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A B S T R A C T   

For a long time gaps or openings in the forest canopy have been of considerable interest to forest ecologists and to 
forest managers. In the context of disturbances induced by climate change, canopy gap dynamics are of particular 
interest, since they can indicate imminent damage to forest resources and irreversible trends such as forest 
decline. Here, statistical significance is crucial for establishing whether any imminent large-scale threat to the 
sustainability of forest resources exists. In order to be able to assess significance, we applied the Boolean model, a 
null or reference model from random set statistics. The Boolean model served as a theoretical benchmark for 
testing the significance of the observed trends in forest canopy gap dynamics. As a pilot study we analysed 
airborne laser scan (ALS) data collected in the Krycklan catchment area (Northern Sweden) in 2006 and 2015. 
The data were analysed using eight different landscape metrics. Despite the moderate resolution of our ALS data 
the landscape metrics have proved to be useful tools for monitoring canopy gap dynamics of forest ecosystems. 
The Boolean model has been successful in ascertaining statistical significance and the model parameters indi-
cated important trends. In the Krycklan catchment area, there was no significant trend of canopy gap dynamics 
indicating any harmful development between 2006 and 2015. On the contrary, we found evidence for gaps 
closing in and gap locations becoming more random whilst the canopy cover increased between the two survey 
years.   

1. Introduction 

Gaps or openings in the canopies of forest stands have been of 
considerable interest to many ecologists studying the dynamics of forest 
ecosystems. A gap is created by the natural death or removal of main 
canopy trees and can be defined as the vertical projection downward of 
any canopy opening in the forest that extends through the vegetation 
strata down to a height of 2 m above ground (Brokaw, 1982; Kimmins, 
2004; Newton, 2007). Whatever process caused them, gaps in the main 
canopy of forest stands markedly modify the environmental conditions 
of plants growing in the affected patches (Binkley, 2021). More light and 
precipitation reach the forest floor whilst evapotranspiration at the soil 
surface is also increased. Light availability depends on the ratio of 
canopy height to gap radius, but also on the sun elevation angle and 
therefore may be offset from the opening in the canopy depending on 

latitude (Kimmins, 2004). Canopy gaps increase the environmental 
heterogeneity and thus provide quite different microhabitats and 
consequently different opportunities for plant seedlings to colonise 
affected areas, whilst existing mid-storey trees can emerge into the main 
canopy. The response of vegetation after gap formation is closely related 
to gap size (Whitmore, 1989). Reflecting all this, the gap-partitioning 
hypothesis states that species with different requirements establish in 
different parts of the same gap (e.g. edge versus centre; Perry et al., 
2008). Gaps can attract herbivores such as deer because of an increased 
abundance of herbaceous plants in the opening. The formation of can-
opy gaps of various sizes and the subsequent recruitment and growth of 
plants in the gaps are key processes in autogenic forest succession 
(Kimmins, 2004). Canopy gaps are reflected by belowground gaps that 
are generally much smaller than the canopy gaps because roots extend 
much further from the stem than branches (Lukac and Godbold, 2011). 
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Multiple causes and agents can be responsible for gap formation, 
either in isolation or in unison. Frequent causes include wind, insect 
infestations, diseases, forest management, flooding, air pollution, inva-
sive species, road construction and lightning. Repeated long-term 
droughts can prepare and trigger insect infestations, as can wind and 
fire. Dominant trees often tend to die through the natural process of 
senescence that leaves trees vulnerable to the aforementioned agents. 
Such mortality is frequently spatially aggregated thus opening relatively 
large gaps (Perry et al., 2008). The creation of canopy gaps usually 
enhances biodiversity in terms of species richness and size diversity and 
also results in accumulations of large quantities of dead wood. With 
ongoing climate change it is expected that gap-inducing causes and 
agents will increase, leading to a more frequent occurrence of gaps but 
also to steady gap enlargement and the merging of existing gaps 
(Nakamura et al., 2017; Senf et al., 2018). Gap formation is counter- 
acted by the crown growth of gap-boundary trees whose crowns 
enlarge and close in as time goes by. At the same time tree regeneration 
may close some gaps and in others small existing trees may gradually 
claim the available space. 

These dynamics are interesting in themselves, since they are the key 
to understanding the interactions between periodic disturbances and 
tree dynamics (Kimmins, 2004). For example, frequent, relatively mild 
disturbances create a small gap mosaic, while infrequent, more severe 
disturbances can initiate a large-scale successional dynamic that in-
cludes long-term changes (Perry et al., 2008). With ongoing climate 
change it is, however, possible that disturbances will have a much 
greater effect on forest ecosystems than currently observed. In that sit-
uation, monitoring gap dynamics can play a key role in determining the 
progress of anthropogenic impacts on our environment. Furthermore, 
continued canopy screening can contribute to an early-warning system 
that alerts forest managers to the emergence of tipping points beyond 
which forest restoration will be difficult or even impossible. 

Remote sensing techniques and particularly airborne laser scanning 
(ALS) can provide opportunities for accurate and spatially explicit 
mapping of forest canopy gaps (Silva et al., 2019). They allow the 
detection and analysis of forest gap data using ALS-derived 3D point 
clouds or canopy height models (CHM). Up to a point, high spatial 
resolution reduces the uncertainty that is associated with both gap 
detection and gap characterisation using summary statistics. While most 
studies are based on high resolution ALS data, our focus is on the more 
common situation of being limited to the availability of existing airborne 
surveys to avoid additional costs. 

The objectives of this paper are (1) to perform a literature review of 
landscape metrics in order to identify the most suitable characteristics 
for an effective monitoring of tree canopy gaps in airborne laser scan-
ning (ALS) data. Furthermore we intended (2) to develop a simulation 
method that gives evidence whether an observed difference of a char-
acteristic is significant or not and provides additional information 
assisting the interpretation of changes. Finally, (3) achievements and 
limitations were discussed and recommendations were made. 

2. Materials and methods 

2.1. Gap identification 

Since the emphasis of this study is placed on quantitative gap 
description, we have adopted a definition of canopy gaps along the 
automated gap identification reported in the remote sensing literature. 
This definition relies on canopy height models (CHM), which are 
spatially explicit descriptions of the tree canopy height over a given area 
of forest. CHMs are commonly calculated as the difference between the 
canopy surface and the underlying topography (Vepakomma et al., 
2011; Wöllauer et al., 2020). 

We defined gaps in terms of minimum penetration rate below a 2-m 
height threshold. The penetration rate measures the proportion of points 
in a given height stratum (Takahashi et al., 2006). A gap is then defined 

by a penetration rate below this threshold of at least 80% which was 
calculated on a regular raster grid. Due to the moderate point density of 
the first ALS acquisition used in this study, 3.91–6.81 points/m2 in 2006 
compared to 30.15–46.73 points/m2 in 2015, a spatial resolution of 2.5 
m was chosen for the grid cell size. 

Other studies filtered the identified gaps in terms of a pre-defined 
minimum gap size and/or a gap perimeter/area ratio (e.g. Heidrich 
et al., 2020; Bae et al., 2019). In general, minimum gap size is mainly a 
matter of research question (e.g. whether a researcher intends to focus 
on a certain type of gaps and only gaps are studied) and we decided that 
for our research topic all gaps are relevant regardless of their size and 
that it therefore would be better not to introduce a lower boundary. The 
gap perimeter/area ratio is usually applied to ensure that linear struc-
tures such as roads, rides and trenches are not included (Heidrich et al., 
2020). However, our study areas do not include any forest roads and 
rides (see Section 2.4). 

2.2. Characterising gaps and their dynamics 

According to the results of our literature review, there are two main 
groups of characteristics that can be applied in the analysis of spatial 
canopy patterns, i.e. indices and spatially explicit functions (Chiu et al. 
2013). In the context of landscape research, indices are commonly 
referred to as metrics (Turner and Gardner, 2015; Gergel and Turner, 
2017). Both, indices and functions, quantify different aspects of the 
pattern under study, e.g. patchiness or shape aggregation/segregation. 
Dale and Fortin (2014) defined “patch” as a spatially homogeneous area 
where at least one variable has similar attributes either of a category (e. 
g. tree canopy or gap) or of a quantitative value (e.g. mean tree height). 
The first group of characteristics is often referred to as landscape metrics 
(Turner and Gardner, 2015; Gergel and Turner, 2017), because these 
characteristics were originally proposed for analysing landscape pat-
terns in land-cover maps obtained from remote sensing images (Dale, 
1999). However, they can be applied to labelled image data of different 
scales from microscopy to landscapes. They include a number of 
different measures of varying complexity, e.g. forest cover percentage, 
mean patch size, mean or total perimeter length, mean distance of points 
in forest patches to the nearest non-forest point, percentage of edge area, 
fractal dimension, number of forest patches, mean distance between 
centroids of forest patches, and spatial correlation (Kleinn, 2000; Turner 
and Gardner, 2015). 

Spatially explicit functions by contrast are dependent on Euclidean 
distance and quantify the spatial relationship between pixels, cells or 
objects (such as gaps). Typical examples are the spherical contact dis-
tribution, also termed empty-space statistic and the variogram (Chiu 
et al., 2013). Spatially explicit functions are typically more exact and 
can provide more detailed information than indices, however, they have 
limitations when the geometrical resolution of the images is moderate in 
comparison to the investigated objects, and consequently cannot 
develop their full potential in such situations (Pommerening and Gra-
barnik, 2019). 

2.2.1. Landscape metrics for describing canopy gaps 
From our literature review, we learned that landscape metrics can be 

grouped into different categories. Here we followed the classification 
used in the landscapemetrics R-package (Hesselbarth et al. 2019) 
including.  

• aggregation metrics,  
• area and edge metrics,  
• complexity metrics,  
• core area metrics,  
• diversity metrics and  
• shape metrics. 

The results of the analysis crucially depend on the selection of the 
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landscape metrics. For some applications, core sets of the most useful 
metrics have been defined, e.g. for landscape planning by Botequilha- 
Leitão and Ahern (2002) or for analysing biodiversity by Schindler et al. 
(2008). Cushman et al. (2008) and Riitters et al. (1995) used factor 
analysis to define more general recommendations for useful sets of 
landscape metrics. However, these recommendations apply to analysing 
landscapes rather than to analysing binary canopy gap maps. 

Although such core sets have not been developed for binary gap 
maps, there are more general recommendations in the literature, which 
apply regardless of the application: (1) Choosing the metrics should 
contribute to answering the particular research question as opposed to 
trying to study everything. (2) The chosen landscape metrics should be 
able to sufficiently explain pattern variability across the landscape and 
redundancies should be minimized. Therefore, the chosen metrics 
should be relatively independent of each other. (3) Metrics should be 
used for which a wide range of their domain is covered by the investi-
gated landscape (Eigenbrod et al., 2011; Turner and Gardner, 2015). 

Since we were only interested in fundamental, significant changes of 
the gaps, most types of gap metrics were suitable for our analysis. 
However, advised by the literature we excluded two types of metrics 
from this analysis straight away: core metrics and the diversity metrics 
(Table 1). Core metrics do not seem to be reasonable for this application 
because there are hardly any core areas in our data. Core areas include 

all gap pixels, which are not directly connected to any canopy pixels 
(McGarigal, 2014). Such pixels hardly occur in the data of our study 
areas due to the moderate spatial resolution. Diversity metrics were not 
meaningful in this application either, since the gap maps were only bi-
nary, i.e. there were only two classes of patches. 

Patch area (AREA) measures the area of patches, e.g. canopy gaps 
(Table 1). PLAND gives the proportion of gaps in the whole study area. 
AREAmn in our application is the mean gap area. The clumpiness index 
(CLUMPY) is a measure of the aggregation of gap pixels. The normalised 
landscape shape index (nLSI) measures gap aggregation by considering 
the ratio of the actual perimeter and the hypothetical range of possible 
perimeter lengths. The landscape division index (DIVISION) can be 
interpreted as the probability that two randomly selected pixels are not 
located in the same gap. The Euclidean nearest neighbour distance 
(ENN) gives the distance between a gap and its nearest neighbour gap 
(Jaeger, 2000). Finally, the mean fractal dimension index (FRAC) is a 
shape index describing gap complexity based on gap perimeter and gap 
area (Table 1). 

Landscape metrics can be measured at patch, class or landscape level. 
Most landscape metrics are considered at class or landscape level. For 
binary landscapes, this implies that the metrics results are one or two 
scalars, respectively (Turner and Gardner, 2015). For this study, the 
scalar landscape metrics that proved useful were percentage of 

Table 1 
Overview of all landscape metrics used in this paper. There are two classes of patches i = 1, 2, where i = 1 denotes gaps and i = 2 denotes tree canopies. For each class, 
there are ni observations/patches. The area and perimeter of a patch ij are given by aij and pij, respectively. j is an index denoting each patch within class i. The total 
landscape area is given by A =

∑2
i=1

∑ni
j=1aij and the total class area for class i is given by Ai =

∑ni
j=1aij. In analogy, the total perimeter is P =

∑2
i=1

∑ni
j=1pij and Pi =

∑ni
j=1pij.  

Metric name and 
acronym 

Metric type Formula Range Description, details and interpretation Reference 

Patch area (AREA) Area and 
Edge 

aij R+

Area of patch j of class i. Measured at patch level, hence a 
distribution can be considered.  

For i = 1, the characteristic represents gap area of gap j. 
Turner and Gardner, 2015 

Percentage of 
landscape of class i 
(PLAND) 

Area and 
Edge 100⋅

(∑ni
j=1aij

A

)
[0,
100]

Percentage of patches of class i in the landscape.  

For i = 1, the characteristic represents the proportion of 
gaps in the whole study area and is called gap area 
proportion. 

Turner and Gardner, 2015 

Mean of patch area 
(AREAmn) 

Area and 
Edge 

1
ni

∑ni

j=1
aij R+

Mean area of the patches of class i in the landscape.  

For i = 1, the characteristic represents mean gap area. 
Turner and Gardner, 2015 

Clumpiness index 
(CLUMPY) Aggregation 

⎧
⎪⎨

⎪⎩

Gi − Pi

Pi
for Gi < Pi < 0.5

Gi − Pi

1 − Pi
else 

with Gi =
gii

∑m
k=1gik − fmin(Pi)

[ − 1,1]

gik– total number of neighbouring pixels of pixels of class i 
which belong to class k.  
gii– total number of neighbouring pixels of pixels of class i, 
which belong to class i as well. 
fmin(Pi)– smallest theoretically possible value of the 
perimeter of class i 
The index equals − 1 for maximally disaggregated, 0 for 
randomly distributed and 1 for maximally aggregated 
classes. 

Hesselbarth et al. 2019; 
McGarigal, 2014; With, 
2019; 

Normalized landscape 
shape index (nLSI) Aggregation Pi − fmin(Pi)

fmax(Pi) − fmin(Pi)

[0,1] fmin(Pi) and fmax(Pi) give the smallest/largest theoretically 
possible value of the perimeter of class i.  
Results in the ratio of the actual perimeter and the 
hypothetical range of possible perimeter lengths. 
Equals 0 when only one square patch is present, i.e. a patch 
with equal lengths of sides, and increases the more 
disaggregated patches there are. 

Patton, 1975 

Landscape division 
index (DIVISION) 

Aggregation 1 −
∑2

i=1
∑ni

j=1
( aij

A

)2 [0,1] Can be interpreted as the probability that two randomly 
selected pixels are not located in the same patch. Jaeger, 2000 

Euclidean nearest- 
neighbour distance 
(ENN) 

Aggregation hij R+

hij– Euclidean distance from patch ij to the nearest patch of 
the same class i.  
For i = 1, the characteristic gives the Euclidean distance 
from gap j to the nearest distinct gap. 
Measured at patch level, hence distribution can be 
considered. 

Turner and Gardner, 2015 

Mean fractal 
dimension index  

(FRAC) 

Shape 1
ni

∑ni

j=1

⎛

⎝2⋅
loge

(
0.25⋅pij

)

loge
(
aij
)

⎞

⎠
[1,2]

Describes patch complexity based on patch perimeter and 
patch area. 
The factor of 0.25 results from a standardisation such that 
the perimeter of a one-pixel patch is standardised to be 1. 

With, 2019; Mandelbrot, 
1977;Turner and Gardner, 
2015  

N. Hagemann et al.                                                                                                                                                                                                                             



Ecological Indicators 145 (2022) 109627

4

landscape of class, mean of patch area, clumpiness index, normalized 
landscape shape index, landscape division index, contiguity index and 
mean fractal dimension index (Hesselbarth et al., 2019; With, 2019; 
Turner and Gardner, 2015; McGarigal, 2014; Jaeger, 2000; LaGro, 1991; 
Mandelbrot, 1977, Patton, 1975), see Table 1. 

In addition to the scalar landscape metrics, we considered two 
landscape metrics which are measured at patch level, i.e. patch area and 
Euclidean nearest-neighbour distance (Turner and Gardner, 2015). In 
the context of our study, the gaps are the patches of interest. These 
landscape metrics are not observed as scalars but their distribution in the 
whole study area is of interest. As these metrics do not take values 
smaller than 0, the analysis is carried out using kernel density estimation 
with a log-transformed kernel density estimator (Charpentie and 
Flachaire, 2015). 

In the context of climate change and potential forest damage, it is 
crucial to establish whether any canopy gap pattern and particular the 
changes in gap patterns over time are statistically significant. Significant 
differences in landscape metrics values between years can alert to trends 
that may lead to a gradual climate-induced dissolution of forest canopy 
or to a recovery. In our analysis, we compared gap maps observed at two 
points in time with simulated gap maps resulting from a theoretical 
spatial model, the Boolean model, see Section 2.2.2. Apart from the direct 
comparison of metrics values, we also used the parameters of the 
theoretical model for characterising and testing the changes that 
occurred between the two observation dates. 

2.2.2. The theoretical benchmark: The Boolean model 
The germ-grain model is the most important model in random set 

statistics and its most basic variant is the Boolean model (Chiu et al., 
2013). The germs of this model result from a Poisson point process 
which implies complete spatial randomness (CSR), i.e. there is no corre-
lation between point locations in a Poisson paint pattern. Complete 
spatial randomness often serves as a reference model in spatial statistics. 
Other, synonymous terms include benchmark or null model. Using CSR as 
a reference is very common in point process and random set statistics 
(Illian et al., 2008). Any significant deviation from CSR cannot be 
explained by chance alone and therefore constitutes a statistically 
important observation. 

There are several possibilities for constructing the grains of Boolean 
models (e.g. circles with constant radius, circles with random radii, 
polygons etc.) and we focussed on the standard model of circular grains 
with constant radius. As a consequence, the grains in our case are discs 

with a constant radius R around each germ. Therefore, the Boolean 
model can be uniquely specified by only two parameters: the intensity of 
the underlying Poisson point process λ and grain radius R (Pommerening 
and Grabarnik, 2019; Stoyan et al., 1995). The union of grains simulates 
the random pixel set formed by the tree canopies in our data. As a 
consequence, canopy gaps are modelled by the complement of the 
Boolean model, i.e. the area not covered by grains. 

Although it seems to be an intuitive choice to make germs coincide 
with individual tree locations so that the corresponding grains represent 
their crowns, there is no theoretical justification for such a modelling 
strategy. In fact, in any model the germs can flexibly represent parts of 
trees, whole trees or clusters of several trees. This is the modelling 
strategy we adopted in our study and the germs can be interpreted as 
auxiliary points that help construct overall forest canopy structure. 
Therefore in our study, the number of auxiliary points is based on the 
intensity rate. 

For simulating the Boolean model we used the spatstat R package 
(Baddeley et al., 2016; Baddeley and Turner, 2005). The simulations 
were carried out in two steps: (1) A Poisson process with intensity λ was 
simulated using the function runifpoint(). The intensity was speci-
fied in points per hectare to ensure scale invariance. (2) The grains were 
added as circles around the germs using the function discs. This second 
step was performed pixel by pixel following the 2.5 m × 2.5 m raster of 
the CHM derived from the ALS data (see Fig. 1). 

To take into account that the edges of the study areas are not the 
edges of the forest a buffer method was applied, i.e. the Boolean models 
were first simulated in a larger area and then an area matching the size 
of the study area was extracted from the centre of the simulated area. 

In theory, model parameters λ and R are continuous, i.e. λ,R ∈ R+. 
However, for our application we needed to choose a grid of values, 
which could be simulated in a reasonable amount of time. We decided to 
use 1 m steps from 1 m to 7 m for R and a step width of 50 ha− 1 within a 
range from 50 ha− 1 to 1200 ha− 1 for λ. Therefore, there are several 
possible combinations of model parameters not explicitly considered by 
our grid values. In some cases, as shown in our results, none of the 
estimated models coincides with the observed values, however, theo-
retically a model matching the observations might exist for some values 
lying between two values of our grid. In such cases, we often provided 
intervals in which these values might lie. To do so we applied the usual 
notation based on using “(“ for an open interval and “[“ for a closed one 
(e.g. 50 ha− 1

< λ ≤ 150 ha− 1 was denoted as 

Fig. 1. Left: Realisation of a Boolean model with R = 8 m and λ = 30 ha− 1. Right: The same realisation is fitted into the 2.5 m × 2.5 m raster. The germs are shown in 
red. Window size is 375 m × 375 m, which is equivalent to 150 × 150 pixels. (For interpretation of the references to colour in this figure caption, the reader is 
referred to the web version of this article.) 
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λ ∈
(

50 ha− 1
,150 ha− 1

]
). This should not be confused with sets of 

values of λ denoted by “{“ (e.g. λ ∈ {50 ha− 1
,150 ha− 1

} or 

λ ∈
{

950 ha− 1
, 1000 ha− 1

,1050 ha− 1
}

). 

2.3. Methods for simulating envelopes and tests 

When comparing the values of the landscape metrics of the study 
area to those of the theoretical model, i.e. the Boolean model, the aim 
was to identify significant differences, as described in Section 2.2.2. 
However, since most landscape metrics have an unknown distribution, 
envelopes or regions of trust cannot be derived theoretically (Myllymäki 
et al., 2017; Turner and Gardner, 2015; Remmel and Csillag, 2003). 
Therefore, for each model parameter combination approximate enve-
lopes were generated by drawing 2500 independent samples from the 
Boolean model and calculating the 2.5% and 97.5% quantiles of the 
landscape metrics of these samples (Turner and Gardner, 2015; Fortin 
et al., 2003; Remmel and Csillag, 2003). 

For scalar landscape metrics, a difference between the value 
observed in the study area and the Boolean model is considered signif-
icant, if the observed value is not included in the simulated envelopes 
(Remmel and Csillag, 2003). Regarding the comparison of the observed 
values of the two study years with the simulated ones, there are three 
possible cases: (1) Both observed values are not significantly different 
from the simulated one resulting from a single Boolean model, i.e. one 
envelope covers both observed values. (2) None of the model parameter 
combinations of λ and R included in our grid leads to such an envelope 
but due to the size of the other envelopes, such a model configuration 
most likely exists for some value between the grid values. (3) The dif-
ference between the study years is larger than the envelopes and, 
therefore, the two observed values are not significantly different from 
the ones resulting from distinctly different Boolean models. In the latter 
case, we were mostly interested in which of the observed values coin-
cided with the model with the higher number of auxiliary points since 
this gives an indication of canopy regrowth or forest decline. 

Boolean model simulations of non-scalar landscape metrics lead to 
pointwise envelopes of the corresponding estimated densities. For 
determining whether the density of observed values differs significantly 
from the corresponding one of the theoretical model we applied the 
global envelope test (Myllymäki et al., 2018). 

2.4. Krycklan study area 

Krycklan is a watershed located in the boreal region of Northern 
Sweden in the county of Västerbotten. The area is located approximately 
50 km northwest of the city of Umeå (64◦, 14′N, 19◦ 46′ E). The Krycklan 
river is a tributary to the river Vindelälven which starts in the mountain 
range, crosses Sweden and enters the Baltic Sea near Umeå. Krycklan is a 
6790 ha water catchment running through a mosaic of forests, wetlands 
and lakes that are interspersed throughout the forest landscape (Fig. 2). 
The catchment area is partly located within the Svartberget experi-
mental forest which is managed by the Swedish University of Agricul-
tural Sciences (Laudon et al., 2013). Krycklan ranges in elevation from 
114 to 405 m a.s.l. Forests cover 87% of the catchment followed by 
mires (9%), shallow soils (7%) and rocky outcrops (1%). The land use is 
dominated by rotation forest management and 25% of Krycklan has 
been protected since 1922. In terms of abundance, the main tree species 
include Scots pine (Pinus sylvestris L.; 63%) and Norway spruce (Picea 
abies (L.) H. Karst., 26%) and mostly grow on postglacial sedimentary 
deposits. The climate can be characterised as cold temperate humid with 
persistent snow cover during the winter season. Mean annual tempera-
ture is 1.8 ◦C (-9.5 ◦C in January and +14.7 ◦C in July). Mean annual 
precipitation is 614 mm. We selected two test sites in the catchment 
areas that were comparatively little affected by forest management 
operations to be able to focus on natural tree crown development. 

For selecting appropriate study regions for our analysis we mainly 
considered areas which  

• were located completely inside the Svartberget experimental forest,  
• were not involved in ongoing field trials,  
• did not include any forest roads or rides (except for small footpaths 

or minor extraction racks),  
• were larger than 5 ha, and  
• were relatively dissimilar and not in direct proximity of each other. 

The final selection was mostly based on high-resolution aerial 
photos, road maps and the Silvaboreal database (https://www.silvab 
oreal.com), which includes all field trials in the Svartberget experi-
mental forest and historical information about the vegetation structure. 
Taking these criteria into consideration two suitable study areas were 
identified (Fig. 2). 

The first area spreads over approximately 14 ha and the trees are on 
average 96–109 years old, the second one has a total size of approxi-
mately 16 ha and an average stand age of 122–139 years. 

3. Results 

The gap area proportion (PLAND) in the first study area (Fig. 3, 
PLAND) is smaller than in the second (Fig. 4, 12.7% versus 15.1% in 
2006), particularly in 2015 (7.1% versus 12.8%). However, the differ-
ences between the years are not too dissimilar for the two areas and the 
trend of declining gap area proportion between 2006 and 2015 is the 
same. The envelopes produced by the simulations with the Boolean 
models in both study areas are relatively narrow compared to the dif-
ference between the study years. In both study areas, for R = 3 m there 
is no Boolean model leading to a gap area proportion value which is not 
significantly different from the values observed in 2006, but it can be 
concluded from Figs. 3 and 4 that such a model exists for some intensity 

Fig. 2. Overview of the locations of the two study areas within the Svartberget 
experimental forest. Data source: SLU Field-based Forest Research Unit. (For 
interpretation of the references to colour in the figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 3. Results of the class and landscape level 
metrics for the first study area. The means 
resulting from the simulation of the Boolean 
model are shown as black dots and their 95% 
envelopes as black bars. The observed values are 
shown in red for 2015 and in blue for 2006. The 
x-axis gives the intensity of the auxiliary points 
per hectare of the Boolean models and the y-axis 
shows the value of the corresponding metric. (For 
interpretation of the references to colour in this 
figure caption, the reader is referred to the web 
version of this article.)   
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Fig. 4. Results of the class and landscape level 
metrics for the second study area. The means 
resulting from the simulation of the Boolean 
model are shown as black dots and their 95% 
envelopes as black bars. The observed values are 
given in red for 2015 and in blue for 2006. The x- 
axis gives the intensity of the auxiliary points per 
hectare of the Boolean models and the y-axis 
shows the value of the corresponding metric. (For 
interpretation of the references to colour in this 
figure caption, the reader is referred to the web 
version of this article.)   
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λ ∈
(

700 ha− 1
, 750 ha− 1

)
. For R = 4 m and study area 1, such a 

model is given for λ = 450 ha− 1, whilst in study area 2 such a model 

exists for some intensity λ ∈
(

400 ha− 1
, 450 ha− 1

)
. For study area 1 

(Fig. 3, PLAND), the gap area proportion observed in 2015 was not 
significantly different from the one resulting from Boolean models with 
R = 3 m and λ = 950 ha− 1. For R = 4 m and study area 1, none of the 
estimated models coincided with the observed value of 2015, but such a 

model exists for some intensity λ ∈
(

500 ha− 1
, 550 ha− 1

)
whilst for 

study area 2 (Fig. 4, PLAND) the gap area proportion observed in 2015 
was not significantly different from the corresponding one resulting 
from Boolean models with R = 4 m and λ = 400 ha− 1. 

Similar to PLAND, the mean gap area (AREAmn) of study area 1 is 
smaller than that of area 2 (approximately 18.0 m2 versus 22.8 m2 in 
2006 and 14.0 m2 versus 21.0 m2 in 2015). However, the difference 
between the two survey years is greater in study area 1 (Fig. 3, 
AREAmn). As with PLAND there is a trend of declining mean gap area 
from 2006 to 2015. For study area 1, the gap area proportion observed in 
2006 was not significantly different from the one resulting from Boolean 
models with R = 3 m and λ = 800 ha− 1, R = 4 m and λ = 550 ha− 1 or 

R = 5 m and λ ∈
(

400 ha− 1
, 450 ha− 1

)
, whilst with R = 3 m and 

λ ∈
(
900 ha− 1, 950 ha− 1), R = 4 m and λ ∈

(
650 ha− 1, 700 ha− 1)

and R = 5 m and λ ∈
(
500 ha− 1, 550 ha− 1) models exist that lead to 

values not significantly different from those observed in 2015. For study 
area 2 (Fig. 4, AREAmn), there are even single Boolean models 
explaining the observed values in both years, i.e. with R = 3 m and λ =

700 ha− 1, R = 4 m and λ = 500 ha− 1 or R = 5 m and some 
λ ∈

(
350 ha− 1, 400 ha− 1). 

The clumpiness index (CLUMPY) values for the two study areas are 
positive and closer to zero than to one. For study area 1 (Fig. 3, 
CLUMPY), they are approximately 0.20 and 0.19, respectively, while for 
study area 2 the index values are approximately 0.24 and 0.26 in 2006 
and 2015 (Fig. 4, CLUMPY). These numbers indicate that the observed 
canopy gaps are slightly more clustered than randomly distributed, 
which is a result intuitively expected from a visual inspection of the 
canopy-gap maps. In study area 2 (Fig. 4, CLUMPY), the gaps are slightly 
more aggregated than in study area 1 (Fig. 3, CLUMPY). In both study 
areas, the difference in the clumpiness index between 2006 and 2015 is 
very small compared to the average size of the relevant envelopes of the 
simulated Boolean models. From 2006 to 2015 gap pixels became more 
aggregated in study area 2 and more random in study area 1. For study 
area 1, both observed values were not significantly different from those 
resulting from the same Boolean models (e.g. R = 3 m and λ ∈

{950 ha− 1
, 1000 ha− 1

} or R = 4 m and λ ∈ {750 ha− 1, ⋯,

950 ha− 1
} or R = 5 m and λ ∈ {600 ha− 1, ⋯, 800 ha− 1

}). The 
observed clumpiness index values of both years in study area 2 (Fig. 4, 
CLUMPY) correspond to the envelopes resulting from the same Boolean 
models with R = 3 m and λ = 750 ha− 1, R = 4 m and λ ∈

{
650 ha− 1,

700 ha− 1} or R = 5 m and λ ∈
{
500 ha− 1, ⋯, 800 ha− 1}. 

For both study areas the values of the normalised landscape shape 
index (nLSI) are in the upper half of the index range (between 0.75 and 
0.70 in area 1 and around 0.65 in area 2) which indicates that the gaps 
tend to be more aggregated than disaggregated and this outcome 
matches the results of the clumpiness index. However, nLSI indicates a 
greater aggregation of gaps in study area 1 (Fig. 3, nLSI). In both areas, 
aggregation increases from 2006 to 2015 and the difference is markedly 
larger in area 1. In study area 1, the observed values in 2006 and 2015 
can be explained with models based on parameters for R = 3 m and λ ∈

{800 ha− 1
, 850 ha− 1

} and R = 3 m and λ ∈ {950 ha− 1
, 900 ha− 1

}, 
respectively. Alternatives are R = 4 m and λ ∈ {600 ha− 1

, 650 ha− 1
}

and R = 4 m and λ = ∈ {750 ha− 1
, 800 ha− 1

}, respectively. For R =

5 m and λ = 550 ha− 1 the envelope simulated from the Boolean model 

covers both observed values. The observed values of the normalised 
landscape shape index in study area 2 (Fig. 4, nLSI) and in both survey 
years are not significantly different from those resulting from Boolean 
models with R = 3 m and λ ∈ {700 ha− 1, 750 ha− 1}, R = 4 m and λ =

550 ha− 1 or R = 5 m and λ ∈
{
400 ha− 1, 450 ha− 1}. 

The landscape division index (DIVISION) has higher values for the 
second study area than for the first. In both areas, the probability that 
two randomly selected pixels are not located in the same patch 
decreased from 2006 to 2015. This difference was much larger than for 
the two other aggregation indices. The decrease was larger in study area 
1 (Fig. 3, DIVISION). Most likely this is much related to the decrease in 
mean gap area (AREAmn). In study area 1, the envelopes were so small 
that there was no Boolean model for any R, which could explain the 
observed division index values in both survey years 2006 and 2015. The 
Boolean model, which led to values that were not significantly different 
from the observed values in 2015, had a larger intensity (e.g. R = 3 m 
and λ = 950 ha− 1, R = 4 m and λ ∈

{
500 ha− 1, 550 ha− 1}) than those 

that were not significantly different from the observed values in 2006 (e. 
g. R = 3 m and λ ∈

{
700 ha− 1, 750 ha− 1}, R = 4 m and λ =

400 ha− 1). A similar trend with only slightly different values was ob-
tained for study area 2 (Fig. 4, DIVISION). 

For the mean fractional dimension index (FRAC) we observed values 
close to 1 which indicated that most canopy gaps had a shape of low 
complexity (e.g. rectangles) in both years. This outcome is highly 
influenced by the moderate resolution and our gap definition (see Sec-
tion 2.1) which tends to lead to many one- and two-pixel gaps. 
Complexity of gap size appears to be slightly higher in study area 2 
compared to study area 1. In both areas, complexity of gap size decreases 
from 2006 to 2015, where the difference is greater in study area 1. For 
both study years the size of the envelopes produced by the Boolean 
models vary with λ. Generally a higher intensity is needed to simulate a 
model leading to a mean fractal dimension index which is not signifi-
cantly different from the observed one in 2015 compared to 2006. The 
mean fractal dimension index (Fig. 4, FRAC) observed in in study area 2 
in both survey years is covered by the envelopes simulated by Boolean 
models with R = 3 m and some λ ∈

(
250 ha− 1, 700 ha− 1), R = 4 m 

and some λ ∈
(
100 ha− 1, 150 ha− 1) ∪ (450 ha− 1, 500 ha− 1) or R =

5 m and λ ∈
(
50 ha− 1, 100 ha− 1) ∪ {350 ha− 1}. In study area 1, the 

trends are similar, but the envelopes simulated by Boolean models 
usually do not cover both observed values except for very small λ (Fig. 3, 
FRAC). 

For study areas 1 and 2, the estimated distributions of the observed 
Euclidean nearest neighbour distance (ENN) are very similar (Figs. 5 and 
6, ENN). The maximum of the 2015 curves are always lower than those 
of the 2006 curves whilst the right tails of the 2015 curves are above 
those of the 2006 curves. This indicates that as a result of canopy growth 
the distances between gap pixels have increased from 2006 to 2015 and 
are consistent with the results of the other indices. For both study areas, 
some of the density distributions resulting from Boolean models were 
partly similar to the distributions of observed ENN distance values, e.g. 
for model parameters R = 3 m and λ ∈ {700 ha− 1

, 750 ha− 1
}, R = 4 m 

and λ = 350 ha− 1 for 2006 and R = 3 m and λ = 900 ha− 1, R = 4 m 
and λ = 450 ha− 1 for 2015 (Figs. 5 and 6, ENN). The curves simulated 
from the Boolean model, however, differed especially at their right tail 
from those estimated for the observed values. Therefore, according to 
the global envelope test, the empirical distributions differ significantly 
from the theoretical ones resulting from the Boolean models. 

The patch-area curves generally decrease with increasing metrics 
value. Due to the small average gap size, there is hardly any difference 
between the 2006 and 2015 patch-area curves (AREA), but it is possible 
to see also here that the gap size decreases from 2006 and 2015. For 
study area 1, this reduction appears to be larger than for study area 2 
(Figs. 5 and 6, AREA). The gap area distribution estimates for the two 
survey years showed small differences relative to the width of the 
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Fig. 5. Kernel density estimates of the patch level metrics for the first study 
area. The mean kernel density estimate resulting from the simulation of the 
Boolean model is shown as black lines and their 95% envelopes as grey area. 
The kernel density estimates based on the observed values are given in red for 
2015 and blue for 2006. The x-axis shows the values of the corresponding 
metric. (For interpretation of the references to colour in this figure caption, the 
reader is referred to the web version of this article.) 

Fig. 6. Kernel density estimates of the patch level metrics for the second study 
area. The mean kernel density estimate resulting from of the simulation of the 
Boolean model is shown as black lines and their 95% envelopes as grey area. 
The kernel density estimates based on the observed values are presented in red 
for 2015 and blue for 2006. The x-axis shows the values of the corresponding 
metric. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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envelopes resulting from the corresponding Boolean model. This meets 
the expectation we developed from the analysis of the mean value. None 
of the density distribution curves generated by the Boolean model fully 
matched the curves estimated from the observed data, although there is 
more of a trend here than for ENN that the curves for both survey years 
are covered by one and the same Boolean model. Thus the global en-
velope test indicated significant differences. 

4. Discussion 

Considering the results from the selected eight landscape metrics 
simultaneously has proven useful for monitoring canopy gap patterns, 
since they complemented each other and highlighted different aspects of 
canopy gap patterns. 

We applied a new method combining landscape metrics values with 
statistical tests that were based on a model from random set statistics, 
the Boolean model. As a result we obtained three types of information, i. 
e. the metrics values, test results and additionally information on the 
parameters of the Boolean model (λ, R) as well as on the magnitude of 
the envelopes relative to the differences in the metrics values from the 
two survey years. The model information has proved particularly valu-
able, as it characterises the observed differences in the metrics values 
between the survey years. These differences and associated character-
istics are of primary interest when monitoring gap dynamics. 

The landscape metrics convey the impression of a landscape with a 
gap proportion of 7–15% where the gaps are in the process of closing in 
rather than expanding. Accordingly, it can be concluded that there is no 
imminent danger of large-scale forest damage resulting from canopy 
collapse in the Krycklan catchment. In both study areas, the change 
between survey years is towards a decreasing number of canopy gaps 
and decreasing canopy gap areas. The gap dynamics in study area 1 
apparently changed more during the observed nine years than in study 
area 2. There is also a change towards greater randomness of gaps in 
study area 1. This was indicated by the size of the changes in time 
compared to the size of the envelopes resulting from the Boolean model. 
Judging by the CLUMPY and DIVISION statistics in study area 2, the 
canopy gaps are also slightly more clustered than in study area 1. There 
is a tendency towards increasing randomisation of canopy caps in both 
study areas, which can also be a consequence of gaps gradually closing 
in again. Study area 2 had more complex gap shapes than study area 1, 
however this landscape trait declined from 2006 to 2015. The increasing 
randomisation of gaps and decreasing complexity of shape also suggest 
that the threat of forest damage is decreasing. 

Nearly all observed values of landscape metrics can be explained by 
simple Boolean models with varying values of parameters λ and R. This 
implies that both the current values of 2006 and 2015 and the differ-
ences between them were not significantly different from randomly 
generated gap structures with the same intensity. Whilst an increase in λ 
implies an increase in the number of tree canopy pixels, an increase of R 
additionally increases the size of the auxiliary points used for modelling 
the gap patterns and ultimately leads to larger, more aggregated gaps. 
Judging by Fig. 3 und 4, the envelopes appear to increase in size with 
increasing R. 

The question of significance of the differences was even more clearly 
answered in those cases, where both current values could be explained 
by just one Boolean model with fixed parameters. This occurred in the 
case of metrics CLUMPY (for all R in study area 1, R ∈ {4 m ,5 m} in 
study area 2), nLSI (R = 5 m in study area 1, all R in study area 2) and 
FRAC (all R). With these indices it is highly unlikely that the index 
changes between survey years are significant. 

There is an overall trend that in those cases, where the values of the 
metrics of the two study years were not covered by the same envelopes, 
the values observed in 2015 are without any exception always related to 
the model parameters leading to a higher number of auxiliary points. 
This confirms that in the nine years between the two study years there 
was most likely more gap filling than canopy decline. The result matches 

the descriptive, straightforward interpretation of the change in gap area 
proportion and mean gap area between the study years. 

Using landscape metrics in conjunction with a model from random 
set statistics apparently is an effective way to ascertain the nature of 
changes in forest gap dynamics. We have considered this new method-
ology in the context of climate change and forest decline, however, 
forest gap dynamics are of general interest. Therefore the methodology 
used can also be applied to general ecological monitoring and to forest 
management. In the latter case information on decreasing gap size and 
spatial dispersal of gaps can be very informative for deciding when to 
plan the next intervention so that regeneration processes are supported 
and maintained. 

5. Conclusions 

Landscape metrics have proved to be useful tools for monitoring 
canopy gap dynamics of forest ecosystems. The statistical significance of 
these characteristics and particularly of their changes can be ascertained 
by simulating canopy gap patterns from the Boolean model. The pa-
rameters of this model, particularly intensity parameter λ, were helpful 
in establishing the trends of the canopy dynamics. Overall in the studied 
Krycklan catchment there was no evidence suggesting any unusual, 
harmful canopy gap development between 2006 and 2015. Instead, 
there was evidence for gaps closing in and gap locations becoming more 
random. In addition tree canopy pixels clearly increased between the 
two survey years. 
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Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H., Hahn, U., 2017. Global envelope 

tests for spatial processes. J. Roy. Stat. Soc. B 79 (2), 381–404. 
Nakamura, A., Kitching, R.L., Cao, M., Creedy, T.J., Fayle, T.M., Freiberg, M., Hewitt, C. 

N., Itioka, T., Koh, L.P., Ma, K., Malhi, Y., Mitchell, A., Novotny, V., Ozanne, C.M.P., 
Song, L., Wang, H., Ashton, L.A., 2017. Forests and their canopies: achievements and 
horizons in canopy science. Trends Ecol. Evol. 32 (6), 438–451. 

Newton, A.C., 2007. Forest ecology and conservation: A handbook of techniques. Oxford 
University Press, Oxford.  

Patton, D.R., 1975. A diversity index for quantifying habitat edge. Wildl. Soc. Bull. 3, 
171–173. 

Perry, D.A., Oren, R., Hart, S.C., 2008. Forest ecosystems, 2nd edition. The John Hopkins 
University Press, Baltimore.  

Pommerening, A., Grabarnik, P., 2019. In: individual-based Methods in Forest Ecology 
and Management. Springer International Publishing, Cham.  

Remmel, T., Csillag, F., 2003. When are two landscape pattern indexes significantly 
different? J. Geogr. Syst. 5, 331–351. 

Riitters, K., O’Neill, R., Hunsaker, C., Wickham, J., Yankee, D., Timmins, S., Jones, K., 
1995. A factor analysis of landscape pattern and structure metric. Landscape Ecol. 
10, 23–39. 

Schindler, S., Poirazidis, K., Wrbka, T., 2008. Towards a core set of landscape metrics for 
biodiversity assessments: a case study from Dadia National Park, Greece. Ecol. Ind. 8 
(5), 502–514. 

Senf, C., Pflugmacher, D., Zhiqiang, Y., Sebald, J., Knorn, J., Neumann, M., Hoster, P., 
Seidl, R., 2018. Canopy mortality has doubled in Europe’s temperate forests over the 
last three decades. Nat. Commun. 9, 4978. 
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