this problem, an efficient alternative approach has been sought and designed that will make this type of 
field work cheaper, faster, more accurate, and easier to complete. The implementation of this concept has 
required the development of a specifically designed software called “Artificial Intelligence for Digital Forest 
(AID-FOREST)”, which is able to process point clouds obtained via mobile terrestrial laser scanning (MTLS) and 
then, to provide an array of multiple useful and accurate dendrometric and forest stand parameters. Singular 
characteristics of this approach are: No data pre-processing is required either pre-treatment of forest stand; fully 
automatic process once launched; no limitations by the size of the point cloud file and fast computations. 

To validate AID-FOREST, results provided by this software were compared against the obtained from in-situ 
classical forest inventories. To guaranty the soundness and generality of the comparison, different tree spe
cies, plot sizes, and tree densities were measured and analysed. A total of 76 plots (10,887 trees) were selected to 
conduct both a classic forest inventory reference method and a MTLS (ZEB-HORIZON, Geoslam, ltd.) scanning to 
obtain point clouds for AID-FOREST processing, known as the MTLS-AIDFOREST method. Thus, we compared 
the data collected by both methods estimating the average number of trees and diameter at breast height (DBH) 
for each plot. Moreover, 71 additional individual trees were scanned with MTLS and processed by AID-FOREST 
and were then felled and divided into logs measuring 1 m in length. This allowed us to accurately measure the 
DBH, total height, and total volume of the stems. 

When we compared the results obtained with each methodology, the mean detectability was 97% and ranged 
from 81.3 to 100%, with a bias (underestimation by MTLS-AIDFOREST method) in the number of trees per plot 
of 2.8% and a relative root-mean-square error (RMSE) of 9.2%. Species, plot size, and tree density did not 
significantly affect detectability. However, this parameter was significantly affected by the ecosystem visual 
complexity index (EVCI). The average DBH per plot was underestimated (but was not significantly different from 
0) by the MTLS-AIDFOREST, with the average bias for pooled data being 1.8% with a RMSE of 7.5%. Similarly, 
there was no statistically significant differences between the two distribution functions of the DBH at the 95.0% 
confidence level. 

Regarding the individual tree parameters, MTLS-AIDFOREST underestimated DBH by 0.16 % (RMSE = 5.2 %) 
and overestimated the stem volume (Vt) by 1.37 % (RMSE = 14.3 %, although the BIAS was not statistically 
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significantly different from 0). However, the MTLS-AIDFOREST method overestimated the total height (Ht) of 
the trees by a mean 1.33 m (5.1 %; relative RMSE = 11.5 %), because of the different height concepts measured 
by both methodological approaches. Finally, AID-FOREST required 30 to 66 min per ha− 1 to fully automatically 
process the point cloud data from the *.las file corresponding to a given hectare plot. Thus, applying our MTLS- 
AIDFOREST methodology to make full forest inventories, required a 57.3 % of the time required to perform 
classical plot forest inventories (excluding the data postprocessing time in the latter case). A free trial of AID- 
FOREST can be requested at dielmo@dielmo.com.   

1. Introduction 

Forest inventories are essential to accurately estimate different forest 
stand parameters that are key to implementing sustainable forest man
agement. They are also fundamental in ecosystem research, carbon ac
counting, and ecophysiology, because forest stand parameters allow the 
current condition of forests to be characterised and thus, provide a 
reliable basis for management planners to make more informed de
cisions. However, performing classical forest inventories involving the 
use of callipers, tapes, and hypsometers, well conducted sampling, or 
full inventories, is the most expensive component in forest management 
plans and is hard, time-consuming, and tedious work. 

Geomatic techniques, such as airborne Light Detection and Ranging 
(LiDAR) technology, have been used to estimate the parameters of forest 
stands for just over two decades (Næsset, 2002; Nelson et al., 2003). 
However, inaccurate results are sometimes obtained because aerial 
LiDAR is unable to capture stem information. On the contrary, static 
terrestrial laser technology (TLS) can collect information from stems, 
although this technology has not yet been able to replace classical 
methods, despite the incomparable structural information it is able to 
capture. 

TLS can obtain a 3D representation of vegetation with an accuracy of 
up to 1 mm (Van Leeuwen and Nieuwenhuis, 2010), while also directly 
obtaining the diameters and heights of vegetation. The main drawback 
of TLS systems is the ‘hiding effect,’ which could be corrected if several 
LiDAR systems are employed or if several different positions on the plot 
are used rather than a single location. However, this would make the 
field data collection slower and more expensive (Bauwens et al., 2016). 

Mobile terrestrial laser scanning (MTLS) tools are also currently 
being used for different applications such as the measurement of 
buildings, both indoors and outdoors (Chen et al., 2021; Rodriguez- 
Martin et al., 2018; Russhakim et al., 2018; Zheng et al., 2018), recre
ating historical sites in virtual and augmented reality (Barba et al., 2019; 
Patrucco et al., 2019), mining and caves (Dewez et al., 2017; Liang et al., 
2021; Raval et al., 2019), detecting pole-shaped objects while scanning 
roads (Cabo et al., 2014; Shokri et al., 2019), traffic signs (Yang et al., 
2013), lane markings (Rastiveis et al., 2020), highway cross-slopes 
(Shams et al., 2018), and in accident events and sketches (Topoľsek 
et al., 2019). This is made possible thanks to the ability of MTLS to 
accurately generate point clouds along with appropriate software to 
measure them. The most recent application for this technology is for 
forest inventories, where point clouds are useful resources to get forest 
structure, i.e., diameter at breast height (DBH), total height, volume, 
and other parameters of interest, including georeferencing the position 
of the trees. 

The manual extraction of forest stand parameters from the point 
cloud is not an operational option because it is very labour intensive and 
time consuming (Safaie et al., 2021) and in fact, there are very few 
manual applications, and they are focused on reduced forest stand ex
tensions and simplified forest structures (Bogdanovich et al., 2021; 
Holopainen et al., 2014). Besides, the automated methods for extracting 
the forest stand parameters from point clouds can be grouped as: (i) 
point-based, i.e., the algorithm uses points to directly extract the tree 
parameters (Liang et al., 2014); (ii) grid-based, in which point clouds are 
grid-converted, a technique also referred to as rasterisation (Safaie et al., 
2021); and (iii), other grid-based methods in which point clouds are 

converted with a voxel grid (Heinzel and Huber, 2017; Hosoi et al., 
2013). 

In general, both manual and automatic methods determine tree pa
rameters from point clouds by following these three steps: (1) prior 
estimation of the digital terrain model (DTM) to standardise the point 
cloud to the horizontal plane; (2) detection and localisation of the trees; 
and (3), measurement of the tree parameters of the detected trees. In 
addition, each step can be tackled with different approaches (for more 
details, see Othmani et al. (2011)), thus, for example, (i) a DTM can be 
obtained via the lowest Z-value, or by triangular irregular network 
model; (ii) the tree detection can be based on Hough transform, on 
clustering and fitting circles or cylinders, or on point density raster 
analysis; and (iii) the measurement of tree parameters such as total 
height can be done by calculating the difference between the DTM and 
digital surface model (DSM) at the point where a tree is, or the DBH can 
be obtained by adjusting a circle 1.30 m above ground, as described in 
Safaie et al. (2021). 

Focusing on tree detection algorithms, different studies have used 
the 2D Hough transform to detect and measure the DBH of trees after 
normalisation to an elevation of 0 m, discounting the digital terrain 
model of the point cloud (Simonse et al., 2003). In a similar but 
improved method, Gorte and Pfeifer (2004) and Gorte and Winterhalder 
(2004) used a 3D mathematical morphology. Pfeifer and Winterhalder 
(2004) modelled transversal tree sections with free-form curves. In turn, 
Othmani et al. (2011) described an approach for automatically detecting 
and isolating trees and estimating their DBH. This used the open-source 
software called Computree, an innovative approach based on a clus
tering methodology, as well as Hough transform for tree detection, fol
lowed by a skeletonization step to automatically obtain the DBH. Later, 
Othmani et al. (2013) developed a tool for both homogeneous and 
heterogeneous forest plantations that can automatically or semi- 
automatically recognise the species at gender level and measure the 
tree parameters. Olofsson et al. (2014) used a new method to detect, 
classify, and measure tree stems based on Hough transform and the 
Random Sample Consensus (RANSAC) algorithm. In turn, Bauwens et al. 
(2016) used Computree, along with algorithms from the ONF-ENSAM 
plugin that are also based on Hough transform (Othmani et al., 2011), 
and some additional improvements to extract forest parameters from 
point clouds. 

Safaie et al. (2021) used a mixed point and grid-based method to 
automate a tree inventory along roads by using MTLS. They used both 
Hough transform and the active contours algorithm on several generated 
raster images from point clouds. In turn, Mokroš et al. (2021) used the 
cylinder-based algorithm to detect trees and measure their DBH. 
Furthermore, Cabo et al. (2018a) developed an automatic method to 
identify tree stems based on the isolation and vertical continuity of stems 
via an iterative process. Other authors, including Bienert et al. (2007), 
have also used mathematical morphology techniques (Serra, 1982). 
They conducted an initial segmentation step consisting of a point cluster 
search in a cross section of the point cloud, and then verified or dis
carded all the clusters by analysing the point density in neighbouring 
cross sections to minimise the probability of false detections. Recently, 
Hyyppä et al. (2020b) described a novel postprocessing algorithm to 
extract stem curves from scan-line arcs corresponding to individual 
standing trees. Finally, Vatandaşlar and Zeybek (2021) used machine 
learning (e.g., the Caret Random Forest classifier for tree detection in the 
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R package [version 6.0-86]) and innovative algorithms (e.g., ellipse 
fitting to estimate the diameter of noncircular trees) to more accurately 
obtain key forest stand parameters. 

In this context, the main contribution of this study has been the 
development of a new software called Artificial Intelligence for Digital 
Forests (AID-FOREST) that rasterizes point cloud slices at different 
heights from the ground and makes use of artificial intelligence to 
identify and measure tree sections, extract the location of the trees and 
measure the most relevant tree and forest stand parameters required for 
sustainable forest management. AID-FOREST solves the main problems 
faced by currently used algorithms in terms of high processing 
complexity and, therefore, we can say that it represents a major advance 
over existing procedures. It was designed to be fully operational and 
efficient, so that no human intervention is required during processing, 
no preprocessing of the point cloud or the area to be analysed is 
required, and it can work with point cloud files of large areas, or link 
multiple files to cover large areas. Parameters such as stem volume are 
measured rather than estimated, as occurs in most current software and 
algorithms. Finally, it provides results at both individual and area level. 
The two main objectives of this current work to validate AID-FOREST 
were (1) to check the ability of the algorithm to detect trees and mea
sure their DBHs at the plot level; and (2) to evaluate the algorithm’s 
success in estimating the DBH, total height, and total stem volume at 
individual tree level. 

2. Methodology 

2.1. Artificial Intelligence for Digital FOREST (AID-FOREST) software 
description and algorithms 

AID-FOREST is a software tool that uses artificial intelligence to 
analyse LiDAR point clouds coming from the forest to detect trees. These 
detections can be used to obtain both individual measurements of each 
tree and stand parameters, as well as statistics relating to the whole 
study area. 

The software isolates trees based on object detection by leveraging 
an artificial intelligence system that is trained to locate stem sections. 
This allows much more information to be extracted from the forest 
system than would be possible using a classical inventory method (either 
a full inventory or by sampling plots). AID-FOREST adapts easily to any 
workflow, is easy to use and can automatically detect elements and 
make decisions based on these findings. It is optimised to work with 
large volumes of data in a short time and provide a comprehensive 
report of results. However, the current version of the AID-FOREST 
software is optimised to assess the total volume of individual stems 
(monopodic branching) but not for multiple stems or branches (sym
podic branching). 

From the user’s point of view, the general workflow that must be 
followed to obtain both tree and forest stand parameters is shown in 
Fig. 1. Briefly, once the point clouds of all the plots or stands have been 
recorded, they should be pre-processed using the manufacturer’s spe
cific software to obtain point clouds in LASer (*.las) format file (clipped 
to the limits of the plots or stands). Then, the data are fed into the AID- 
FOREST software. Next, after a simple and fast configuration setup step, 
the point cloud files are processed to obtain the results output as one *. 
shp file each for trees and sections (boxes) and one *.csv file each at the 
plot and compartment or stand levels. In addition, normalised cloud 
files, digital terrain model (DTM), digital surface model (DSM), and 
digital height model (DHM), will also be obtained. 

The internal workflow that AID-FOREST follows is shown in Fig. 2. 
The general procedure rasterises slices from the point cloud at a certain 
thickness and at different heights from the ground (both parameters are 
user defined) and then detects and measures the tree sections. Thus, 
each MTLS point cloud file (in *.las format) is imported as input data and 
processed according to the following steps: (1) calculation of the DTM; 
(2) computation of the normalized point cloud at a horizontal plane; (3) 

rasterization of the normalised point cloud; (4) application of element 
(tree section) detection algorithms; (5) application of tree detection al
gorithms; (6) application of tree measurement algorithms; (7) applica
tion of crow coverage algorithms for different z-levels; and (8) obtain the 
data outputs in different formats. These steps are described in detail in 
the following sections. 

2.1.1. Calculation of the digital terrain model and digital surface model. 
Because assessment of the main tree parameters is based on 

measuring different diameters above ground (such as the DBH or the 
tree volume as a sum of the log volumes of a specific length, etc.) but the 
terrain is not horizontal or flat, we must first obtain the digital terrain 
model (DTM). This DTM will then be used to calculate the point cloud 
normalised to a horizontal plane (see section 2.1.2). The DTM resulted 
from a raster image created with the minimum height per pixel and 
removing pixels that did not correspond to the terrain based on a slope 
criterion. The final DTM is obtained from the interpolation of the raster 
image. To subsequently assign a height to the detected trees, it is 
necessary to develop a Digital Surface Model (DSM). Since this DSM is 
defined on the basis of the normalised point cloud, then the DSM co
incides with the Digital Height Model (DHM). Note that in both cases the 
pixel size was larger than 1 × 1 m, but can be generated with a user- 
defined pixel size (see “User’s Manual” in the Appendix). 

2.1.2. Obtaining the point cloud normalised to ground level 
The digital terrain model is subtracted from the complete point cloud 

to obtain the point cloud normalised to a horizontal plane. This is, the 
normalised point cloud is the original point cloud where the Z coordi
nate (elevation) is transformed on Z’, being Z’=Z-DTM. Thus, when we 
cut the slices at different heights, they will correspond to the correct 
aboveground heights. This normalised point cloud will be used in steps 

Fig. 1. Workflow used to obtain the tree and forest stand parameters using 
point cloud data, MTLS software, and AID-FOREST software. 
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described below. 

2.1.3. Rasterisation of the normalised point cloud 
Raster images are created at different heights of the normalised point 

cloud, defined in the ‘List of heights to process’ parameter (see the 
‘Configuration Menu’ in the Appendix). These raster images are created 
by cutting the point cloud at the specified height into slices of Z thick
ness (‘Z Resolution for detection,’ a user defined parameter described in 
the Appendix). Thus, a multiband image is obtained in which each band 
corresponds to a cross section of the point cloud at the height specified in 
the configuration menu. Rasterization is also user defined, although it is 
advisable to use a pixel size of 1 × 1 cm to obtain a smooth, well-defined 
cross section of the stem. These raster images are then used in the next 
step to detect trees using artificial intelligence-based object detection. 

2.1.4. Element (tree section) detection algorithms 
The cross sections of stems define the circumferences (or similar 

geometries) that are easily detectable by properly trained artificial in
telligence systems. Thus, AID-FOREST detects these elements on each 
band image using an artificial intelligence-trained model, the Tensor
Flow Object Detection API (https://github. 
com/tensorflow/models/tree/master/research/object_detection). This 
is an open-sourced framework built on TensorFlow that makes it easy to 
construct, train, and deploy object detection models (Huang et al., 
2017). The resulting model, which represents a compilation of the 
neural network training results (using TensorFlow) and is responsible 
for identifying elements on an image without the need for human 
intervention, is the most important element of the AID-FOREST software 
(Huang et al., 2017). Each element it locates is called a detection and has 
an associated score (Fig. 3). This parameter indicates the goodness of the 
detection and ranges from 0 to 1, where scores close to 0 are considered 
bad detections (likely not stem sections) while those close to 1 are 
considered good detections (likely stem sections). When setting up AID- 

Fig. 2. The internal workflow of AID-FOREST. AI: artificial intelligence.  

Fig. 3. The scheme used for section detection based on an artificial intelligence 
model and the probability assigned between 0 and 1 (score). 
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FOREST we must input a user-defined parameter (see the Appendix) to 
indicate the point at which the score value is considered a stem section. 

We used a pre-trained model named ‘faster_rcnn_inception_v2_fea
ture_extractor’ (Faster R-CNN; Ren et al. (2015)) to train our custom 
model. A pre-trained model learns much faster than if it is not trained, 
because it is based on so-called transfer learning. In addition, Inception 
V2 architecture is used because it has a good balance between high 
accuracy and speed among Convolutional Neural Network architecture. 
A total of 6,167 samples were used, of which 4,921 (ca. 80 %) were used 
to train the model and 1,246 (ca. 20 %) to validate the training results. 
The samples used to train the model were obtained from the manual 
labelling of log sections from the previously mentioned cross sections of 
scanned plots or stands taken at different heights. 

To optimise performance in the tree section detection process, AID- 
FOREST splits the raster images into smaller units, adding a buffer to 
each unit to avoid cutting trees at the edge of the unit. However, this 
could result in redundant trees, i.e. the same tree being counted twice 
when present in the buffer of two adjacent units. To solve this problem, a 
coding is included to eliminate redundant trees (code “-2′′ in the 
ID_GROUP parameter of the boxes file, as shown in the Appendix). 

Once the cross sections at plot level are detected (Fig. 4), the images 
are easy to parametrise with rectangular geometries tangent to the stem 
(Fig. 5), allowing the diameter of the cross section to be obtained as the 
average of the sides of the rectangle. Note that the rectangle adjusts over 
the external border of the circumference into the image. Thus, AID- 
FOREST contains an input parameter called ‘Offset detection adjust’ 
(see Appendix) that depends on the bark types of the different tree 
species and point cloud quality. This parameter usually takes values 
between − 0.05 and − 0.09 m which correspond to the dispersion 
(noise) of the point cloud in contact with the stem. Nonetheless, 
detecting a circumference-like shape does not guarantee that it will be a 
stem section because other objects such as stones, brush, or artificial 
objects, etc., can have similar circular sections. Therefore, once the trees 
are detected we will proceed to determine which groups of detections 

will be considered trees, as described below. 

2.1.5. Tree detection algorithms 
The ‘tree’ concept that must be elucidated by the software is based on 

the multiple sections detected along the vertical position. Thus, when 
detections at different heights planimetrically overlap by a certain user- 
defined percentage (the ‘Percentage of Intersection’ parameter 
described in the Appendix), we can say that they belong to the same 
object and thereby use them to define and locate a tree. However, to 
avoid erroneous tree detections (objects other than trees), AID-FOREST 
requests additional information, namely, that more than ‘n’ sections 
were detected in the vertical projection (a user-defined number of 
matches, as shown in Fig. 6 and in the Appendix). If both conditions are 
fulfilled, these detections are grouped into the same ‘ID_GROUP’ and are 
given a tree number (a positive integer). In contrast, when they are not 
fulfilled, they will be coded as ‘ID_GROUP = − 1′ to denote that are not 
sections of a tree (see Appendix). In this step, the planimetric position of 
a tree (X and Y, in m) is considered to be the centroid of the lowest 
detection of each group. 

2.1.6. Tree measurement algorithms 
After identifying all the detected sections and trees, the following 

tree variables are calculated (Fig. 7): DBH, diameters (di) at different 
heights (hi), the normal section at breast height (ba), total height of the 
tree (Ht), height where the crown starts (H1v, distance from the ground 
to the first verticil of branches, and total volume of the stem (Vt). 

The DBH (cm) is defined as the diameter at 1.30 m (or as close as 
possible to 1.30 m) above ground. When there is no detection at 1.30 m, 
AID-FOREST calculates the mean of the immediate diameters above and 
below the 1.30 m level; if this is impossible, the diameter of the first 
lower detected section is used or otherwise, the value of the first upper 
section is used. The height at which the DBH is measured is always 
shown in the tree outputs file. 

ba (m2), is the basal area at breast height, calculated as: 

Fig. 4. Example of the detected sections of the trees present in a plot.  
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ba =
π
4

(
DBH
100

)2 

Fig. 5. Detected sections and adjusted rectangles measuring the two opposite diameters of the tree section (d1 and d2).  

Fig. 6. Example of five detections (5 matches) along different heights (Z) of a 
possible tree that overlap more than 75% between each one. This example 
would be detected as a tree if the match restriction imposed was 5 and more 
than 75% overlapping was selected in the configuration menu. 

Fig. 7. Diameters and heights detected and measured for each tree.  

F.R. López Serrano et al.                                                                                                                                                                                                                      



International Journal of Applied Earth Observation and Geoinformation 113 (2022) 103014

7

Ht (m) is the total height of the tree, calculated from the highest DSM 
around a planimetric resolution unit relative to the planimetric position 
of a tree. 

H1v (m) corresponds to the height of the highest unit detection in the 
tree. 

According to the Smalian formula (Pardé and Bouchon (1994)), Vt 
(m3) is the total volume of the stem, calculated as the sum of all the log 
volumes (where the log volume is the average section between the top 
and bottom of the log), multiplied by the log length as follows: 

Vt = V1 +
∑k

i=2
Vi +Vn 

where: 
V1 is the volume of the first log, i.e., from the ground until the first 

section detected (d1) at a given height (h1) and is considered a cylinder 
V1 = π

4d
2
1h1. 

∑k
i=2Vi, is the sum of all the log volumes above the first one until the 

last detected section (k), and Vi is Vi = π
4

(
d2

i− 1+d2
i

2

)
(hi − hi− 1), where di and 

di− 1 are the diameters of the top and bottom sections of the log i, and hi 
and hi-1 are the heights of both sections respectively. 

Vn is the log volume from the last section detected (k) to the apex of 
the tree. Because no intermediate sections are detected, we estimate this 
volume as a perfect dendrometric shape, calculated using the equation 
by Pardé and Bouchon (1994): 

Vn =
π
4d

2
k (Ht − hk)

n + 1 

where dk is the diameter of the highest detected section, Ht is the 
total height of the tree, hk the height of the section k (i.e. H1v, and n is a 
continuous number between 0 and 3, where the value 0 represents a 
dendrometric shape of cylinder, 1 a paraboloid, 2 a cone, and 3 a neiloid, 
with the user defining any value within this range. 

Of note, because the heights at which a section is obtained are chosen 
a priori in the configuration menu, when calculating the total volume 
some sections could find branches, bulges, climbing plants (e.g., ivies), 
mosses, or lichens. This could cause the sections above the others to have 
larger diameters, which would be unusual for most tree species. In these 
cases, the volume obtained through the aforementioned formulae would 
be an overestimate. Hence, when calculating the volume of each log, 
AID-FOREST includes the restriction that the upper diameter of a log 
cannot be larger than the lower diameter. In this case, the upper 
diameter is ignored, and a new log will be calculated with the next upper 
section whose diameter is equal or lower than the lower one. The 
exception to this rule applies to palm species (which are not trees) in 
which the stems (stipes) may have larger diameters at higher sections, 
depending on the type of leaf pruning applied. For the sake of practi
cality, the upper section of a log is considered inadmissible when its 
diameter is larger than the lower section of the log. 

2.1.7. Plot measurement algorithms 
At the plot level, AID-FOREST shows the total surface area of the plot 

based on the size and number of pixels of the DTM (bearing in mind that 
these plots are clipped in the *.las files). Because all the detected trees 
are located at plot level and the tree parameters are measured in each 
case (see previous step), AID-FOREST sums the additive variables 
(number of trees, basal area, and volume) or averages the non-additive 
variables (DBH, Ht, H1v, and dominant height). Finally, it scales the 
additive plot parameters to the hectare (ha) level, as described in the 
Appendix. 

2.1.8. Compartment or stand calculations 
The calculations will differ depending on the kind of inventory un

dertaken (sampling or full inventory). In the case of sampling, the plots 
are distributed within compartments/stands (a compartment is a 
“canton” in Spanish; the group of cantons make up the so-called “forest”) 

and then random sampling theory is applied to estimate the average 
variables at the stand level (per ha), as well as their standard deviations 
and sampling errors at a 95 % probability level (see the Appendix). If a 
full inventory is implemented, then only the total variables for the ad
ditive variables or average for the non-additive parameters will be 
calculated. No sampling random error exists because sampling is not 
conducted. 

2.1.9. Crow coverage algorithms for different Z-levels 
To compute the crow coverage fraction (Fcc, %) at a specific user- 

defined height threshold (Z-level; multiple height thresholds can be 
defined), AID-FOREST obtains one or more raster layers depending on 
the pre-defined list of crown vegetation coverage thresholds. In this 
context, pixels with a tree point above the defined threshold (height 
above ground in the standardised point cloud) are represented in white. 
Crow coverage is computed as the percentage of white pixels compared 
to the total number of pixels inside the plot (in the DTM). Because this 
factor is sensitive to pixel size, AID-FOREST uses the size of the pixel 
defined by the user in the configuration menu to obtain the DTM. It is 
advisable to use a small pixel size (e.g., 1–4 cm) to maximise the accu
racy of the crown coverage measurements and avoid overestimation of 
the Fcc. 

2.1.10. Outputs and formats 
AID-FOREST provides four basic outputs with different formats. The 

first is an ESRI Shapefile (.shp) format of polygons (rectangles) with the 
detections at different heights, named ‘boxes.’ These include the 
‘ID_GROUP’ code for trees, height of the sections, score, size of both 
sides of the rectangle, and number of matches, etc. The second output is 
an ESRI Shapefile (.shp) format consisting of points, named ‘trees,’ 
which includes the ‘ID_TREE’ code, tree positions (x,y), DBH, Ht, and 
H1v, Vt, nearest tree number, and distance to the nearest tree (m). The 
third output is a *.csv file with the forest stand parameters synthesised at 
the plot level and also scaled to the hectare level. The fourth output is 
another.csv file with the forest stand parameters synthesised at the 
compartment or stand level, including the means, standard deviations, 
and 95 % probability sampling errors of the different stand variables. In 
addition, if AID-FOREST is executed in batch mode rather than the user 
interface mode, standardised point cloud files to the 0 m level, DTMs, 
DSMs, and DHMs will also be generated. 

2.2. Light Detection and Ranging (LiDAR) instrumentation and software 

In this work, LiDAR data acquisition was conducted using a ZEB- 
HORIZON (GeoSLAM ltd., Nottingham, UK) as the MTLS device. This 
consists of a 2D laser range scanner coupled to an inertial measurement 
unit (IMU) with a motor drive that moves the scanning head to provide 
the third dimension required to generate 3D information. A novel 3D 
Simultaneous Localization and Mapping (SLAM) algorithm was used to 
combine the 2D laser scan data with the IMU data to generate accurate 
3D point clouds. The ZEB-HORIZON has as LiDAR device a Velodyne 
VLP-16 sensor (Velodyne LiDAR, Inc.); this uses an array of 16 infra-red 
(IR) lasers paired with IR detectors to measure distances to objects. The 
device is mounted securely within a compact, weather-resistant housing. 
The array of laser/detector pairs spins rapidly within its fixed housing to 
scan the surrounding environment, firing each laser approximately 
18,000 times per second, providing, in real-time, a rich set of 3D point 
data. Combining 16 laser/detector pairs into one VLP-16 sensor and 
pulsing each at 18.08 kHz enables measurements of up to 300,000 data 
points per second. The laser wavelength is 903 nm, with a 360◦ × 270◦

of field of view at a range of 100 m. 
The raw data must be processed using the GeoSLAM algorithm via 

the Geoslam HUB software (supplied with the device) to convert the 
encrypted data into a readable format (e.g. *.las format) which must 
then be shortened to the desired dimensions (in this case using the 
Geoslam DRAW GeoSLAM ltd. software). 
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Thus, each file contains the plot or stand to be analysed with AID- 
FOREST. To properly select the offset setting needed by AID-FOREST 
to process the *.las files (see Appendix), we measured the DBH of 
some recognised trees in the field and used Geoslam DRAW to cut slices 
at 1.3 m above ground. We then assessed the agreement between the 
DBH measured with this software and the field measurements and used 
these data to estimate, a priori, a potential offset before processing any 
data with AID-FOREST. 

2.3. Experimental design to validate the Artificial Intelligence for Digital 
FOREST software 

To evaluate the accuracy of AID-FOREST to detect and measure trees 
from a LiDAR point cloud, two specific issues were selected, and the 
corresponding experimental designs were implemented: (1) to test the 
ability of the algorithm to detect trees and measure their DBH at plot 
level; and (2), to evaluate the success of the algorithm in estimating the 
total stem volume of individual trees. For both objectives, both the 
classical methodology with callipers and hypsometers (reference 
method) and the MLTS-AIDFOREST technique were used. This work was 
carried out in different provinces of Spain (2019–2021) to ensure that 
AID-FOREST was able to cope with different tree species and stand 
densities. Table 1 and Fig. 8 show the location of the sites and a sum
mary of their general characteristics. 

2.3.1. At plot level 
The experimental design used for objective (1) consisted of a nested 

random design with two factors: (A) tree species and (B) plot size, along 
with a covariate (C), of tree density, where (C) was nested within factor 
(B) and both were nested within factor (A). Factor (A), ‘tree species,’ 
consisted of 5 species; factor (B), ‘plot size,’ ranged from 540 to 34,500 
m2, and the covariate (C), ranged from 32 to 1,139 trees ha− 1. Table 1 
shows the characteristics of the selected plots and trees. The plots were 

delimited by poles, including well spheres (one in each corner for small 
plots), or using the reference point tool in ZEB-HORIZON (which takes a 
reference point if the device remains static for at least 7 s). 

The DBHs of all the trees in the plots were measured using an 
automatic calliper (Masser BT Calliper, Masser Oy) and a sample of 3–20 
trees (depending on the plot size) were selected for total height mea
surement using a laser hypsometer (TruPulse 200, Laser Technology, 
Inc.). This work was conducted by two forest technicians. The trees were 
not positioned at plot level. We also noted the time per plot for field 
measurements of both the classical and MTLS-AIDFOREST methods, as 
well as the time required to postprocess point clouds using Geoslam 
software and AID-FOREST software. The MTLS data acquisition was 
performed by one technician and consisted of recording a track along the 
edge and within the plot that started and ended in the same point in 
order to minimise drift errors during the SLAM. This meant that the 
distance between the tracks was short (<10 m) for small plots (<700 
m2). However, for big plots, we increased the distance between the 
tracks to speed up the field data collection, while always maintaining a 
distance of less than one third of the maximum allowed by the device (i. 
e., <33 m). 

To check the correlation of the tree detections by AID-FOREST at the 
plot level, we computed the correctness index (CI) defined as: 

CI(%) = 100
nz

n
(1) 

where nz was the number of trees detected by AID-FOREST and n was 
the real number of trees in the plot. If the CI greater than 100, false trees 
were detected, while if the CI < 100, some trees were omitted. 

To consider the ecosystem visual complexity, which could affect the 
visibility of the tree stems, and consequently, the point cloud quality, we 
created an index called the ecosystem visual complexity index (EVCI). 
This index is based on the crown coverage fraction of scrub per plot 
(Fccs, %), average height of the scrub (Hs, m) per plot, and average 

Table 1 
Forest stand characteristics and a description of the sites where the reference (classical forest inventory) and MTLS-AIDFOREST measurements were carried out to 
evaluate the AID-FOREST performance at plot level and at tree level.   

PLOT SIZE 
RANGE (m2) 

# 
PLOTS 

OVERSTOREY 
SPECIES 

UNDERSTOREY SPECIES TREE 
DENSITY 
(trees ha¡1) 

PROVINCE 
(municipality) 

FOREST yGeographical 
Coordinates 

PLOTS 574–755 16 Pinus halepensis Ulex parviflorus; 
Rosmarinus officinalis; 
Thymus sp. 

32–773 Valencia (Ayora) MUP N◦ 154 “La 
Hunde y La 
Palomera” 

Lt. 39◦ 7′ 28′′

Lg. − 1◦ 13′ 31′′

577–677 20 P. nigra ssp. 
salzmannii 

Quercus faginea scrubs; 
Rosa canina; Berberis 
hispanica 

79–1139 Cuenca (Las 
Majadas) 

MUP N◦ 133 
“Ensanche de Las 
Majadas” 

Lt. 40◦ 17′ 35′′

Lg. − 1◦ 59′ 9′′

540–742 19 P. pinaster ssp. 
mesogeensis and 
Quercus ilex ssp. 
ballota 

Quercus ilex ssp. ballota 
shrubs; Rosmarinus 
officinalis; Thymus sp. 

222–672 Cuenca 
(Almodóvar del 
Pinar) 

MUP N◦ 166 
“Dehesa de Abajo” 

Lt. 39◦ 41′ 13′′

Lg. − 1◦ 51′ 19′′

8,410–12,259 6 P. nigra ssp. 
salzmannii 

Quercus faginea scrubs; 
Rosa canina; Berberis 
hispanica; P. nigra saplings 

106–312 Cuenca (Las 
Majadas) 

MUP N◦ 133 
“Ensanche de Las 
Majadas” 

Lt. 40◦ 15′ 40 “ 
Lg. − 1◦ 58′ 57′′

4,294–7,877 4 P. pinea Thymus sp.; herbaceous 
plants 

158–223 Albacete 
(Albacete) 

Periurban park “La 
Pulgosa” 

Lt. 38◦ 57′ 46′′

Lg. − 1◦ 52′ 27′′

4,737–4,889 2 P. halepensis Thymus sp.; Rosa canina; 
herbaceous plants 

96–112 Cuenca (Cuenca) Private forest Lt. 40◦ 4′ 52′′

Lg. − 2◦ 8′ 43′′

4,019–34,467 9 Eucaliptus nitens Calluna vulgaris, Erica 
cinerea; Pteridium 
aquilinum 

215–820 Lugo (Guntín y 
Palas de Rei) 

ENCE forest 
plantations 

Lt. 42◦ 56′ 14′′

Lg. − 13◦ 41′ 50′′

TREES PLOT SIZE 
(m2) 

# 
TREES 

OVERSTOREY 
SPECIES 

UNDERSTOREY SPECIES TREE 
DENSITY 
(trees ha¡1) 

PROVINCE 
(municipality) 

FOREST yGeographical 
Coordinates 

4,509 37 Fagus sylvatica Fagus sylvatica saplings; 
Crataegus monogyna; 
Pteridium aquilinum 

240 Navarra (Urbasa) MUP N◦ 6 “Forest 
Heritage of the Foral 
Community of 
Navarra” 

Lt. 42◦ 50′ 14′′

Lg. − 2◦ 9′ 43′′

5,420 34 Quercus rubra; Q. 
robur; Fagus sylvatica; 

Rubus ulmifolius; Crataegus 
monogyna 

380 Navarra (Alsasua) MUP N◦ 338 “San 
Pedro y Basabea” 

Lt. 42◦ 54′ 28′′

Lg. − 2◦ 10′ 32′′

† Lt. Latitude; Lg. Longitude. 
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height of the first verticil of the branches in the tree stems per plot (H1v, 
m,). Thus, EVCI is defined by equation (2): 

EVCI =
Fccs H3

s

H2
1v

(2) 

For the calculation of EVCI the previously defined parameters were 
estimated using AID-FOREST twice (except for H1v, which was obtained 
directly from AID-FOREST in the first processing) in the following way: 
The first time, all *.las files of the plot were processed obtaining, in 
addition to the tree parameters, the normalised point clouds in *.las 
format, which we then shortened by deleting all points above the shrub 
height using Geoslam DRAW. The second time, the shortened *.las files 
(with trees removed) were reprocessed by AID-FOREST to obtain the 
canopy cover fraction of the shrubs in the following height series: 0.1, 
0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, and 3 m above ground. Finally, 
we considered the Fccs variable that at 0.1 m above ground and, the 
average height of the scrub at plot level (Hs) being the first height of the 
series for which the crown coverage fraction was equal or<50 % of the 
Fccs levels. 

2.3.2. At tree level 
To evaluate the AID-FOREST software at tree level, the accuracy of 

the estimates of the total stem volume (in addition to DBH and total 
height) of individual trees was tested. In this case, the experimental 
design consisted of the selection of two different forest stands (Table 1) 
for which harvesting was planned. Thirty-four to thirty-seven trees of 
different sizes per site were marked and scanned with the ZEB-HORIZON 
device (Geoslam ltd.), as described in section 2.3.1, centring the target 
tree plot in the centre of a 10 m radius. 

Each point cloud was shortened to isolate the objective tree and was 
then processed using AID-FOREST software. When all the scanned trees 

were felled and the stems were divided into 1-metre long logs, we 
measured the diameter of each one (with the bark, top and down) using 
automatic callipers and calculated the volume using the Smalian for
mula (Pardé and Bouchon, 1994). Note that Fagus and Quercus species 
were usually sympodic and consequently, we quantified the volume of 
all the branches until the top diameter of the logs was 10 cm. 

2.4. Statistical analysis 

Absolute and relative bias (BIAS, Eq. (3); BIAS (%), Eq. (4), respec
tively) and absolute and relative Root Mean Square Error (RMSE, Eq. (5) 
and Eq. (6)) for the DBH and number of trees were calculated consid
ering both the tree and plot as sampling individuals. Because real trees in 
the plot were not numbered or positioned when classic inventories were 
carried out, to estimate the BIAS and RMSE of the DBHs at tree level, we 
sorted the DBHs of both classic and AID-FOREST measurements in 
descending order, calculating only the outcomes of equations (3), 4, 5, 
and 6 for the complete cases. However, a pairwise comparison was 
performed at the tree level in experiment (2) and sorting the trees in 
descending order was unnecessary. 

BIAS =
∑N

i=1

(yi − Yzi)

N
(3)  

BIAS(%) = 100
BIAS

y
(4)  

RMSES =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(yi − yzi)

N

√
√
√
√ (5)  

Fig. 8. Location of the study sites in Spain. For more details, see Table 1.  
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RMSE(%) = 100
RMSE

y
(6) 

where yi is the variable of interest (at plot or tree level) measured 
using classic methods, yzi is the variable estimated by MTLS- 
AIDFOREST, and y is the average of the variable of interest obtained 
with classic methods. 

A general lineal mixed model was implemented to check for signif
icant differences for CI index, depending on factor levels and covariates 
as well for differences in the BIAS. Factors such as species and plot size 
were considered as random. To discriminate among the means, we used 
the Tukey’s honestly significant difference (HSD) test (Neter et al., 
1996). 

To verify that the mean plot-level values obtained with AID-FOREST 
were close to the values obtained using the classic technique, we used a 
simple least squares linear regression method (Neter et al., 1996). The 
variables at the plot level measured with classical techniques were the 
variables of interest and the predictive variables were those obtained by 
MTLS-AIDFOREST method. If the model constant was not significantly 
different from 0 and the slope was not significantly different from 1, we 
concluded that the variables obtained by MTLS-AIDFOREST accurately 
estimated the variables obtained by the classic techniques. Student t- 
tests were used to verify that the constant was statistically equal to 0. To 
verify that the slope did not differ from 1, we analysed it through the 
confidence interval of the slope, i.e., the mean ± the Student t-test result 
× the standard error, where the interval had to include 1 for the initial 
hypothesis to be accepted. 

To compare whether the diameter distributions obtained using both 
techniques were statistically similar, and given that the inventory of 
plots had not been carried out with numbered trees (i.e. they were not 
paired samples), we used the comparison of means, medians, and vari
ances of independent samples for each inventory methodology, 
employing Student t-test, F-Snedecor test, and Mann–Whitney U (Wil
coxon) W-test, respectively. Similarly, we used the Kolmogor
ov–Smirnov test (K–S test) to compare whether the cumulative diameter 
distributions of both inventory methodologies differed statistically from 
each other (Neter et al., 1996). 

In the case of the volume, DBH, and total height of the individual 
trees, where each of them was identified in both methodologies, we used 
the paired samples technique for comparison (Neter et al., 1996), to 
evaluate whether the tree-to-tree difference in the parameters (DBH, Ht, 
and Vt) measured with both techniques significantly differed from zero 

by applying a Student t-test. In addition, to check if the variances and 
distribution functions were similar, F-Snedecor and K–S tests were used. 
Furthermore, we conducted multiple regression analysis between the 
same tree variable obtained with the two different approaches, 
including dummy variables (species) to check for significant effects on 
the intercept and slopes of the relationship. All the statistical analyses 
were performed with Statgraphics Centurion XVI software (StatPoint 
Technologies, Inc., Virginia, USA). 

3. Results 

3.1. AID-FOREST capability for tree detection and estimation of forest 
stand variables 

The main results of the AID-FOREST evaluation for tree detection are 
summarised in Table 2. It presents the list of sites and species of the 
experimental design indicating the number of plots measured with 
similar surface area and labelled with a corresponding assigned plot size 
code, as detailed in the bottom of Table 2. In addition, two parameters of 
the AID-FOREST configuration used in the processing of these plots (i.e. 
the number of matches and the offset) are listed in the table, as well as 
the average ecosystem visual complexity index, EVCI, of each set of plots 
of equal site/species and plot size code. Finally, the tree detection ca
pacity of AID-FOREST is given by the correctness index, (CI, %) or 
percentage of trees detected, which averaged 96.9 % and ranged from 
81.3 to 100 %. 

The sites where AID-FOREST showed the poorest detection were 
Almodóvar del Pinar (Pinus pinaster), with a mean CI% of 95.9 % 
(ranging from 83.3 to 100 %) and Las Majadas (P. nigra, plot code 1), 
with a mean CI% of 96.1 % (ranging from 81.3 to 100 %). In the rest of 
the sites, the mean CI% exceeded 97 %, with a minimum of at least 90 % 
(Table 2). To identify the factors that may affect AID-FOREST’s ability to 
detect trees, an ANOVA analysis was performed. Factors such as the 
species, within-species nested plot size, and number of trees per hectare 
(D), did not significantly affect the detectability (Table 3). However, 
EVCI did affect detectability (Table 3), so that the higher the EVCI, the 
lower the detection rate. 

A total of 11,035 trees were measured using the classic forest in
ventory method (reference method) in the 76 plots, with their minimum 
diameter being 2 cm. In turn, AID-FOREST detected 10,712 trees, with 
the minimum diameter being 8 cm (results not shown). We defined 
major trees as those measuring at least 11.5 cm (marketable trees in 

Table 2 
Summary of the sites and species and plot code size of the measured plots to assess AID-FOREST capability for tree detection and estimation of forest stand variables. 
Values of the setup parameters ‘number of matches’ and ‘offset’ used with AID-FOREST are indicated. The average areas and ecosystem visual complexity index (EVCI; 
including the variables used to calculate it: average crown coverage as a fraction of the scrubs [Fccs]; average scrub height [Hs]; and average height of the first verticil 
of the trees [H1v]) are listed, as well as, the average, maximum, and minimum values of the correctness index (CI, %).  

SITE/SP† PLOT SIZE 
CODE††

NUMBER OF 
PLOTS 

AREA 
(m2) 

MATCH OFFSET 
(m) 

Fccs 
(%) 

Hs 
(m) 

H1v 
(m) 

EVCI mean CI 
(%) 

max CI 
(%) 

min CI 
(%) 

Albacete/Pp 2 2 4972 5 − 0.075 5.7 0.3 3.1 0.02 96 100 92.1 
Albacete/Pp 3 2 7564 5 − 0.075 2.2 0.3 3.2 0.01 99 100 98.6 
Almodóvar/ 

Ppr 
1 19 643 2 − 0.07 34.6 0.4 7.0 0.11 95.9 100.0 83.3 

Ayora/Ph 1 16 654 3 − 0.05 34.9 0.5 5.9 0.19 97.0 100.0 90.0 
Cuenca/Ph 2 2 4813 5 − 0.06 24.4 0.3 4.0 0.04 100.0 100.0 100.0 
Las Majadas/ 

Pn 
1 20 626 3 − 0.06 22.2 0.5 9.6 0.15 96.1 100.0 81.3 

Las Majadas/ 
Pn 

3 1 8410 5 − 0.08 26.8 0.6 11.5 0.04 98.9 98.9 98.9 

Las Majadas/ 
Pn 

4 5 10,817 5 − 0.08 37.3 0.6 9.8 0.10 99.4 100.0 98.3 

Lugo/En 2 3 4347 3 − 0.08 49.8 0.8 13.8 0.14 96.7 100.0 93.7 
Lugo/En 3 2 7981 3 − 0.08 54.7 0.6 11.9 0.08 97.9 98.6 97.2 
Lugo/En 5 4 20,966 3 − 0.08 51.6 0.8 14.3 0.13 98.5 99.5 97.3 
TOTAL/AVERAGE 76 3227  − 0.065 31.6 0.5 8.2 0.13 96.9 100.0 81.3 

† SP = tree species: En, Eucaliptus nitens; Ph, Pinus halepensis; Pn, Pinus nigra ssp. salzmannii; Pp, Pinus pinea; Ppr, Pinus pinaster ssp. mesogeensis. 
†† PLOT SIZE CODE, 1: < 700 m2; 2: 4,019–5,650 m2; 3: 7,251–8,410 m2; 4: 9,869–11,811 m2; 5: 12,259–34,467 m2. 
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Spain usually measure at least 12.5 cm). Moreover, trees meas
uring<11.5 cm represented only 1.32 % (149 trees) and 1.19 % (129 
trees), respectively in the classic and MTLS-AIDFOREST inventories. 
Thus, all our subsequent data analyses were conducted considering only 
major trees. 

Tables 4 and 5 show the mean values of detected major trees per plot 
and of DBH per plot obtained by both techniques for each site/species 
and plot size, respectively. The BIAS and RMSE of the number of 
detected trees (# TREESz/PLOT) versus the measured trees (# TREES/ 
PLOT) are shown in Table 4. In general, MTLS-AIDFOREST method 
underestimated the number of trees per plot by an average of 2.8 % 
while the relative RMSE was 9.2 %. Besides, the BIAS did not show 
significant differences either by site/species or by plot size. The poorest 
results were obtained for the Almodóvar del Pinar and Ayora sites. The 
BIAS and RMSE of the average DBH estimated by MTLS-AIDFOREST 
(DBHz) versus the measured (DBH) per plot are shown in Table 5. 
MTLS-AIDFOREST underestimated the DBH, with the average BIAS for 
pooled data being 1.8 % and an average RSME of 7.5 %. Again, the BIAS 
did not show significant differences either by site/species or by plot size, 
and the same was observed for the RMSE. 

Regression analysis between stand parameters at plot level obtained 
with the classical inventories and with the MTLS-AIDFOREST technique 
was used to check that the MTLS-AIDFOREST estimates were not sta
tistically unbiased. Table 6 reports the regression coefficients and sta
tistics for goodness of fit between the average diameters at breast height 
(DBH) obtained for classical inventories (DBH) and MTLS-AIDFOREST 
estimations (DBHz); and of the linear relationship between the 
average number of trees per plot obtained for classical inventories 
(#TREES/PLOT) and MTLS-AIDFOREST estimations (#TREESz/PLOT). 
As shown, the two simple linear models were highly significant, and 
their constants did not differ significantly from 0 and their slopes from 1. 
Therefore, we can say that MTLS-AIDFOREST adequately estimated the 
number of trees and average DBH per plot compared to the classic 

inventory technique, with a residual deviation of 1.12 cm (3.7 % with 
respect to the average DBH) and 6.4 trees (4.5 % with respect to the 
mean number of trees per plot), respectively. 

We compared the pooled data (DBH and DBHz) of the major trees on 
the 76 sampled plots by applying a two-sample comparison of inde
pendent samples. This analysis showed that there were no significant 
differences between the means and medians of the distributions of DBH 
or DBHz (Table 7). Student t-tests were performed to compare the 
means, assuming that the variances were not equal. The F-test was sig
nificant, i.e., there was a statistically significant difference between the 
standard deviations of the two samples at the 95.0 % confidence level. 
Finally, the K–S test, which computes the maximum distance between 
the cumulative distributions of the two samples, showed that there was 
no statistically significant difference between the two distributions at 
the 95.0 % confidence level (Table 7). Fig. 9 provides the visual com
parison of the histograms of the DBH distributions for the total number 
of major trees in the 76 plots, obtained by both methodologies (DBH for 
the classical inventory and DBHz for the MTLS-AIDFOREST system, in 
cm). 

3.2. AID-FOREST’s ability to estimate DBH, total height and volume at 
individual tree level 

To quantify AID-FOREST’s ability to estimate DBH, total Height and 
total Volume at individual tree, regression analysis was used between 
each of these tree-level parameters obtained with the classical in
ventories and those obtained with the MTLS-AIDFOREST technique. The 
main results of this analysis are summarised in Table 8 (full models). The 
tree species (Q. rubra and F. sylvatica) factor did not significantly affect 
the variables measured (no significant effects on intercepts or slopes of 
the model were detected), except for the intercept for both species in the 
Ht variable (Table 9, simplified models). Although the relationships 
were good for DBH and Vt (R2 = 97.8 % and R2 = 76.1 %, respectively; 

Table 3 
ANOVA analysis of the full regression model for the correctness index (CI, %), depending on factors [species and plot size, nested within the species, SP(AREA)], 
covariate tree density (D, trees per ha), and ecosystem visual complexity index (EVCI).   

Sum of the Squares Df Mean Square F-Snedecor Sig. Level R2 SEE†

Model 1,006.3 6 167.7 12.65 < 0.0000  48.2  3.6 
Residual 914.9 69 13.3     
Total (Corrected) 1,921.2 75      
FACTORS Sum of squares Df Mean Square F-Snedecor Sig. Level   
SP(AREA) 97.6 4 24.4 1.84 0.1312   
D 34.9 1 34.9 2.34 0.1337   
EVCI 973.5 1 973.5 71.72 < 0.0000   
residual 914.9 69 13.3     
Total (Corrected) 1,921.2 75      

† Standard error of the estimation (SEE), i.e., residual deviation. 

Table 4 
Results of the mean number of trees per plot detected by MTLS-AIDFOREST (#TREESz/PLOT) versus those measured by the classical method (#TREES/PLOT). 
Absolute and relative BIAS and root mean square error (RMSE) are included for each site/species and plot size and for pooled data. Equal letters in the column for 
relative BIAS (%) and for the site or plot size means there were no significant differences at a 95% probability (Tukey honestly significant difference test). The acronyms 
used for the plot size and species are as shown in Table 2.  

SITE (Sp) # PLOTS # TREES/PLOT # TREESz/PLOT BIAS(trees) BIAS (%) RMSE(trees) RMSE (%) 

Albacete (Pp) 4 115 113 2.25 2.0a 4.50 3.9 
Almodóvar (Ppr) 19 22 21 0.53 2.4a 2.51 11.4 
Ayora (Ph) 16 24 23 0.94 4.0a 1.60 6.8 
Cuenca (Ph) 2 50 50 0.00 0.0a 2.00 4.0 
Las Majadas (Pn) 26 57 57 0.69 1.2a 1.52 2.6 
Lugo (En) 9 894 866 27.67 3.1a 37.89 4.2 
PLOT SIZE # PLOTS # TREES/PLOT # TREESz/PLOT BIAS(trees) BIAS (%) RMSE(trees) RMSE (%) 
1 55 20 20 0.64 3.1a 1.92 9.4 
2 7 162 155 6.14 3.8a 10.13 6.3 
3 5 217 213 3.40 1.6a 5.23 2.4 
4 5 215 213 1.40 0.7a 1.84 0.9 
5 4 1,618 1,569 49.75 3.1a 55.12 3.4 
ALL SIZES AND SITES 76 143 139 3.96 2.8 13.19 9.2  
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Table 8), the results for Ht were unexpected (R2 = 45.6 %, Table 8). 
Note that the relationship between the volumes (Fig. 10) showed 

some anomalous results for five trees (i.e. trees with labels 213, 219, 
356, 417, and 424) as well as a low R2 (Table 8). All these trees had 
notable bifurcations (Fig. 11) which AID-FOREST was not designed to 
cope with since the current version of AID-FOREST was optimized for 
monopodic stems, as described in section 2.1. Hence, to carry out the 
simplified regression models we removed these five trees (only for vol
ume comparisons) and excluded the non-significant species effect on 
intercepts and slopes (Table 9). Figs. 12, 13, and 14 show the simplified 
models for DBH, Ht, and Vt, respectively. MTLS-AIDFOREST did 
adequately estimate tree parameters (except for Ht) because the 

relationships were significant and both the constants and slopes were 
not significantly different from 0 and 1, respectively. For the Ht, MTLS- 
AIDFOREST produced a species dependent bias and high results vari
ability (see the paired comparison for Ht in Table 10). 

According to the paired sample comparison (Table 10), there were no 
significant differences between the means, medians, variances, or dis
tribution functions (t, W, F, and K–S tests) obtained for DBH and Vt by 
either technique. In other words, the BIAS was not significantly different 
to 0. However, the opposite was true for Ht because the means, medians, 
variances, and distribution function were not statistically similar be
tween the two different methodologies used (Table 10). Thus, although 

Table 5 
Results of the average diameter at breast height at each plot detected by MTLS-AIDFOREST (DBHz, cm) versus those measured by the classical method (DBH, cm). 
Absolute and relative BIAS and root mean square error (RMSE) are included for each site/species and plot size and for pooled data. Results are shown using the plot as 
the sampling unit. Equal letters in the column for relative BIAS (%) and for the site or plot size means that there were no significant differences at a 95% probability 
(Tukey honestly significant difference test). The acronyms used for the plot size and species (SP) are as shown in Table 2.  

SITE (SP) # PLOTS DBH (cm) DBHz (cm) BIAS (cm) BIAS (%) RMSE (cm) RMSE (%) 

Albacete (Pp) 4 24.5 24.6 − 0.1 − 0.5a 0.6 2.4 
Almodóvar (Ppr) 19 29.3 28.1 1.2 4.1a 2.4 8.1 
Ayora (Ph) 16 28.6 27.7 0.9 3.1a 3.6 12.7 
Cuenca (Ph) 2 33.2 33.8 − 0.6 − 1.8a 0.6 1.9 
Las Majadas (Pn) 26 32.9 32.7 0.2 0.7a 1.6 4.9 
Lugo (En) 9 28.5 28.4 0.1 0.4a 0.4 1.5 
PLOT SIZE # PLOTS DBH (cm) DBHz (cm) BIAS (cm) BIAS (%) RMSE (cm) RMSE (%) 
1 55 30.4 29.6 0.8 2.5a 2.6 8.7 
2 7 29.0 29.4 − 0.4 − 1.3a 0.6 2.0 
3 5 28.9 28.4 0.6 1.9a 0.8 2.8 
4 5 32.2 32.2 − 0.1 − 0.2a 0.5 1.5 
5 4 27.8 27.6 0.2 0.8a 0.5 1.8 
ALL SIZES AND SITES 76 30.2 29.6 0.6 1.8 2.3 7.5  

Table 6 
Regression coefficients and statistics for goodness of fit between (i) the average diameters at breast height (DBH) at plot level obtained for classical inventories (DBH, 
cm) and MTLS-AIDFOREST estimations (DBHz, cm); and (ii) between the average number of trees per plot obtained for classical inventories (# TREES/PLOT) and 
MTLS-AIDFOREST estimations (# TREESz/PLOT); n = 76 plots.   

a0 a1   

M SE M SE F-Snedecor R2 (%) SEE Sig. Level 

(i) DBH = a0 + a1 DBHz  0.317† 0.809  0.998†† 0.027 1386  94.9  1.12  0.000 
(ii) #TREES/PLOT = a0 + a1 #TREESz/PLOT  0.293† 0.780  1.022†† 0.019 284,553  99.9  6.38  0.000 

†Constant of the model (a0) which did not differ significantly from 0 at a 95% probability (Student t-test). 
†† Slope of the model (a1) which did not differ significantly from 1 at a 95% probability (confidence interval). 
M: mean of the coefficient; SE: standard error of the coefficient; SEE: standard error of the estimation, i.e., the residual deviation. 

Table 7 
Descriptive statistics of the a two-sample comparison of independent samples 
composed of (i) DBH measured by classical techniques (callipers, DBH) and (ii) 
DBH estimated by MTLS-AIDFOREST (DBHz), from all trees of the 76 invento
ried plots. In addition, some statistical tests for independent samples were per
formed (Student t, F, W, and K–S test). Note that the results correspond to the 
major trees (DBH and DBHz ≥ 11.5 cm).   

DBH (cm) DBHz (cm) 

# total of trees 10,887 10,585 
Average 28.5 28.3 
Standard deviation 10.0 9.8 
Standard error 0.1 0.1 
Coefficient of variation 35.2 % 34.7 % 
Minimum 11.5 11.6 
Maximum 91.2 82.6 
Stnd. skewness 41.8 37.0 
Stnd. kurtosis 37.3 28.5  

Statistic Sig. level 
Student t-test 1.28 0.199 
F-test 1.04 0.027 
W-test 5.7 × 107 0.611 
K–S test 1.26 0.084  

Fig. 9. Double histogram showing the diameter distributions of the total 
number of major trees in the 76 plots, obtained by both methodologies (DBH for 
the classic inventorying and DBHz for the MTLS-AIDFOREST system, in cm). 
The total number of major trees is also shown. 
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not significantly different from 0, MTLS-AIDFOREST underestimated 
DBH by 0.16 % and overestimated Vt by 1.37 % while the relative RSME 
(%) was 5.2 % and 14.3 % for these two parameters, respectively. In 
turn, for Ht, MTLS-AIDFOREST overestimated the total height of the 
trees by an average of 1.33 m (5.1 %), with a relative RMSE of 11.5 % 
(Table 10). 

3.3. Time required for forest inventorying using both methodological 
approaches (classic and MTLS-AIDFOREST) 

Table 11 shows a summary of the time required for the two different 
inventory modalities and subsequent data processing for each site and 
plot size code. On average, 7.2 min was spent on plot-field MTLS scan
ning using ZEB-HORIZON, versus 81.3 min for classical inventories, 
thereby representing only 8.9 % of the time spent on classical plot in
ventorying (R1, Table 11). The processing of raw data from ZEB- 
HORIZON using Geoslam HUB and DRAW required an additional 
18.1 min on average; however, this processing was semi-automatic and 
does not require complete human control. Finally, an average of 21.3 
min was spent processing the *.las files (each one representing a 
different plot) using AID-FOREST. However, it is important to remember 
that this task is fully automated and so the presence of a technician is not 
required. Thus, the mean overall time invested in completing the MTLS- 
AIDFOREST methodology to make full forest inventories was 46.6 min 
and means that completing the full MTLS-AIDFOREST inventory 
required 57.3 % (R2, Table 11) of the time required to perform classical 
plot forest inventories (excluding the data postprocessing time in the 
latter case). 

Table 11 also shows the average overall time required for invento
rying per hectare. Thus, a classical field forest inventory required 252 
min/ha− 1 to measure all the DBHs and a small subsample of total tree 
height measurements (excluding data postprocessing), compared to the 
full MTLS-AIDFOREST methodology that required 145 min/ha− 1, of 
which 22 min/ha− 1 (15 %) were dedicated to field measurements (hand- 
held scanning by a technician), 66 min/ha− 1 (46 %) to AID-FOREST *. 
las file processing (a fully automated task), and 57 min/ha− 1 (39 %) to 
Geoslam Hub-Draw raw data processing (a semiautomatic task; some 
data not shown but calculable based on the data shown in Table 11). 
Finally, Table 12 shows that, as expected, the time invested in field data 
collection using the classical methodology depended on both the plot 
size and tree density (the coefficients were all significant at α = 0.05). 
However, data collection by scanning with MTLS depended only upon 
the plot size (the a2 coefficient was insignificant). 

Table 8 
Coefficients of the regression of the full models relating the tree parameters 
obtained by the two different techniques, classic (DBH, cm; Ht, m; and Vt, m3) 
and MTLS-AIDFOREST (DBHz, cm; Htz, m; and Vtz, m3) considering the effect of 
species (Quercus rubra and Fagus sylvatica) on the intercept and slope, as well as 
the statistics related to the goodness of fit.  

DBH = a0 + a1 DBHz + a2 (SP = Q. rubra) + a3 DBHz (SP = Q. rubra) 
Parameter Estimate Standard Error t-Student Sig. Level 

a0 2.11 1.52 1.39 0.168 
a1 0.96 0.02 39.4 0.000 
a2 4.18 2.54 1.65 0.104 
a3 − 0.10 0.06 − 1.73 0.089 
FULL MODEL R2 SEE F-Snedecor Sig. Level 
n = 71 97.8 2.4 973.5 0.000  

Ht = a0 + a1 Htz + a2 (SP = Q. rubra) + a3 Htz (SP = Q. rubra) 
Parameter Estimate Standard Error Student t Sig. Level 
a0 3.07 4.20 0.73 0.467 
a1 0.88 0.15 5.78 0.000 
a2 − 1.70 7.60 − 0.22 0.824 
a3 − 0.01 0.28 − 0.05 0.956 
FULL MODEL R2 SEE F-Snedecor Sig. Level 
n = 71 45.6 2.5 20.52 0.000  

Vt = a0 + a1 Vtz + a2 (SP = Q. rubra) + a3 Vtz (SP = Q. rubra) 
Parameter Estimate Standard Error Student t Sig. Level 
a0 0.16 0.41 0.38 0.703 
a1 1.05 0.10 10.55 0.000 
a2 − 0.12 0.64 − 0.19 0.850 
a3 − 0.04 0.30 − 0.12 0.907 
FULL MODEL R2 SEE F-Snedecor Sig. Level 
n = 71 76.1 1.0 72.15 0.000  

Table 9 
Coefficients of the regression of the simplified models relating the tree param
eters obtained by the two different techniques, classic (DBH, cm; Ht, m; and Vt, 
m3) and MTLS-AIDFOREST (DBHz, cm; Htz, m; Vtz, m3), and statistics related to 
the goodness of fit. Note that for the volume analysis, five anomalous trees were 
removed.  

DBH = a0 + a1 DBHz 
Parameter Estimate Standard Error Student t Sig. Level 

a0 3.18 1.94 1.64 0.050 
a1 0.94 0.03 31.31 0.000 
SIMPL. MODEL R2 SEE F-Snedecor Sig. Level 
n = 71 97.6 2.4 2876.45 < 0.000  

Ht = a0 + a1 Htz + a2 (SP ¼ Q. rubra) 
Parameter Estimate Standard Error Student t Sig. Level 
a0 3.20 3.49 0.92 0.363 
a1 0.87 0.13 6.93 0.000 
a2 − 2.12 0.60 − 3.53 0.001 
SIMPL. MODEL R2 SEE F-Snedecor Sig. Level 
n = 71 46.3 2.5 31.24 < 0.000  

Vt = a0 + a1 Vtz 
Parameter Estimate Standard Error Student t Sig. Level 
a0 0.02 0.10 0.17 0.864 
a1 0.98 0.03 31.84 0.000 
SIMPL. MODEL R2 SEE F-Snedecor Sig. Level 
n = 66 94.0 0.42 1013.61 < 0.000  

Fig. 10. The relationship between the total tree volume accurately measured 
by classic methods (Vt, m3) and the total tree volume estimated by the MTLS- 
AIDFORES system (Vtz, m3); n = 71 trees (37 Fagus sylvatica and 34 Quer
cus rubra). 
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4. Discussion 

4.1. Detectability and estimation of forest stand variables (Number of 
trees and DBH) at the plot level 

The mean detection rate by AID-FOREST was approximately 97 % 
and ranged between 81.3 and 100 %. This high success level is at least as 
good as those reported elsewhere and importantly, was obtained in a 
fully automated way. For instance, Pfeifer and Winterhalder (2004) 
obtained poor results by modelling transversal tree sections using free- 
form curves, with a tree detection rate of 22 to 52 %, depending on 
whether multiple scans were conducted. This may have been because 
the point cloud data were from a terrestrial (fixed) rather than a mobile 
laser. 

In contrast, similar to our findings, Bienert et al. (2007) used 
mathematical morphology techniques to obtain a tree detection accu
racy of 97.4 %. In turn, Othmani et al. (2011) employed open-source, 
semi-automatic Computree software to obtain an average detection 
rate of 90.6 %. Olofsson et al. (2014) obtained<87 % detectability by 
using random sample consensus (RANSAC) software with the Hough 

Fig. 11. Five trees (all Fagus sylvatica) with notable bifurcations (sympodic stems) that were discarded from the comparison of volumes using both methodolog
ical approaches. 

Fig. 12. The relationship between the DBH (cm) of the tree measured by classic 
methods and the DBH estimated by MTLS-AIDFOREST (DBHz, cm); n = 71 trees 
(37 Fagus sylvatica and 34 Quercus rubra). 

Fig. 13. The relationship between the total height of the trees measured by 
classic methods (Ht, m) and the height estimated by MTLS-AIDFORES (Htz, m) 
for two tree species; n = 71 trees (37 Fagus sylvatica and 34 Quercus rubra). 

Fig. 14. The relationship between the total volume of the tree measured by 
classic methods (Vt, m3) and the total volume estimated by MTLS-AIDFORES 
(Vtz, m3) for two species; n = 66 trees (32 Fagus sylvatica and 34 Quercus 
rubra). Note that 5 beech trees were removed from this analysis. 
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transform when the distance from the sensor was<10 m. Indeed, Bau
wens et al. (2016) obtained 100 % detection in small plots (≈ 700 m2) 
when also using Computree software and implementing the algorithms 
from the ONF-ENSAM plugin (Othmani et al., 2011). Furthermore, Cabo 
et al. (2018a) developed an automatic method that detected more than 
99 % of trees. Hyyppä et al. (2020b) also reported a tree detection rate 
near 100 % and low bias using a novel postprocessing algorithm to 
extract stem curves from scan-line arcs. Mokroš et al. (2021) used the 
cylinder-based algorithm for tree detection and measurement and 
detected 90.6–100 % of the trees. Finally, Vatandaşlar and Zeybek 
(2021) used machine learning and innovative algorithms for tree 
detection and measurement to obtain detectability that exceeded 100 % 
(i.e., there were false detections). Nonetheless, none of these afore
mentioned works applied their algorithms to large plots and so it is 
impossible to state their applicability and functionality in these cases. 

The basis of AID-FOREST section detectability is the recognition of 
shapes like the outer ring in each band (Figs. 3 and 5). In addition, tree 
detectability requires a minimum number of vertical detected sections 

(multiple bands) and a minimum defined amount of overlapping. 
Consequently, success will depend both on the good definition of the 
outer ring sections and an appropriate number of selected matches. 
Well-defined outer ring sections depend exclusively on the point cloud 
quality and the user-defined number of matches depends on species 
characteristics, mainly the stem length free of branches (or scrub). Point 
cloud quality (in terms of adequately ‘seeing’ the tree stems) is a func
tion of the distance between scanning paths, presence of high scrub, and 
tree density of the stand (which could hide the trees, even when using 
mobile LiDAR). Thus, the number of matches chosen differed according 
to the species and forest stand characteristics (Table 2). 

A low number of matches were selected when the expected proba
bility of section detections was low. This occurred for small plots of Pinus 
pinaster species (in Almodóvar del Pinar) where the understory was 
dominated by Quercus ilex ssp. ballota coppices (1–2 m high), and in 
small plots at the Las Majadas site at which P. nigra saplings (over 2–3 m 
high) were abundant. However, the low number of matches increased 
the probability of false detections and, on the contrary, the high number 

Table 10 
Results and statistics for the paired comparison between the tree parameters obtained by the two different techniques, classic (DBH, cm; Ht, m; and Vt, m3) and MTLS- 
AIDFOREST (DBHz, cm; Htz, m; Vtz, m3). In addition, average values for both techniques are shown, including the mean diameters, heights, and volumes, as well as the 
relative BIAS (%) and absolute and relative RSME.  

(DBH – DBHz) Sig. Level  (Ht – Htz) Sig. Level  (Vt – Vtz) Sig. Level 

n 71   n 71   n 66  
BIAS 0.08   BIAS − 1.33   BIAS − 0.04  
BIAS (%) 0.16   BIAS (%) − 5.10   BIAS (%) − 1.37  
RMSE 2.63   RMSE 3.01   RMSE 0.42  
RMSE (%) 5.2   RMSE (%) 11.51   RMSE (%) 14.33  
Std. Dev. 2.64   Std. Dev. 2.72   Std. Dev. 0.42  
Std. Skew. − 1.5   Std. Skew. − 1.95   Std. Skew. 0.23  
Std. Kurt. 0.06   Std. Kurt. − 0.09   Std. Kurt. − 0.60  
t-test 0.26  0.797  t-test − 4.13 0.000  t-test 0.77  0.445 
F-test 0.90  0.667  F-test 2.06 0.003  F-test 1.02  0.942 
W-test 2481  0.874  W-test 3176 0.007  W-test 2216  0.863 
K–S test 0.07  0.994  K–S test 1.68 0.007  K–S test 0.52  0.948 
DBH 50.6   Ht 26.1   Vt 2.61  
DBHz 50.5   Htz 27.5   Vtz 2.65   

Table 11 
Average time spent (in minutes) measuring the forest stand parameters across the sites and species and by plot size code using the two different techniques: (i) classic 
measurements carried out by two technicians (one for DBH measurement and another for total height measurements on a sample of 3–20 trees per plot) and (ii) MTLS 
measurements carried out by one technician. Note that, for the classic inventory, only time spent on field data collection was computed (postprocessing data was not 
considered). The acronyms used for the plot size codes are as shown in Table 2; n = 76 plots.  

SITE SIZE 
CODE 

# 
PLOTS 

AREA 
(m2) 

Density 
(trees 
ha− 1) 

T-classic 
(min) 

T-MTLS 
(min) 

R1 
% 

T-Geoslam 
(min) 

T-AIDF 
(min) 

T-Total 
(min) 

R2 % T-Classic 
(min/ha) 

T-MTLS 
(min/ 
ha) 

T-Total 
(min/ 
ha) 

Albacete 2 2 4,972 159  88.2  8.7  9.9  21.8  32.8  63.4  71.8 177 18 127 
Albacete 3 2 7,564 201  159.0  7.7  4.8  19.1  49.9  76.7  48.2 210 10 101 
Almodóvar 1 19 643 379  15.0  3.8  25.5  9.6  4.2  17.6  117.4 233 59 274 
Ayora 1 16 654 360  13.4  3.1  22.9  7.6  4.3  15.0  112.3 204 47 230 
Cuenca 2 2 4,813 104  25.8  8.4  32.6  16.8  24.1  49.3  191.1 54 17 102 
Las 

Majadas 
1 20 626 289  11.4  3.2  28.1  8.0  4.1  15.3  134.6 181 51 244 

Las 
Majadas 

3 1 8,410 106  145.8  17.1  11.7  42.8  55.5  115.4  79.1 173 20 137 

Las 
Majadas 

4 5 10,817 194  317.5  21.8  6.9  54.6  71.4  147.8  46.5 294 20 137 

Lugo 2 3 4,347 682  116.3  7.2  6.2  18.1  28.7  54.0  46.4 268 17 124 
Lugo 3 2 7,981 448  145.2  13.9  9.6  34.8  52.7  101.3  69.8 182 17 127 
Lugo 5 4 20,966 781  635.2  35.0  5.5  87.4  138.4  260.8  41.1 303 17 124    

3227 353  81.3  7.2  8.9  18.1  21.3  46.6  57.3 252 22 145 

T-classic (min): time spent on the classic plot inventory including their setting. 
T-MTLS (min): time spent scanning the plot with the ZEB-HORIZON equipment. 
T-Geoslam (min): time spent processing the raw data from the MTLS on each plot using Geoslam HUB and DRAW. 
T-AIDF (min): time spent processing the *.las files for each plot using AID-FOREST. 
T-Total (min): total time spent per plot to complete the whole MTLS-AIDFOREST inventory, i.e., (T-MTLS) + (T-Geoslam) + (T-AIDFOREST). 
R1: ratio of T-MTLS/T-classic (percentage). 
R2: ratio of T-Total/T-classic (percentage). 
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of matches enhanced the probability of no tree detections. According to 
our results, there were no false detections, but there were no detections. 
In contrast, the high number of matches was used to guarantee no false 
detections when the stem length free of branches was high. This 
occurred in the case of Pinus pinea in a peri-urban park (Table 2) in which 
fountains, woody fences, lamp posts, wood poles, and statues, etc., could 
be mistakenly identified as trees. Similarly, five matches were used in 
managed forest stands with long (2–3 m), branch-free stems such as 
Pinus halepensis (Cuenca) or P. nigra (Las Majadas). 

On the one hand, we processed all the *.las files from the same site 
and plot size using the same AID-FOREST settings. However, because the 
characteristics of some sites differed over the space, the selected number 
of matches per site was likely not optimal. This could justify the exis
tence of some undetected trees within these plots. On the other hand, no 
trees with a DBH below 8 cm were detected. This may be because the 
noise of the point cloud for these thin trees exceeded their radius. 
Consequently, no outer ring-like shapes were conformed and so the 
trained model was unable to consider them as tree sections. Therefore, 
the lack of detections for small trees likely resulted from technological 
restrictions in the point cloud quality. For comparison, Ridding et al. 
(2015) found that the minimum detected DBH was 5 cm when using a 
Zeb-Revo1 (Geoslam) MTLS with manual detection through the Leica 
Cyclone software. However, they also suggested that removing trees 
measuring<10 cm from the analysis improved the accuracy of their 

results. Similarly, using a ZEB-HORIZON MTLS device, Mokroš et al. 
(2021) found that the accuracy and detectability improved when only 
trees measuring more than 10–20 cm were considered in the analyses. 

To the best of our knowledge, this is the first time that tree detect
ability at the plot level can be explained using an objective index, in our 
case, the EVCI (Tables 2 and 3). In addition, we used our own software to 
objectively extract the parameters used to calculate the EVCI from the 
point cloud. Finally, EVCI, but not tree species or tree density, signifi
cantly affected the tree detectability (Table 3). This means that AID- 
FOREST could be universally applicable within the context of the for
est parameters detailed in this current work. Indeed, it would be useful 
to extend this experiment to tree species and forest stands with other 
characteristics. 

Besides of the ‘number of matches,’ another important user-defined 
parameter within the AID-FOREST settings is ‘offset adjust,’ which is 
directly related to the accuracy of the DBH estimations. Our results 
indicate that, in addition to species, the greater the plot area, the higher 
the offset (Fig. 15). Note that offset is a discount (negative value, m) 
from the diameter obtained as the average of the two sides of the box. It 
may seem illogical that the same tree species had different offsets when 
the selected plots were different sizes (Table 2; P. nigra and P. halepensis) 
while other species such as Eucalyptus nitens had the same offset for 
different plot sizes. However, this effect can easily be explained as fol
lows. When all the factors except the species are constant during the 
scanner tracking, bark rugosity will determine the point cloud noise 
around the stem. However, if the distance from the scanner to the stem is 
variable, both the rugosity and distance will drive the point cloud noise 
(regardless of other external factors such as branching or the presence of 
scrub). 

It appears that this scenario occurred for P. nigra and P. halepensis, 
two natural forest stands in which the distance between the stems and 
scanner for small plots was lower than that for bigger plots. This can be 
deduced from Table 11, where the scan time (T-MTLS) for small plots 
such as Las Majadas-1 and Ayora-1 were 51 and 47 min/ha− 1, versus Las 
Majadas-2 or − 3 or Cuenca-2, where 20 and 17 min/ha− 1 were spent 
scanning. Thus, the scanning had to be carried out on more separated 
tracks on big plots compared to smaller ones. The opposite occurred for 
E. nitens (Lugo), an artificial forest stand where the trees were spaced out 
in 3.2 m × 3.2 m squares and the scanner tracking was conducted uni
formly along the tracks formed by the trees; in other words, where the 
distance between the tracks in all the plot sizes remained constant. 
Similarly, as shown in Table 11, the same amount of time was spent 
regardless of the plot size in Lugo (17 min/ha− 1) and consequently, no 
differences in the offset were required. Ideally, the same criteria would 
be followed while scanning, independently of the plot size. However, 

Table 12 
Regression models relating the time spent on field data collection at the plot 
level using classical inventories (T-classic, minutes) and the MTLS method for 
scanning plots (T-MTLS, minutes), as a function of the PLOT-SIZE (m2) and 
TREE-DENSITY (trees per hectare of the plot), as well as the statistics related to 
the goodness of fit.  

T-classic = a0 + a1 PLOT-SIZE + a2 TREE-DENSITY 
Parameter Estimate Standard Error Student t P-Value 

a0 − 34.9 7.79 − 4.49 0.0000 
a1 0.03 0.001 36.98 0.0000 
a2 0.07 0.02 3.50 0.0008 
FULL MODEL R2 SEE F-Snedecor Sig. Level 
n = 76 95.4 36.00 774.3 0.0000  

T-MTLS = a0 + a1 PLOT-SIZE + a2 TREE-DENSITY 
Parameter Estimate Standard Error Student t P-Value 
a0 2.22 0.56 3.95 0.0002 
a1 0.0015 0.00006 27.52 0.0000 
a2 0.0001 0.0014 0.075 0.9403 
FULL MODEL R2 SEE F-Snedecor Sig. Level 
n = 76 91.5 2.6 406.1 0.0000  

Fig. 15. Relationship between the offset (m) and plot size (m2); n = 76 plots. The acronyms used for the species are as shown in Table 2.  
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this would lead us to exceed the maximum time for scanning data 
collection (30 min) recommended by the manufacturer of LiDAR 
(although we have processed data collected over nearly 1 h). Thus, AID- 
FOREST is equipped with the ‘offset adjust’ parameter to cope with this 
inconvenience. 

For the mean number of trees per plot, we found that the accuracy at 
plot level was comparable with the findings from other work. Hence, the 
relative BIAS and RMSE were 2.8 % and 9.2 %, respectively (Table 4). 
Although there were differences in the BIAS depending on the site, 
species, and plot size considered, these values were not statistically 
significant at α = 0.05 (Table 4). 

For the mean DBH at plot level, the BIAS and RMSE were 1.8 % and 
7.5 %, respectively (Table 5). Similarly, there were no significant dif
ferences in these values according to the site, species, or plot size factors 
(Table 5), although BIAS variability could be explained for the particular 
offset chosen for each site and plot size, in addition to the particular 
forest plot characteristics. After applying a Student t-test to compare the 
means (data not shown) we concluded that the BIAS was not signifi
cantly different to 0 at the plot level (t = 0.28; p = 0.78; n = 76). 

In other work using a ZEB1 MTLS (Geoslam ltd.), Ryding et al. (2015) 
reported BIAS of − 5.6 % to 19.5 % and a RSME of 9 % to 46 % for DBH, 
depending on whether DBH greater than 10 or < 10 cm was selected, 
respectively. Using a MTLS device and point-cloud processing tech
nique, Liang et al. (2019) reported a relative BIAS and RMSE of 1–15 % 
and 10–35 %, respectively, depending on the difficulties of the forest. 
Similarly, using the same MTLS as us (a ZEB-HORIZON) and automati
cally processing their data with the Ordering Points to Identify the 
Clustering Structure (OPTICS) algorithm, Gollob et al. (2020) obtained a 
RMSE between 2.87 cm (14.85 %) and 3.32 cm (17.18 %) and a BIAS of 
− 0.48 cm (− 2.48 %) to 0.03 cm (0.16 %). We did not find any refer
ences regarding the plot size effect on BIAS. 

4.2. Accuracy to assess individual tree parameters (DBH, Ht, and Vt) 

The paired sample comparison at tree level, shown in Table 10, 
strongly confirmed that AID-FOREST estimated DBH without statistical 
bias. This was already reported at plot level and widely discussed in 
section 4.1. 

However, our results showed that there was discrepancy between the 
tree height measured in the field (Ht) and that given by AID-FOREST 
(Htz), although this disagreement can be easily explained. The total 
height of the tree was measured up to the apex (10 cm diameter) of the 
main axis (i.e., the most vertical stem if various stems were present) in 
the field once the tree was felled. However, AID-FOREST takes the total 
height as the highest DSM value in an environment of one unit of 
planimetric resolution of the highest point detected on the tree (see the 
Appendix for more details). Consequently, AID-FOREST gives the 
highest height of the tree crown, not that of the stem to the top diameter 
of 10 cm, because branches and leaves rise above the stem (depending 
on structural development of the crown of each species; Fig. 13). 
Nonetheless, very little previous academic work has described how their 
total heights were measured in the field. In general, most authors indi
cate that in classic methods the total height is measured using an 
analogue or digital hypsometer, but none defined with precision the 
total height measured. Thus, the comparison between methodologies is 
haphazard and makes it impossible to draw well-founded conclusions. 

When a non-mobile TLS is used, the total height is underestimated by 
the software or algorithm used, mainly because it is unable to ‘see’ the 
upper level of the trees (occlusion effect). Thus, Liang et al. (2016) re
ported underestimation of tree height by up to several metres, sug
gesting that further study is required. Similarly, Cabo et al. (2018b) 
reported underestimations of the average height at plot level of 3.2 to 
18.5 m, depending on the species. Using MTLS, Heo et al. (2019) re
ported an average underestimation of the total height by 0.24 to 0.4 m. 
However, on the contrary, using a ZEB1 MTLS (Geoslam, ltd.) and its 
accompanying Computree software, Del Perugia et al. (2019) found a 

BIAS of only 0.17 m for Castanea sativa trees. Employing ZEB-HORIZON 
(Geoslam, ltd.) and a custom methodology including RANSAC cylinder 
fitting, Donager et al. (2021) reported overestimation of the total tree 
height by about 1.3 m in Ponderosa pine, a similar result to our findings 
(Table 10). In conclusion, AID-FOREST extracted a total height that did 
not agree conceptually with the total height we defined in our field study 
work, and in addition, the outcome depended on the tree species 
because of their different crown shapes (Fig. 13). However, the top 
height AID-FOREST provides should be adequate when compared to the 
results from hypsometers because it is practically impossible to aim at 
the exact portion of the stem with a minimum particular diameter. 

For the overall tree stem volume, our results showed that the esti
mation by AID-FOREST was statistically unbiased (BIAS = − 0.04 m3, 
equivalent to − 1.37 % of the average volume; Table 10). Although the 
BIAS was not statistically significantly different to 0, it there was a slight 
overestimation. However, it seems contradictory, or at least unexpected, 
that AID-FOREST, which was designed primarily to obtain the volume of 
monopodic trees, adequately estimates the total volume of sympodic 
trees. Revisiting the pipe model theory by Shinozaki et al. (1964a, 
1964b) could offer a possible explanation for the agreement between the 
measured volumes and those estimated by AID-FOREST. AID-FOREST 
computes the stem volume that is within the crown as a pure dendro
metric shape; this dendrometric type has a basal section as the latest 
detected section in the stem (i.e., where the crown starting, at the height 
H1v), and a height equalling the crown length, i.e., the difference be
tween Ht and H1v (see section 2.1.6 and the Appendix). If bifurcations 
start within the tree crown length, sections of the multiple stems at any 
height within the crown could be considered equal to a hypothetic single 
stem with a section equal to the sum of the multiple cross sections of the 
stems (Shinozaki et al., 1964a, 1964b). Thus, all the trees included in the 
AID-FOREST analysis contained bifurcations in the crown length, while 
the five trees we removed from our analysis (Figs. 10 and 11) had bi
furcations below the start of the crown. 

In general, most previously published work did not estimate a 
reference tree or plot volume and focussed exclusively on tree detection 
and measurement of their diameters and heights. Others compared the 
volumes obtained from point clouds with a reference volume estimated 
with local volume tables (Hyyppä et al., 2020a; Vatandaşlar and Zeybek, 
2020, 2021) or via allometric volume or regional species-specific 
models. Moreover, very few articles had accurately measured the 
reference volume by summing the volumes of small logs from felled trees 
that were divided and measured (Mengesha et al., 2015) or sometimes 
by using TLS (Bienert et al., 2018; Hyyppä et al., 2020a; Liang et al., 
2018). Our results were validated using real stem volumes and, conse
quently, are sufficiently robust to be conclusive, thereby making our 
results, which were obtained in non-monopodic trees, hopeful and 
promising. Nevertheless, additional tree species and forest stands should 
be selected to universally validate our results at the tree level. 

Despite the above, the comparisons conducted with accurate volume 
measurements were poor. Thus, using AutostemTM software to process 
the point cloud, Mengesha et al. (2015) reported a relative BIAS of 
11–22 %. In turn, Vatandaşlar and Zeybek (2021) used machine learning 
(e.g., a Random Forest classifier for tree detection) and innovative al
gorithms (e.g., ellipse fitting to estimate the diameter of noncircular 
trees) and reported poor agreement between the estimated and refer
ence volumes (with deviations of up to 21.5 %). This may have been 
because the reference volume was obtained from allometric estimations 
rather than accurate volume measurements. Similarly, Hyyppä et al. 
(2020a) used a postprocessing algorithm chain to extract stem curves 
from scan-line arcs corresponding to individual trees and reported a 
BIAS of − 1.5 to − 3.8 % and relative RMSE of 11.7–26.0 % for timber 
volume by using Finnish volume tables. Finally, Bienert et al. (2018) 
used their previously published approach to tree detection (Bienert 
et al., 2007) and the quantitative structure model (QSM) to measure tree 
volumes, using the TREEQSM (v.2.30) software developed by Raumo
nen et al. (2013) for QSM execution. They found that, compared to the 
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volumes estimated via TLS, the marketable and total volume of the 
modelled QSM were underestimated by up to 5 m3 in 500 m2 plots. 

4.3. Time analysis 

Very few works provided information about the time invested in 
carrying out classic field survey inventories compared to mobile (MTLS) 
or fixed (TLS) laser scanning. Some of them, such as Liang et al. (2014) 
suggested that a plot of 2,000 m2 could be scanned in a few minutes by 
employing a handmade system (built by the Finnish Geodetic Institute 
and based on FARO Focus 3D software). Others such as Ryding et al. 
(2015) reported requiring 200 min/ha− 1 per surveyor when a ZEB1 
MTLS was used in 100 m2 plots, compared to 11,765 min/ha− 1 per 
surveyor using a TLS (FARO Focus 3D), or 23,256 min/ha− 1 per sur
veyor for a classic field survey. These high times reported for MTLS 
systems are likely because the old ZEB1 device was used. 

However, none of these studies reported the time required for data 
processing to obtain the relevant dendrometric parameters. Using ZEB- 
REVO-RT, Chen et al. (2019) reported requiring 10 min per 300 m2 plot 
(5 min for surveying, − 166 min/ha− 1_ and 5 min − 166 min/ha− 1 for 
processing), in other words, a total time of 333 min/ha− 1 compared to 
10,989 min/ha− 1 for classic field surveys. In contrast, Apostol et al. 
(2018) reported a measurement time of 120 or 15–90 min per 500 m2 

plot for classic and TLS scanners, respectively, depending on whether 
single or multiple scans were performed, but did not report the corre
sponding data processing times required. Finally, Bauwens et al. (2016) 
compared TLS, MTLS, and classic field measurements in circular plots 
with a radius of 15 m (707 m2) and included field work and processing 
times. They reported 24 min per plot (339 min/ha− 1) using a ZEB1 
MTLS and of 10 min for single (141 min/ha− 1) or 75 min (1,061 min/ 
ha− 1) for multiple scans when using a FARO Focus 3D TLS. For classic 
field measurements a total of 32 min per plot (453 min/ha− 1) was re
ported. For data processing they reported 106 min per plot (1,499 min/ 
ha− 1) for MTLS, 84 min per plot (1,188 min/ha− 1) for TLS, and 10 min 
per plot (141 min/ha− 1) for classic field measurements. 

All the above-mentioned survey times were much slower than ours. 
For MTLS scanning, the reported times ranged between 166 and 339 
min/ha− 1 compared to our 22 min/ha− 1 (Table 11). The most likely 
reason for this difference was the MTLS device used because all the ar
ticles we mentioned used the more limited ZEB1 or ZEB-REVO scanners, 
whereas here we used ZEB-HORIZON. In contrast, Mokroš et al. (2021) 
reported a total scanning time of 10 min for plots of 625 m2, or in other 
words, 160 min/ha− 1. Similarly, Gollob et al. (2020) described a total 
scanning time of 10.96 min for 1,257 m2 plots (87 min/ha− 1). 
Conversely, our results (only 22 min/ha− 1) were equivalent to approx
imately1/7 to ¼ of these previously reported times. Perhaps this 
disagreement was because of the different characteristics of the forest 
stands studied or the different computing time criteria applied. In this 
sense, we only computed the time required for the scanning but did not 
include the time spent setting up the plot for measurement. 

On average, the processing time required by AID-FOREST was 66 
min/ha− 1. To the best of our knowledge, no previous publications have 
reported the time required to detect the trees and measure them. Only 
the work by Bauwens et al. (2016) estimated the “time processing” as 
106 min per plot (1,499 min/ha− 1) but did not clearly state what this 
processing time included. Regardless, their findings vastly differed from 
the 66 min/ha− 1 required to process the AID-FOREST *.las files or the 
57 min/ha− 1 needed for Geoslam Hub-Draw raw data pre-processing. 
Finally, it is worth noting that the aforementioned AID-FOREST data 
processing time was obtained with a laptop without a graphic card 
(Intel® Core™ i7-9750H CPU, 2.60 GHz, 32 GB RAM); when a slightly 
more powerful computer (Intel® Core™ i7-9700 K CPU, 3.60 GHz, 32 
GB RAM) with a graphic card (NVIDIA GeForce GTX 1080 Ti) was used, 
the processing time was reduced from 66 to 29 min/ha− 1 (data not 
shown). Consequently, the performance of AID-FOREST when process
ing points clouds strongly depended on the computing power available 

and the difficulty in processing the point cloud parameters. In other 
words, the number of bands (raster) requested (data not shown). 

4.4. The software 

AID-FOREST stands out for its fundamentals and its ability to process 
point clouds. Indeed, this is the first time an algorithm based on artificial 
intelligence has been used to detect tree sections. In addition, unlike the 
work by Chen et al. (2019), in which the noise had to be eliminated 
twice from the raw point clouds before they could be processed, no such 
pre-processing is required by AID-FOREST. Similarly, Liang et al. (2018) 
also removed noise from the point cloud before data processing. While 
low levels of data noise improves the detectability and diameter mea
surements (Chen et al., 2019) its removal also increases the associated 
processing times and costs. In contrast, some authors performed pre- 
scan preparation of the forest stands (for example, by pruning or 
removing scrub) before MTLS scanning, as reviewed by Liang et al. 
(2016). Obviously, pre-scan treatment improves the detection and 
measurement of trees because low branches or scrub hiding the stems 
are removed, thereby improving the point cloud quality. Nonetheless, 
other work concluded that pre-scan forest preparation did not improve 
detection (Mengesha et al., 2015), likely because a fixed terrestrial laser 
scanner was used. 

-FOREST is not limited by plot size; as shown in Table 1, we pro
cessed plots measuring nearly 3.5 ha. On the contrary, most of the 
literature we consulted assessed small plots (not exceeding 1,000–2,000 
m2). AID-FOREST can process hundreds of hectares and is only limited 
by the restrictions of the MTLS device used. Additionally, processing by 
AID-FOREST software is fully automatic and does not need human su
pervision once it has been launched. As stated by Ryding et al. (2015), 
“An important factor in the development of point cloud data sets for use 
within forest modelling will be the automation of data processing. 
Without automation, these very large, complex data sets are too time- 
consuming to process manually and would not be considered a prac
tical survey solution”. Liang et al. (2016) also noted that no automatic 
software was available to process forest point cloud data and that when 
it became available, it would be too expensive. Similarly, Donager et al. 
(2021) stated that “the lack of tools for easily processing terrestrially- 
collected lidar datasets in an automated fashion, targeting conserva
tion and management applications, quickly became apparent in our 
work”. Although AID-FOREST still needs improvement, it comes much 
closer to solving some of these problems. The cost of AID-FOREST is near 
€ 4,000 for an unlimited license (a free trial can be requested at diel
mo@dielmo.com), which is reasonable when compared to the total cost 
of manually completing forest inventories. 

The future challenges that must be addressed to improve AID- 
FOREST include (i) developing new algorithms to cope with estima
tion of the total stem volume for sympodic trees; (ii) defining additional 
processes for classifying stem wood in the possible merchantable wood 
products; and (iii), the most ambitious point, identifying different tree 
species, or at least groups within the genera, when using point clouds. 
Regarding the latter, Othmani et al. (2013) proposed a method for 
species detection based on a point cloud generated with TLS. They 
suggested using multiresolution analysis of the geometric texture of the 
bark together with software leveraging the Random Forest algorithm for 
classification. However, the results obtained by this group to date have 
been poor. 

5. Conclusions 

Here we presented a new framework for forest inventorying based on 
point clouds processed with AID-FOREST software. In this work, point 
clouds were recorded using a hand-held terrestrial laser scanner (MTLS, 
ZEB-HORIZON, Geoslam ltd.) and their processing was conducted with 
AID-FOREST. This software takes a hitherto unused approach to detect 
trees by leveraging an artificial intelligence algorithm. AID-FOREST 
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demonstrated a high level of tree detection (an average of 97 %), and 
only did not reach 100 % on some plots as a consequence of the high 
visual complexity of the ecosystem (EVCI). Detection did not depend on 
the tree species, stand density, or plot size, which makes the software 
widely applicable. 

Moreover, AID-FOREST was statistically unbiased in terms of plot 
level accuracy at the mean DBH; in other words, the BIAS (0.6 cm, 1.8 
%) was not statistically significantly different to 0. In addition, the DBH 
distribution function was not significantly different from the distribu
tion function obtained by our field measurements. Indeed, estimations at 
the tree level showed that both the DBH and total tree volume (Vt) were 
unbiased compared to accurate field measurements. The relative BIAS 
was 0.16 % and − 1.37 %, respectively for DBH and Vt, and these values 
were not significantly different to 0. However, for total tree height, there 
was a BIAS of − 1.33 m (overestimation) because of the different 
concept of total height used in the field measurements and AID-FOREST 
estimations. 

In conclusion, the main characteristics that differentiate this soft
ware from other solutions are that AID-FOREST (i) is totally automatic 
once launched; (ii) can process point cloud files of very large size; (iii) it 
processes *.las files relatively quickly; and (iv) it outputs multiple useful 
and accurate dendrometric and forest stand parameters in different 
formats (as *.shp and *.csv files). Consequently, AID-FOREST is a robust, 
efficient and accurate software that extracts all the main forest stand 
parameters of a site, thereby helping to optimise sustainable forest stand 
management. Nevertheless, AID-FOREST still requires some additional 
improvements such as including species not mentioned in this paper and 
resolving the problem of calculating the total volume of the multiple 
stems of sympodic trees. 
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derivation of stem curve and volume using backpack mobile laser scanning. ISPRS J. 
Photogramm. Remote Sens. 161, 246–262. 
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Jaakkola, A., Wang, Y., 2018. In-situ measurements from mobile platforms: an 
emerging approach to address the old challenges associated with forest inventories. 
ISPRS J. Photogramm. Remote Sens. 143, 97–107. 

Liang, H., Li, P., Cao, C., Yang, S., 2021. Analysis and monitoring technology of upper 
seam mining in multiunderlayer goaf. Adv. Civil Eng. 2021, 1–10. 

Liang, X., Wang, Y., Pyörälä, J., Lehtomäki, M., Yu, X., Kaartinen, H., Kukko, A., 
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Vatandaşlar, C., Zeybek, M., 2020. Application of handheld laser scanning technology for 
forest inventory purposes in the NE Turkey. Turk. J. Agric. For. 44, 229–242. 
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