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A B S T R A C T   

Identification of bioaccumulating contaminants of emerging concern (CECs) via suspect and non-target screening 
remains a challenging task. In this study, ion mobility separation with high-resolution mass spectrometry (IM- 
HRMS) was used to investigate the effects of drift time (DT) alignment on spectrum quality and peak annotation 
for screening of CECs in complex sample matrices using data independent acquisition (DIA). Data treatment 
approaches (Binary Sample Comparison) and prioritisation strategies (Halogen Match, co-occurrence of features 
in biota and the water phase) were explored in a case study on zebra mussel (Dreissena polymorpha) in Lake 
Mälaren, Sweden’s largest drinking water reservoir. DT alignment evidently improved the fragment spectrum 
quality by increasing the similarity score to reference spectra from on average (±standard deviation) 0.33 ± 0.31 
to 0.64 ± 0.30 points, thus positively influencing structure elucidation efforts. Thirty-two features were tenta-
tively identified at confidence level 3 or higher using MetFrag coupled with the new PubChemLite database, 
which included predicted collision cross-section values from CCSbase. The implementation of predicted mobility 
data was found to support compound annotation. This study illustrates a quantitative assessment of the benefits 
of IM-HRMS on spectral quality, which will enhance the performance of future screening studies of CECs in 
complex environmental matrices.   

1. Introduction 

High-resolution mass spectrometry (HRMS) is now recognized as a 
key technology for the identification of unknown chemicals. In envi-
ronmental science, HRMS has led to the successful identification of 
different contaminants of emerging concern (CECs) in the aquatic 
environment, e.g., pesticides, pharmaceuticals, illicit drugs and their 
metabolites/transformation products (Kiefer et al., 2019; Moschet et al., 
2014; Tian et al., 2020; Wang et al., 2020; Fabregat-Safont et al., 2021; 
Hernández et al., 2019), industrial chemicals (Schlüsener et al., 2015), 
novel per- and polyfluoroalkyl substances (PFAS) (Barrett et al., 2021; 
Jacob et al., 2021; Wang et al., 2018) and a highly toxic storm water 
contaminant (quinone transformation product) (Peter et al., 2018; Tian 
et al., 2021). Software and instrumental capabilities in the field have 
rapidly improved in recent years, enabling large-scale screening of CECs 
(Gago-Ferrero et al., 2020; Hollender et al., 2017). Sample preparation 

steps should be mild and kept at a minimum in non-target screening 
studies to avoid losses of potential compounds of interest (Baduel et al., 
2015; Dürig et al., 2020). However, this becomes a challenge for samples 
that have complex matrix composition, such as biota, where sample 
clean-up is required to minimize matrix interferences. Hence, careful 
prioritisation and critical manual reviewing often become necessary 
(Dom et al., 2018), which makes data treatment and peak annotation 
arduous and time-consuming. These challenges are especially pro-
nounced for data acquired at low concentrations and in data indepen-
dent acquisition (DIA) modes, where multiple compounds often co-elute 
and contribute to one fragment spectrum. 

Ion mobility (IM) separation hyphenated to HRMS (IM-HRMS) is an 
instrumental setup that has the potential to improve CEC identification 
performance compared to HRMS instruments, especially for samples 
with complex matrices (D’Atri et al., 2018; Belova et al., 2021; Stephan 
et al., 2016). In IMS, ions pass through an inert gas under an electrical 
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field and are separated based on their size, shape and charge. The 
resulting separation parameter, the drift time (DT), can be used to align 
mass spectra and to determine the collision cross section (CCS) of each 
ion. DT alignment groups signals according to their DT and, as a result, 
provides cleaner spectra since interferences from co-eluting compounds 
with different DT are removed (Celma et al., 2020). Since DT adds 
additional complexity to the HRMS data, open-source solutions for DT 
alignment are limited. DT alignment performed in vendor software (e.g. 
UNIFI) is often carried out as a “black box” operation. CCS values are not 
affected by matrix interferences or chromatographic separation, and 
thus experimental CCS values are generally robust across different 
conditions and instruments (Celma et al., 2020; Hinnenkamp et al., 
2018; Regueiro et al., 2016; Celma et al., 2021), although they can vary 
with drift gas and exact set-up. Several recently developed machine- 
learning CCS prediction approaches have proven capable of predicting 
CCS values within a relative error of < 6 % (95th percentile) and with a 
median error of < 2 % (Bijlsma et al., 2017; Mollerup et al., 2018; Ross 
et al., 2020; Zhou et al., 2016). Predicted CCS values can be used 
analogously to predicted retention time (RT) information in candidate 
selection (Mollerup et al., 2018; Bijlsma et al., 2019), helping to narrow 
the list of candidate structures that could potentially explain the 
empirical observations. IM-HRMS offers three key advantages for 
HRMS-based screening studies; 1) an additional separation dimension 
that allows for more confident peak annotation using e.g. library CCS 
values (Celma et al., 2021), 2) DT alignment for HRMS data (similar to 
retention time alignment), which reduces signals of co-eluting com-
pounds and endogenous matrix interferences (Celma et al., 2020; 
Kaufmann et al., 2020), therefore reducing the complexity of the 
(fragment) spectra, and 3) separation of isobaric compounds (e.g. posi-
tional variants of peptides) and thus increased separation power of the 
analysis (D’Atri et al., 2018). 

MetFrag is an in silico fragmentation approach developed for small 
molecule identification, which uses a chemical database to retrieve 
candidate structures based on exact mass or molecular formula (Wolf 
et al., 2010; Ruttkies et al., 2016). Candidates are then ranked according 
to fit of the predicted fragmentation compared to experimental data 
(FragmenterScore) and other scoring parameters if available, e.g. num-
ber of patents (Patent_count) and number of literature references 
(PubMed_count) (Ruttkies et al., 2016). Recently, PubChemLite was 
developed as a new database that uses specific information (e.g., agro-
chemical, use and manufacturing information) to extract the most 
relevant compounds for non-target small molecule identification work-
flows from PubChem (LCSB-ECI, 2021; Schymanski et al., 2021). The 
PubChemLite version published in January 2021 contains ~ 380,000 
compounds compared to 109 million compounds in PubChem (January 
2021), and includes predicted CCS values from CCSbase 
(https://ccsbase.net/) (Ross et al., 2020; LCSB-ECI, 2021). Using data-
bases like PubChemLite with (predicted) CCS values in combination 
with MetFrag allows the coupling of CCS values with high throughput 
compound annotation on a highly relevant selection of chemicals. 

Detection of CECs in biota is alarming as bioaccumulation may lead 
to biomagnification and toxic effects in exposed organisms (Nilsen et al., 
2019). Known examples of such chemicals are polychlorinated bi-
phenyls (PCBs) (Madgett et al., 2022), organochlorinated pesticides 
(Mrema et al., 2013) and certain PFAS (Munoz et al., 2022). Tradi-
tionally, these studies are performed using gas chromatography (GC-) 
HRMS, as hydrophobic contaminants accumulating in fatty tissue are of 
primary focus (Goto et al., 2020; Rebryk and Haglund, 2021). However, 
recently liquid chromatography (LC-) HRMS based approaches have 
successfully been employed to detect more polar CECs like PCB me-
tabolites (Liu et al., 2018) and diverse chemicals in highway runoff (Du 
et al., 2017). While in target analysis selective extraction and clean-up 
procedures can be applied, non-discriminatory sample treatment is 
required in wide-scope screening applications (Dürig et al., 2020; Gra-
bicova et al., 2018). Consequently, very complex datasets are recorded, 
and highly selective prioritisation approaches are needed to minimise 

false positives. Examples of selective prioritisation approaches applied 
in biota screening are the use of reference samples for background 
subtraction (Chen et al., 2016; Xing et al., 2017) to detect co-occurring 
(Du et al., 2017) or unique features (Heffernan et al., 2017), time trend 
analysis (Plassmann et al., 2018; Dürig et al., 2022) and determination 
of characteristic halogen isotope patterns to detect organohalogen 
compounds (Goto et al., 2020; Baygi et al., 2021). Suspect and non- 
target screening for CECs in biota remains challenging and time- 
consuming and only few studies have been performed to date, which 
highlights the need for more research to address existing barriers. 

Zebra mussels (Dreissena polymorpha) are a bivalve species that have 
been used to analyse trace contaminants (e.g., metals and other bio-
accumulating contaminants) in the aquatic environment (Bervoets et al., 
2005; Kannan et al., 2005) and to investigate chronic exposure effects to 
aquatic biota (Binelli et al., 2009; Parolini et al., 2015). Mussels can be 
collected and transplanted into new environments, where they accu-
mulate bioavailable pollutants from the surrounding water within 
weeks, making them useful for monitoring a wide range of pollutants 
(Parolini et al., 2015; Bervoets et al., 2004). In this study, zebra mussels 
were screened for bioaccumulating CECs in Lake Mälaren, Sweden’s 
most important drinking water source, where these mussels can be 
found in great numbers along the shorelines (Hallstan et al., 2010). As a 
complement, we used polar organic chemical integrative sampler 
(POCIS), i.e. passive samplers that provide integrated chemical exposure 
of a water body over time (Menger et al., 2020). 

The aim of our study was to evaluate the benefits of IMS in LC-HRMS 
for suspect and non-target screening of bioaccumulating CECs in a field 
experiment with caged zebra mussels and POCIS sampling in Lake 
Mälaren. Specific objectives included i) investigation of effects of DT 
alignment on full scan fragment spectrum quality and its consequences 
for peak annotation during screening in mussel and water (POCIS) and 
ii) development and assessment of prioritisation approaches and tools 
for suspect and non-target screening for bioaccumulated CECs in 
transplanted zebra mussels exposed to Lake Mälaren as an example. 

2. Material and methods 

2.1. Sampling 

Each mussel sample consisted of a pool of 50 individual zebra mus-
sels kept in a handmade steel mesh cage (1 dm3) for distribution. The 
mussels were collected from a single site (site 2 in Fig. 1), which was 
selected based on its high abundance of zebra mussels and no (known) 
point sources nearby (Rehrl et al., 2020). Only adult mussels with shell 
lengths between 18 and 22 mm were used in order to achieve a pool of 
mussels with approximately same age (Bervoets et al., 2005; Bervoets 
et al., 2004). One mussel sample from site 2 was not deployed, but 
instead directly stored at − 20 ◦C and later extracted as a reference 
sample together with the other samples (sample d0_2). The reference 
sample together with the common origin of the mussels from the same 
site and the approximate same age of the mussels were especially 
important for our study, as it allowed binary sample comparison during 
data treatment. 

The POCIS disks were packed with 200 mg Oasis® hydrophilic- 
lipophilic balanced (HLB) sorbent (particle Ø 29.4 μm; surface area 
800 m2/g; Waters Corporation) between two polyethersulfone (PES) 
membranes (Ahrens et al., 2015). Two POCIS discs were prepared for 
each site. POCIS were wrapped in aluminium foil, placed in a zip-bag, 
and stored at − 20 ◦C before deployment. 

Zebra mussel samples (one cage with ~ 50 mussels per site) and 
POCIS (n = 2 per site) were distributed at 10 sampling sites in Lake 
Mälaren (Fig. 1). Sampling covered the full length of the lake and 
included sites close to urban areas, viz. Uppsala (site 1) and Västerås (site 
9), outside urban areas, viz. Stockholm (site 3), Västerås (site 8), 
Enköping (site 6) and Märsta (site 2), and more remote sites, viz. sites 4, 
5, 7 and 10 (Rehrl et al., 2020). The deployment period was 17 days 
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(18th September to 5th October 2018), and samples were deployed from 
shore at ~ 40 cm below the surface level and at ~ 10 m from the 
shoreline. Water temperature and pH were measured, and grab samples 
were collected for analysis of dissolved organic carbon (DOC) after 
placement (18th September 2018), during the deployment (26th 
September 2018) and at collection of the samples (5th Oct 2018, see 
Table S1 in Supporting Information A (SI_A)). After sample collection, 
the samples were stored cold during transport (max 1 h) and then at 
− 20 ◦C until sample preparation. 

2.2. Sample preparation 

After collection, soft parts of visually healthy mussels were separated 
from shells and ~ 20 mussels per site were homogenized using a Pre-
cellys tissue homogenizer (Bertin Technologies) (15 mL lysing tubes 
with ceramic beats, 5000 rpm, 2 × 40 s, 20 s break). Soft part homog-
enates were then extracted according to a biota extraction method 
developed for multi-residue HRMS-based screening (Text S1 in SI_A) 
(Dürig et al., 2020; Grabicova et al., 2018). Preparation of the POCIS 
discs is explained in Text S2 in SI_A. 

2.3. Instrumental analysis using UPLC-IM-QTOF 

Instrumental analysis was performed according to Celma et al. 
(2020) (Celma et al., 2020). In short, samples were injected on an 
Acquity ultra performance liquid chromatography (UPLC) system 
coupled to a VION IM-QTOF mass analyser with electrospray ionisation 
(ESI) interface (Waters, USA). Separate injections were performed for 
positive and negative ESI (PI and NI, respectively). The UPLC was 
operated under standard reverse phase conditions using CORTECS C18 
fused core column (2.1 × 100 mm, particle diameter 2.7 μm), using a 
gradient with H2O (A) and methanol (B) as mobile phases (both with 
0.01 % formic acid) during an 18 min run at a flow rate of 300 µL min− 1. 
B increased linearly from 10 % (start) to 90 % over 14 min and remained 
isocratic for 2 min before returning to starting conditions in 0.1 min and 
equilibrating for 2 min. Injection volume was 5 µL. Mass spectra were 
acquired from m/z 50 to 1000 using High Definition MSE (HDMSE) 
acquisition mode, i.e. data independent acquisition including separation 
by ion mobility, with low collision energy (CE) scans at 6 eV and high 
collision energy scans at a ramp of 28–56 eV. IM drift gas was N2, wave 
velocity 250 m s− 1, and wave height ramp 20–50 V. Leucine enkephalin 

lock-spray was used for mass correction. 

2.4. Effects of drift time (DT) alignment on spectrum quality 

The effects of DT alignment on the fragment spectrum quality and on 
the performance of peak annotation were assessed using final extracts 
spiked with target compounds (hereafter denoted ‘spiked post- 
extraction matrix’). The final extracts of mussel and POCIS samples 
(mussels from the reference sample d0_2 and an additional procedural 
POCIS blank) were spiked with target compounds (n = 129) at 50 ng 
mL− 1. After analysis, the target compounds and their respective high CE 
spectra were exported from UNIFI (the vendor software of the instru-
mental system), to investigate the effects of DT alignment. This export 
was performed twice (with and without DT alignment - see also Text S3 
in SI_A and (Menger, 2021). A relative intensity cut-off of 5 % was 
applied to remove most of the background interferences. The effects of 
DT alignment on the fragment spectrum quality were then investigated 
by running this data through MetFrag (Ruttkies et al., 2016; Ruttkies 
et al., 2019) (see section MetFrag settings) and the subsequent com-
parison of the results from the DT-aligned and non-DT-aligned spectra of 
the target compounds. 

2.5. Pre-processing and prioritisation 

Standard data pre-processing, including peak picking, spectra 
deconvolution and componentisation was adopted from Celma et al. 
(2020) and was performed in UNIFI (v1.8.2 and v1.9.4) (Celma et al., 
2020). After pre-processing, the response threshold was adjusted ac-
cording to the chromatographic noise (>5,000 in PI and > 2,000 in NI). 
General complexity of the HRMS biota data was reduced by means of 
binary sample comparison (BSC) with the reference sample (see also 
Text S4 in SI_A). BSC was used to remove matrix-features by considering 
only features that were ‘unknown unique’, i.e. present in a deployed 
sample but not in the reference, or present in both samples, but with an 
intensity in the deployed sample of at least twice the intensity of the 
reference sample. These were hypothesized to be features of exogenous 
origin rather than endogenous compounds. Features of interest were 
then extracted from the still complex HRMS biota data following a three- 
way prioritisation approach (details in Text S5 in SI_A): 

A) matching a list of compounds of interest (combined target and 
suspect screening), B) detecting characteristic isotope patterns of 

Fig. 1. Indicated sampling locations in Lake Mälaren, Sweden.  
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halogenated (brominated and chlorinated) compounds using the 
‘Halogen Match’ option within UNIFI and C) co-occurrence in both biota 
and water (mussels and POCIS) from the same sampling site. Prioriti-
zation in UNIFI could only be performed on data without DT alignment. 
All prioritised features were annotated using DT aligned data and Met-
Frag (see next section), and further processed for (tentative) identifi-
cation (Fig. 2). 

All candidates (i.e. prioritised features) were exported from UNIFI for 
further investigation using MetFrag (Ruttkies et al., 2016). Chromato-
graphic information was exported as component tables and included, e. 
g., measured exact mass, measured RT, measured CCS, predicted halo-
gens, response, and sample. Fragment information was exported as DT- 
aligned high CE spectra with a relative intensity cut-off at 5 % (for de-
tails, see Text S3 in SI and (Menger, 2021); when candidates were 
detected in several samples, only the fragment information of the feature 
with the highest response was exported. 

2.6. MetFrag settings, structure elucidation and validation 

All exported features were run through MetFrag via batch processing 
in R using the ReSOLUTION package (Schymanski, 2021). PubChemLite 
(version 01Jan2021; includes predicted CCS values from CCSbase) was 
used as local database (Ross et al., 2020; LCSB-ECI, 2021). Candidates 
(retrieved via exact mass within 10 ppm relative deviation) were ranked 
using FragmenterScore, spectrum similarity to reference spectra in the 
MoNA database (http://mona.fiehnlab.ucdavis.edu) calculated based 
on cosine similarity (MoNAScore, aka “Exact Spectral Similarity 
(MoNA)” as on the website), PubMed_Count, Patent_Count and number 
of annotation categories (AnnoTypeCount, see (Schymanski et al., 2021) 
for details) (weightings of 1, 1, 0.33, 0.33 and 0.33; max score = 3). 
Predicted CCS values from CCSbase were included in the results files but 
considered only during the final peak annotation, which was performed 
manually considering all evidence at hand. 

A spectrum similarity score (SimScore) was calculated as a cosine 
similarity between the introduced high CE spectrum and the fragment 
peaks explained by MetFrag (Lai et al., 2021) (for details, see Text S6 in 

SI_A). In case all measured fragment peaks (regardless of the number) 
were explained by the in silico prediction, this score would have the 
maximum score of 1. The SimScore was used to estimate the prevalence 
of interference peaks during the assessment of the effects of DT align-
ment on the spectrum quality. A schematic overview of how the chal-
lenges of screening complex samples were addressed in this study is 
included in Fig. S1 in SI_A. 

2.7. Quality control and quality assurance 

In brief, procedural blanks and instrument blanks were included, 
samples were spiked with mass labelled internal standards, the perfor-
mance of the zebra mussel extraction was investigated (data on 
Table S_B1 in SI_B (Excel)) and the injection sequence was set up to 
avoid artificially elevated response ratios during BSC (details in Text S7 
in SI_A). 

3. Results and discussion 

3.1. Effects of DT alignment on fragment spectrum quality 

Only target compounds that were detected in both spiked post- 
extraction matrices (n = 117) were considered for evaluation of the 
effects of DT alignment on the fragment spectrum quality, meaning that 
those not detected in mussel (n = 12) or POCIS (n = 1) or neither (n = 3) 
were not considered (details in Table S_B2 in SI_B). For some com-
pounds, sodium adducts were exported from UNIFI as the main adduct 
(n = 14) but were removed from the evaluation to ensure best possible 
comparability (as sodium adducts often yield fragment-poor spectra). Of 
the remaining 102 compounds (75 in PI and 28 in NI), the target com-
pound was ranked 1st by MetFrag in all four tested instances (in mussel 
and POCIS matrix, with and without DT alignment) in 91 % of the cases 
(n = 94; 66 in PI and 28 in NI). This proved that, even in matrix rich 
samples and without DT alignment, MetFrag with PubChemLite was 
robustly able to correctly rank the most likely compound as the top 
candidate, exceeding the previous performance evaluations (Ruttkies 
et al., 2016; Schymanski et al., 2021; Schymanski et al., 2017). How-
ever, it should be highlighted that most target analytes are well-known 
compounds, meaning that reference spectra and/or metadata are readily 
available, which, consequently, can point at correct annotations even 
when their fragment spectra are of poor quality (this also applies to the 
evaluation sets). As an example, acetamiprid, a known neonicotinoid 
insecticide (Barbosa et al., 2016), clearly ranked first in POCIS matrix 
when DT-aligned data was processed (score = 2.51, 2nd rank score =
1.24), with the highest number of explained peaks (5 out of 6) and a high 
MoNAScore (0.95; max score = 1). However, when non-DT-aligned data 
of the same feature was processed, acetamiprid still ranked 1st (score =
1.57, 2nd rank score = 1.04) but with only one explained fragment and 
no MoNAScore. The reason for these low scores of the non-DT-aligned 
data can be explained by the fact that several compounds co-eluted 
with acetamiprid at higher intensities, which, consequently, led to a 
high CE spectrum with many (more intense) interference peaks (Fig. S2 
in SI_A). This resulted in diminished relative signal intensities of the 
acetamiprid fragments, e.g., of its main fragment (m/z 126.01050), 
which had an intensity of 100 % in the DT-aligned data, but only an 
intensity of 4 % in the not aligned data. In fact, the one fragment that 
was matched by MetFrag for the non-DT-aligned data (m/z 150.09123) 
originated from a co-eluting compound but not from acetamiprid itself, 
as can be seen by its absence in the DT-aligned spectra. This shows the 
clear beneficial effect that DT alignment can have on the high CE 
spectrum quality of some compounds and, therefore, the performance of 
fragment information evaluations, especially in matrix rich samples. For 
six of the nine target compounds that did not rank 1st in all four in-
stances, they were in fact ranked 1st in at least one of the DT-aligned 
data sets (mussel and/or POCIS) and only were scored below rank 1 
when non-DT-aligned data was processed, again highlighting the 

Fig. 2. Schematic overview of the data treatment incorporating three priori-
tisation approaches A-C. 

F. Menger et al.                                                                                                                                                                                                                                 

http://mona.fiehnlab.ucdavis.edu/


Environment International 170 (2022) 107585

5

usefulness of DT alignment. 
The average effect of DT alignment on the high CE spectrum quality 

was assessed by investigating the SimScores and MoNAScores across all 
considered target compounds (Fig. 3 and S_B2 in SI_B (Excel)). The 
average SimScores (±standard deviation) of the 97 considered target 
compounds in DT-aligned data were 0.77 (±0.26) and 0.78 (±0.29) for 
mussel and POCIS matrix, respectively, whereas the scores for non-DT- 
aligned data were 0.40 (±0.26) and 0.46 (±0.33), respectively. This 
highlights that interfering fragments were efficiently removed by the DT 
alignment as the share of fragments explained by MetFrag clearly 
increased for DT-aligned data compared to the respective non-DT- 
aligned data. This confirms the previously observed reduction of 
matrix-endogenous interferences by ion mobility (Celma et al., 2020; 
Regueiro et al., 2016). DT alignment improved the MoNAScores on 
average by 0.31 (±0.30) and 0.20 (±0.27) points in the mussel and 
POCIS matrix, respectively. This improved similarity to reference 
spectra can likely be explained by the removal of otherwise interfering 
co-eluting compounds producing high intensity fragment signals (as has 
been shown in the acetamiprid example above). Further, 7 (mussel) and 
12 (POCIS) target compounds that had MoNAScores > 0 in DT-aligned 
data had no MoNAScores in non-DT-aligned data. During elucidation 
of unknown features, the simple presence of a MoNAScore can already 
flag compounds of interest (MoNAScores are available for only a small 
portion of compounds) and, consequently, in these cases attention 
would only be drawn to the true compound when DT-aligned data was 
used. In 4 (mussel) and 10 (POCIS) cases, MoNAScores were higher in 
the non-DT-aligned data than in the DT-aligned data. These at first sight 
surprising cases are likely explained by falsely matched fragments 
originating from co-eluting interference peaks (as was the case for the 
one falsely matched fragment in the acetamiprid example). It is, there-
fore, conceivable that falsely elevated MoNAScores can occasionally 
occur, especially in matrix rich samples and in non-DT-aligned data. In 
three cases a MoNAScore > 1 was calculated, which is potentially caused 
by the presence of high intensity isotope peaks in the concerned spectra. 

The improvement of high CE spectrum quality by DT alignment 
clearly benefits the performance of scoring terms that depend on this 
information and, consequently, reduces the number of false annotations 
in real-world applications. An alternative strategy to obtain high quality 
fragment information is re-injection of the samples after prioritisation 
using a data-dependent acquisition (DDA) mode with inclusion list (e.g., 
Du et al., 2017). However, this approach is not feasible when fragment 
information is to be considered during prioritisation, or when degra-
dation might have occurred or when screening digitally archived data. 

3.2. Performance of the prioritisation approaches 

The performance of the different data treatment steps up to, and 

including, prioritisation (Fig. 2) is exemplified here for the mussel 
sample from sampling site 1. After pre-processing, 9711 (PI) and 8235 
(NI) features were detected above the adjusted response thresholds. BSC 
reduced these numbers by roughly 50 % to 4529 (PI) and 3553 (NI), 
which shows that this approach can be used to remove common back-
ground compounds, such as endogenous compounds. Omnipresent 
compounds can potentially be lost during BSC, e.g. irbesartan, a com-
pound included in the target screening and detected in most mussel 
samples, was in no samples detected at a response greater than twice the 
response of the reference sample and would have, consequently, been 
missed in this approach if it was not already a target. Considering the 
remaining high number of features, three additional (highly selective) 
prioritisation approaches were applied: 

A) The combined target and suspect screening detected 4 (PI) and 1 
(NI) targets and produced 20 (PI) and 37 (NI) suspect screening hits. 

B) Halogen Match detected 427 (PI) and 175 (NI) features containing 
Br and/or Cl atoms. Many of these features had masses with m/z > 600 
and were detected towards the end of the chromatographic run, indi-
cating low polarity and, therefore, high probability of being compounds 
that were not of interest for this study. Hence, a mass threshold of m/z <
600 was used to eliminate these cases. This reduced the numbers pri-
oritised via Halogen Match to 203 (PI) and 82 (NI) features. Low signal 
intensities were expected to negatively affect the performance of 
Halogen Match, and it was decided to increase the response cut-off to >
10,000 (PI) and > 5,000 (NI) for this approach, which reduced the 
numbers further to 27 (PI) and 19 (NI). 

C) Checking for co-occurrence in mussels and POCIS highlighted 119 
(PI) and 67 (NI) co-occurring features. These co-occurring features had 
to be manually labelled for export in UNIFI, and, to reduce workload, the 
response cut-off for these features was increased to > 20,000 (PI and NI), 
which reduced the numbers to 46 (PI) and 18 (NI). 

Following the above-described prioritization approaches, 205 (PI) 
and 123 (NI) unique features were prioritised in total across all 10 
mussel samples (from here discussed together) and were exported and 
processed in MetFrag. In 4 (PI) and 12 (NI) cases, MetFrag did not match 
any of the measured fragment masses to any of the possible candidate 
structures, likely because of poor fragment information (in 8 cases all 
high CE peaks had higher masses than the precursor ion). These 16 cases 
were excluded from further evaluation. The top candidates of the 
remaining MetFrag results were used as ‘suspects’ for reprocessing in 
UNIFI without response threshold to determine occurrence according to 
UNIFI’s component tables and to further investigate the corresponding 
features by accessing and comparing extracted ion chromatograms 
(XICs) across samples. This highlighted 24 (PI) and 12 (NI) features 
occurring in blank samples at intensities comparable to the intensities in 
the mussel samples (intensities within one order of magnitude), and 49 
(PI) and 28 (NI) features that were, in fact, noise according to visual 

Fig. 3. Violin plots with indicated averages (black dashes) of spectrum similarity scores based on the fragment peaks explained by MetFrag’s in silico fragmentation 
(SimScore) and based on the similarity to reference spectra from the MoNA database (MoNAScore) between drift time (DT) aligned and non-DT-aligned high collision 
energy spectra in zebra mussel matrix spiked with target compounds (n = 102). 
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investigation. These features were excluded, accordingly. Comparing 
the Halogen Match results across samples highlighted 78 (PI) and 25 
(NI) features that were not consistently predicted, with < 50 % accor-
dance across samples. This indicated that Halogen Match introduced a 
considerable number of false positives, and these features were 
excluded. The algorithm had shown reliable performance when tested 
on spiked matrix samples, with < 1 % false predictions (Table S3 in 
SI_A). Distinct isotopic signatures of Cl and Br have been used in several 
other studies to reliably prioritise compounds, e.g., (Badea et al., 2020; 
Fernando et al., 2018). Our findings show that even a small rate of false 
positive predictions can lead to a considerable number of false positives, 
despite using a highly selective tool, particularly if the matrix is 
complex. 

Finally, 35 features in PI (11 suspect hits, 4 halogenated, 20 co- 
occurring in POCIS and mussel) and 38 features in NI (6 suspect hits, 
18 halogenated, 14 co-occurring in POCIS and mussel) passed all checks 
and quality criteria and were manually investigated in depth (described 
further below). 

3.3. Use of predicted ion mobility data during peak annotation 

Experimental CCS values can be used as an additional identification 
criterion (Regueiro et al., 2016). A CCS error of ± 2 % has been sug-
gested as an appropriate margin for confident identifications 
(comparing experimental values with other experimental values) during 
screening studies (Celma et al., 2020). This threshold of ± 2 % was met 
in this study for all spiked target compounds with reference values 
available (Celma et al., 2019). When reference standards are not avail-
able, predicted CCS values can also be of great help because they provide 
additional confidence and aid the decision making during peak anno-
tation; however, predicted values come with a specific error defined by 
the prediction method, e.g., CCSbase reported a performance of > 80 % 
of predictions within a 3 % error (Ross et al., 2020). This, consequently, 
leaves ~ 20 % of predictions with an error exceeding 3 %. The de-
viations between experimental and predicted CCS values of the spiked 
target compounds in our study were in accordance with the reported 
performance (Ross et al., 2020), with 80 of 94 predicted values (85 %) 
below a 3 % error - excluding three compounds with no predicted values 
and six PFAS, which had exceptionally high errors between 6 and 35 % 
due to insufficient training data at the time (Table SI_B2 in SI_B (Excel)). 
This confirms that a < 3 % deviation between predicted and experi-
mental CCS values can be expected in many cases and may be considered 
additional evidence. However, it also highlights that a deviation > 3 % 
should be expected in some cases too. For example, considering only 
candidates with < 3 % predicted CCS deviation to the experimental CCS 
would lead to discarding of the MetFrag candidate ranked 1st in 25 of 
the 84 cases of peak annotation investigated in this study. Further, 
predicted CCS values of different candidates can be close to each other, 
in which cases decision making is not helped by these values, e.g. the top 
three MetFrag candidates for 39 of the features prioritised in this study 
(n = 84) had all predicted CCS values within 3 % of the experimental 
values, and in 9 cases all values exceeded 3 %. In its current state, careful 
consideration of predicted CCS values is advised over automated 
implementation of cut-off values to avoid introducing false results, and 
instead CCS deviation trigger values could be used to, e.g., flag cases that 
require special attention. 

3.4. Peak annotation 

Every feature that passed the manual investigations was initially 
considered tentatively identified with the top MetFrag candidate at a 
confidence level 3 (Celma et al., 2020; Schymanski et al., 2014), as long 
as there was no clear indication of a different compound being more 
likely (Table SI_B4 in SI_B (Excel)). For example, for features that were 
prioritised based on their predicted halogenated structure, only candi-
dates with exact matching Cl and/or Br number were considered for 

annotation. Predicted CCS values from CCSbase were considered during 
manual evaluation and aided the decision making, e.g., in cases where 
candidates were closely ranked. One such example was the tentatively 
identified structure octahydro-1-(5-fluoro-1H-indol-3-yl)-2H- 
quinolizine (PubChem CID: 355887) with a CCS deviation of 0.2 %. In 
this case, the only other candidate (ranked 1st) had a noticeably higher 
CCS deviation (− 6.7 %), and the structure ranked 2nd was hence 
deemed as the most likely. Few candidates had matching reference 
spectra available in MoNA and three naturally occurring compounds 
could be assigned confidence level 2a, L-arginine and L-phenylalanine 
(false positive suspect hits), and guanosine (co-occurring naturally in 
mussel and POCIS). Ultimately, reference standards could be purchased 
for 18 of the 32 tentatively identified compounds and one compound 
(guanosine) was confirmed. 

Eleven features that were prioritised using Halogen Match occurred 
across several samples and could be assigned tentative identities; how-
ever, only two corresponding reference standards were commercially 
available (both false positives). Although the tentatively assigned 
structure for the feature with m/z 265.9816 in PI was a false positive, the 
fact remains that a feature containing one bromine with the likely for-
mula C11H8BrNO2 was detected in every mussel sample. Similarly, a 
feature with m/z 277.0593 (NI) containing one chlorine was detected in 
all mussel samples, which was tentatively assigned the identity (Z)-4- 
[(2-amino-3-methylbutanoyl)amino]-3-chloropent-2-enedioic acid 
(PubChem CID: 6913469) after considering predicted CCS values and 
estimating ionisation behaviour. Co-occurrence in biota and POCIS 
samples led to the prioritisation of 22 compounds, several of which 
turned out to be of likely natural origin. Considering the remaining 
uncertainties of the tentative identifications of these compounds, the 
relevance of these findings remains unclear, and it is possible that the 
stringent prioritization criteria have caused an “over-prioritization”. 

In addition, target screening confirmed eight compounds (AMOZ, 
irbesartan, 5-hydroxyomeprazole, epitestosterone, β-zearalanol, α-nan-
drolone, β-nandrolone, gemfibrozil) in the mussel samples (Table S4 in 
SI_A). 

3.5. Challenges and perspectives 

In this study, ion mobility separation and advanced data processing 
strategies illustrated valuable to minimize or overcome current chal-
lenges of suspect and non-target screening in biota samples (Fig. S1 in 
SI_A). One key challenge is matrix interferences from endogenous 
compounds that lead to poor spectrum quality, comparatively low signal 
intensities of compounds of interest, and an overall high risk of false 
positives. This study quantitatively illustrated the benefits of ion 
mobility (drift time) alignment in enhancing spectral quality (similarity 
to predicted and reference spectra) and improving peak annotation 
using MetFrag. This appears important for data archiving for retro-
spective screening, e.g. to avoid loss of qualifier fragments (as was 
showcased for acetamiprid). DT alignment of low CE spectra could play 
an important role for the performance of approaches for the deconvo-
lution of isotopic profiles, and further studies are advised. The perfor-
mance of drift time alignment likely is influenced by matrix type as well 
as by analyte concentration, which are interesting research questions 
that could not be addressed in this study. Predicted CCS values were 
found to provide additional evidence during peak annotation in some 
cases; however, manual evaluations are recommended over hard cut-off 
values currently. 

Another challenge is the complexity of the generated HRMS biota 
data, which is especially true for data acquired in a data-independent 
acquisition mode. In this study, Binary Sample Comparison to a refer-
ence sample was used to remove common background compounds and 
notably reduce data complexity. A limitation of this approach is that 
omnipresent compounds can be lost, and other means for reducing data 
complexity are needed for such compounds. BSC’s performance heavily 
relies on the reference sample, which, together with the limitation that 
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no replicate information can be fed into the algorithm in UNIFI, high-
lights the importance of a carefully selected reference sample. Feature 
prioritisation in complex datasets relies on highly selective prioritisation 
approaches, and suspect screening using a carefully crafted suspect list is 
a well-established strategy. Moreover, to detect unknown CECs, non- 
targeted prioritisation approaches are needed. Detecting isotope pat-
terns of certain halogenated structures is a highly selective approach for 
these compounds, but as seen in this study, even a small rate of false 
matches can lead to a considerable number of false detections when 
screening complex biota samples. This highlights the challenges of such 
screening studies, namely a high workload and often a low success rate. 
Considering additional criteria like consistency of the detected patterns 
across replicates or several samples can reduce this number, but 
implementation of such criteria can be challenging due to software 
limitations. Prioritisation of features co-occurring in different matrices 
(or samples, in general) can be another selective prioritisation approach. 
However, its feasibility depends on the specific study design and ob-
jectives, and there seems to be currently a lack of sufficiently flexible 
software solutions that allow implementation of this type of data 
treatment. 

Working with complex HRMS biota data also comes with a high 
workload caused by numerous features that need to be investigated, 
many of which will turn out to be false flags. Setting up (semi-) auto-
mated data processing workflows can help reduce the need for drastic 
data reduction at bottlenecks of the workflow (often manual tasks), 
which will otherwise inevitably lead to loss of data of interest. For 
example, avoiding the shortcomings of one software (only manual 
comparison of features across samples possible in UNIFI) by performing 
a desired operation in another software (finding features co-occurring in 
POCIS and mussel matrix using R) can allow processing of substantially 
more data once the workaround is set up. However, this only truly be-
comes a solution when data can readily be exported and imported at 
different stages of the workflow – a limitation often encountered, 
especially when working with vendor software. Over the course of this 
study, the capacity to investigate prioritised features continuously grew 
thanks to continued advances made in software and database resources 
(MetFrag, PubChemLite and CCSbase), and today the number of features 
that could have been investigated in a timely manner clearly exceeds the 
number anticipated and prioritised earlier in the study. Unfortunately, 
some bottlenecks remain in the workflow (lack of exporting and 
importing functionalities) that limit throughput and can force an 
“overprioritisation”. Once these shortcomings are addressed, thousands 
of unknown features (and samples) can be investigated in a reasonable 
time. 

In conclusion, great data quantities can today be investigated and 
suspect and non-target screening in complex biota samples is possible. 
New instrument and software solutions (IM-HRMS, CCS prediction) 
together with new database resources (PubChemLite) increasingly help 
to reduce data complexity and can provide rapid results with a wealth of 
information. However, confident identification of unknown features to 
this day remains a major challenge, especially for compounds that do not 
have reference information (and/or standards) readily available, and 
more work is needed to better distinguish between endogenous com-
pounds and compounds of concern. 
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