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A B S T R A C T   

Field inventoried data are often used as references (ground truth) in forest remote sensing studies. However, the 
reference values are affected by various kinds of errors, which tend to make the reported accuracies of the remote 
sensing-based predictions worse than they are. The more accurate the remote sensing techniques are becoming, 
the more pronounced this problem will be. This paper addresses the impact of uncertainties in field reference 
data due to measurement errors, model errors, and position errors when evaluating the accuracy of biomass 
predictions from airborne laser scanning at plot level. We present novel theoretical analysis methods that take 
the interactions of the error sources into account. Further, an error characterization model (ECM) is used to 
describe the error structure of the remote sensing-based predictions, and we show how the parameters of the 
ECM can be adjusted when field references contain errors. We also show how root mean square error (RMSE) 
estimates can be adjusted. Based on data from Scandinavian forests, we conclude that the field reference errors 
have an impact on the remote sensing-based predictions. By accounting for these errors the RMSE of the remote 
sensing-based predictions was reduced by 6–18%. The most influential sources of error in the field references 
were found to be the residual errors of the allometric biomass model and the field plot position errors. Together, 
these two sources accounted for 97% of the variance while measurement errors and biomass model parameter 
uncertainties were negligible in our study.   

1. Introduction 

Remote sensing (RS) is used in many forest applications, often in 
combination with field sample plots to enable wall-to-wall assessment of 
some variable of interest (VOI) across a study area. This type of survey, 
communicated as maps or predictions of means and totals, is becoming 
increasingly demanded, not least in connection with assessing carbon 
budgets for forests where the VOI typically is biomass (Rodríguez-Veiga 
et al., 2019). A challenge in this type of studies is to correctly assess 
uncertainties (Gregoire et al., 2016). 

Broadly speaking, the uncertainty assessment in RS studies proceeds 
along either of two very different lines. The first category use RS data as 
auxiliary data in formal statistical procedures for estimating means or 
totals of the VOI across the study area. Typical approaches include 
model-assisted estimation within the framework of design-based infer-
ence (Ekström and Nilsson, 2021; McRoberts et al., 2014a, 2016; Ståhl 
et al., 2016; Stehman, 2009) and model-based inference (McRoberts, 
2006; McRoberts et al., 2007, 2010, 2016; Ståhl et al., 2011). In this 

case, strict statistical principles for the selected inferential mode should 
be followed (Gregoire et al., 2016). Typically, the variance or the mean 
square error of the estimated VOI is estimated and reported, often in the 
form of a confidence interval for the true VOI value (McRoberts et al., 
2010, 2014b, 2016). 

The other category of approaches addresses the uncertainty assess-
ment in a more intuitive way, often in connection with studies aiming at 
assessing the performance of some new RS method or technique. A 
typical procedure in this type of studies includes the following steps: (1) 
inventory a number of field sample plots for the VOI, (2) extract the 
corresponding plot-level RS data, (3) fit a model that relates the RS data 
to the field sample data, (4) apply the model to the entire RS dataset, and 
(5) quantify the uncertainty of predictions at plot or stand level through 
paired reference unit comparisons (PRUC) of the RS-based predictions 
and the field references on validation data (Mauya et al., 2015; Næsset, 
2004a; Næsset and Gobakken, 2008; Persson and Fransson, 2014, 2017; 
Tomppo et al., 2008; Varvia, 2018). This may be repeated for different 
sensors, methods, regions or sensor properties, in order to assess 
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strengths and limitations of one or more RS-based methods of interest. 
The uncertainty following the PRUC approach is often reported as the 
empirical mean square error (or root mean square error, RMSE) at the 
level of assessment units (typically plots or stands), treating field in-
ventoried data as true values. The dataset is sometimes separated into a 
training and an evaluation part, or cross-validation is applied in order to 
utilize the full dataset for model training (Stone, 1974). It is important to 
note that uncertainty assessment following the second approach is quite 
different from uncertainty assessment following the first approach and 
that different questions are answered (Persson and Ståhl, 2020; Ploton 
et al., 2020). The core objective using the first category is to provide 
confidence intervals for the mean or total of the VOI for the entire study 
area. The core of the second approach (PRUC) is to report the uncer-
tainty of a certain RS method at the level of a typical assessment unit, 
such as a plot or a stand. When the PRUC approach is adopted, the re-
sults can usually not be extrapolated to valid uncertainty inferences for 
the entire study area (cf. Gregoire et al., 2016). 

In this paper, we address the uncertainty assessment for the PRUC 
approach. It involves several challenges that do not occur in a similar 
way for the first category. One such challenge is that the development of 
RS has enabled RS-based predictions to be so accurate that any potential, 
often minor, errors in the field references cannot be neglected, since if 
they were, they would inflate the reported accuracies of the RS-based 
predictions. In the past this complication could be neglected, since any 
errors in the field references were vastly surpassed by those in the RS- 
based predictions. However, today there is an increasing need of 
quantifying and correcting for such field reference-related errors. In 
Persson and Ståhl (2020), four dominant error sources were identified: 
sampling errors, measurement errors, model errors, and plot position 
errors, although only the effect of sampling errors was addressed in that 
case study. It was suggested that a linear error characterization model 
(ECM) could be used as a means for more sophistically describing un-
certainties of RS-based predictions compared to using simpler metrics, 
such as the RMSE, and it was demonstrated how the parameter estimates 
of the ECM could be corrected for the impact of (random) errors in the 
field references, which caused attenuation bias of the parameter esti-
mates. This was shown to be particularly important when the errors in 
RS-based predictions tended to be as small as those in the field refer-
ences. The quantification of the impact of sampling errors in the field 
references has been repeated for other studies and datasets (de Lera 
Garrido et al., 2020; Persson et al., 2020, 2021), where the sampling 
errors have had a significant impact on the reported accuracies. Often it 
is also the largest error source in case of the first category of uncertainty 
assessment (Gertner and Köhl, 1992). Similarly, it was noted that 
ignoring an informative sampling design may yield severely biased es-
timates of regression coefficients (Ekström et al., 2018). 

When the purpose of a field inventory is to assess the accuracy of RS- 
based predictions through PRUC at the level of plots, there is no sam-
pling error involved (since all trees in the plots are inventoried) and the 
other, normally small, error sources become increasingly important 
(Gertner and Köhl, 1992). The measurement errors in field inventories 
following strict protocols are typically relatively small (Broman and 
Christoffersson, 1999; Fridman et al., 2019) and it can be assumed that 
their contribution to the total error is limited. However, if there is no 
sampling error involved the relative magnitude of measurement errors 
in comparison to other errors may be considerable and thus we chose to 
include them in this study. The use of a model is required when the 
target variable cannot be directly measured, but must be predicted from 
other measured variables. A typical example is aboveground biomass 
(AGB) which may be modelled from the tree diameter and height. Par-
resol (1999) addressed many of the challenges and questions involved in 
this type of modeling in an extensive review of assessing tree and stand 
biomass. Assuming a correct model is specified (Berry and Feldman, 
1985), the model uncertainty may be divided into (i) uncertainty due to 
model parameters being estimated and (ii) uncertainty due to random 
variation at the level of individual units (residual errors). When a model 

is applied across a large region for predicting means or totals, the first 
kind of uncertainty tends to be the most influential one whereas for 
smaller areas the second category tends to be most important (Berger 
et al., 2014; Breidenbach et al., 2014; Ståhl et al., 2016; Wharton and 
Cunia, 1987). However, other factors may need to be considered as well 
in the context of handling model errors. Gregoire et al. (1995) investi-
gated within-plot correlated tree-level errors using mixed-effect models 
and stressed the importance of considering this type of correlation, 
which may greatly affect the results in some types of studies. Meng and 
Huang (2010) investigated this aspect from the perspective of growth 
and change using longitudinal data, and reached a similar conclusion. 
Fox et al. (2001) found that studies that ignore the correlation within 
plots underestimate the variability between plots, as well as the variance 
of the model parameter estimators. 

When sample plots are used in a design-based approach to estimate 
the total or mean for a study area, the precision of plot locations is of 
minor importance, provided the plots are randomly located within the 
study area. However, when sample plots are coupled with external 
geographical data, such as RS data, the effects of position errors must be 
considered (Coulston et al., 2004; DeCesare et al., 2005; Frazer et al., 
2011; Hernández-Stefanoni et al., 2018; McRoberts et al., 2018; Saarela 
et al., 2016; Sigrist et al., 1999). The plot locations are normally 
measured using a global navigation satellite system (GNSS), e.g., the 
global positioning system (GPS). When the field position error is small in 
proportion to the pixel size of the RS source, position errors can usually 
be ignored, but otherwise their impact can be substantial (Weber, 2006; 
Weber et al., 2008). The position errors (GNSS inaccuracies) have a 
random behavior that is affected by stand conditions and the GNSS ac-
curacy is lower when the GNSS is shadowed by dense forest canopy 
(Frair et al., 2010; Valbuena et al., 2010). Typical forest plot location 
errors reported in the literature range from about 1 m when using a 
dGPS or real-time kinematic (RTK) GPS, to about 5 m or more for 
standard handheld devices (Berglund, 2000; Friberg and Jönsson, 2012; 
Galán et al., 2011; Johansson, 2019; McRoberts et al., 2018; Piedallu 
and Gégout, 2005; Saarela et al., 2016; Valbuena et al., 2010). Experi-
ence from field inventory personnel and informal tests from different 
groups indicate that the errors tend to increase with increasing basal 
area and canopy closure due to increasing scattering within the canopy. 
Formal studies have confirmed this with respect to forest density 
(Næsset and Gjevestad, 2008) and degree of canopy closure (Frair et al., 
2010). The consequence of using incorrect plot center coordinates (or 
inaccurately positioned RS data) is that neighboring trees are measured 
instead of the intended (or correspondingly, that the nearby pixels are 
used instead). When inventory data are available from the neighborhood 
of the field sample plots, it is possible to assess the accuracy of plot-level 
AGB estimates due to GNSS uncertainty using Monte Carlo simulations 
(McRoberts et al., 2005; Saarela et al., 2016). By perturbing the plot 
center coordinates for the plot, other trees will be included in the plot 
measurements and hence contribute to the predicted AGB. 

In the current paper, we extend the study by Persson and Ståhl 
(2020), which addressed how the parameters of an ECM could be cor-
rected in the presence of sampling errors in stand-level field references. 
In the current study we focus on plot-level assessments and investigate 
the impact of measurement errors, model errors, and plot position errors 
in the field references, for the case when the uncertainty assessment of 
RS-based predictions is made through PRUC. 

The specific objectives of the study were to: 

1. Describe the generic impact of how measurement errors, model er-
rors, and plot position errors in the field references affect the 
apparent accuracy of RS-based predictions.  

2. Develop and evaluate methods to correct for field reference errors.  
3. Quantify the impact of different error sources and hence identify 

which error sources are most critical to address for correctly 
reporting the uncertainty of RS-based predictions. 
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2. Data 

2.1. Study area 

Two study areas were used for the four case studies and, additionally, 
field data distributed across Sweden (Fig. 1 a) were used for developing 
national biomass models. The first study area was the Krycklan (Fig. 1 b) 
river catchment, located in northern Sweden (Lat. 64◦16′N, Long. 
19◦46′E), comprising 7470 ha land. The main tree species are Scots pine 
(Pinus sylvestris L.), mainly in dry upslope areas, Norway spruce (Picea 
abies (L.) H.Karst), mainly in wetter lowland areas, and birch (Betula 
pendula and Betula pubescens) in riparian forests along larger streams. 
The region is hilly with elevations ranging between 125 and 350 m 
above sea level. The second study area was the Remningstorp estate 
(Fig. 1 c), located in southern Sweden (Lat. (58◦30′N, Long. 13◦40′E), 
comprising 1300 ha. The forest is dominated by Norway spruce (Picea 
abies (L.) H.Karst.) and Scots pine (Pinus sylvestris L.) with some birch 
(Betula spp.). The region is rather flat with elevations ranging between 
120 and 145 m above sea level. 

2.2. Field data 

Data from two independent inventories were used in each of the 
study areas. The first inventory consisted of 28 (Krycklan, Fig. 1 b) and 
40 (Remningstorp, Fig. 1 c) circular plots with 40 m radius, performed in 
2015 and 2014, respectively. The locations of the plots were subjectively 
selected to approximately represent the different forest conditions 
within the study areas, in terms of biomass range, tree species, and age 
structure. Each plot was entirely enclosed by its management unit, hence 
representing quasi-homogenous forest. Every tree was positioned using 
a differential GPS (dGPS). The second inventory at each study area 

consisted of a systematic grid with random starting position, providing 
351 plots in Krycklan and 219 plots in Remningstorp, respectively. 
These 10 m radius plots were inventoried in the fall 2015 and 2014, 
respectively. 

The distribution of plots within the test sites is shown in Figs. 1 b and 
c. The plot locations were measured using a Trimble GeoExplorer 6000 
GeoXR (assumed to provide an accuracy of 1 m), and all trees with a 
diameter at breast height (DBH) ≥ 0.04 m were calipered. The height 
was measured on a sub-sample of the trees, using a hypsometer. The 
AGB was estimated for each tree using existing allometric models with 
tree species and DBH as explanatory variables, and the trees were then 
aggregated to plot-level values (Marklund, 1988). 

To assess AGB model uncertainty, we used the original dataset from 
Marklund (1988). It contains the trees that were used to estimate model 
parameters for modeling the biomass (by fractions) of pine, spruce and 
birch trees in Sweden. In our case, AGB included all biomass fractions 
above the stump. These models have been extensively used and cited, 
and these models are still used for estimating and reporting national 
forest carbon stocks and changes. The trees were collected from 131 
stands distributed across Sweden, providing a good representation of 
various stand ages and site conditions (Fig. 1 a). In total, 1286 trees from 
490 plots within the stands were felled and the weight of the dry biomass 
fractions were measured for 493 pines, 551 spruces, and 242 birches. We 
identified 13 trees that were removed, due to missing plot coordinates or 
being outliers. Details are available in the original reference. 

2.3. RS data 

Airborne-laser-scanning (ALS) data were acquired from the Krycklan 
study area on 22 and 23 August 2015 with a Titan L359 laser scanner at 
300 kHz PRF, providing >20 points/m2 density. The wavelength was 

Fig. 1. a) Overview of Sweden with the plot locations in dark blue marking sample tree locations used for estimating the AGB models. The locations of the test sites 
are marked in red. Coordinates in Lat-Lon, EPSG4326. b) The northern test area Krycklan and c) the southern test area Remningstorp, in both sites with the 10 m field 
plots in orange and the 40 m plots in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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1064 nm. The Remningstorp estate was scanned on 4 August 2014 with 
a Riegl LMS 680i laser scanner at 240 kHz PRF, providing >20 points/ 
m2. The wavelength was 1550 nm. 

3. Methods 

In this section we first address the generic impact of the different 
error components (see Table 1 for an overview of some notations). 
Second, we repeat the main results from Persson and Ståhl (2020) to 
describe what quantitative information about the error sources are 
needed for adjusting the parameters of an ECM or for adjusting an RMSE 
estimate that includes field reference errors. Third, we present a novel 
analysis approach for quantifying field reference uncertainty due to 
errors arising from measurements, modeling, and positioning of plots, 
taking into account interactions between the error sources. Lastly, we 
describe the case studies and put all parts together. 

The approach presented in the current manuscript is summarized in 
Fig. 2. 

3.1. Error sources 

The theory presented in this paper is developed for non-categorical 
target variables, and we demonstrate it for AGB, evaluated at the plot 
level. We assume that a number of sample plots have been selected from 

the study area. For each plot we have access to tree-level measurements 
of diameter, height, etc. that allow us to use existing models for esti-
mating the AGB for each tree (Marklund, 1987), which are aggregated to 
plot-level values normalized with the plot area, and expressed as tons 
per hectare. The model for estimation of AGB is normally nonlinear in 
relation to the measured tree attributes (Jucker et al., 2017). We also 
have access to plot averages of RS data extracted for areas that corre-
spond to the plots. Each plot center has a GNSS coordinate. The plots 
may be randomly or non-randomly selected from the study area, and 
they may purposively have been selected from some type of forest of 
particular interest for the investigation. 

The plots are divided into two groups: one group is used for esti-
mating models linking field and RS data. The other group of plots is used 
for evaluating the uncertainties of the model predictions. Similar to 
Persson and Ståhl (2020) we quantify uncertainties through, (i) an ECM, 
and (ii) computing RMSE. 

Three error sources are addressed:  

• Measurement errors, i.e., errors conducted during the fieldwork 
causing measured diameters etc. for the trees to deviate from the true 
ones. Several studies have quantified random errors related to 
measuring trees (Gertner, 1986, 1987; Kendall et al., 1987), while 
the systematic errors (biases) normally tend to be small. Trees on 
plots may also be entirely missed or double counted. In our study the 
magnitude of measurement errors were retrieved from the control 
surveys of plots conducted in the Swedish National Forest Inventory 
(Fridman et al., 2014, 2019). When calipered tree diameters are used 
in models, the measurement errors propagate, i.e., their magnitude 
may be inflated through the model and even if the measurement 
errors are only random, a non-linear AGB model might make the 
predictor of AGB biased (Suty et al., 2013).  

• Model errors of different kinds. The main types of model errors 
include model specification errors (Berry and Feldman, 1985), 
parameter estimation errors (Beck and Arnold, 1977), and model 
residual errors (Buonaccorsi, 2010; Fuller, 1987). Two main models 
are involved in the assessment procedure: the model used for esti-
mating plot-level characteristics from the basic tree-level measure-
ments (AGB from tree diameter), and the model linking RS data with 
field reference data. We are interested in evaluating the performance 
of the second model (using the error model introduced in the next 
section), but in doing so uncertainties linked to the first model affect 
our evaluation. Therefore, we address parameter estimation errors 
and residual errors of the first model, but we assume that the model is 
correctly specified.  

• Plot position errors. Depending on what type of georeferencing 
equipment is used, the magnitude of position errors will differ. 
Various measures are used to report the accuracy, including circular 
error probability, distance root mean square error (DRMS), and 
radius 95 (R95) (Chin, 1987; Devon et al., 2015; NovAtel, 2003). We 
use DRMS and provide a definition in section 3.4.1, but regardless of 
measure their order of magnitude correspond. In our studies we 
addressed the effects of this type of errors, and their potential in-
teractions with other errors through simulations based on inventory 
data from a larger surrounding than the 10 m plots, where all trees 
had been calipered and positioned with a real-time kinematic (RTK) 
GPS. 

All three sources of errors may decrease the apparent accuracy of RS- 
based predictions of AGB. The challenge is to understand the impact of, 
and potentially adjust for, the errors when estimating the RMSE or the 
parameters of the ECM. 

3.2. Error characterization model (ECM) 

To characterize errors in RS-based estimates, a linear ECM was 
introduced in Persson and Ståhl (2020), following Tian et al. (2016). In 

Table 1 
Most important notations in the manuscript (not complete list).  

Notation Explanation 

TRS RS based prediction (e.g., of a single tree AGB). 
T True value, which in practice can never be observed. 
λ0, λ1 ECM intercept and slope parameters. 
ε Residual error in RS model of the true value (random error). 
σX Standard deviation of variable X. 
α Parameter in the remote sensing model of AGB. 
β Parameter in the field model of AGB. 
* Indicates a corrected value (e.g., for attenuation bias). 
xjkl Explanatory field variable l for tree j on plot k (to estimate field AGB). 

Lowercase to stress it is not random. 
ηjkl Measurement error of the variable xjkl. 
X̃jk Explanatory variable including measurement error (X̃jkl = xjkl + ηjkl). The 

uppercase notation indicates it is random due to the random 
measurement errors and bold is used for denoting vectors. 

f, g Functions to describe the relation between response variable and 
explanatory variables.  

Sample field plots

Field reference AGB 
affected by errors

PRUC

RS based 
predic�ons of AGB

Es�mate RMSE and 
parameters of ECM

Inves�gate error types 
in reference AGB

Adjust RMSE and ECM 
parameters due to errors in 

reference AGB

Fig. 2. Flowchart illustrating the method structure. The emphasis of this paper 
is on the two lowest boxes – investigate and apply adjustments. 
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this study we use it at the plot level. The ECM is expressed as a simple 
linear model, 

TRS = λ0 + λ1T + ε , (1)  

where TRS denotes the predicted value based on RS data, T the true 
value, λ0 a systematic displacement which remains the same across the 
entire range of true values, and λ1 a parameter that shows how the 
systematic error changes across the range of true values. The dispersion 
of the random error terms, ε, is quantified with the standard deviation, 
σε. Thus, if true field observations are available, we can regress TRS on T 
to obtain unbiased estimates of the above parameters (Buonaccorsi, 
2010; Carroll et al., 2006; Fonseca et al., 2005; Wilks, 2011). In contrast 
to reporting a single RMSE value (Hyyppä et al., 2000; Næsset, 2004b; 
Nilsson, 1997; Persson et al., 2017; Persson and Fransson, 2017), pre-
senting the parameter estimates from the ECM offers additional insights 
about the error structure of the RS-based estimates. Also, the ECM fa-
cilitates comparisons with other studies, since the errors for specific 
reference values can be estimated and compared. 

However, with errors in the field references, we observe Tref instead 
of the true value T. If the errors are random they will cause attenuation 
bias in the estimated ECM parameters (bias toward 0 in the model co-
efficients caused by measurement errors in the explanatory variables). 
Estimators that correct for this were provided in Persson and Ståhl 
(2020), and are repeated here for clarity. 

The intercept of the ECM is denoted by λ0, the slope of the ECM by λ1, 
and σε is the standard deviation of the random error for a given reference 
value. 

λ̂
*
1 = λ̂1

[

1+
σ̂2

R

σ̂2
TRef

− σ̂2
R

]

, (2)  

λ̂
*
0 = TRS − λ̂

*
1TRef , (3)  

σ̂2
ε

*
= σ̂2

ε

[

1 −
r2 •̂σ

2
TRef

σ̂
2
TRef

− σ̂
2
R

]

1 − r2 . (4) 

The * notation is used to denote a corrected value, • mean values, •̂
estimated values, σ̂2

ε denotes the residual variance from regressing TRS 
on TRef, r is the sample Pearson correlation coefficient between TRS and 
TRef, and σ̂2

TRef
is the estimated empirical variance among the field 

reference values, i.e., the available field reference values are used in a 
sample variance formula. 

The term σ̂2
R is at the core of our analysis, since it is key to adjusting 

the ECM with regard to errors in the field references. It is the estimated 
variance of the random errors in the field references, i.e., in our case the 
combined effect of measurement, modeling, and position errors. In the 
case studies, we assume this variance to be homogeneous across the 
range of studied true values. However, simulations have indicated 
robust results of the ECM also when this assumption is not met. A major 
part of the remainder of this paper is devoted to assessing the magnitude 
of σR

2 based on empirical data. As will be seen, our methods also allow for 
the estimation of potential systematic errors in TRef, although in PRUC- 
based assessments some systematic errors will have the same magnitude 
in the data used for model estimation and model evaluation and thus 
will not be detected. This issue will be further covered in the discussion. 
To apply the proposed methods we need to show that the magnitude of 
systematic errors in TRef is small and we need to quantify σR

2 based on 
existing data, and apply the estimate in formulas (2)–(4). 

In Persson and Ståhl (2020), we used the formulas (2)–(4) with case 
study data at stand level where sampling errors were assumed to be the 
dominating source of the random errors. In this study, the random errors 
are instead assumed to constitute the sum of plot level random errors 
due to measurement errors, model errors, and position errors. The 

estimated variance of their sum is the sum of their respective estimated 
variances plus any covariances, as will be shown in the next section. 

In case our interest is the MSE (or RMSE) rather than the parameters 
of the ECM, we can make adjustments in a similar way by taking the sum 
of the squared bias and the squared corrected standard deviation (5): 

M̂SE
*
=
(
TRS − TRef

)2
+ σ̂2

ε
*
. (5) 

Through such a correction, we are able to assess the actual reliability 
of the RS-based predictions rather than the apparent reliability, dis-
torted by measurement, modeling and position errors in the field 
references. 

3.3. Impact of and interaction between error sources 

To develop a strict definition of the interactions between the error 
sources and to find a way of estimating their impact on RS-based pre-
dictions, we assume that a forest is inventoried in the field by measuring 
single trees on circular plots with a fixed radius. The tree attributes are 
denoted xjkl, where j is an index for the trees, k for the plots, and l is an 
index for the measured variables (e.g., DBH, height, species etc.). During 
the field survey, measurement errors denoted ηjkl are committed, i.e., we 
measure X̃jkl = xjkl + ηjkl, which thus includes the random measurement 
error. In vector notation (with the vector elements being the measured 
variables), we may write X̃jk = xjk + ηjk. Some variables of interest 
cannot (easily) be measured directly (e.g., VOL and AGB), and are hence 
predicted using some function f(xjk,β) with attribute-vector xjk and 
parameter-vector β. 

In environmental research, the relations are often non-linear with 
respect to the variable of interest. For example, the function may take a 
log-transformed form of the response variable, as in our case study 
where it was log(AGB) instead of AGB for the biomass of a tree, to enable 
a linear form of the regression model. The back-transformed model then 
takes an exponential form. 

Let Tjk = exp (f(xjk,β) + εjk) = exp (f(xjk,β)) exp (εjk) denote the true 
AGB of tree j in plot k, where εjk is a random residual error. If logarithms 
are taken on both sides we obtain log

(
Tjk
)
= f
(
xjk, β

)
+ εjk, which can be 

regarded as a regression model with a log-transformed response vari-
able. In addition, we can express the true AGB for a plot k as 

Tk =
∑

j∈Mk

exp
(
f
(
xjk, β

)
+ εjk

)
=
∑

j∈Mk

exp
(
f
(
xjk, β

) )
exp
(
εjk
)
, (6)  

where Mk denotes all trees on plot k, positioned without errors. The true 

AGB of tree j on plot k is estimated using exp
(

f
(

X̃jk, β̂
))

exp
(
sjk
)
, 

where sjk denotes a correction for logarithmic bias and where  exp (sjk) =
E(exp(εjk)), or at least fulfills that exp(sjk) is a good approximation of E 
(exp(εjk)) (Clifford et al., 2013; Smith, 1993). 

Next, we introduce plot position uncertainty, ρk = (ρk1,ρk2)T, where T 
denotes the transpose, which describes the error of the plot center in 
northing and easting, respectively. The position error causes us to 
measure the trees j in M′

k instead of in Mk, where M′

k denotes the trees on 
an incorrectly positioned plot. Then, the observed plot AGB is 

Tref,k =
∑

j∈M′

k

exp
(

f
(

X̃jk, β̂
))

exp
(
sjk
)
. (7) 

To simplify the notation, let g(xjk,β) = exp (f(xjk,β)). A first-order 
Taylor approximation of the nonlinear function g can be used to 
derive three error terms R1, R2, and R3, related to the errors we address 
in this paper, and their corresponding expectations, variances, and co-
variances (Lee and Forthofer, 2006). Their definitions are described in 
the following sections, and the complete derivation is presented in Ap-
pendix A1. The derivation leads to three error components, related to 
four dominating error sources. By using Taylor approximation we can 
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express the difference between the measured and true biomass on a plot 
as: 

Tref,k − Tk ≈ R1k +R2k +R3k, (8)  

where 

R1k =
∑

j∈M′

k

exp
(
sjk
)∑p

l=1
ηjkl

∂g
(
xjk, β

)

∂xjkl
(9)  

is a contribution originating from the measurement errors (errors in the 
explanatory variables) and position error (which causes us to include the 
trees M′

k on the inaccurate plot position, Tref, k, instead of the trees Mk on 
the true plot position, Tk). Control inventories (which we use in this 
paper) can be used in practice to estimate the expected value of R1k and 
its variance. 

Then, we consider 

R2k =
∑

j∈M′

k

exp
(
sjk
)∑p

i=0
(β̂i − βi)

∂g
(
xjk, β

)

∂βi
(10)  

as the error contribution originating from parameter estimation un-
certainties (applied to trees on the incorrectly positioned plot), since a 
sample was used to estimate the parameters. Increasing the sample size 
would decrease the uncertainty about the parameter estimates and 
additional samples would be necessary to estimate the expected value of 
R2k. However, the procedure of collecting a sample for developing 
biomass models is tedious and time consuming and, hence, usually limits 
the sample size due to the costs involved. As we will see, the impact of 
this error component is small and in practice, both training and evalu-
ation trees are affected in the same way in case of incorrect parameter 
values (given that training and evaluation data are distributed simi-
larly). In this study, we use the Taylor approximation of the biomass 
models together with the covariance matrices for the estimated model 
parameters from the biomass models to estimate this component for 
single trees, and through simulations we explored the impact of inac-
curate plot positions and how this component may vary with reference 
biomass. 

Finally,  

contains both errors related to the position errors of the plots and the 
residual errors of the AGB model. The set operator M′

kMk denotes all 
trees in M′

k that are not included in Mk, and Mk\M′

k the opposite. This is 
the error component most affected by the incorrectly positioned plot 
locations. Therefore, to estimate the expectation and variance of R3k, we 
need the single trees to be measured both on the correctly and incor-
rectly positioned plots, and the residual errors from the biomass 
functions. 

To single out the impact of the position error (which is twinned with 
the other errors, e.g., the residual error in R3k), we can perform the 
analysis with and without position error and study the difference. 
Without the position error, R1 and R2 can be derived using summation 
over Mk (instead of M′

k). Similarly, the two last components in R3 will be 
zero (

∑

j∈M′

k\Mk

g
(
xjk, β

)
exp
(
sjk
)

and 
∑

j∈Mk\M′

k

g
(
xjk, β

)
exp
(
εjk
)
). 

The residual errors of trees within plots are correlated and to handle 
this, we assume that the residual random error can be expressed as εjk =

δk + τjk, corresponding to a random error δk specific to plot k, and an 
error term τjk for tree j on plot k. This form was chosen after a variance 
component analysis based on Marklund’s original data, covering entire 
Sweden. Even at fairly small geographical scales, the analysis did not 
indicate any correlated residuals between plots. However, within plots 
there was an effect which agreed with previous studies that have shown 
that tree-level residuals tend to be correlated at this scale (Breidenbach 
et al., 2014; Lehtonen et al., 2007; Repola, 2009). 

For a given position error ρk, conditional expectations and variances 
of the errors R1k and R2k were derived in a similar way as in Gertner 
(1987, 1990) and these were needed to derive corresponding uncondi-
tional expectations and variances. The analogous derivations for R3k 
were a bit more tedious (see Appendix A1 for details). Subsequently, 
unconditional expectations and variances for R1k, R2k, and R3k were 
obtained through the law of total expectation and the law of total 
variance, respectively. In cases where analytical expressions were too 
complex to be solved, Monte Carlo simulations were used. These simu-
lations were used only when taking position errors into account. 

The obtained unconditional expectations and variances are valid for 
plots with a single tree species. When plots contain combinations of trees 
of different species, the variance expressions get increasingly complex 
(see Appendix A1), with additional covariance terms. The imple-
mentation in our case study considered three tree species. The Monte 
Carlo simulations allowed us to estimate both the biases (systematic 
errors) and the variances for each of the error components (R1, R2, and 
R3). 

3.4. Empirical case study 

To quantify the impact of the field reference errors, we applied the 
developed theory (and Monte Carlo simulations) to real data in the two 
case study areas: Krycklan and Remningstorp (see section 2.1). The as-
sumptions related to the simulations are presented in section 3.4.1. To 
assess the overall influence of the field reference errors in remote 
sensing studies, we demonstrated the implications in four case studies 
(A-D) across the two study areas. These enabled us to demonstrate the 
overall framework, as well as the impact of different assumptions, under 
different forest conditions and remote sensing datasets. In each test site, 
we used the same ALS remote sensing data, but combined with two 

different field reference datasets. First, one smaller dataset (case studies 
A and C) with subjectively distributed plots of 40 m radius, within which 
we only used trees within a 10 m radius. These large plots allowed us to 
simulate the impact of position errors by perturbing the plot centers. 
Second, we also had access to a larger dataset of systematically 
distributed plots with 10 m radius (case studies B and D), which 
represent a common case in many remote sensing studies. In the 
following, we first present the assumptions related to the field reference 
errors (i.e., measurement errors, model errors and position errors), and 
then we present the remote sensing models used to generate the AGB 
predictions. 

3.4.1. Field reference errors 
The assumptions about measurement error magnitudes were based 

on the Swedish NFI control inventory. The variables most relevant for 
the current study (and possible future replications) from Fridman et al. 
(2019) are presented in Table 2. In the field inventories in the case study 
areas, the height (H) was only measured on a subset of trees within the 

R3k =
∑

j∈M′

k∩Mk

g
(
xjk, β

)(
exp
(
sjk
)
− exp

(
εjk
) )

+

⎧
⎨

⎩

∑

j∈M′

k\Mk

g
(
xjk, β

)
exp
(
sjk
)
−
∑

j∈Mk\M′

k

g
(
xjk, β

)
exp
(
εjk
)

⎫
⎬

⎭
(11)   
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plots, and we therefore decided to use the AGB functions that only 
require tree species and DBH as explanatory variables, which were 
measured on all trees. Thus, we assumed that all trees were properly 
found on each plot, and we only accounted for measurement errors 
occurring through diameter measurements. 

The variances of the error terms δk and τjk were estimated using the 
dataset for which the AGB models were derived (Marklund, 1988). The 
AGB model parameters for pine (T1, stem, and T13, branches), spruce 
(G1, stem, and G11, branches) and birch (B1, stem, B11, branches) were 
estimated using a linear mixed model, implemented in R using the nlme 
package. The relation to AGB was defined as ln(AGB) = β0 +

β1
DBH

DBH+constantspecies 
with the constants for the species pine, spruce and birch 

being 13, 14 and 8 respectively. The estimated variance of the error at 
plot level, σ̂2

δ , and tree level, σ̂2
τ , respectively, are presented in Table 3. 

According to our model assumptions, the estimator of the model 
parameter vector β was unbiased. The trees used to develop the biomass 
functions (Marklund, 1988) were measured very carefully and the 
measurement errors were very small. We therefore assumed that the 
measurement errors for the dataset used to develop the biomass func-
tions had mean zero. 

The position error of plots has a limited impact on the variance of R1 
(which is dominated by measurement errors) and R2 (dominated by 
model errors), since they cause us to measure the trees on a wrongly 
positioned plot, but the measurements themselves are not affected by 
the incorrect position. However, a correct plot position is key when 
linking the measured attributes to other geospatial data, e.g., the remote 
sensing data. 

We simulated perturbed plot center positions by adding an error with 
the magnitude expressed as DRMS, defined as (Devon et al., 2015; 
Yoshimura and Hasegawa, 2003) 

DRMS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
E + σ2

N

√

, (12)  

where σE and σN denote the standard deviation of a normally distributed 
position error in the east and north directions, respectively. We simu-
lated the impact of various position errors: DRMS = 0, 1, 5, and 10 m 
(where σE = σN). Then, we included the trees on the perturbed 10 m plot 
positions instead of the correct 10 m plots and quantified the impact. We 
assumed that the plot position error would not cause large parts of the 
plots to cross any stand borders, since large errors can normally be 
identified as outliers in the analysis. In our case, we used mirroring to 
overcome plot positions randomly falling outside the region we had tree 
data from (Kleinn and Vilčko, 2005). The forest conditions of the “large” 
plots were assumed to represent the order of magnitude of the respective 
errors well within the test sites. We therefore assumed the same order of 
residual errors when the systematic field plots were used in case study B 
and D, as for the subjectively chosen plots in case study A and C. Monte 

Carlo simulations with 10,000 replications per plot were performed, and 
based on these, the expectations and variances of R1k, R2k, and R3k as 
well as the covariance between R1k and R3k were computed for each plot. 
Then, the average expectation and variance over all plots were 
computed for each error type. The average covariance between R1k and 
R3k over all plots was also computed. The Monte Carlo procedure for 
computing unconditional expectations and variances can be summa-
rized as: 

1. Generate perturbed plot-centers assuming normally distributed er-
rors in easting and northing.  

2. Identify trees within the true and perturbed plots.  
3. For each error type and plot, compute the expectation and variance 

conditioned on the position error.  
4. Repeat the first three steps 10,000 times.  
5. For each error type and plot, use the 10,000 replications to estimate 

the unconditional expectation and variance.  
6. For each error type, compute the average expectation and variance 

over all plots. 

A corresponding procedure was used for the covariance between R1k 
and R3k. 

3.4.2. Processing of remote sensing data 
The ALS data were normalized to represent heights above-ground 

using the software Lastools. Then, the following metrics were extrac-
ted as averages from each plot above a height cutoff of 1.37 m above 
ground: the height percentiles 10–90 (p10, p20, …, p90), p95, p99, max, 
average, average square height, standard deviation, skewness (ske), 
kurtosis (kur), canopy cover (the number of first returns above the cover 
cutoff divided by the number of all first returns), and canopy density 
(dns, the number of all points above the cover cutoff divided by the 
number of all returns). Since the plot averages were extracted directly 
from the point cloud, no edge effects were involved (as would happen if 
the point cloud would have been rasterized to pixels first). 

3.4.3. Remote sensing models 
Different regression models were developed in the four case studies 

to link the remote sensing data to the respective field references. For the 
case studies A and C, the number of plots were low (28 and 38 respec-
tively, after removing outliers), and we therefore used a leave-one-out 
(LOO) approach to estimate the RS model parameters and generate 
the predictions using all plots but the one to be predicted. For the case 
studies B and D we had 349 and 219 plots available, respectively 
(Table 4). We considered this sufficient to split the datasets into halves, 
by first ordering the plots according to their AGB, and then assigning 
every second plot to training and validation datasets, respectively. The 

Table 3 
Estimated variances in [(ln(kg))2] of random errors at tree (σ̂2

τ) and plot σ̂2
δ level 

obtained from the AGB model dataset.  

Species Tree level variance σ̂2
τ Plot level variance σ̂2

δ 

Pine 0.05071 0.01809 
Spruce 0.05900681 0.01809 
Birch 0.06007115 0.01809  

Table 4 
Regression model parameters. For case A and C (where LOO was used to estimate 
the parameters), the mean values from the n models are reported.  

Case 
study 

Test site α̂0 α̂1 α̂2 α̂3 σ̂ε n 

A Krycklan − 4.51 16.7 – – 19.6 27 
B Krycklan 13.5 10.9 – – 22.7 172 
C Remningstorp 42.7 0.00669 − 0.992 2.54 24.5 37 
D Remningstorp 13.9 8.84 0.379 – 44.7 109  

Table 2 
Estimated bias and standard deviation (sd) in field measurements performed by the Swedish NFI, based on control inventory data 2012–2016 for common tree at-
tributes used to estimate the AGB using a function. The number of sample trees is denoted by N.  

Attribute Unit Min Max Mean Bias Sd N 

DBH cm 4.0 63 34 0.082 (0.24%) 0.670 (0.19%) 9153 
H m 1.3 37 16 0.071 (0.45%) 0.575 (0.37%) 1957 
ln(H) ln(m) 2.6 5.9 5.0 − 0.006 (− 0.12%) 1.858 (0.37%) 1957  

H.J. Persson et al.                                                                                                                                                                                                                              



Remote Sensing of Environment 283 (2022) 113302

8

training dataset was used to estimate the RS model parameters, and the 
evaluation dataset was used to quantify the model performance. A few 
plots were considered as outliers and therefore removed. 

For all four case studies, we estimated the uncorrected RMSE and 
bias using 

̂RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(Ŷ i − Yi)

2

√

, (13)  

B̂ias =
1
n

∑n

i=1
(Ŷ i − Yi), (14)  

where Yi denotes the reference value for plot i. 
The regression models used in the four case studies (A-D) are pre-

sented in eqs. (15–18), with the estimated parameters listed in Table 4. 
Some high height percentile (e.g., p95) and a density metric (e.g. dns) 
were first tested in additive and multiplicative combinations. Then, all 
explanatory variables were tested and selected with regard to their 
statistical significance, their contribution to lowering the residual 
standard error, and their contribution to the adjusted R2. Trans-
formations of both the dependent and explanatory variables were tested 
to achieve a linear relationship to the references when this was not 
already the case and to obtain a homoscedastic error structure. 

AGB = α0 + α1p60 • dns+ ε, (15)  

AGB = α0 + α1(p50 • dns)1.25
+ ε, (16)  

AGB = α0 + α1
(
p303)+α2ske+ α3p90

̅̅̅̅̅̅̅
kur

√
+ ε, (17)  

AGB = α0 + α1p30+α2p502 + ε, (18)  

where αi, i = {0,1,2,3} denote the parameter values and ε denotes a 
random error. 

We estimated the ECM parameters (λ0, λ1 and σε) for each case study, 
and we adjusted for the measurement, model, and position errors that 
were estimated for each test site (as described in section 3.4.1). After the 
ECM parameters were estimated, we could estimate a corrected RMSE 
(5) and compare with the uncorrected RMSE (13). 

4. Results 

The results showed that the random errors in the field references 
were important to consider and affected the apparent accuracy of the 
RS-based predictions of AGB. In Section 4.1, we present the results of the 
error simulations, 4.2 presents the impact of the errors on the RS-based 
AGB predictions under the assumption of 1 m position error, and 4.3 
presents results for different cases of larger position errors. 

4.1. Estimates of error contributions 

The estimated contribution of each error source and their sum are 
summarized in Tables 5 - 8. Measurement errors (R1k) and model 
parameter errors (R2) appeared as minor error sources compared to the 
position and residual model errors (R3). The expectations were low for 
all three error types, although the small systematic measurement error 
was causing a systematic underestimation of the true AGB of about 1 t/ 
ha, corresponding to <1% of the mean (Table 5). However, the variance 
of the residual errors (unexplained random model errors) due to using a 
model for predicting the AGB from DBH was large. Its impact can be 
quantified by comparing the variance of R3 at a GNSS error = 0 m (no 
position error) with the corresponding variance for other position errors 
in Tables 6 and 8. In Krycklan, at 1 m GNSS error, the residual variance 
component constituted about 87% of the total variance, and the position 
error caused about 10% of the total variance (Table 6). In Remningstorp, 
the corresponding contributions were 80% (residual error) and 17% 
(position error). 

Together, the model residuals and position inaccuracies greatly 
affected the interpretation of the accuracy of AGB predictions obtained 
from the RS model. Many previous studies have ignored the spatial 
correlation of trees within plots, which, however, was found to 
contribute substantially to the field reference errors in the present study. 
The residual model errors of trees decrease with increasing number of 
trees on a plot, which is not the case for the residual plot component 
since it is unique for each plot. Due to the magnitude of the plot 
component in Table 3 (which is on the same order as the tree level 
variance), this indicates that the effect of correlated errors for trees 
within plots has to be considered. The spatial error structure within the 
plots was not investigated and is one aspect to cover in future research. It 

Table 5 
Summary of error expectation contributions in Krycklan, expressed as the mean 
over all plots at the test site. Plot values are presented in figures in Appendix A3. 
The error R1k is dominated by measurement errors, R2k by model parameter 
errors, and R3k by a combination of position and residual model errors.  

GNSS error 
[m] 

Mean E(R1k) 
[t/ha] 

Mean E(R2k) 
[t/ha] 

Mean E(R3k) 
[t/ha] 

Sum 
[t/ha] 

0 1.097 0 0 1.097 
1 1.094 0 − 0.3340 0.7599 
5 1.083 0 − 2.090 − 1.007 
10 1.063 0 − 2.440 − 1.374  

Table 6 
Summary of error variance contributions in Krycklan, expressed as the mean of 
all plots at the test site. Plot values are presented in figures in Appendix A3. The 
error R1 is dominated by measurement errors, R2 by model parameter errors, and 
R3 by a combination of position and residual model errors.  

GNSS 
error  
[m] 

Mean Var 
(R1k)  
[t2/ha2] 

Mean Var 
(R2k)  
[t2/ha2] 

Mean Var 
(R3k) 
[t2/ha2] 

Mean 2Cov 
(R1k, R3k) 
[t2/ha2] 

Sum 
[t2/ 
ha2] 

0 0.4835 0.01242 13.71 0 14.21 
1 0.4828 0.01260 15.24 0.02316 15.76 
5 0.4757 0.01258 23.25 0.1037 21.00 
10 0.4741 0.01247 25.15 0.1853 25.82  

Table 7 
Summary of error expectation contributions in Remningstorp, expressed as the 
mean of all plots at the test site. Plot values are presented in figures in Appendix 
A.3. The error R1 is dominated by measurement errors, R2 by model parameter 
errors, and R3 by a combination of position and residual model errors.  

GNSS error 
[m] 

Mean E(R1k) 
[t/ha] 

Mean E(R2k) 
[t/ha] 

Mean E(R3k) 
[t/ha] 

Sum [t/ 
ha] 

0 1.021 0 0 1.021 
1 1.033 0 2.328 3.361 
5 1.042 0 4.768 5.811 
10 1.043 0 5.073 6.116  

Table 8 
Summary of error variance contributions in Remningstorp, expressed as the 
mean of all plots at the test site. Plot values are presented in figures in Appendix 
A.3. The error R1 is dominated by measurement errors, R2 by model parameter 
errors, and R3 by a combination of position and residual model errors.  

GNSS 
error  
[m] 

Mean Var 
(R1)  
[t2/ha2] 

Mean Var 
(R2)  
[t2/ha2] 

Mean Var 
(R3) 
[t2/ha2] 

Mean 2Cov 
(R1,R3) 
[t2/ha2] 

Sum 
[t2/ 
ha2] 

0 0.7113 0.04137 23.44 0 24.20 
1 0.7223 0.04175 28.18 0.05133 29.00 
5 0.7326 0.04241 39.31 0.1651 40.25 
10 0.7354 0.04129 51.56 0.2901 52.63  
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is likely that the plot size for which this effect can be seen reflects the 
type and size of forest at our test site, and that other regions would have 
this effect at other scales. 

The errors related to position uncertainty of the plot locations were 
relatively influential and should thus be carefully considered in remote 
sensing studies. Depending on the measurement equipment for position 
(better than 1 m in our study) and on the plot location, the resulting 
uncertainty in AGB can vary substantially. For completeness, we 
investigated the effect for various common orders of position errors, as 
listed in Tables 5 – 8 and in Figs. 3. A plot position uncertainty on the 
order of 5 m has been rather common, although the combined use of the 
most recent GNSS systems can decrease the uncertainties. When the 
position accuracy decreases, they may only be paired with more inac-
curate RS data sources providing less information (e.g., when using 
satellite images). A conclusion is that it is important to minimize posi-
tion errors to increase the efficiency of RS data as auxiliary data source. 

4.2. Impact on remote sensing-based AGB predictions 

To address the first objective (describe the impact of field reference 
errors on the apparent accuracy of RS predictions), we estimated the 
ECM parameters, and the uncorrected and corrected RMSE, which we 
used as performance metrics. The ECM parameter estimates were rela-
tively similar for both case study A and B, which both used the data 
located in Krycklan (Table 9, Figs. 4 a,b). This indicates that both the 
smaller (fewer subjective plots) and larger (systematic grid of plots) 
datasets represented the area well. The impact of the errors in the field 
references was 5.7% and 8.3% in the case studies A and B, respectively 
(Table 9). This corresponded to an RMSE that decreased from 19.3% to 
18.1%, and 19.8% to 18.1% respectively (Table 9). The ECM parameter 

estimates were slightly more different for the case studies C and D, 
which used data from Remningstorp. In particular, the residual error σ̂ε 
was about 50% higher in case study D compared to C. The impact of 
errors in the references was 10.6% and 17.8% in the case studies C and 
D, respectively. This corresponded to an RMSE that decreased from 
16.1% to 14.4%, and 32.5% to 26.7%, respectively (Table 9, Figs. 4 c,d). 
The results are indicative for estimation of forest volume as well, which 
is closely related to AGB. 

The average accuracy for different AGB values can be visualized with 
the error model (1) as shown in Fig. 5. The ECM enables the visualization 
of how the bias and precision changes across the range of AGB values, 
while the traditional accuracy metric RMSE indicates a constant accu-
racy, regardless of the AGB value. When comparing the ECM corrected 
accuracy with the uncorrected one, it can also be noticed that the ECM 
corrected has a narrower precision band due to the correction, this is 
particular obvious for the case D. 

5. Discussion 

The contribution from the different investigated error sources to the 
total variance of random errors in the field references varied substan-
tially. We found that, in our case studies, the contributions from random 
measurement errors (R1) and the uncertainty in the AGB model pa-
rameters (R2) could in practice be ignored. On the other hand, the re-
sidual model errors tended to be large, and constituted in our case 
80–87% of the total variance (Tables 6 and 8). An important reason for 
this was that we considered the intra-plot correlations of residual errors, 
which were found to occur in our empirical data (similar to findings by 
e.g., Breidenbach et al., 2014; Chave et al., 2004; Gregoire et al., 1995; 
Lehtonen et al., 2007; Repola, 2009). Studies ignoring this correlation 

Fig. 3. Illustration of Tables 6 and 8. a) Error variance contributions in Krycklan. b) Error variance contributions in Remningstorp.  

Table 9 
Estimates for the ECM parameters (λ0, λ1, and σε), RMSE and bias for the case studies.  

Case study Test site λ̂0 λ̂1 σ̂ε RMSE [t/ha] RMSE* [t/ha] Bias [t/ha] n 

A Krycklan 16.5 0.846 19.7 21.0 (19.3%) 19.8 (18.1%) − 0.277 (− 0.254%) 28 
B Krycklan 11.9 0.859 18.7 20.6 (19.8%) 18.9 (18.1%) − 2.79 (− 2.68%) 174 
C Remningstorp 35.7 0.777 23.3 26.0 (16.1%) 23.3 (14.4%) − 0.374 (− 0.231%) 38 
D Remningstorp 41.3 0.689 35.6 43.4 (32.5%) 35.6 (26.7%) − 0.229 (− 0.172%) 108  
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may underestimate the variance at plot- and stand-level. In case the 
residual errors would have been assumed to be independent, the resid-
ual error component would have been less influential. However, a 
problem in many studies is that researchers that use regional or national 
biomass models rarely have access to the original tree-level AGB model 
data, which are required for the computations we made in this study. 
The position errors were another influential error source (10–17% of the 
total variance at 1 m DRMS). The position errors can be reduced sub-
stantially (from tens of meters to sub meter) by using accurate GNSS 
positioning equipment, e.g., dGPS or RTK GPS, and locating the antenna 
higher above the ground to reduce interference effects. Thus, position 
errors on the order of magnitude of 1 m could be expected to be normal 
in future field inventories. 

Although the measurement errors were small and their contribution 
to the total variance could practically be ignored, we identified a small 
systematic effect which should be considered. If different personnel or 
equipment are used for collecting training and evaluation data, this 
error may have a larger impact. The order of measurement errors were 
estimated for field personnel in the Swedish NFI, which are experienced 
in carrying out such inventories. With less experienced personnel, the 
variance may be larger. The small impact of measurement errors con-
tradicts the findings by Chen et al. (2016) who listed tree attribute errors 
(denoted measurement errors in our study) as the second largest error 
source, almost as influential as the residual errors. However, they did 

not have access to repeated measurements and could therefore not es-
timate this effect directly, but they had to assume the order of this error 
based on inventory tolerance limits. The impact of missed trees or 
counting trees twice were assumed small, but this error type was only 
measured as seedlings on circular plots with 1 m radius by the Swedish 
NFI and could therefore not be estimated properly. The Swedish NFI 
reported a failure of registering on average 0.16 trees (height < 1.3 m) 
per 1 m plot, and this number decreased to 0.01 trees when trees >1.3 m 
(but DBH < 4 cm) were considered (Fridman et al., 2019). The bottom 
line is that the procedure with manual measurements appeared to be 
sufficiently accurate for the RS applications. However, the Swedish NFI 
field protocols are very strict and the personnel usually well trained. In 
less controlled field inventories the measurement errors may be larger. 
Further, any systematic measurement errors will be the same in the field 
data used for model estimation and model evaluation, and thus such 
errors will not be observed in PRUC-based assessments. 

The errors related to using a model for estimating the tree biomass 
are considerable. For larger areas, the uncertainty in the model pa-
rameters tend to dominate the error contribution, while at smaller, local 
areas, the residual model errors become increasingly important to 
consider (Chen et al., 2015, 2016; McRoberts, 2010; McRoberts et al., 
2014b; McRoberts and Westfall, 2014). Within a single test site, where 
the same model parameters are used to estimate both the training and 
validation biomass, the parameter errors will in practice cancel out, 
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Fig. 4. AGB estimated from ALS and validated with reference AGB from the field. a,b) Krycklan (case study A, B). c,d) Remningstorp (case study C, D).  
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given that they affect the entire biomass range similarly. Since we or-
dered the field plots according to their biomass and then assigned every 
second to training and validation, this effect was minimized (Table 6). In 
Appendix A3, Fig. F2 b, it can also be noted that the parameter errors are 
approximately the same across the entire biomass range, which further 
underlines that the model parameter errors will in practice cancel out 
within a test site when PRUC is applied. 

Regional characteristics might make the tree level residuals corre-
lated at certain geographical scales. If this correlation is strong within a 
study area, it would imply that plots used for model estimation and 
model evaluation would be similar with regard to this type of error, 
which would then be hidden in analyses based on PRUC. To investigate 
this we conducted a variance component analysis that enabled us to 
choose a residual model error form that was separated into two frac-
tions: plot-level and tree-level variability. We found that especially the 
plot-level residual errors (common for all trees within a plot) were 
important to consider, while the effect of tree-level errors was milder. 
The latter is typically reduced significantly due to the appearance of 

multiple trees per plot. Yet, this increases the impact of spatial corre-
lation due to trees within a plot tend to be similar. It is often ignored due 
to the increased complexity and lack of empirical data. The biomass 
models we used were created from a sample of 1273 trees, which is fairly 
large for Swedish conditions, but this impact may not be representative 
for other regions or even noticed when using biomass models based on 
other, larger samples. The impact of the correlated tree errors on the 
residual model errors would therefore benefit from being repeated in 
other studies and at other locations, to possibly eliminate any impact of 
our specific set of empirical data. Additional studies are also required to 
further characterize the spatial tree correlation at various distances 
within plots and stands. 

New inventory procedures that originate in RS techniques would 
benefit from new biomass models developed intentionally for being used 
with such metrics that can be obtained with RS. Plot-size and forest type 
are likely having a large impact on the within-plot modeling error, and 
this effect should therefore be addressed further for other forest types 
and other plot sizes. 

Fig. 5. a) The estimation accuracy (square-root of variance of predictions for different reference values) for different AGB values is expressed as bias (solid line) and 
precision (light band, ±2σ). The error characterization model (ECM) and RMSE illustrate accuracy differently across the range of AGB. a, b) Krycklan (case study A, 
B). c, d) Remningstorp (case study C, D). 
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The increased variance following position errors of field plots has 
previously been investigated in various settings, e.g., (McRoberts et al., 
2018; Saarela et al., 2016), but when included and compared with other 
common field error sources, it became clear how important it is to 
reduce this effect. The impact was significant (constituted at least 
10–17% of the total variance, Tables 5 – 8), and when working with RS 
data of high spatial precision (e.g., laser scanning), it is likely the single 
most important factor that in practice can be addressed and improved. 

By considering the field induced errors when deriving the uncer-
tainty of the RS-based predictions, the RS-related uncertainty decreased 
with 6–18% (1.2 to 5.8 percentage points, Table 9). The more accurate 
the RS-based predictions are, the more important it is to address the 
errors in the reference data. Currently, particularly laser-based and 
photo-based RS techniques would benefit from using the proposed ECM, 
and to consider the investigated reference data errors. This would 
mainly be due to the significantly higher positional accuracy for these 
techniques, compared to most moderate-resolution satellite-based ones. 
Persson and Ståhl (2020) discussed how the relation of random errors in 
the RS data and in the reference data (field) affect the apparent accuracy 
of RS-based predictions. They suggested that when the ratio of the 
standard deviation between them is <2, the reported RMSE is severely 
affected. In the current study, this ratio was about 5 (Tables 6, 8 and 9), 
and the field reference errors already had a considerable impact on the 
results. 

The assumptions we used in this study appear reasonable given the 
forest and inventory procedures used in Scandinavia, but with other 
forest types and other equipment and personnel, the assumptions must 
be adjusted correspondingly. For example, the plot sizes should likely be 
adjusted to match the trees in the study area. Other types of trees and 
vegetation will also cause other levels of measurement errors and po-
sition errors. The position errors are likely to increase considerably as 
the canopy is closing, and in forest with higher basal area. This could 
have the impact that position errors become equally important as the 
residual model errors when trees within plots are correlated, when 
working in areas with higher biomass. However, if the plot sizes are 
increased to better match larger trees with higher biomass, the impact of 
position errors are reduced. How these effects interact needs to be 
further investigated. 

The ECM is suitable to handle cases where the mean errors can be 
described by a simple linear model, assuming a homoscedastic error 
structure. However, if the errors are heteroscedastic, the ECM still pro-
vides valid results, although the width of uncertainty (the bands in 
Fig. 3) cannot be properly described across the range of biomass. This 
poses a possible extension to the current ECM in future studies. 

The order of magnitude of the respective error source that were 
investigated in this study generally agrees with previous research 
(Berger et al., 2014; Gertner, 1990; Gertner and Köhl, 1992; McRoberts 
et al., 2018), but it was important to compare their effects on AGB 
predictions in the same study to rank their importance, and furthermore, 
to quantify their impact on the accuracy reported in RS studies using 
such reference data that are assumed true. 

6. Conclusions 

The paper addressed the impact of uncertainties in field reference 
data when used for training and evaluating plot level biomass estimates 
(or any other relevant variable of interest) in remote sensing studies 
based on pairwise comparisons at the level of typical assessment units. 

The use of an ECM, proposed in Persson and Ståhl (2020), provided the 
framework to characterize, quantify, and estimate the impact of three 
common error sources: measurement errors, model errors, and position 
errors. Four conclusions were drawn from the study. First, field inven-
toried reference data are prone to such levels of errors, that the reported 
uncertainty of common RS-based predictions is significantly affected. In 
this study, the reported RMSE was reduced about 6–18%, by properly 
addressing the field reference errors. Second, the framework of using an 
error characterization model was useful for providing more details about 
the error structure of RS-based predictions, when their magnitude in 
terms of RMSE is known. It was demonstrated how three different error 
sources could be taken into account in correcting the parameter esti-
mates of the ECM, since the ECM would otherwise have indicated an 
incorrect error structure. Third, the residual model errors related to 
using a function for estimating the biomass on the circular 10 m plots 
were severely affected by correlated tree-level residual errors. Most 
remote sensing studies do not have access to the necessary data to cor-
rect for this error source (those used for creating the biomass models), 
but nevertheless, it is important to acknowledge the presence of this 
error term. Furthermore, it should be prioritized to provide estimates of 
the variances of errors on both tree and plot level together with the 
biomass models, when such models are estimated in the future. Fourth, 
the position of field plots constituted a significant error source that 
increased rapidly with increased GNSS inaccuracies. This is also the 
most important error source that could be reduced in future studies, 
using modern GNSS equipment. 
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Appendix A. Appendix 

A.1. Derivation for one tree species 

In this first part, we consider the case where we have only one tree species, and therefore only need one model function, f(xjk,β). 

Let ∇βg(xjk,β) denote the gradient vector with elements ∂g(xjk ,β)
∂βi

, i = 0, …, p. Likewise, let ∇xg(xjk,β) denote the gradient vector with elements ∂g(xjk ,β)
∂xjkl

, 
l = 1, …, p. From (6) and (7), by a Taylor approximation of Tref, k, we see that 
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∑
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k
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xj′ k,β
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exp
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exp
(
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=Tk+
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g
(
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)(
exp
(
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)
− exp

(
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))
+

⎧
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⎩

∑
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k\Mk

g
(
xj′ k,β

)
exp
(
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)
−
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j∈Mk\M′
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g
(
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⎫
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exp
(
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)
.

If we rewrite this expression, we get (8), i.e., Tref, k − Tk ≈ R1k + R2k + R3k, where Rik, i = 1, 2, 3, are defined in (9), (10), and (11), respectively. 
Let Σηjk and Σβ denote the covariance matrices of ηjk and β, respectively. Given the position error ρk, R1k and R2k can be handled as in Gertner (1990). 

That is, 

E(R1k|ρk) =
∑

j′ ∈M′

k

exp
(
sj′ k

)(
∇xg

(
xj′ k, β

) )T E
(
ηj′ k
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,
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j′ ∈M′

k
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)
.

Corresponding unconditional expectations and variances can be obtained through the law of total expectation, E(Rik) = E(E(Rik|ρk)), and the law of 
total variance, Var(Rik) = Var(E(Rik|ρk)) + E(Var(Rik|ρk)), respectively. For computing these unconditional quantities, Monte Carlo simulations may be 
used. 

Let us consider R3k, and recall that εjk = δk + τjk. It is assumed that δk and τjk are independent random variables with mean zero and variances σδ
2 and 

στ
2, respectively. Given the position error ρk, we get 
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and 
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for all i ∕= j. Thus, 
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The corresponding unconditional expected value and variance can be written as 

E(R3k) = E(E(R3k|ρk) ) = E

⎛

⎝
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where the expected value on the right-hand side of (A1) and the variance on the right-hand side of (A2) can be computed using Monte Carlo sim-
ulations. Here it is the position error that is random, and this error determines which trees that belong to M′

k, and how M′

k relates to Mk. 
In general, we have 

E
(
Tref ,k − Tk

)
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and 
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Thus, in addition to what has already been derived, we also need to determine the covariance terms, and for doing that we use the law of total 
covariance, 
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We assume that {ηjkl}, {β̂ i}, and {εjk} are independent sets of random variables. Then, Rik and Rjk are conditionally independent given the position 
error ρk, for all i, j = 1, 2, 3, where i ∕= j. Hence, 
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which all can be computed using Monte Carlo simulations. 

A.2. Derivation for multiple tree species 

In this second part, we consider the case where we have more than one tree species. In this more general case, the bias correction sjk, the functions f 
and g, the parameter vectors β and β̂, and the model for εjk will be different for different tree species. Except for Var(R3k|ρk), the generalization is 
straightforward. Therefore, below we focus on Var(R3k|ρk). 
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Let us consider the case when we have two tree species, a and b. Then, 
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Assume that εjk
(a) = δk + τjk

(a) and εjk
(b) = δk + τjk

(b), where δk, τjk
(a), and τjk

(b) are independent. Then we get 

Cov
(

exp
(

ε(a)jk

)
, exp

(
ε(a)jk

))
= Cov

(
exp
(

δk + τ(a)jk

)
, exp

(
δk + τ(a)jk

))
= exp

(
σ2

τ(a) + σ2
δ

)[
exp
(
σ2

τ(a) + σ2
δ

)
− 1

]

and 

Cov
(

exp
(

ε(a)ik

)
, exp

(
ε(a)jk

))
= Cov

(
exp
(

δk + τ(a)ik

)
, exp

(
δk + τ(a)jk

))
= exp

(
σ2

τ(a) + σ2
δ

)[
exp
(
σ2

δ

)
− 1

]

for all i ∕= j. Likewise, for species b we get 
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Thus, 
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In case of three tree species, a, b, and c, we get 
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A.3. Variance results for single plots 

In this section we present some additional results for single plots, hence providing illustrations of and enabling a graphical representation (Figs. F1- 
F2) of the errors in relation to the reference biomass.   
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Fig. F1. Histograms for (left) the expectation and (right) variance of the error types in Remningstorp, assuming 1 m position uncertainty.   
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Fig. F2. Scatter plots of variance contributions vs. reference AGB in Remningstorp, assuming 1 m position uncertainty. A) R1, b) R2, c) R3, d) Sum of all variance 
contributions. 
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