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Ecosystem size-induced environmental fluctuations affect the
temporal dynamics of community assembly mechanisms
Raven L. Bier1,3,4✉, Máté Vass 1,4, Anna J. Székely 1,2 and Silke Langenheder 1

© The Author(s) 2022

Understanding processes that determine community membership and abundance is important for many fields from theoretical
community ecology to conservation. However, spatial community studies are often conducted only at a single timepoint despite
the known influence of temporal variability on community assembly processes. Here we used a spatiotemporal study to determine
how environmental fluctuation differences induced by mesocosm volumes (larger volumes were more stable) influence assembly
processes of aquatic bacterial metacommunities along a press disturbance gradient. By combining path analysis and network
approaches, we found mesocosm size categories had distinct relative influences of assembly process and environmental factors
that determined spatiotemporal bacterial community composition, including dispersal and species sorting by conductivity. These
processes depended on, but were not affected proportionately by, mesocosm size. Low fluctuation, large mesocosms primarily
developed through the interplay of species sorting that became more important over time and transient priority effects as
evidenced by more time-delayed associations. High fluctuation, small mesocosms had regular disruptions to species sorting and
greater importance of ecological drift and dispersal limitation indicated by lower richness and higher taxa replacement. Together,
these results emphasize that environmental fluctuations influence ecosystems over time and its impacts are modified by biotic
properties intrinsic to ecosystem size.
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INTRODUCTION
The community composition of both micro- and macro-organisms
at a given point in space and time results from the interaction of
multiple assembly processes, including ecological drift, species
sorting (environmental filtering), dispersal, and speciation [1–5].
Most observational metacommunity studies, however, focus only
on spatial snapshots without considering temporal dynamics of
community assembly and association networks, or historical
contingencies [2, 6]. Hence, we still lack knowledge about the
underlying mechanisms and regulating factors that temporal
dynamics encompass.
When species sorting assembles communities, their composition

tracks changes in environmental conditions that occur in time and
space [2, 7]. However, environmental tracking can be hindered or
disrupted [8]. Such asynchrony can lead to historical contingencies
by priority effects (e.g., [8, 9], which can occur during early
community formation or when communities re-assemble following
perturbation. An important consequence of priority effects is
that they impede or delay environmental tracking enacted by
species sorting.
Environmental changes may influence temporal community

assembly processes and the strength of this can be regulated by
ecosystem size (e.g., [6]. Studies have shown that microbial
communities exposed to disturbances are initially, and often to a
strong degree, stochastically assembled, but that the importance of

species sorting increases later during community re-assembly as
more species from the regional species pool arrive [10–13]. Rapidly
fluctuating environmental conditions, however, may continuously
disrupt environmental tracking by reducing opportunities for
species sorting to select and shape local communities before the
environmental conditions change again. This might promote
coexistence of species with different niche optima [14–16] and,
thus, reduce beta diversity [17], or could cause extinctions that
bolster dispersal limitation and priority effects [18]. Nevertheless,
many studies happen in controlled settings; thus, we lack knowl-
edge on the temporal dynamics of these processes within larger,
more complex habitats which track environmental changes [2, 6].
Disturbance strength may uniquely affect microbial communities in
ecosystems of different sizes as ecosystem size may influence
assembly processes by increasing habitat heterogeneity, commu-
nity abundance [6, 19, 20], and the pace at which communities track
environmental changes. For instance, communities may experience
different environmental variability including press disturbances
(e.g., climate warming, eutrophication, or saltwater incursion),
periodic and stochastic environmental fluctuations, where the latter
may influence community assembly in response to the former over
time and space.
Here, we implemented an experiment with freshwater bacterial

metacommunities to test how different ecosystem size-induced
environmental fluctuations influence the temporal dynamics of
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community assembly mechanisms. We collected a 64-day time
series from mesocosms that gave bacterial communities time to
experience natural environmental fluctuations. Specifically, we set-
up a natural experimental landscape with mesocosms containing
identical lake water that differed in volume, which induced
differences in environmental fluctuation intensity among the
mesocosms. We created a press disturbance by applying a salinity
gradient in which each mesocosm in a volume category had a
different salinity as it has been shown that salinity affects bacterial
communities in many ecosystems (e.g., [21–24]. The differences
in the degree of environmental fluctuation among the size
categories relied on larger water masses requiring more time to
match changes in the surrounding air temperature combined with
the increase in surface area-to-volume ratio that muted changes in
the amplitude of salinity and other variable concentrations due to
relatively less evaporation and precipitation. We hypothesized that
the importance of species sorting would increase over time in
local communities of larger mesocosms that experience relatively
minor environmental fluctuations because their communities will
have sufficient time for species selection in response to the initial
salinity. Second, other environmental changes occurring in
mesocosms would be slow in large mesocosms and this would
allow time for taxa to be recruited from internal and external
dispersal sources and to become active. We expected that species
sorting related to salinity differences across communities, i.e., at
the metacommunity scale, promotes recruitment of taxa best
suited to the salinity. Last, we hypothesized that stochastic and/or
dispersal-related assembly processes should be more important in
small mesocosms where communities experience strong environ-
mental fluctuations that continually disrupt environmental track-
ing. We combined quantitative path analysis methods that aim
to estimate metacommunity processes with a network approach
that identifies environmental tracking patterns through local and
time-delayed co-occurrences to provide insights into temporal
dynamics of microbial ecosystems [25].

METHODS
Experimental set-up
Three different sizes (24.5, 70, or 200 L with surface areas 0.21m2, 0.27m2,
and 0.39m2, respectively) of hard-shell polyethylene mesocosms with an
inverted conical frustum shape were arranged in a field beside Lake Erken
(16 per size category) and filled with 0.1 mm filtered lake water from Lake
Erken in Sweden (59°51’N 18°35’E) (water properties in Supplementary
Information). Mesocosms were seeded with 1 L of sieved and mixed
surface sediments collected from Lake Erken at ~0.5 m water depth.
To induce species sorting with a press disturbance, a salinity gradient

was created for each size category of mesocosms using nitrate- and
phosphate-free sea salt (Red Sea Aquatics Ltd, Verneuil-sur-Avre, France).
The gradient ranged from freshwater (0 ‰) to 6 ‰ with the salinity
increasing by a 0.4% increment from one salinity level to the next
(rationale for range in Supplementary Information). Mesocosm water
surface area and volume were proportional such that air or rain dispersal
was proportional across size classes. Mesocosm sediment was also a
recruitment source [26–28]. Equal mesocosm bottom surface areas allowed
for equal recruitment independent of fluctuation category.

Monitoring and sampling
Mesocosms were monitored on days 1, 2, and 4, and then every fourth day
for 64 days from July to September 2016. Monitoring included depth
profiles of conductivity (to measure salinity changes) and temperature, and
depth-integrated pH, chlorophyll-a, and colored dissolved organic matter
(CDOM) fluorescence (see Supplementary Information for details). Weather
data from Svanberga, Sweden (0.87 km southwest of the site) included
daily precipitation and hourly air temperature (Swedish Meteorological and
Hydrological Institute). Every eighth day, water was collected for total
organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) and
analyzed using established methods [29].
Water samples for enumerating microorganism cells were collected

simultaneously with bacterial community composition (below) and preserved

with sterile formaldehyde to 2.5% [30]. Samples were stained with SYTO 13
Green Fluorescent Nucleic Acid Stain (ThermoFisher Scientific), counted
(CyFlow Space flow cytometer, Partec, Münster, Germany) and analyzed using
FlowingSoft software (Perttu Terho). Cell abundance was calculated as cells
mL−1 while total community size was calculated as cell abundance (mL−1)
multiplied by the entire mesocosm volume.

Bacterial community composition
Mesocosm water (0.5 L, depth-integrated) was collected on days 1, 2, 4, 8,
and every 8th day thereafter for 64 days to assess community composition
through 16 S rRNA amplicon sequencing of reverse transcribed 16 S rRNA
(cDNA) to specifically detect active members [31]. Ongoing immigration
from external sources was characterized using sterile air and rain traps
(n= 3, SA= 96 cm2) interspersed beside the mesocosm units. Sheltered
air traps contained 200 mL sterile filtered water whereas rain traps were
uncovered. Every 8 days, trap samples were collected, pooled, and
processed with mesocosm samples for 16 S rRNA gene amplicon
sequencing. Both the water samples from the mesocosms (for RNA
analysis), and the air and rain immigration samples (for DNA analysis)
(details below), were collected and filtered onto 0.2 µm pore-size filters
(47 mm Supor-200 filters, Pall Corporation, Hampshire, UK) until 5 min or
0.5 L volume was reached. Filters were flash-frozen in liquid nitrogen and
stored at −80 °C. DNA from initial lake water and sediment used in the
experiment was sampled to learn initial communities and seed banks that
could provide a species pool from which to identify sources of active
bacterioplankton (RNA analysis) in the water column over the duration of
the experiment.
Nucleic acids were extracted using a modified protocol from Easy-DNA kit

(Invitrogen, Carlsbad, CA, USA). Mesocosm water samples for RNA analysis
were treated with DNase I (Invitrogen, Carlsbad, CA, USA) and transcribed to
cDNA [32]. Primers 341 F [21] and 805RN [33] containing Illumina adaptors
[34] were used for all amplifications. Purified, barcoded samples were
quantified (Quant-iT PicoGreen dsDNA Reagent Kit, Invitrogen, Carlsbad, CA,
USA), pooled, and gel purified (GeneJET gel extraction, ThermoFisher
Scientific, Uppsala, Sweden). See DOI for a detailed protocol: dx.doi.org/
10.17504/protocols.io.xekfjcw and Supplementary Information for PCR
conditions. Pools were submitted to SNP&SEQ Technology platform at
SciLifeLab in Uppsala, Sweden for two MiSeq sequencing runs with v3
chemistry (Illumina).

Data processing
Sequencing resulted in 35.6 million paired reads from 609 demultiplexed
samples including 12 extraction and PCR negatives. Primers were removed
from sequences using cutadapt v 2.7 ref. [35]. The DADA2 pipeline [36] was
used for sequence processing and taxonomy assignment of Amplicon
Sequence Variants (ASVs) using the SILVA v. 138.1 reference database [37]
(Supplementary Information, Table S1).
For beta diversity analyses, ASVs with counts less than 10 were removed

and samples were subsampled to a minimum of 5028 reads, retaining 7983
unique ASVs. Samples not meeting the 5028 reads requirement were
excluded (Table S2). Both alpha and beta diversity datasets represented
99% coverage (the probability that another individual collected from the
original community has already been sampled) [38, 39]. Raw sequences are
available in the European Nucleotide Archive (study accession number
PRJEB26595).

Statistical analyses
Statistical analyses were conducted in R (v3.4.3 and v4.0.2) ref. [40] with
package “vegan” [41] unless otherwise specified.

Fluctuation magnitudes among mesocosm sizes. For each environmental
variable, fluctuations data were analyzed using the mean of absolute
differences of mesocosms in a size category between one date and the
previous sampling date. For variables with depth profiles (conductivity and
temperature), the absolute difference at each depth was used to calculate
the mean change per mesocosm. The environmental variables dataset is in
the DiVA repository [42]. To determine if the magnitude of changes
differed between mesocosm sizes over time, nonparametric tests for
repeated measures with an ANOVA-type statistic (ATS) were used (R
package and function nparLD, ref. [43]). Mesocosms were assessed using
principal components analysis (PCA) of original and absolute changes of
environmental variables (both log-transformed) and fit with environmental
vectors (Fig. S2).
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Community composition, diversity, and recruitment. Non-metric multi-
dimensional scaling (NMDS) with Bray-Curtis dissimilarities was used to
visualize bacterial community composition and environmental variables.
Shannon index and Pielou’s evenness were calculated and richness was
estimated using the package “breakaway” [44]. Temporal beta diversity
differences in each mesocosm were evaluated by comparing each
community with the previous using Jaccard pairwise dissimilarity values.
Dissimilarity was partitioned between taxa turnover (taxa replacement)
and community nestedness (chronological subsets of taxa) using package
“betapart” v1.5.2 ref. [45]. Variation from each partition captured by
mesocosm size was compared using PERMANOVA tests [46] with function
adonis and 999 permutations.
Recruitment was evaluated by pooling each mesocosm’s active ASVs across

days; ASVs present on day one were removed from the pool leaving those
recruited during the experiment. Recruited ASVs were matched with their
source seed bank(s) based on DNA from sediment, initial lake water, air, and
rain. Sources for unmatched ASVs were considered unknown. For each
mesocosm, the percent of recruited ASVs was calculated, split into each source,
and examined across the salinity gradient using Pearson’s correlations.

Path analysis. To detect drivers of metacommunity dynamics, a spatio-
temporal path analysis was used [47]. This method calculates dissimilarity for
all community pairs sampled over time and space and estimates, as
individual paths on this beta-diversity measure, the influences of spatial
distance (Δspace), temporal distance (Δtime), environmental distance
(ΔEnvi), mean community size (<CommSize > , cell abundance multiplied
by mesocosm volume), and absolute differences in community size
(ΔCommSize) and taxa richness (ΔRich). A positive relationship between
differences in community size and differences in richness could be explained
by nestedness and would increase community dissimilarity [47]. Bray-Curtis
dissimilarity was used for the community dissimilarity matrix (βBray-Curtis).
A permutation-based approach adjusted with Benjamini-Hochberg
procedure indicated path significance. Model fit was assessed with the
standardized root mean square residual (SRMR). The analysis was run
separately for each mesocosm size using the days required for network
analysis (Supplementary Information), with the sem function in R package
“lavaan” [48].

Network analysis. To uncover local and time-delayed microbial associa-
tions and the extrinsic effects of environmental variables on bacteria,
extended local similarity analysis (eLSA) was applied [25]. Given our
temporal data, this approach detects undirected associations (e.g., without
time delays), and associations where the change of one factor (a taxon or
environmental variable) chronologically leads or follows another factor. For
a link between taxa and environmental variables, the association type
(delayed or non-delayed) can indicate tracking that is time-lagged due to
transient priority effects, or simultaneous through species sorting,
respectively. Associations were determined for each mesocosm size
category using eLSA wherein mesocosms within a size category were
used as replicates (n= 16). Thus, for a given timepoint, each environmental
variable, including salinity, from the same size category was normalized
using the ‘percentileZ’ method and pmix which uses the determined
theoretical P-value followed by permutation testing (n= 1000). Because of
the within- and across-size variability of bacterial communities (e.g.,
significant differences in taxa richness), we selected and analyzed only the
core bacterial groups for each mesocosm size to make it comparable.
Hence, networks used the 50 most abundant ASVs from each size category.
eLSA (v1.0.2) was run over eight sampling time points, allowing for local
similarity (LS) correlations between samples taken eight days apart (d= 1).
Only strong correlations with |LS | value ≥ 0.5 and Q ≤ 0.01 were considered
and visualized in Cytoscape v3.8.2 [49]. Network characteristics were
calculated using the Cytoscape plugin NetworkAnalyzer [50]. See
Supplementary Information for details on sample selection, dominant
ASV abundances, and statistics.

RESULTS
Environmental fluctuations in mesocosms
Environmental variable fluctuations corresponded with mesocosm
size and reflected rainfall and air temperature (Fig. S1, Table S3,
Fig. S2). Size categories experienced significantly different
conductivity and temperature fluctuations. After four days small
and medium mesocosm conductivity fluctuated more than large
mesocosms (Fig. S1, Table S3). Mean temperature fluctuation

increased inversely with mesocosm size (Table S3). Mesocosm
depth profiles showed stable conductivity, but temperature
decreased with depth in medium and large mesocosms (Fig. S3).
Mesocosm sizes differed in nutrient concentrations and the

absolute change of other environmental variables (chl-a, CDOM, pH,
TN, TOC, TP and cell abundance, Table S3) and most pairwise
comparisons showed that the degree of change differed signifi-
cantly between sizes with the greatest changes in small mesocosms.
Absolute changes between sampling dates and individual time-
points grouped according to size (Fig. S2). Measured nutrients and
conductivity positively correlated with decreasing mesocosm sizes
(environmental vector correlations, p < 0.05). For water tempera-
ture, sampling date was more influential than mesocosm size. Cell
abundances per equal volume (cells mL−1) increased over time and
were highest in small and medium mesocosms (ATS, p < 0.001,
Fig. S4A). However, the total abundance of cells per an entire
mesocosm was lower in small than medium and large mesocosms
starting from day 24 (ATS, all p < 0.002, Fig. S4B).

Community composition, diversity, and recruitment
Bacterial community composition shifted with time and initial
conductivity in all mesocosm sizes (Fig. S5–S7). Diversity indices
(estimated richness, Pielou’s evenness, Shannon index) did not
differ on the first day (two-way ANOVA, all p > 0.05), but over time
all three indices differed by mesocosm size (Fig. 1, repeated
measures ANOVA, all overall p ≤ 0.001; pairwise Bonferroni
adjusted). All sizes differed significantly in bacterial richness which
was lowest in small and highest in large mesocosms (all p ≤ 0.001).
The more evenly distributed ASV abundances in large mesocosms
widened the separation in Shannon indices between large and
small or medium mesocosms, indicating a greater presence
of dominant and/or rare taxa in smaller mesocosms (Fig. 1).
Mesocosm size explained some variability in beta diversity from
turnover (F model = 13, R2= 0.04, p ≤ 0.001) with communities in
small mesocosms experiencing higher turnover by taxa replace-
ment than those in large mesocosms (Wilcoxon Test, W= 4276,
Bonferroni p.adj.= 0.02, Fig. S8A). Statistically, mesocosm size did
not explain variability in nestedness, although communities in
large mesocosms trended towards greater nested species loss
(Fig. S8B).
Recruited ASVs as a proportion of total unique ASVs, had weak

negative Pearson’s correlations with the salinity press disturbance
in small and large mesocosms (r=−0.35 and −0.39, p < 0.005,
respectively, Fig. S9). Less than 15 % of recruited ASVs in each
mesocosm were attributed to a known source. In all mesocosm
sizes, recruitment from water declined significantly with increas-
ing salinity (small: r=−0.90, medium: r=−0.85, large: r=−0.89,
all p < 0.001). Recruitment from sediment showed different
patterns across salinity levels in small and large mesocosms: it
decreased in small mesocosms and was unchanged in large
mesocosms (r=−0.70, p= 0.002; r= 0.45, p= 0.08, respectively).
Sediment was typically the largest recruitment source in the most
saline mesocosms. Air and rain recruitment was related to salinity
level only in the medium mesocosms where it was weakly
positively correlated (air: r= 0.52, p= 0.04, rain: r= 0.58, p= 0.02).
The fraction of 156 recruited ASVs from both rain and air sources
was not correlated with salinity (all p ≥ 0.1).

Path analysis
Bacterial metacommunities in mesocosms of different sizes
experienced disparate relative influences from species sorting by
environmental variation, demographic stochasticity, and dispersal
limitation (Fig. 2). The model fit for small mesocosms was roughly
twice that of medium and large mesocosms (Fig. 2).
Species sorting (ΔEnvi) had the most influential direct effect on

community dissimilarity (βbc) (Fig. 2). This effect was strongest in
small mesocosms and similar in medium and large mesocosms
(sum of absolute standardized estimates 0.925, 0.773, and 0.766,
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respectively), but all sizes had significant environmental distance
and community dissimilarity relationships (Tables S4–S6). Small
mesocosms had five significant relationships between community
dissimilarity and environmental variables (conductivity, tempera-
ture, chlorophyll-a, TOC, and TN); large mesocosms had three
(conductivity, temperature, and chlorophyll-a), and medium
mesocosms had only conductivity. Conductivity correlated most
strongly with community dissimilarity of medium, followed by
large and small mesocosms. Significant correlations between
temporal (Δtime) or spatial (Δspace) distance and environmental
(ΔEnvi) distance were positive and increased with mesocosm size.
The indirect effect of time on community dissimilarity through
species sorting was apparent with all measured variables except
conductivity.
Demographic stochasticity was indicated by significant negative

relationships between mean community size (<CommSize > ) and
community dissimilarity in all mesocosm sizes (Fig. 2, Tables S4–S6).
Small mesocosms had the strongest influence by demographic
stochasticity. All mesocosm sizes had positive correlations between
temporal distance and community dissimilarity indicating addi-
tional demographic stochasticity. Relationship strengths differed
with size: temporal changes had the greatest influence in large,
then small, then medium mesocosms.
Dispersal limitation shown as a positive correlation between

geographic distance and community dissimilarity appeared only
for small mesocosms (Fig. 2). Large mesocosms had a significant
negative correlation between geographic distance and commu-
nity dissimilarity but this was considered an artefact of the linear
modelling framework [47] and negligible compared with the
relationship between space and community dissimilarity via the
environmental variation pathway.
The path analysis for medium and large mesocosms also

suggested an effect of taxa nestedness whereby communities
form as subsets of original communities over time or space
(Tables S4–S6). First, differences in community richness (ΔRich)
positively correlated with community dissimilarity. This relationship

was strongest in large mesocosms. Second, a significant positive
relationship occurred between differences in community size
(ΔCommSize) and richness in medium and large mesocosms.

Association networks
Association networks of the 50 most abundant ASVs (members
of Actinobacteriota, Bacteroidota, Cyanobacteria, Planctomyce-
tota and Proteobacteria) differed among the three mesocosm
sizes (Fig. 3, Table S7). The number of total edges and ASV nodes
increased with mesocosm size, and the proportion of delayed
(time-shifted) associations were higher in larger mesocosms
(small: 25.9 %, medium: 43.5 %, large: 44.5 %) (Table S7). Small
mesocosms had the most ASVs (n= 18) that were unassociated
with environmental variables and bacterial abundance while
medium and large mesocosms had only 5 and 8 ASVs,
respectively (Table S7). Salinity had no associations with any
‘core’ ASVs at LS | correlations of ≥ 0.5.
Association networks were quantitatively compared by meso-

cosm size with commonly used topological characteristics.
Negative associations, average number of neighbors, and network
density (the proportion of possible edges that are associated with
nodes) increased with mesocosm size (Table S7). In contrast,
network heterogeneity (unevenness of the number of connections
per node) and network centralization (the concentration of
centrality among the nodes) decreased with ecosystem size.
When considering only taxa associations, small mesocosms had
the least centralized network with more taxa displaying similar
numbers of links (Table S7).

DISCUSSION
Here we show how differences in environmental fluctuation
strengths due to differences in ecosystem, i.e. mesocosm, size
influenced the temporal dynamics of community assembly in
response to a salinity press disturbance (Fig. 4). First, species sorting
was generally the most influential process for all mesocosms but
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there were differences in how species sorting operated among
mesocosm sizes at the community (path analysis) and individual
taxa levels (association network analysis). These evaluations
indicated that under low environmental fluctuations, dominant
ASV populations were effective trackers of environmental condi-
tions. When ecosystem size-induced environmental fluctuations
were strong (i.e., small mesocosms), environmental tracking was
disrupted. Second, the salinity press disturbance altered community
composition, especially under stable conditions (i.e., larger meso-
cosms), through the recruitment of taxa from seed banks (at high
salinity sediment was the primary identified source). Third,
stochasticity and dispersal-related assembly processes (e.g., dis-
persal limitation) were generally more important for communities of
small ecosystems. Overall, our study aligns with previous findings
that differences in ecosystem size have ecological consequences
that influence community assembly processes [51–53], but here we
identifed this effect to derive from the environmental fluctuations
created by ecosystem size differences and corresponding differ-
ences in species sorting effects.

Salinity press disturbance enforces environmental tracking
Differences in the magnitude of salinity press disturbances induced
clear compositional shifts within and across mesocosms over time.
This was expected as we used salinity to induce species sorting
because it is an environmental factor that causes clear taxonomic
differences in aquatic bacterial communities [24, 54–57]. However,
there were disparities in the role of salinity for structuring bacterial
communities in each mesocosm size.
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Fig. 3 Association networks and the relative abundances of the
50 most abundant bacteria in mesocosms of different sizes. Panels
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categories (n= 16). All significant (p ≤ 0.01 and Q ≤ 0.01) pairwise local
similarity correlations (LS ≥ 0.5) are shown as edges in the networks.
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strength (based on LS values). Solid lines refer to positive associations
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clarity, nodes of environmental variables were moved to the side.
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Fig. 2 Path analysis diagrams of factors shaping bacterial
communities in mesocosms of different sizes. Panels show
the small (A), medium (B), and large (C) mesocosm sizes. The
influence of spatial distances (Δspace), temporal distances (Δtime),
environmental distances (ΔEnvi), mean community size (<Comm-
Size >), absolute difference in community size (ΔCommSize) and
species richness (ΔRich) on community dissimilarity (βBray-Curtis) was
quantified following Jabot et al.’s framework (2020). Arrow width
represents, and increases proportionally with, standardized estimate
strength. Arrows with positive estimate strength are solid lines and
negative estimates are dashed lines. For environmental variables,
the absolute values of standardized estimates were added. Effects
shown have p < 0.05. SRMR= Standardized Root Mean Square
Residual. See Tables S4–S6 for standardized estimate values.
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The path analysis and network analysis results indicated that
species sorting patterns differed across mesocosm sizes and were
altered by time. The direct effects of significant environmental
variables with unidirectional influences (i.e., salinity and tempera-
ture) on species sorting were most influential in medium and
large, stabler mesocosms. However, when variables prone to
feedbacks (i.e., nutrients, see below) were included into the total
environmental effect on composition, species sorting was greatest
in small, highly fluctuating mesocosms. In contrast, the indirect
effect of time on composition via species sorting increased with
mesocosm size and was driven primarily by changes in all
environmental variables except salinity (which changed minimally
within a mesocosm compared to the spatial salinity gradient). This
temporal pattern generally agreed with the network results of the
50 most abundant bacteria which showed that they best tracked
multiple environmental variables over time in medium and large
mesocosms. Interestingly, almost all ASVs directly linked to
environmental variables but populations of core groups of taxa
did not oscillate strongly with temporal salinity changes (although
weak associations, |LS | < 0.5, occurred).
The relationship between mesocosm size and environmental

variables with the potential for feedbacks (i.e., nutrients) in the
path analysis, suggests potential bottom-up effects. Although the
path analysis portrays nutrients as effect variables, they are also
modified by microorganisms. Likely due to the greater sediment:
water ratio and the potential for salts to release sediment-bound
nutrients through ion exchange, small mesocosms had greater
densities of bacterial cell abundances and greater water nutrient
and chlorophyll-a concentrations. Algal blooms were also
observed, potentially increasing labile DOM resources via phyto-
plankton exudates. Indeed, resource availability and primary
production may have played a major role in species sorting. In
high-nutrient lakes, phytoplankton biomass and bacterial com-
munity composition were related [58]. These conditions could
increase competition which hinders synchrony between abiotic
variables and taxa [59].
There were clear taxonomic shifts in bacterial communities

related to salinity preferences in space regardless of mesocosm
size. For example, in agreement with other studies (e.g., [60])
Frankiales and Burkholderiales were relatively abundant only at low

salinity levels whereas Synechococcales, which includes halotoler-
ant species [61], became relatively more abundant at higher
salinities (Fig. S7). However, the lack of a strong direct species
sorting effect from temporal changes in salinity could result from
several factors. First, salinity differed more across the salinity
gradient (spatial changes) than within a mesocosm (temporal
changes). Second, in the network analysis, we calculated
associations only among the 50 most abundant taxa, thus, we
likely overlooked conditionally rare taxa that can be temporarily
abundant [62] as a consequence of the rapidly changing
environment in small mesocosms. This is supported by the trend
of higher taxa turnover and direct demographic stochasticity
(discussed below) in small mesocosms. Last, bacterial commu-
nities can be an imprint of past environmental conditions [63] and
the correlations detected between community dissimilarity and
environmental variables might coincide with prior processes.
Taken together, our findings (conceptualized in Fig. 4) around

the importance of species sorting and the strong temporal
influences highlight the distinct differences in the mechanisms
underlying species sorting in mesocosms of different sizes. These
findings became apparent through combining the path analysis,
which captures both spatial and temporal patterns at the whole
community level, and the network analysis, which captures time-
associated patterns of the most abundant populations.

Ecosystem size indirectly regulates community assembly and
associations among bacterioplankton
While the different environmental conditions from the press
disturbance and ongoing environmental changes throughout the
experiment might explain why species sorting was the main driver
of metacommunity assembly, our study suggests that other factors
related to ecosystem size (e.g., spatial environmental heterogeneity
within a mesocosm) could further regulate metacommunities.
The importance of species sorting can increase with environ-

mental heterogeneity, i.e., the number of niches that are available
for colonization [64, 65]. In our study, large mesocosms contained
greater within-mesocosm spatial environmental heterogeneity as
evidenced by depth associated changes in temperature and light.
This could explain why species sorting was more apparent (i.e.,
more associations between ASVs and abiotic variables) in large
compared to small mesocosms in the network analysis. This
increase may be attributed to (i) the greater availability of niches
(and consistency of nutrients) found in larger mesocosms, or (ii)
the synchronous establishment of bacteria which might have a
better chance in a stable environment. In a study of protists
experiencing light-dark fluctuations in aquatic microcosms and
models, high fluctuations disrupted species synchrony between
patches [66]. Within-mesocosm spatial heterogeneity could also
explain the greater bacterial richness as ecosystem size increased.
Network topological features were partially influenced by

mesocosm size: bacteria were more connected in medium or large
than small mesocosms, suggesting that abundance dynamics were
less similar in small mesocosms and indicating asynchrony among
dominant bacteria. In the less densely populated, large mesocosms,
competition may have been lower, which can lead to greater
synchrony between species due to changes in abiotic conditions
[59]. In our mesocosms, lower fluctuation and greater stability of the
bigger mesocosms resulted in denser, more connected networks.
Because size replicates in the network analysis spanned a salinity
range that was wider than any range within a single mesocosm, the
network analysis showed only weak tracking of the salinity changes
over time by dominant bacteria. Specifically, salinity did not have
strong synchrony with any core ASVs. This may result from
methodological constraints where normalized salinity of within-
size mesocosms was used to assess associations. This indicates that
the network approach could better detect environmental factors
associated with species if they more equally (homogeneously)
affected communities in space. Since studies often pool samples

Fig. 4 Conceptual figure for the interpretation of statistical
results and patterns based on path analysis, network analysis,
and the partitioning of beta-diversity. In our study, the dominant
deterministic force was the applied salinity press disturbance.
Ecosystem size was manipulated by different volumes of meso-
cosms. Darker shading in bars indicates greater influence of the
process.
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over time or distant sampling sites, it can generate some biases and
potentially mislead network inference.
Taken together, we suggest that these patterns indicate

mesocosm size-specific mechanisms of species sorting: in small
mesocosms, changes in community composition from species
sorting primarily occurred through taxa replacement in response to
variation in multiple environmental factors. In contrast, in larger
mesocosms, environmental change was more gradual and
cascaded into compositional differences through abundant bacteria
tracking environmental changes over time by changing in relative
population size, with lower replacement (Fig. 4).

Bacterioplankton recruitment
Initial community size differences due to mesocosm volumes
might have affected subsequent community compositions
through species sorting, but other factors related to the
experimental set-up were unlikely to have substantial influence.
The set-up ensured no extensive differences in the recruitment of
novel species from external sources and estimated richness of
active bacteria was equivalent on the first day. The dispersal
sources (rain and air deposition, and seed banks in sediments and
lake water) harbored high diversity and in previous studies were
important recruitment sources for novel taxa following salinity
disturbances [26–28] and other environmental changes [67].
Although large mesocosms contained more microorganisms and
possibly a larger planktonic seed bank from which taxa could
respond to the salinity disturbance, recruitment from water seed
banks declined with salinity in all mesocosm sizes (Fig. 4). Even
with reduced dispersal, future studies that extend beyond the
64 days sampled here may eventually see eco-evolutionary
processes such as increased environmental tracking in small
mesocosms due to bacterial diversification, which can be
intensified by a history of environmental adversity [68]. The high
percentage of ASVs with no identified source (85%) could indicate
dispersal from other sources such as the snails we observed on
most mesocosms or the effect of sequencing depth which can
miss rare taxa. Additionally, sequencing depth could have
incorrectly designated some taxa as recruited. We cannot discount
that rare ASVs not detected on day one would be mistakenly
categorized as recruited if detected later. However, this limitation
should be consistent among treatments.

Roles of stochasticity and dispersal-related processes
Demographic stochasticity (leading to ecological drift) was an
important driver of community assembly of all mesocosms via
community size with the strongest direct effect in small
mesocosms (Fig. 4). This result is bolstered by previous studies
showing that ecological drift more often occurs in small
communities [69, 70] especially when the importance of species
sorting is weak [71] or when the effective community size is small
due to dispersal limitation [72]. This may be why we detected
weak synchronous environmental tracking from the dominant
populations across the small mesocosms. Drift can also alter the
outcome of niche selection [73]. Nevertheless, the effect of time
on community composition indicated that large mesocosm
communities were most influenced by demographic stochasticity
arising from temporal influences. In this case, large mesocosms
may more strongly reflect (i) random changes in births and deaths
from a community that grew in number over time, (ii) stochasticity
based on priority effects from slower time-delayed tracking, or (iii)
may reflect sampling timepoints that underrepresented the larger
total community.
Dispersal limitation as a driver of metacommunity dynamics

(considering all mesocosms at one time point) was present
only in small sized mesocosms and suggests that multiple
communities emerged from similar initial conditions in the small
mesocosms. However, the interpretation of the dispersal
limitation is ambiguous (e.g., [74]). It could be true dispersal

limitation whereby niche spaces that open (i.e., when species
become inactive in response to the initial salinity changes which
increase habitat specialists [75] and/or the strong environmental
changes) remain empty [76]. However, it does not necessarily
indicate true dispersal limitation between patches [74] or
reduced immigration from a regional pool. Instead, it could be
explained by low richness decreasing the likelihood that
communities contain superb dispersers. When dispersal rates
are low, local adaptations to environmental fluctuations can
further strengthen priority effects by preemptive taxa [18]. In our
study we found some evidence of transient priority effects
indicated by a high number of time-lagged associations.
However, they occurred only in larger mesocosms, whereas
they might have been prevented by the overall higher taxa
turnover in small mesocosms. Nevertheless, with our data and
the applied approaches, it is not possible to clearly support or
exclude dispersal limitation or priority effects and other factors
that regulate them.

CONCLUSIONS
The novelty of our study is that we could show that the
trajectories of (meta)community development are influenced by
size-induced environmental fluctuations in concert with a salinity
press disturbance. Overall, our results partially align with those
from previous studies which show that after disturbances,
stochastic community assembly initially is important, but the
dominant influence shifts to deterministic processes in later
successional stages (e.g., ref. [10]), especially when environmental
conditions are stable. Dispersal limitation and ecological drift
(demographic stochasticity) were drivers of metacommunity
dynamics after community establishment with strong environ-
mental fluctuations. Moreover, our results indicate that meso-
cosms with reduced environmental fluctuations may facilitate
considerable time-delayed species sorting, potentially due to
transient priority effects. Collectively, our study highlights that
environmental fluctuations, resulting from the temporal environ-
mental change dynamics, are important to consider in future
community assembly studies. Future studies should also include
top-down effects that are potentially altered by ecosystem size-
induced environmental fluctuations in addition to bottom-up
effects that we focused on here.
The importance to account for the interactive effects of

environmental fluctuations and ecosystem size on community
assembly can also have implications for different ecosystems that
are affected by both the magnitude of environmental fluctuations
and additional size-dependent properties of their ecosystem,
such as different types of small water bodies, animal guts, or
bioreactors. Further, the framework presented here may inform
predictions of how drought or irrigation that affect aquatic
ecosystems can potentially reduce species sorting synchrony and
enhance maladapted taxa.
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