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Genomic insights into local adaptation and
future climate-induced vulnerability of a
keystone forest tree in East Asia

Yupeng Sang 1,3, Zhiqin Long 1,3, XumingDan 1, Jiajun Feng 1, Tingting Shi1,
Changfu Jia 1, Xinxin Zhang1, Qiang Lai 1, Guanglei Yang 1,
Hongying Zhang 1, Xiaoting Xu1, Huanhuan Liu 1, Yuanzhong Jiang 1,
Pär K. Ingvarsson 2, Jianquan Liu 1 , Kangshan Mao 1 & Jing Wang 1

Rapid global climate change is posing a substantial threat to biodiversity. The
assessment of population vulnerability and adaptive capacity under climate
change is crucial for informing conservation andmitigation strategies. Herewe
generate a chromosome-scale genome assembly and re-sequence genomes of
230 individuals collected from 24 populations for Populus koreana, a pioneer
and keystone tree species in temperate forests of East Asia. We integrate
population genomics and environmental variables to reveal a set of climate-
associated single-nucleotide polymorphisms, insertion/deletions and struc-
tural variations, especially numerous adaptive non-coding variants distributed
across the genome. We incorporate these variants into an environmental
modeling scheme to predict a highly spatiotemporal shift of this species in
response to future climate change. We further identify the most vulnerable
populations that need conservation priority and many candidate genes and
variants that may be useful for forest tree breeding with special aims. Our
findings highlight the importance of integrating genomic and environmental
data to predict adaptive capacity of a key forest to rapid climate change in the
future.

Climate change is predicted to become a major threat to biodiversity,
and there is ample evidence of climate-induced local extinctions
among plant and animal species1. To escape demographic collapses
from threats, species must trace suitable locations or adjust to chan-
ging environments via phenotypic plasticity or innovation from
standing genetic variation and de novo mutations2. However, migra-
tion, in order to keep pace with rapid climate change, may be difficult
for many species3. Therefore, understanding and quantifying the
evolutionary potential of a species for future adaptation is not only
relevant for understanding whether and how natural species can per-
sist in the context of climate change, but it can also benefit

conservation and management strategies to cope with global biodi-
versity loss4,5.

The spatial predictions of the effects of future climate change
have largely relied on the knowledge of adaptive genetic variations on
current climate conditions6. The traditional way to identify and
quantify local adaptation via reciprocal transplant and/or common
garden experiments7–9 is challenging and often unfeasible for many
wild non-model organisms due to experimental intractability, long
generation times, or other challenges to obtaining fitness-related
phenotypic traits10. With the advance of genomic technologies, it is
now becoming increasingly affordable to generate population

Received: 16 March 2022

Accepted: 17 October 2022

Check for updates

1Key Laboratory for Bio-Resources andEco-Environment,College of Life Sciences, SichuanUniversity, Chengdu,China. 2Department of Plant Biology, Linnean
Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden. 3These authors contributed equally: Yupeng Sang, Zhiqin Long.

e-mail: liujq@nwipb.cas.cn; maokangshan@163.com; wangjing2019@scu.edu.cn

Nature Communications |         (2022) 13:6541 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-2624-7293
http://orcid.org/0000-0002-2624-7293
http://orcid.org/0000-0002-2624-7293
http://orcid.org/0000-0002-2624-7293
http://orcid.org/0000-0002-2624-7293
http://orcid.org/0000-0002-3552-9540
http://orcid.org/0000-0002-3552-9540
http://orcid.org/0000-0002-3552-9540
http://orcid.org/0000-0002-3552-9540
http://orcid.org/0000-0002-3552-9540
http://orcid.org/0000-0002-2629-7506
http://orcid.org/0000-0002-2629-7506
http://orcid.org/0000-0002-2629-7506
http://orcid.org/0000-0002-2629-7506
http://orcid.org/0000-0002-2629-7506
http://orcid.org/0000-0001-5206-782X
http://orcid.org/0000-0001-5206-782X
http://orcid.org/0000-0001-5206-782X
http://orcid.org/0000-0001-5206-782X
http://orcid.org/0000-0001-5206-782X
http://orcid.org/0000-0003-4265-5796
http://orcid.org/0000-0003-4265-5796
http://orcid.org/0000-0003-4265-5796
http://orcid.org/0000-0003-4265-5796
http://orcid.org/0000-0003-4265-5796
http://orcid.org/0000-0002-8274-0111
http://orcid.org/0000-0002-8274-0111
http://orcid.org/0000-0002-8274-0111
http://orcid.org/0000-0002-8274-0111
http://orcid.org/0000-0002-8274-0111
http://orcid.org/0000-0002-5407-8933
http://orcid.org/0000-0002-5407-8933
http://orcid.org/0000-0002-5407-8933
http://orcid.org/0000-0002-5407-8933
http://orcid.org/0000-0002-5407-8933
http://orcid.org/0000-0001-5664-7389
http://orcid.org/0000-0001-5664-7389
http://orcid.org/0000-0001-5664-7389
http://orcid.org/0000-0001-5664-7389
http://orcid.org/0000-0001-5664-7389
http://orcid.org/0000-0003-1790-3073
http://orcid.org/0000-0003-1790-3073
http://orcid.org/0000-0003-1790-3073
http://orcid.org/0000-0003-1790-3073
http://orcid.org/0000-0003-1790-3073
http://orcid.org/0000-0002-2955-6155
http://orcid.org/0000-0002-2955-6155
http://orcid.org/0000-0002-2955-6155
http://orcid.org/0000-0002-2955-6155
http://orcid.org/0000-0002-2955-6155
http://orcid.org/0000-0001-9225-7521
http://orcid.org/0000-0001-9225-7521
http://orcid.org/0000-0001-9225-7521
http://orcid.org/0000-0001-9225-7521
http://orcid.org/0000-0001-9225-7521
http://orcid.org/0000-0002-4237-7418
http://orcid.org/0000-0002-4237-7418
http://orcid.org/0000-0002-4237-7418
http://orcid.org/0000-0002-4237-7418
http://orcid.org/0000-0002-4237-7418
http://orcid.org/0000-0002-0071-1844
http://orcid.org/0000-0002-0071-1844
http://orcid.org/0000-0002-0071-1844
http://orcid.org/0000-0002-0071-1844
http://orcid.org/0000-0002-0071-1844
http://orcid.org/0000-0002-3793-3264
http://orcid.org/0000-0002-3793-3264
http://orcid.org/0000-0002-3793-3264
http://orcid.org/0000-0002-3793-3264
http://orcid.org/0000-0002-3793-3264
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34206-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34206-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34206-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34206-8&domain=pdf
mailto:liujq@nwipb.cas.cn
mailto:maokangshan@163.com
mailto:wangjing2019@scu.edu.cn


genomic data that can serve as a complementary strategy to examine
local adaptation throughout the distribution range of one targeted
species11–13. Although there may be millions of variants across the
genome within any specific species, only some of these variants are
expected to be related to climate adaptation9,14. The process of iden-
tifying the climate-associated genetic variation is not only critical for
solving fine-scale patterns of local adaptation but also facilitates a
more mechanistic understanding of how species respond to climate
change15. Genotype–environmental association approaches are
increasinglyused to identify loci involved in climate adaptation16. Once
candidates for locally adaptive allelic variation have been identified, it
is possible to measure genomic offset, which assesses the amount of
change in the genetic composition of a population that is required to
track future environmental conditions17,18. As such, using genomic
tools goes beyond modeling species range changes over time and can
provide novel insights into assessing the evolutionary adaptive
potential and predicting the disruption of local adaptation and species
vulnerability in a changing climate4,17,19,20.

Forest trees are efficient carbon sinks and play an increasingly
leading role in the global carbon cycle and in combating climate
change and global warming10,21. However, they are particularly vul-
nerable to maladaptation owing to their long generation times, for
which climate change is likely to happen within the lifetimes of single
individuals and making them especially challenged in terms of
adapting to keep up with rapid climate change22. In this context,
integrating genomic data into predictive models aimed at quantify-
ing and mapping spatial patterns of climate maladaptation is espe-
cially important for long-lived tree species5,23,24. In this study, we
accomplish such a goal for Populus koreana (Salicaceae), one

dominant tree species in temperate deciduous forests in East Asia.
We assemble the first, to our knowledge, de novo chromosome-scale
reference genome for this species and further re-sequence genomes
of 230 individuals from 24 natural populations across its distribution
range. We characterize genome-wide variations, including single-
nucleotide polymorphisms (SNPs), small insertions/deletions
(indels) and large structural variants (SVs). Based on these genomic
datasets, we aim to: (1) infer the spatial patterns of genetic diversity,
population structure, and evolutionary history; (2) dissect the
genomic underpinnings of climate adaptation and investigate how
past selection shaped patterns of adaptive allele frequencies across
distributional ranges; and (3) quantify and map the vulnerable
populations under future climate change.

Results
Chromosome-scale genome assembly of P. koreana
For de novo assembly of the P. koreana genome, we integrated data
from three sequencing and assembly technologies: ~42.42 Gb of
Nanopore long-read sequencing (106×), ~29.82Gb of short-read Illu-
mina sequencing (74×), and ~54.22 Gb of Hi-C paired-end reads (137×)
(Supplementary Tables 1–4). The final assembly captured 401.4Mb of
the genome sequence, with contig N50 of 6.41Mb and ~99.6%
(~399.94Mb) of the contig sequences anchored to 19 pseudo-
chromosomes (Fig. 1; Supplementary Fig. 1; Table 1; Supplementary
Table 5). The high quality, continuity, and completeness of the
assembled genomewere supported by a highmapping rate (99.4%) of
Illumina short reads and 97.8% of the single-copy orthologs from the
Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis
(Supplementary Table 6).
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Fig. 1 | Circos display of the genomic features and diversity of the assembled
P. koreana genome. Tracks from outermost to innermost are gene density (a),
transposable element (TE) density (b), the distribution of SNPs (c), indels (d), and

SVs (e); and the distribution of potentially climatic-adaptive SNPs (f), indels (g), and
SVs (h) identified by LFMM across the genome. Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-022-34206-8

Nature Communications |         (2022) 13:6541 2



In total, 37.2% of the genome sequences were identified as repe-
titive elements with retrotransposons and DNA transposons occupy-
ing 16.0% and 17.9%, respectively (Supplementary Table 7). Through a
combination of the transcriptome, homology, and ab initio-based
approaches, we predicted 37,072 protein-coding genes with an aver-
age coding sequence length of 1136 base pairs (bp) and an average of
five exons per gene (Supplementary Table 8). In addition, 95.4% of
these genes (35,380) could be found in at least one public database
(Pfam, InterPro, NR, Swiss-Prot, GO, and KEGG; Supplementary
Table 9). We also identified a set of non-coding RNAs (Supplementary
Table 10).

Population structure, genetic diversity, and demographic
history
We generated whole-genome resequencing data of 230 individuals
from 24 populations sampled across the natural distribution of the
species in Northeast China (Fig. 2a, b; Supplementary Data 1). On
average, ~95% of the clean reads were aligned onto the reference
genome, with an average depth of 27.4× and coverage of 94.6%
(Supplementary Data 1). Using this dataset, we identified a total of
16,619,620 high-quality SNPs and 2,663,202 indels (shorter than or
equal to 50 bp). We also identified a final set of 90,357 large SVs
(>50 bp). The genome-wide distribution patterns of these genetic
variations were found to be consistent (Fig. 1c–e), and the observed
site frequency spectrums were also similar (Supplementary Fig. 2).
We first used ADMIXTURE to investigate the genetic structure and
revealed three clusters (Fig. 2a, b; Supplementary Fig. 3). Two clus-
ters were in the southern region (Changbai Mountains area), and the
third was in the northern (Greater Khingan Mountains area), but
multiple individuals from both southern and northern groups
showed an admixture of different clusters (Fig. 2a). Both principal
component analysis (PCA) and neighbor-joining (NJ) clustering pro-
duced the consistent results (Supplementary Figs. 4a and 5a). We
examined patterns of genetic differentiation and isolation-by-
distance (IBD) between and within the geographical groups. We
detected significant IBD in the southern group but not in the
northern group, possibly owing to the small number of populations
used (Supplementary Fig. 6a, c). As expected, the pattern of IBD was
stronger for all populations combined than only populations from
the southern or northern region alone (Fig. 2c). These results suggest
that multiple refugia might have existed for this species during the
Quaternary glacial periods, and the current distribution of popula-
tions is likely to have resulted from post-glacial re-colonization and
secondary contact from different refugia25. However, we could not
exclude the possibility that populations in the intermediate region
connecting southern and northern groups might have been
destroyed recently by human activities, which may have biased our
hierarchical structure presented here26.

We examined the extent of genetic divergence between south-
ern and northern groups based on the following three analyses. First,

we estimated the joint frequency spectrum of genetic variations and
found that large proportions of variation were shared between the
two geographical groups (Supplementary Fig. 7a). Genetic differ-
entiation between them was estimated to be weak (Supplementary
Fig. 7b; the average FST values, 0.021). Similar levels of nucleotide
diversity were revealed across the 24 populations, and the nucleotide
divergence (dxy) between the two groups was almost the same as the
nucleotide diversity within groups (Supplementary Fig. 7c–e). Sec-
ond, we used the pairwise sequentially Markovian coalescent (PSMC)
to assess changes in effective population size (Ne) in the history
(Supplementary Fig. 5b). We found that the inferred Ne differed only
between the southern and northern groups after the last glacial
maximum (LGM, 10,000–20,000 years ago). The northern group
showed a steady population decline, whereas a slight population
expansion was observed in samples from the southern group. These
inferred demographic histories were also confirmed by Tajima’s D
statistics (Supplementary Fig. 5c) where a more negative Tajima’s D
value was found for the southern group than for the northern group.
Finally, the genome-wide decay of linkage disequilibrium (LD) as a
function of physical distance showed similar patterns in the southern
and northern populations, with r2 declining below 0.2 after ~15 kbp
on average (Supplementary Fig. 5d). Taken together, our results
reveal relatively weak genetic differentiation between southern and
northern groups and suggest that they may have diverged recently
after the LGM.

Identification of genomic variants associated with local climate
adaptation
The high-quality reference genome for P. koreana coupled with the
high-depth-resequencing data generated in this study facilitated the
precise characterization of genomic information, including not only
SNPs but also indels and SVs that are usually ignored27. We used two
complementary genotype–environment association (GEA) approaches
to detect the environment-associated genetic variants. First, we tested
for GEAs for 19 environmental variables (10 temperature and nine
precipitation-related variables; Supplementary Table 11) using the
latent factor mixed model (LFMM)28, which tests for associations
between genotypes and environment variables while accounting for
background population structure. We identified a total of 3013 SNPs,
378 indels, and 44 SVs (Fig. 1f–h), involving 514 genes that were sig-
nificantly associated with one ormore environmental variables (Fig. 3;
Supplementary Fig. 8; Supplementary Data 2). These environment-
associated variants werewidely distributed across the genome and did
not cluster in specific regions.

LFMM is a univariate approach that tests for associations between
one variant and one environmental variable at a time, and, to alleviate
these issues, we also used a complementary multivariate landscape
genomic method, redundancy analysis (RDA)29, to identify co-varying
variants that were likely associated with multivariate environment
predictors. After considering the ranked importance based on gra-
dient forest analysis and the correlations among these environmental
variables (Supplementary Fig. 9a), six variables with Spearman corre-
lation coefficient |r | <0.6 were retained for the RDA analyses to avoid
issues due to multicollinearity, including three temperature variables
(annual mean temperature (BIO1), isothermality (BIO3), andmaximum
temperature of warmest month (BIO5)) and three precipitation vari-
ables (precipitationofwettestmonth (BIO13), precipitation seasonality
(BIO15), and precipitation of coldest quarter (BIO19)). By visualizing
climate-associated genetic variation across the natural distribution, we
found that adaptive genetic variation could be largely explained by
these six climatic variables (Supplementary Fig. 9b). Of the 3435 sig-
nificant variants identified by LFMM, 1779 (1554 SNPs, 206 indels, and
19 SVs)were found todisplay extreme loadings (standarddeviation>3)
along one or multiple RDA axes (details in the “Methods” section).
These shared variants were regarded as “core adaptive variants” for

Table 1 | Statistics for the genome assembly and annotation

Genome assembly

Assembled genome size (Mb) 401.41

Number of contigs 135

N50 of contigs (bp) 6,410,956

N90 contig length (bp) 1,239,380

Longest contig (bp) 17,436,127

Number of protein-coding genes 37,072

Percentage of repetitive sequence 37.19

GC content (%) 35.12

BUSCO (complete) (%) 97.83
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local climate adaptation, andmore adaptive variants were observed to
be associated with precipitation-related compared to temperature-
related variables (Supplementary Fig. 10).

To evaluate the potential adaptive variants identifiedhere, wefirst
estimated and compared inter-population genetic differentiation (FST)
between the climate-associated adaptive variants and the randomly
chosen ones. Significantly stronger FST values were observed at these
adaptive variants (Supplementary Fig. 11), indicating that spatially
varying selection likely plays an important role in driving genomic
differentiation between populations9,30. In addition, we used Mantel
and partial Mantel tests to assess patterns of IBD and isolation-by-
environment (IBE) for the potentially adaptive and neutral variants,
respectively (Fig. 2c, d; Supplementary Fig. 6). We found that both
adaptive and neutral variants displayed significant patterns of IBD
within and between geographic groups, although adaptive variants
showed slightly stronger pattern compared to neutral variants (Fig. 2c;
Supplementary Fig. 6a, c). However, in contrast to the weak pattern of
IBE observed for the neutral variants after controlling for the effect of
geography, adaptive variants showed a strong and significant IBE in
partial Mantel tests (Fig. 2d; Supplementary Fig. 6b, d), suggesting that
genetic variation of the adaptive variants wasmainly influenced by the
environment. Furthermore, adaptive structuring exhibited a different
pattern from neutral genetic clustering, showing little association with
geography and/or population structure (Supplementary Fig. 4a, b). To
decompose the relative contributions of climate, geography, and
population structure in explaining adaptive and neutral genetic var-
iation, we performed partial RDA and found that the exclusive con-
tribution of climate effects explained 41% of the genetic variation of
adaptive variants, which wasmuch higher than 10% of neutral variants
when controlling for geography and population structure (Supple-
mentary Fig. 4c, d). Overall, all these results suggest that the identified
adaptive variants in our study should be relatively robust to the con-
founding effects of population structure and geographical factors and

were largely shaped by the environmental gradients across the
landscape29.

Of the core adaptive variants detected by both LFMM and RDA,
only 3.2% were non-synonymous, and 2.0% were synonymous muta-
tions, with all remaining variants being non-coding (Supplementary
Table 12), indicating that adaptation to climate has primarily evolved
as a result of selection acting on regulatory rather than on protein-
coding changes31. In particular, these climate-adaptive variants were
enriched to be located in the 5’ untranslated region (UTR) of genes and
transposable elements (TEs) (Supplementary Fig. 12). Approximately
9.7% of these variants were located within the regions of accessible
chromatin as identified by transposase-accessible chromatin sequen-
cing (ATAC-seq) (Supplementary Data 2), again suggesting that
mutations in the cis-regulatory elements may play important roles in
driving environmental adaptation in natural populations of this spe-
cies. To further assess the selection pressures acting on the climate
adaptive variants,we calculated the standardized integratedhaplotype
score (iHS) across all common variants to identify loci with signatures
of selective sweeps32. Our results show that climate-associated variants
did not display stronger signatures of positive selection compared to
randomly selected SNPs (Supplementary Fig. 13), suggesting that
adaptation to the local climate in P. koreana may largely arise by the
polygenic selection, characterizedby subtle tomoderate shifts in allele
frequencies of many loci with small effect sizes33,34.

Geographic distribution of the variants in the genes with local
adaptation
Many genes previously reported to be involved in climate adaptation
were identified here with variants to be associated with environmental
variables (Supplementary Fig. 8; Supplementary Data 2; Supplemen-
tary Table 13), although no significant functional enrichment could be
detected. The variants of these genes related to precipitation showed
similar geographic distribution in frequencies (Supplementary Fig. 14).

Fig. 2 | Population genomic analyses of P. koreana. a Model-based population
assignment using ADMIXTURE with K from 2 to 3. The height of each colored
segment represents the proportion of the individual’s genome derived from
inferred ancestral lineages. b Geographic distribution of 24 natural populations
(circles) where colors represent ancestral components inferred by ADMIXTURE
(according to the substructure at K = 3). The location of the individual selected for
genome assembly is indicatedby ablack star. Inset: the current geographic rangeof
P. koreana predicted by ecological niche models (ENMs). c Isolation-by-distance

analyses (Mantel test, two-sided) for populations (n = 276) based on neutral (blue
dots and black line) and adaptive variants (red dots and red line) separately. The
shadow of linear regression denotes the 95% confidence interval. d Isolation-by-
environment analyses (partial Mantel test, two-sided, controlling for the effect of
geographic distance) for populations (n = 276) based on neutral (blue dots and
black line) and adaptive variants (red dots and red line) separately. The shadow of
linear regression denotes the 95% confidence interval. Source data are provided as
a Source Data file.
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For example, the gene CRL1 variants are strongly associated with
precipitations during the wettest month (Fig. 3a). This transcription
factor with a lateral organ boundary (LOB) domain plays an essential
role in root development in response to flooding and drought
stresses35,36. We found two tandem CRL1 duplicates (Pokor12247 and
Pokor12248) (Fig. 3b) and identified a total of 104 candidate adaptive
variants (83 SNPs, 19 indels, and two SVs). We chose one candidate
adaptive SNP located in the 5’ UTR of Pokor12247 (LG04:25159299) as
an example to show the distribution pattern of allele frequencies
(Fig. 3b, c). The T allele was mainly distributed in the southeast region

that is characterized by heavy precipitation in the wettest month,
whereas the C allele was almost fixed in areas experiencing low rainfall
(Fig. 3c). To verify functional differentiation of the Pokor12247 alleles in
mediating adaptation to extreme precipitation, we performed qRT-
PCR to profile its expression under submergence stress. The indivi-
duals with the TC genotype displayed enhanced expression compared
to those CC individuals in response to submergence (Fig. 3e). This
indicates that the individuals carrying the T allele may be associated
with increased tolerance to submergence. Nevertheless, the relatively
high degree of LD (Supplementary Fig. 15a) in this region makes it
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Fig. 3 | Genome-wide screening of the loci associated with local environmental
adaptation. a Manhattan plot for variants associated with the Maximum Tem-
perature of the Warmest Month (BIO5) (red, upper panel) and the Precipitation of
the Wettest Month (BIO13) (blue, lower panel). Dashed horizontal lines represent
significance thresholds (blue or red represents the FDR correction, adjusted
P =0.05; gray represents the Bonferroni correction, adjusted P =0.05). Selected
candidate genes are labeled in the plot at their respective genomic positions.
b, f Upper panels: the gene structure of CRL1 (b) and HSP60-3A (f) (blue triangles:
representative candidate adaptive SNPs corresponding to the sites shown in
c–e and g–i). Lower panels: localmagnification of theManhattanplots (blue circles:

SNPs; yellow triangles: indels; red squares: SVs) around the selected genes (gray
shadows). c, g Allele frequencies of candidate adaptive SNPs (c, LG04:25159299;
g LG07:4796402) associated with BIO5 (c) and BIO13 (g) across the 24 populations.
Colors on the map are based on variations of the relevant climate variables across
the distribution range. d, h Decay of EHH for two alternative alleles around
LG04:25159299 (d) and LG07:4796402 (h). e, iDynamic relative expression level of
CRL1 (e) and HSP60-3A (i) genes between the two genotypes using qRT-PCR under
submergence (e) and heat (i) treatments. Error bars represent standard deviation,
n = 3 biologically independent samples. Source data are provided as a Source
Data file.
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difficult to identify the true causal mutation(s) that are involved in
mediating environmental adaptation. Furthermore, we did not
observe signals of strong recent selection at this locus37. The extended
haplotype homozygosity (EHH) did not exhibit significant differences
between haplotypes carrying the T or the C allele at the focal SNP
(Fig. 3d; standardized |iHS| score = 1.693), which again supports a
polygenic pattern of adaptation38. In addition, many other genes were
also found to be involved in precipitation-associated adaptation
(Supplementary Figs. 8 and 14; Supplementary Data 2; Supplementary
Table 13), including Pokor27800, the ortholog of which is involved in
regulating stomata-related stresses39; Pokor18547, the ortholog of
which encodes a sphingoid long-chain base-1-phosphate lyase that is
involved in the dehydration stress response40; and Pokor25841, the
ortholog in Arabidopsis (SPL12) was found to regulate stress
responses41.

We also identified a set of temperature-associated loci, including
genes orthologous to Arabidopsis HMG1, PGP4, FAD5, and EMB1507,
showing similar allele frequency distributionpatterns aswe saw for the
precipitation-associated genes (Fig. 3a; Supplementary Figs. 8 and 16;
Supplementary Data 2). A striking example of such a gene associated
with variation in themaximum temperature of thewarmestmonthwas
Pokor17228, which encodes a heat shock protein (HSP) orthologous to
Arabidopsis HSP60-3A42. The rapid synthesis of HSPs induced by heat
stress can protect cells from heat damage and enable plants to obtain
thermotolerance by stabilizing and helping refold heat-inactivated
proteins43. Relatively high LDwas foundwithin the region surrounding
this gene (Supplementary Fig. 15b), including a total of 62 candidate
adaptive variants (59 SNPs, two indels, and one SV). We chose one
candidate adaptive SNP located in an intronic region of Pokor17228
(LG07: 4796402) to show the geographic distribution of the allele
frequencies (Fig. 3f). Populations with a relatively high temperature of
the warmest month of the year were more likely to carry the G allele,
whereas the A allele was mainly observed in regions with low tem-
peratures (Fig. 3g).We then examined expression patterns of this gene
in response to heat stress and found that the GG genotypes showed
much higher expression than the AA ones after 2 and 3 h of heat stress
treatment (Fig. 3i), indicating that Pokor17228 is a likely candidate gene
for heat stress tolerance in P. koreana. We similarly failed to detect
signatures of strong recent selection signals at this locus (standardized
|iHS| score = 1.661). Despite this, the haplotypes carrying the warm-
adapted allele (G) had elevated EHH relative to the haplotypes carrying
the other allele (A) (Fig. 3h), suggesting it might have experienced
weak positive selection. Our analyses of these selected genes support a
polygenic model for local climate adaptation across natural popula-
tions of P. koreana. The thorough characterization of the genetic basis
underlying ecological adaptation performed in this study offers pro-
mising information for predicting species' response to future climate
change15,20.

Genomic offset prediction for future climate change
Based on the established contemporary genotype–environment rela-
tionships and the identified climate-associated genetic loci, we predict
how populations of P. koreana will respond to future climate change.
For the future climate projections, we integrated the prediction of the
genomic offset across four various future climate models to account
for the variability betweenmodels. In addition, we also considered two
different emission scenarios of the shared socioeconomic pathway
(SSP126 and SSP370) among the four adopted by the CMIP6 con-
sortium for two defined periods (2061–2080 and 2081–2100)44. Three
complementary approaches were used to investigate the spatial pat-
tern of maladaptation across the range of P. koreana under future
climate conditions.

We first calculated the risk of non-adaptedness (RONA), which
measures the expected allele frequency shifts required to cope with
future climate conditions after establishing a linear relationship

between allele frequencies at environmentally associated variants and
present climates18,45.We found that although the values ofRONAvaried
across the four future climate models (Supplementary Fig. 17; Sup-
plementary Data 3), the estimates were highly correlated across
populations (Supplementary Fig. 18). Therefore, the average RONA
values across models were inferred, and compared between popula-
tions. As expected, for most environmental variables, RONA increases
under more severe climate change scenarios, with higher emissions
leading to increased overall RONA values (i.e., SSP370 versus SSP126;
Fig. 4 andmoredetails in SupplementaryData 3). Therewas substantial
variation in RONA estimates among both environmental variables and
populations (Fig. 4; Supplementary Figs. 19–21). We chose predictions
for two environmental variables (BIO5 and BIO13, described above) as
a representative outcome and found that populations located in areas
with more drastic environmental changes were anticipated to have
greater RONA values (Fig. 4a, c). In addition, we observed that the
RONA estimates across the three types of variants (SNPs, indels, and
SVs) were highly consistent (Supplementary Fig. 22). In contrast to the
equally large values of RONA observed in both northern and southern
distributions of P. koreana in face of temperature changes (Fig. 4a, b),
the southeastern populations near the Korean Peninsula, which were
predicted to experience severe rainfall and extreme precipitation
events in the future, displayedmuch higher RONA values compared to
others for precipitation-related variables (Fig. 4c, d; Supplemen-
tary Fig. 21).

We then used the gradient forest (GF) approach to model the
turnover in allele frequencies along present environmental gradients
and predict genetic offset to a projected future climate17. Compared to
RONA which is estimated at the level of a single locus under a given
environmental variable, the GF is an extension of the random forest
approach that models the associations between the composite effects
of many putatively adaptive locus to multi-climate variables
simultaneously46. Consistent with RONA, the GF estimates of genetic
offsets across the four future climate models were highly correlated
(Supplementary Fig. 23), and the genetic offsets weremeasured as the
averages across models. We further used all 19 climatic variables and
the six uncorrelated variables that were the same as used in the RDA
analyses to estimate the genetic offset across the geographic dis-
tribution of the species. The results showed similar spatial genomic
offset patterns (Fig. 5a, b; Supplementary Fig. 24a, b; Supplementary
Fig. 25), and therefore in the following, we present only the results
using all 19 climatic variables. The comparison of genetic offset under
different emission scenarios showed an increasing trend with rising
emissions (Fig. 5a, b). Spatial mapping of the genomic offset similarly
identified the southeastern populations near the Korean Peninsula as
being most vulnerable to future climate change (Fig. 5a, b). The same
results were obtained when using the independent datasets of SNPs,
indels, and SVs (Supplementary Fig. 26).

In addition toquantifying the in situmaladaptation of populations
as performed above, we further assessed the metrics of forward and
reverse genetic offset that integrates migration into the analyses in
addition to the classic (local) genetic offset23. With different maximum
dispersal distances (100, 250, 500, 1000 km, and unlimited), we
revealed largely consistent patterns (Supplementary Fig. 27), although
restricting the maximum migration distances unavoidably resulted in
higher forward offset (Supplementary Fig. 28).We, thus, estimated the
forward genetic offset by identifying the minimum predicted offset,
assuming that specific contemporary population can migrate to any
location in the Eurasian continent. Furthermore, after shifting the
focus from populations to locations, reverse genetic offset was cal-
culated by identifying the minimum offset for any contemporary
population in the current range that bestmatches the projected future
climate of a specific location23. Although the predicted patterns of
local, forward, and reverse offsets varied throughout the range of
P. koreana, the southeastern populations near the Korean Peninsula
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were consistently predicted to have relatively high local, forward, and
reverse offsets (Fig. 5c, d; Supplementary Fig. 24c, d). Therefore, our
results indicate that no populations either locally or elsewhere in the
range of this species pre-adapt to future climates in this region.
Moreover, the present populations in this region cannot be mitigated
by migration or dispersal to more suitable habitats23. Considering that
these populations contain many unique, climate-adaptive genetic
resources where a set of adaptive alleles for warm and wet climates
have been identified in multiple functional important genes, more
conservation and restoration efforts are highly necessary for popula-
tions in this area47.

We finally examined whether the populations with higher genetic
offset to future climate change also have an increased burden of
deleterious mutations. We predicted and classified coding SNPs into
four categories with respect to their effects using SIFT4G: synon-
ymous, tolerated, deleterious, and loss of function (LOF)48. We used
the ratios of derived functional (including tolerated, deleterious, or
LOF variants) to synonymous variants as proxies for the genetic load.
Together no relationship was observed between the predicted genetic
offsets (including local, forward, and reverse offsets) and both genetic
diversity and genetic load across populations, even for the LOF var-
iants that are predicted to be strongly deleterious (Supplementary
Figs. 29a–d and 30a–d). We also failed to reveal the associations
between the SV burden and genetic offset (Supplementary Figs. 29e
and 30e). As the analysis of genetic offset or the prediction of future
climate maladaptation is based on putatively adaptive variations,
whereas the measures of genetic load depend on the genome-wide
distributionof deleteriousmutations, it is not surprising toobserve the
minimal relationship between them49.

Discussion
Ongoing climate change is predicted to threaten populations of
numerous species1. Despite the importance of intraspecific adaptive
variations in mitigating such risks15, predictions of range shift and
population vulnerability to future climate change are still challenging
without genome-scale knowledge. In this study, based on the well-
assembled reference genome and population-level whole-genome
resequencing data, we extracted all genetic variations to explore the
genetic architecture of climatic adaptation in one key forest-dominant
tree, P. koreana, in East Asia. We identified the genes and the corre-
sponding variants that are correlatedwith local adaptation.We further
revealed that the local adaptation of P. koreana to the current variable
environments evolved by small polygenic allele frequency shifts as
found for many other species34,38. After combining space-for-time and
machine-learning approaches to predict the spatiotemporal responses
of this species to future climate change, we identified a set of popu-
lations located in the southeastern part of the current distribution
range as being most vulnerable under future climate scenarios. These
populations are needed to be conserved with special management
strategies not only because of their high genomic offset to future cli-
mate change but also because they contained many unique, climate-
adaptive genetic resources47.

However, it should be noted that all of the present genomic pre-
dictions of maladaptation to future climates must be used with cau-
tion, and further empirical validations are needed to confirm these
findings. One of the promising approaches to validate these genomic
predictions is linking the estimated genetic offset with the observed
decrease in fitness of genotyped individuals from different
populations through common garden experiments or controlled
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environment tests. In doing so, the fitness-relevant traits could be
assessed by manipulating sampled populations to future climate
conditions11,50. In addition, despite the high-quality genomic data
facilitatedus to explicitly includeboth SNPs, indels, andSVs in analyses
and also revealed that the climate adaptation of P. koreana had a
polygenic genetic basis, the genetic variants with small effects in more
genesmayhavebeen unavoidablymissed especially given the reduced
sensitivity owing to the requiredmultiple testing correction in genome
scans for detecting signatures of climate adaptation. Furthermore, we
have to be aware that, although we used both single-locus-based
(RONA) and multi-locus-based (GF) approaches to assess the climate
change vulnerability of P. koreana, the complexity of polygenic adap-
tation (i.e., pleiotropy and genetic redundancy), has not been con-
sidered in current assessments. Therefore, future efforts should focus
on integrating quantitative genetics and systems biology approaches
to better model the genomic complexity of polygenic adaptation and
to further improve the prediction of the genomic offset to climate
change33,51. Finally, the potential of populations to respond to future

climate change has no relationship with their genetic load within
P. koreana, and a more thorough understanding of the association
between genetic load and population vulnerability under climate
change could benefit from more future studies that incorporate evo-
lutionary processes into the prediction of species responses to climate
change52.

Methods
Plant materials and genome sequencing
Fresh leaves of a wild P. koreana plant in the Changbai Mountains of
Jilin province in China were collected, and the total genomic DNA was
extracted using the CTAB method. For the Illumina short-read
sequencing, paired-end libraries with insert sizes of 350bp were con-
structed and sequenced using an Illumina HiSeq X Ten platform. For
the long-read sequencing, the genomic libraries with 20-kbp insertions
were constructed and sequenced using the PromethION platform of
Oxford Nanopore Technologies (ONT). For the Hi-C experiment,
approximately 3 g of fresh young leaves of the same P. koreana
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accession was ground to powder in liquid nitrogen. A sequencing
library was then constructed by chromatin extraction and digestion,
DNA ligation, purification, and fragmentation53 and was subsequently
sequenced on an Illumina HiSeq X Ten platform.

Genome assembly and scaffolding
The quality-controlled reads were first corrected via a self-align
method using the NextCorrect module in the software NextDenovo
v2.0-beta.1 (https://github.com/Nextomics/NextDenovo) with para-
meters “reads_cutoff=1k (filter reads with length <1kbp) and seed_cu-
toff=32k (minimum seed length = 32kbp)”. Smartdenovo v1.0.0
(https://github.com/ruanjue/smartdenovo) was then used to assemble
the draft genome with the default parameters. To improve the accu-
racy of the draft assembly, two-step polishing strategies were applied.
The first step included three rounds of polishing by Racon v1.3.154

based on the correctedONT long reads. The second step included four
rounds of polishing by Nextpolish v1.0.555 based on cleaned Illumina
short reads after removing adapters and low-quality reads using fastp
v0.20.056 with parameters ‘-f 5 -F 5 -t 5 -T 5 -n 0 -q 20 -u 20’ (parameters
‘-f 5 –F 5 -t 5 –T 5’ were used to trim five bases in the front and tail for
both read1 and read2; parameters ‘-n 0 -q 20 –u 20’were used to keep
reads with Phred quality >20, percent of unqualified bases <20, and
with no N base). Finally, allelic haplotigs were removed using the
purge_haplotigs v1.1.157 software with the options ‘-l 5 -m66 -h 170’ (set
read depth between 5 and 170 and the low point between the haploid
and diploid peaks as 66) to obtain the final contig-level assembly.

For chromosome-level scaffolding, the Hi-C reads were first fil-
tered by fastp v0.20.0 with the parameters described above. Each pair
of the clean reads was then aligned onto the contig-level assembly by
Bowtie2 v2.3.258 with parameters ‘-end-to-end, -very-sensitive -L 30’.
The quality of Hi-C data was evaluated by HiC-Pro v2.11.459, which
further classified read pairs as valid or invalid interaction pairs. Only
valid interaction pairs were retained for further analysis. Finally, scaf-
folds were clustered, ordered and oriented onto chromosomes using
LACHESIS60 with parameters: CLUSTER MIN RE SITES = 100; CLUSTER
MAX LINK DENSITY = 2.5; CLUSTER NONINFORMATIVE RATIO= 1.4;
ORDERMINNRES IN TRUNK= 60; ORDERMINNRES IN SHREDS = 60.
The placement and orientation errors that exhibit obvious discrete
chromosome interaction patterns were then manually adjusted.

The completeness of the genome assembly was assessed both by
the representation of Illumina whole-genome sequencing short reads
from mapping back read to the assembly using bwa v0.7.1261 and by
Benchmarking Universal Single-Copy Orthologs (BUSCO) v4.0.562 with
the searching database of “embryophyte_odb10”.

Repeat and gene annotation
For repeat annotation, we used the Extensive de-novo TE Annotator
(EDTA v1.9.3)63, which incorporates well-performed structure-based
and homology-based programs (including LTRharvest, LTR_FINDER,
LTR_retriever, TIR-learner, HelitronScanner, and RepeatModeler) and
subsequent filtering scripts, for a comprehensive repeat detection.
Subsequently, TEsorter (v1.2.5, https://github.com/zhangrengang/
TEsorter/)64 was used to reclassify those TEs that were annotated as
“LTR/unknown” by EDTA.

For gene annotation, we first used RepeatMasker v4.1.065 to mask
the whole-genome sequences with the TE library constructed using
EDTA. An integrated strategy that combined homology-based predic-
tion, transcriptome-based prediction, and ab initio prediction was
used to predict the protein-coding genes. For homology-based gene
prediction, published protein sequences of six plant species, including
Populus euphratica, Salix brachista, Salix purpurea, Populus tricho-
carpa, Arabidopsis thaliana, and Vitis vinifera, were downloaded and
aligned onto the repat-masked genome by using the TBLASTN (ncbi-
BLAST v2.2.2866) program with E-value cutoff setting of 1e−5, and
GeneWise v2.4.167 was then used to predict gene models with default

settings. For transcriptome-based gene prediction, trimmed RNA
sequencing reads from leaf, stem, and bud tissues weremapped to the
reference genome using HISAT v2.2.168 with parameters “-max-intro-
nlen (maximum intron length) 20000 –dta (report alignments tailored
for transcript assemblers including StringTie) -score-min (set a func-
tion governing theminimumalignment score needed for an alignment
to be considered “valid”) L, 0.0, -0.4”, and Trinity v2.8.469 was used for
transcripts assembly with default parameters. Assembled transcripts
were subsequently aligned to the corresponding genome to predict
gene structure using PASA v2.4.170. For the ab initio prediction,
Augustus v3.3.271 was employed using default parameters after incor-
porating the transcriptome-based and homology-based evidence for
gene model training. Finally, all predictions of gene models generated
from these approaches were integrated into the final consensus gene
set using EvidenceModelerv1.1.170. After prediction, PASA was again
used to update alternatively spliced isoforms to gene models and to
produce a final gff3 file with three rounds of iteration.

In addition, we also performed non-coding RNAs (ncRNAs)
annotation. Transfer RNAs (tRNAs) were identified using tRNAscan-SE
v2.0.772 with default parameters. Ribosomal RNAs (rRNAs) were iden-
tified by aligning rRNA genes of P. trichocarpa_v3.1 to the assembly
using blast. The other three types of ncRNA (microRNA, small nuclear
RNA, and small nucleolar RNA)were identified using Infernal v1.1.473 by
searching the Rfam database v12.074.

For functional annotation, our predicted protein-coding genes
were aligned to multiple public databases including NR, Swiss-Prot,
TrEMBL75, COG, and KOG using NCBI BLAST + v.2.2.31 with an E-value
of 1e−5 as the cutoff66. Motifs and domains were annotated by
searching against InterProScan (release 5.32-71.0)76. Gene ontology
(GO) terms and KEGGpathways of predicted sequences were assigned
by InterProScan and KEGG Automatic Annotation Server,
respectively77.

Genome resequencing, read mapping, and variant calling
A total of 230 individuals were collected from 24 natural populations
across the total distribution of the species. Within each population,
individuals were sampled after ensuring that sampled individuals were
at least 100m apart from each other. Genomic DNA was extracted
from leaves with a Qiagen DNeasy plant kit, andwhole-genomepaired-
end sequencing was generated using the Illumina NovaSeq 6000
platform with a target coverage of 20× per individual.

For raw resequencing reads, we used Trimmomatic v0.3678 to
remove adapters and cut off bases from either the start or the end of
reads if the base quality was <20. Trimmed reads shorter than 36 bases
were further discarded. After quality control, all high-quality reads
were mapped to our de novo assembled P. koreana genome using the
BWA-MEM algorithm of bwa v.0.7.1761 with default parameters. The
alignment results were then processed by sorting and PCR duplicate
marking using SAMtools v.1.979 and Picard v.2.18.11 (http://
broadinstitute.github.io/picard/). For genetic variant identification,
SNP and indel calling were performed using the Genome Analysis
Toolkit (GATK v.4.0.5.1)80 and its subcomponents HaplotypeCaller,
CombineGVCFs, and GenotypeGVCFs to form a merged VCF file with
“all sites” (including non-variant sites) included using the ‘EMI-
T_ALL_SITES’ flag. SV calling was performed using the software DELLY
v0.8.381 with default parameters. We further performed multiple fil-
tering steps to only retain high-quality variants for downstream ana-
lysis. For SNPs, SNPs with multi-alleles (>2) and those located at or
within 5 bp from any indels were removed. In addition, after treating
genotypes with read depth (DP) < 5 and genotype quality (GQ) < 10 as
missing, SNPs with missing rate higher than 20% were filtered; for
indels, those with muti-alleles (>2) and with QualByDepth (QD) < 2.0,
strand bias estimated using Fisher’s exact test (FS) > 200.0, Stran-
dOddsRatio (SOR) > 10.0, MappingQualityRankSumTest (MQRank-
Sum) <-12.5, ReadPosRankSum< -8.0 were removed. Indels with
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missing rate >20% after treating genotype with DP < 5 and GQ< 10 as
missingwere further filtered out; for SVs, thosewith length <50 bp and
with imprecise breakpoints (flag IMPRECISE) were removed. After
treating genotypeswithGQ< 10asmissing,we furtherfiltered SVswith
a missing rate >20%. Finally, we implemented the software SNPable
(http://lh3lh3.users.sourceforge.net/snpable.shtml) to mask genomic
regions where reads were not uniquely mapped, and we filtered out
variants located in these regions. After these filtering steps, 16,619,620
SNPs, 2,663,202 indels, and 90,357 SVs were retained for subsequent
analyses. The filtered variants were further phased and imputed using
Beagle v4.182 and the effects of individual variants were annotated
using SnpEff v.4.383 with “-ud 2000” to define the length of upstream
and downstream regions around genes, with other parameters being
set to default.

Ecological niche modeling
To investigate the current (1970–2000) potential distribution range of
P. koreana around China, we performed ecological niche modeling
(ENM) using Maxent v.3.3.384 with 19 current bioclimatic variables
(Supplementary Table 11). In addition to the geographic distribution
data of our 24 natural populations (Supplementary Data 1), we also
added another seven geographical data from the Chinese Virtual
Herbarium (https://www.cvh.ac.cn/) and the Global Biodiversity
Information Facility (https://www.gbif.org/zh/) into the ENM analyses,
which was performed with default setting after excluding the highly
correlated environmental variables (Spearman correlation coeffi-
cient >0.7).

Population structure analysis
We first used PLINK v1.9085 with the parameters “indep-pairwise 50 10
0.2” to extract an LD-pruned SNP set with minor allele frequency
(MAF) > 5%, which yielded 535,191 independent SNPs to be used in the
population structure analysis. First, we used ADMIXTURE v.1.3.086 with
default parameters to investigate population genetic structure across
all individuals, with the number of clusters (K) being set from1 to 8.We
then used the rda function from the R package vegan 2.6-287 to per-
form the PCA on the pruned SNPs. To further assess the relatedness
between individuals, the identify-by-state (IBS) genetic distancematrix
was calculated using the “-distance 1-ibs”parameter in PLINK v1.90.We
constructed the NJ phylogenetic tree based on the distance matrix
usingMEGAX88 and displayed the tree using FigTree v.1.4.4. Finally, for
the IBD analysis, we first used VCFtools v0.1.1589 to calculate the
population differentiation coefficient (FST). The matrix of FST (1−FST)
and thematrix of geographic distance (km) among different groups of
populations were then used for performing the Mantel tests using the
R package vegan87, with the significance being determined based on
999 permutations.

Genetic diversity, linkage disequilibrium and demographic his-
tory analysis
To estimate and compare genetic diversity across populations of P.
koreana, we calculated both intra-population (π) and inter-population
(dxy) nucleotide diversity after taking into account both polymorphic
and monomorphic sites using the program pixy v0.95.090 over 100-
kbp non-overlapping windows. In addition, Tajima’s D statistics were
calculated usingVCFtools v0.1.15 in 100-kbpnon-overlappingwindows
for the northern and southern groups of populations using the com-
plete SNP dataset, respectively. To further estimate and compare the
pattern of LD among different groups of populations, PopLDdecay
v.3.4091 was used to calculate the squared correlation coefficient (r2)
between pairwise SNPs with MAF>0.1 in a 100-kbp window and then
averaged across the whole genome.

PSMC92 was used to infer historical changes in the effective
population size (Ne) of P. koreana using default parameters with
the entire genomic dataset. We selected seven individuals from both

the northern and southern groups of populations to run the PSMC
analyses, and 100 bootstrap estimates were performed per individual.
Assuming a generation time of 15 years and a mutation rate of
3.75 × 10−8 mutations per generation93, we converted the scaled
population parameters into Ne and years.

Identification of environment-associated genetic variants
We used two different approaches to identify environment-associated
variants (SNPs, indels, and SVs) across thewhole genome.Wekept only
common variants with MAF > 10%, including a total of 5,182,474 SNPs,
736,051 indels and 30,934 SVs, for these analyses. First, we used a
univariate latent-factor linear mixed model (LFMM) implemented in
the R package LEA v3.3.294 to search for associations between allele
frequencies and the 19 BIOCLIM environmental variables95. Based on
the number of ancestry clusters inferred with ADMIXTURE v.1.3.0, we
ran LFMMwith three latent factors to account for population structure
in the genotype data. For each environmental variable, we ran five
independent MCMC runs using 5000 iterations as burn-in followed by
10,000 iterations. P values from all five runs were then averaged for
each variant and adjusted formultiple tests using a false discovery rate
(FDR) correction of 5% as the significance cutoff.

Second, we performed a redundancy analysis (RDA) to identify
genetic variants showing an especially strong relationship with multi-
variate environmental axes29,96. RDA has been shown to be one of the
best-performing multivariant GEA approaches and exhibits low false-
positive rates29. After considering the ranked importance of the 19
environmental variables estimated using GF analyses with R package
“gradientForest”46 and correlations among the variables, six environ-
mental variables (BIO1, BIO3, BIO5, BIO13, BIO15, and BIO19) with
pairwise correlation coefficients |r | < 0.6 were selected for the RDA
analyses using the R package vegan. Significant environment-
associated variants were defined as those having loadings in the tails
of the distribution using a standard deviation cutoff of 3 along one or
more RDA axes.

To investigate and compare the role of geography and environ-
ment in shaping spatial genetic variation of adaptive (the 1779 adaptive
variants identified by both LFMM and RDA) and neutral (the 535,191
LD-pruned SNPs as used for population structure analyses) variants,
Mantel and partial Mantel tests were separately used to test for asso-
ciations between FST(FST/1−FST) and geographic (IBD) and environ-
mental (IBE) distance (after accounting for the geographic distance)
with significance determined using 999 permutations in the R package
vegan87, where environmental distance was represented by Euclidean
distance of all scaled environmental variables. In addition, we used
partial RDA to quantify the relative contribution of geography, popu-
lation structure, and environment in explaining the proportion of
adaptive and neutral genetic variation. Three datasets were used: (1)
six uncorrected environmental variables used as in the above RDA
analysis (‘clim’); (2) three proxies of population structure (population
scores along the first three axes of PCA, ‘struct’); and (3) population
coordinates (latitude and longitude, ‘geog’) to characterize explana-
tory variables of climate, population structure, and geography. For the
two RDAmodels, population allele frequencies of adaptive and neutral
variants were used as the response variables, respectively. The sig-
nificance of explanatory variables was assessed using 999 permuta-
tions with the function anova.cca of the R package vegan.

To further assess selection pressures acting on climate adaptive
variants, we assessed the extended haplotype homozygosity (EHH)
pattern for a selected set of strongly associated variants using the R
package “rehh”97 and calculated the standardized iHS across the gen-
ome for common variants using the software selscan v.1.3.098.

Stress treatment and expression analysis by qRT-PCR
Stem segments from wild genotypes of P. koreana were surface ster-
ilized by soaking in 10% sodium hypochlorite solution and 70% ethyl
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alcohol for 5min and then thoroughly washed five times with distilled
water. The stem segments were inserted into MS medium (0.05mg/L
NAA) for 30days at 25/20 °C (day 16 h/night 8 h), and, after rooting, the
stem segments were transplanted to the soil for 40 days at 25/20 °C
(day 16 h/night 8 h). To explore the effect of different genotypes of one
candidate adaptive SNP located in the 5’ UTR of Pokor12247
(LG04:25159299) inmediating adaptation to extreme precipitation, we
carriedout a submergence treatment. For the submergence treatment,
water was maintained at 2 cm above the soil surface and plants were
maintained in the growth chamber providing 25 °C/20 °C (day 16 h/
night 8 h) for 0, 3, 6, 9, and 12 h. In addition, we also carried out a heat
stress treatment to explore the effect of one candidate adaptive SNP
located in the intronic region of Pokor17228 (LG07: 4796402) in
response to heat stress. For the heat stress treatment, plants were
placed into a plant incubator at 42 °C/20 °C (day/night) with the illu-
minationof 16/8h (day/night) for0, 1, 2, 3, and24 h.At each timepoint,
leaf tissues were collected from each plant at the same place and fro-
zen immediately in liquid nitrogen for expression analyses.

Quantitative reverse transcription PCR (qRT-PCR)99 was used to
investigate the expression levels of selected genes in the abiotic
treatments (Pokor12247 for submergence stress and Pokor17228 for
heat stress). Total RNA was extracted from pooled leaf materials using
a Plant RNA extract kit (Biofit, Chengdu, China), and the HiScript II RT
SuperMix for qPCR kit (+gDNA wiper) (Vazyme, Nanjing, China) was
used to obtain cDNA. qPCR was performed with gene-specific primers
(Supplementary Table 14) using the Taq Pro Universal SYBR qPCR
Master Mix (Vazyme, Nanjing, China) reaction system on the CFX96
Real-Time detection system (Bio-Rad). Each experiment was per-
formed with three technical replicates, and theUBQ10was used as the
endogenous control for data analysis.

ATAC-seq analysis
For the ATAC experiment, fresh leaf tissues were collected from the
same individual used for the genome assembly of P. koreana and
prepared according to the experimental protocol following ref. 100. In
brief, approximately 500mg of flash-frozen leaves were immediately
chopped and processed for ATAC-seq, followed by library construc-
tion, and were then subjected to sequencing on the Illumina HiSeq
X-Ten platform. The raw reads generated were first trimmed using
Trimmomatic v.0.3678 with a maximum of two seed mismatches, and
the adapters were trimmed by NexteraPE. Then, the clean reads were
aligned to the reference genome using Bowtie v.2.3.258 using the fol-
lowing parameters: ‘bowtie2 -very-sensitive -N 1 -p 4 -X 2000 -q’ (the
number of mismatches allowed for seed comparison was set to 1, the
threads were set to 4, and the longest insertion clip length was set to
2000). Aligned reads were sorted using SAMtools v.1.1.179. The
redundant reads from PCR amplification and reads that mapped to
either chloroplast ormitochondriawere removedusing Picard v.2.18.11
(http://broadinstitute.github.io/picard/). Finally, only high-quality
properly paired reads were retained for further analysis. ATAC-seq
peak calling was done by MACS2101 with the ‘-keep dup all’ function.

Genomic offset assessment
For each sampling location, we downloaded future (2061–2080 and
2081–2100) environmental data for the 19 BIOCLIM variables from the
WorldClim CMIP6 dataset of four different climate models (BCC-
CSM2-MR model, ACCESS-CM2 model, CanESM5 model, and GISS-E2-
1-G model; resolution 2.5 arcmin)95. Each of the two future environ-
mental datasets consists of two shared socioeconomic pathways
(SSPs): SSP126 and SSP370. We used three different approaches to
evaluate the genomic offset to future climate change.

First, we calculated the RONA18, which quantifies the theoretical
average change in allele frequency needed to cope with climate
change, under projected future climate scenarios. Following the
method used in ref. 24, a linear relationship between allele frequencies

at significantly associated loci (detected by both LFMM and RDA) and
environmental variables was first established using linear regressions.
For each locus, population, and environmental variable, the theoretical
allele frequency change needed to copewith future climate conditions
(RONA) was calculated for each of the four climate models and then
combined, and the average RONA values were further weighted by the
R2 for each linear regression following ref. 45. In addition, to explore
and compare the patterns of RONA calculated by different types of
adaptive variants (SNPs, indels, and SVs), we further calculated RONA
using the three separateddatasets, respectively, for two representative
environmental variables (BIO5 and BIO13).

Second, as a complementary approach to RONA, we used a non-
parametric, machine-learning GF analysis to calculate genomic offset
across the range of P. koreana using ‘gradientForest’ in R17,46. For each
given climate model, we built a GF model for estimating the genetic
offset under the different future scenarios with both the 19 environ-
mental variables and the six environmental variables. The genetic
offset was calculated as a metric for the Euclidean distance of the
genomic composition between the current and future projected cli-
mates and then mapped with ArcGIS 10.2 to display its geographical
distribution. Given the high correlation of genetic offset that was
estimated across models, the average values of genetic offset across
models were used to predict the local maladaptation to future climate.
Same as RONA, the genetic offset was also calculated and compared
among the three different types of variants (SNPs, indels, and SVs).

Third, following the approach used in ref. 23, we integrated
migration to predict potential maladaptation to future climate change
and calculated three different formulations of genetic offset: the local,
forward, and reverse offsets for each climate model. After quantifying
the correlations of local, forward, and reverse offsets across the four
different climatemodels, wepredicted the three genetic offsetmetrics
by calculating the average values across the climate models. For for-
ward genetic offset, we further assessed its sensitivity to dispersal
constraints and tested how forward offset varied when the maximum
allowablemigrationwas limited to different distance classes, including
100, 250, 500, and 1000 km, and unlimited to any location in the
Eurasian continent. Furthermore, to visualize local, forward, and
reverse offsets simultaneously, we mapped these three metrics as the
red, green, and blue bands of an RGB image, respectively, as in ref. 23.

Finally, we explored whether there was an association between
the genomic offset to future climate change and the accumulation of
genetic load across populations of P. koreana. To assess the deleter-
ious genetic load carried by each population, the effects of SNP var-
iants on protein-coding gene sequences were first annotated and
categorized as LOF, deleterious (SIFT score < 0.05), tolerated (SIFT
score < 0.05), or synonymous based on the sorting intolerant from
tolerant (SIFT) algorithm implemented in SIFT4G software using Uni-
Ref100 as the protein database48. The derived versus ancestral allelic
state was determined at each SNP position using the est-sfs software102

through comparison with P. trichocarpa sequences103. Then, the ratio
between the number of derived mutations at LOF, deleterious, and
tolerated sites relative to the number of synonymous variants was
calculated and used as proxies for genetic load per population. In
addition, as SVs are, on average, deleterious, we further calculated the
SV burden represented by the averaged ratio of heterozygous SV to
heterozygous SNP across individuals for each population. Finally, we
used the cor.test function in R to calculate the Spearman’s correlation
coefficients between the three metrics of genetic offsets (local, for-
ward, and reverse) under two future scenarios (SSP126 and SSP370) in
2061–2080 and the above proxies of genetic load across the 24
populations, respectively.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper and/or the Supplementary Materials. All sequencing data,
including the assembled genome, the raw data for genome assembly
and annotation (Nanopore long reads, Illumina reads ofwhole-genome
sequencing, transcriptomes, ATAC-Seq data and Hi-C reads), and
whole-genomeresequencingdata for 230 individuals in this study have
been deposited in the National Genomics Data Center (https://ngdc.
cncb.ac.cn) under accession number PRJCA008692. Source data are
provided with this paper.

Code availability
All scripts used in this study are available at https://github.com/
jingwanglab/Populus_genomic_prediction_climate_vulnerability.
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