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A B S T R A C T   

Most large scale studies assessing climate change impacts on crops are performed with simulations of single crops 
and with annual re-initialization of the initial soil conditions. This is in contrast to the reality that crops are 
grown in rotations, often with sizable proportion of the preceding crop residue to be left in the fields and varying 
soil initial conditions from year to year. In this study, the sensitivity of climate change impacts on crop yield and 
soil organic carbon to assumptions about annual model re-initialization, specification of crop rotations and the 
amount of residue retained in fields was assessed for seven main crops across Europe. Simulations were con-
ducted for a scenario period 2040–2065 relative to a baseline from 1980 to 2005 using the SIMPLACE1 modeling 
framework. Results indicated across Europe positive climate change impacts on yield for C3 crops and negative 
impacts for maize. The consideration of simulating rotations did not have a benefit on yield variability but on 
relative yield change in response to climate change which slightly increased for C3 crops and decreased for C4 
crops when rotation was considered. Soil organic carbon decreased under climate change in both simulations 
assuming a continuous monocrop and plausible rotations by between 1% and 2% depending on the residue 
management strategy.   

1. Introduction 

Warmer temperatures and more frequent extreme weather events 
under climate change are expected to lead to yield losses for current crop 
varieties in large parts of Europe (Webber et al., 2018). The negative 
impact of warmer temperatures has already been detected for European 
crops, with average production-weighted continent-wide yield re-
ductions of 2.5% and 3.8% for wheat and barley, respectively, over a 20 
year period from 1989 (Moore and Lobell, 2015). However, elevated 
atmospheric CO2 concentrations can be expected to offset some yield 
losses and even lead to yield increases for C3 cereals like wheat in 
temperate regions like Europe (Kimball, 2016; Makowski et al., 2020). 
Similarly, warmer temperatures may extend the growing season of 

maize in parts of Northern Europe (Olesen et al., 2011). At European 
level, climate impact studies have projected yield increases in 
autumn-sown C3 cereals due to CO2 fertilization, while yields were 
projected to decrease in spring-sown crops due to shortened growth 
duration and intensified drought under future climate (Webber et al., 
2018). 

Most large-scale climate impact studies on crop yields in Europe have 
made a number of simplifying assumptions regarding crop management 
which may lead to large uncertainties in projected impacts (Olesen et al., 
2007). Foremost, likely adaptations of the crop growing season duration 
and sowing date in response to gradually warming temperatures have 
not been considered in many studies, though farmers are very likely to 
make these adaptations. Zimmermann et al. (2017) demonstrated that 
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not considering these adaptations leads to overly pessimistic crop yield 
projections for a number of crops in Europe. These results were largely 
corroborated at the global scale as shown by Minoli et al. (2019) who 
demonstrated that by adapting season duration, global production losses 
can compensate for up to 2 ◦C temperature increase in continental and 
temperate regions. Zhao et al. (2015) investigated the sensitivity of 
projected yield changes to assumptions about irrigation, and concluded 
that simulated impacts considering only rainfed conditions were nega-
tively biased as compared to considering the actual irrigated production, 
with the largest error for spring sown crops in Mediterranean countries 
where irrigated production is widespread. Similarly, Webber et al. 
(2015) investigated how sensitive simulated impacts were to the 
consideration of nitrogen (N) fertilization and limitation. This study 
demonstrated that in spring-sown crops, projected climate-change im-
pacts did not depend on whether or not N limitation was considered, 
whereas simulated impacts for autumn-sown crops (winter barley, 
winter rapeseed and winter wheat) were sensitive to assumptions about 
the timing of nitrogen application. 

Studies have also been simplified by assuming monocrop systems, 
with re-initialization of soil water and nitrogen contents each year 
(Webber et al., 2015; Zhao et al., 2015). In reality, crops are grown in 
rotations, in response to market factors, livestock feed and fodder pro-
duction needs, to manage pests, weeds, soil borne diseases, soil nutrients 
and organic matter, and to reduce soil erosion (Basso et al., 2015). 
Reckling et al. (2016b) reported that diversified rotations with legumes 
had positive phytosanitary effects. Similarly, assumptions about 
post-harvest management of crop residues is an important consideration 
that has not been investigated for climate impact studies. In many cases, 
cereal residues are harvested for use as straw bedding, directly harvested 
for feed in the case of silage maize and are increasingly considered as a 
source of biomass for bioenergy production. In other cases, residues are 
retained on the soil surface in either no-tillage systems or incorporated 
with tillage (Kaye and Quemada, 2017; Stella et al., 2019). 

Both the specification of crop rotations and postharvest residue 
management have implications for evolution of soil organic carbon 
(SOC), greenhouse gas emissions, surface soil water evaporation and 
climate change mitigation efforts (Huang et al., 2018). The 4 per 1000 
Initiative was launched in that perspective to counteract the effect of 
anthropogenic emissions of greenhouse gases. Indeed, over the past 
century climate and land-use changes have led to a sharp decrease of 
SOC stocks, dramatically overwhelming the simulated effects associated 
with elevated atmospheric [CO2] and nitrogen deposition (Tian et al., 
2015). However, it is difficult to generalize over observational studies as 
SOC dynamics depend on climate, soil type, land management, residue 
quantity and quality (Kong et al., 2005), and on initial SOC values, as 
described by Corbeels et al. (2019) for the case of Sub-Saharan Africa. 
Residue retention in fields, often coupled with reduced tillage systems, 
have the potential to increase storage of SOC and constitute an impor-
tant option to mitigate climate change in agricultural land use (Lipper 
et al., 2014; Powlson et al., 2014; Paustian et al., 2016; Huang et al., 
2018) as well as limit surface soil water evaporation. Nash et al. (2018) 
estimate that crop rotations have greater potential to influence SOC 
stocks than tillage systems. Beyond its role in climate change mitigation 
(Poeplau and Don, 2015), SOC levels are essential for agricultural soil 
(Lehtinen et al., 2014), as SOC can be an important source of nutrients 
and contributes to improving the physical, chemical and biological 
properties of soil (Page et al., 2020). Increases in SOC increase subse-
quent crop water availability through increasing water holding capac-
ities (de Moraes Sá et al., 2017; Zdruli et al., 2017). As SOC and crop 
yields influence each other, but each responds individually to changing 
temperature, soil moisture, elevated [CO2] and crop and soil manage-
ment (Lugato et al., 2007), one can expect that projected climate change 
impacts on crop yields depend on consideration of crop management 
affecting SOC (Prior et al., 2005; Marhan et al., 2008). However, data-
sets to allow a more comprehensive understanding of the complex in-
teractions between tillage, cropping system and fertilization related to 

greenhouse gases emissions and SOC sequestration from croplands 
(Johnson et al., 2005) and models representations of these complex 
interactions are subject to considerable uncertainties (Lutz et al., 2019). 
SOC dynamics themselves are expected to be affected by climate change. 
Warmer temperatures are expected to increase mineralization rates and 
thus decrease SOC. However, interactions between temperature, pre-
cipitation and crop biomass input are critical to consider (Wang et al., 
2014). Elevated atmospheric [CO2] can be expected to increase organic 
matter inputs (if water is not limiting) and offset higher soil respiration 
rates, as projected for northern Europe (Lugato et al., 2014b). Indeed, 
long term losses of soil carbon due to increased respiration may even be 
exacerbated with an increase in soil heterotrophic activity with warmer 
temperatures (Black et al., 2017). Feedbacks of soil organic carbon and 
nitrogen on crop yields under climate change were explored by Basso 
et al. (2018) in eight locations across the globe. 

For European agriculture, SOC dynamics have been widely investi-
gated with crop or land-use models at field (Lugato and Berti, 2008; Luo 
et al., 2014), regional (Stella et al., 2019) and continental scales (Lugato 
et al., 2014a, 2014b). While most crop models will not capture the ef-
fects of rotations or residues on pathogens and disease cycles, many can 
capture effects on surface soil water evaporation as well as, on soil 
organic carbon and nitrogen dynamics (Ewert et al., 2015). At the field 
scale in New Zealand, Teixeira et al. (2015) demonstrated the sensitivity 
of simulated soil related variables (SOC, mineral soil nitrogen and soil 
water content) and limiting growth conditions to the consideration of 
various rotation combinations for four crops (winter wheat, green-feed 
wheat, forage kale and silage maize). Regarding crop yields, Kollas 
et al. (2015) showed that continuous simulation of multi-year crop ro-
tations can improve model skill slightly compared to simulations for 
single years with re-initialization of initial conditions. However, in 
predicting grain N, continuous simulation did not lead to improvements 
in reproducing observations as compared to re-initialization each year 
(Yin et al., 2017). Nevertheless, to the best of our knowledge, no studies 
for Europe have investigated how sensitive simulated climate-change 
impacts are to assumptions on initialization strategies, crop rotations 
or residue management. The study of Basso et al. (2015) was an 
important step in this direction, investigating the importance of soil 
re-initialization for simulated climate change impacts, though it was 
limited to only maize systems in Nebraska, USA and did not consider the 
importance of rotations or residue management. 

In this context, the overarching objective of this study was to assess 
the sensitivity of simulated climate change impacts on major crop yields 
across Europe to assumptions about re-initialization of simulations for 
soil conditions, crop rotations and crop residue management. We con-
ducted a simulation experiment to evaluate the sensitivity of relative 
crop yield changes to:  

a. different assumed model initialization and crop rotation strategies (3 
levels: no rotation with annual model re-initialization of soil water 
and nitrogen status; monocrop with continuous model simulations; 
or crop rotations with continuous model simulations 

b. crop residue retention strategy (3 levels: 0%, 50% and 100% reten-
tion) for each level of a). 

We conducted the study for winter wheat, winter barley, winter 
rapeseed, potato, sugar beet, silage maize and grain maize across Europe 
with crop model simulations at 25 km spatial resolution. Simulations 
were conducted for three representative concentration pathway sce-
narios (RCP 2.6, 4.5 and 8.5) for the period 2040–2065 relative to a 
reference period of 1980–2005. 

2. Materials and methods 

2.1. Model description 

This study used a crop model solution in the SIMPLACE modeling 
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framework (www.simplace.net), combining the Lintul5 crop growth 
model (Wolf, 2012), a modified version of the soil water balance Slim-
water (Addiscott et al., 1986; Addiscott and Whitmore, 1991) model, the 
FAO-56 dual crop coefficient procedure for calculating crop evapo-
transpiration (Allen et al., 1998), the NPKDemandSlimNitrogen module 
(Addiscott and Whitmore, 1991; Porter, 1993; Jamieson et al., 1998), an 
hourly canopy temperature module (Webber et al., 2016), a heat stress 
module (Gabaldón-Leal et al., 2016) and the soilCN module (Corbeels 
et al., 2005a). Lintul5 is a generic crop growth model which simulates 
crop growth under potential, water and nitrogen (N), phosphorous (P) 
and potassium (K) limitation. Plant growth is simulated in Lintul5 as a 
function of intercepted radiation and radiation use efficiency. Crop 
development stages (DVS) are simulated as function of daily tempera-
ture sums (thermal time) and crop specific thermal time requirements, 
TSUM1 and TSUM2, to develop from emergence to anthesis and from 
anthesis to maturity, respectively. Soil water balance and crop water 
uptake is simulated by SlimwaterModified and crop water demand is 
calculated with the FAO Penman-Monteith equation using the reference 
crop and dual crop coefficient method (Allen et al., 1998). The Slim-
waterModified module estimates the daily change in soil water content 
in a variable number of soil layers based on the volumes of crop water 
uptake, soil evaporation, surface runoff and seepage below the root zone 
which no consideration of canopy interception nor lateral subsurface 
runoff. 

The NPKDemandSlimNitrogen model calculates daily N, P and K 
demand, uptake and stress factors as well as nitrogen movement in the 
soil profile and leaching of soil mineral nitrogen (Nitrate-N and 
Ammonium-N). The turnover and leaching of nitrate and ammonium is 
closely related to the soil water dynamics where input data related to 
daily changes in soil water content and soil water fluxes are provided by 
SlimwaterModified. Daily total mineral N is an input to the module 
provided by the SoilCN module, described below. In this model setup, 
the simulated hourly canopy temperature is used as an input to the heat 
stress model (Gabaldón-Leal et al., 2016) when the hourly temperature 
is above a critical threshold temperature around the flowering period. 
Daily air temperature is used to drive all other processes. 

The soilCN model simulates SOC and soil nitrogen dynamics 
assuming several litter pools and three different SOC pools and different 
soil layers. The three pools SOC are: (i) microbial biomass pool or active 
pool with a turnover time of few months, sub-divided into a labile (fast) 
and resistant fraction (slow), (ii) young soil organic matter pool or in-
termediate pool with 1–5 year turnover time and (iii) old soil organic 
matter pool or passive pool with more than 200 years turnover (Corbeels 
et al., 2005a). The initial values of the C/N ratios were set to the default 
for the three different SOC pools. The fluxes of carbon in the active and 
intermediate pools is a function of soil texture, soil temperature and 
water, while in the passive pool the fluxes of carbon is a function of only 
soil temperature and water. The decomposition rate of the active 
(K10act: decomposition rate for labile pool of active biomass and 
K11act: decomposition rates for resistant pool of active biomass) and 
intermediate (K12slo: decomposition rate of young SOC pool) are a 
function of soil texture and plant lignin content (Parton et al., 1987). The 
decomposition of each litter or SOC pool is primarily driven by carbon 
accessibility, while N mineralization-immobilization is driven by the 
growth of microbial biomass. In the model, there is no feedback between 
SOC and soil water holding characteristics in the SlimwaterModified 
module, which are treated as functions of soil texture only. For further 
description of the model components referred to https://wwwsimplace. 
net/index.php/documentation. 

2.2. Input data 

2.2.1. Nitrogen 
Historical nitrogen data from 1982 to 2006 related to nitrogen inputs 

into European cropland were derived from data on nitrogen fertilizers, 
residues, atmospheric N deposition and manure (estimates based on 

animal numbers to derive manure input) from the CAPRI database for 
each NUTSII level (Webber et al., 2015). As data in CAPRI do not 
distinguish irrigated from rainfed production at the time of the study, a 
simple rule for nitrogen allocation was devised to estimate fertilizer N 
for simulations for both production system following the approach of 
Webber et al. (2015) and (Zhao et al., 2015). The rule is that the amount 
of nitrogen allocated to irrigated crops is set to 2 times the rate allocated 
to rainfed crops for any given location and the sum of nitrogen applied to 
irrigated and rainfed systems equals the value reported by CAPRI. 
However, this rule rarely had any implications, as with few exceptions 
most regions have predominantly rainfed or irrigated production for 
specific crops (Fig. S15). Data were detrended and years with missing 
data were filled with the mean value of the time series for each NUTSII. 
Future nitrogen scenarios were derived by adjusting the baseline ni-
trogen amount by the same percentage that water limited yields changed 
(Webber et al., 2015), based on the explicit assumption that the intensity 
of nitrogen use did not change in the scenarios. 

The timing of nitrogen application was split according to the 
development stage of each crop (DVS) based on a general expert 
knowledge: three applications for winter wheat; one for silage and grain 
maize; and two applications for the remaining four crops. Applications 
varied for each location, crop, GCM (global climate model) and RCP 
(representative concentration pathway) combination, as well as for 
rainfed and irrigated conditions. 

2.2.2. Climate data 
Daily climate data at 25 km resolution were derived from the Joint 

Research Center’s (JRC) Agri4Cast database (version 1.0) including 
daily minimum, and maximum air temperature, precipitation, global 
radiation, wind speed, actual vapor pressure, relative humidity at 
maximum air temperature and dew point temperature were used 
(http://open-research-data-zalf.ext.zalf.de/ResearchData/DK_59.html). 
Data were available for a baseline period (1980–2005) and the scenario 
period (2040–2065) for three RCPs: RCP2.6, RCP4.5 and RCP8.5 and 
five GCMs: GFDL-CM3, GISS-E2-R, HadGEM2-ES, MIROC5, and MPI- 
ESM-MR. Only two GCMs (HadGEM2-ES and MPI-ESM-MR) were 
available for RCP2.6 at the time of the study. Baseline data were driven 
from interpolated observed data at station and the scenarios were 
calculated using an enhanced delta change method that applies changes 
in aspects of temperature and precipitation variability in addition to 
changes in mean climate (Ruane et al., 2015). More details about the 
climate data processing are available at (Webber et al., 2018). 

2.2.3. Soil data 
Soil data was derived from two datasets: the European Soil database 

from the JRC European Soil Data Portal (http://eusoils.jrc.ec.europa. 
eu/) and the Land Use/Cover Area frame Survey) (LUCAS, Orgiazzi 
et al., 2018). The original JRC available data, at 1 km resolution, was 
resampled to the 250 m resolution of the Corine Land Cover 2000 raster 
to enable selecting only soil values associated with agricultural land 
(non-irrigated arable land; permanently irrigated land; rice fields; 
annual crops associated with permanent crops; complex cultivation 
patterns; and land principally occupied by agriculture with significant 
areas of natural vegetation). Data were then aggregated to the 25 km 
grid of the climate data by selecting the median soil depths available for 
the root growth, total available water, bulk density, total soil organic 
carbon and texture (clay, silt and sand). The selection was based on the 
soil class having the largest area in each 25-km unit. 

The LUCAS database (https://esdac.jrc.ec.europa.eu/content/luca 
s-2009-topsoil-data) was used to derive the top soil organic carbon 
(20 cm) of the reference year 2009. We first joined the LUCAS top soil 
organic carbon geo-referenced samples (a total of 19967) to the corre-
sponding LUCAS land cover database and selected a subset of 8829 
samples that were classified as crop land. These samples were then 
joined to the JRC 25 km grids defined by the climate data. Within each 
grid, the mean value of top soil organic carbon was determined by 

B. Faye et al.                                                                                                                                                                                                                                     

http://www.simplace.net
https://wwwsimplace.net/index.php/documentation
https://wwwsimplace.net/index.php/documentation
http://open-research-data-zalf.ext.zalf.de/ResearchData/DK_59.html
http://eusoils.jrc.ec.europa.eu/
http://eusoils.jrc.ec.europa.eu/
https://esdac.jrc.ec.europa.eu/content/lucas-2009-topsoil-data
https://esdac.jrc.ec.europa.eu/content/lucas-2009-topsoil-data


European Journal of Agronomy 142 (2023) 126670

4

averaging over all LUCAS samples. For missing grid cells, we used an 
extrapolation approach to select the value of the neighboring grid cell as 
an approximation of the soil organic carbon. 

2.3. Crop rotations 

Crop rotations were selected using historical statistical data 
(1984–2013) from the CAPRI database at NUTSII level. Data were first 
aggregated over years for each NUTSII region and crop, and then again 
aggregated to environmental zones (ENZ). The share of each crop pro-
duction activity per utilized agricultural area was calculated and or-
dered for the crops simulated by SIMPLACE in this study. Up to six crops 
were selected for each ENZ based on the highest area shares. Then for 
each ENZ, the selected crops were combined into plausible rotations 
based on good agronomic practices and phytosanitary impacts of the 
preceding crop. The agronomic rules used to generate the rotations 
followed the approach of (Reckling et al., 2016a, 2016b): 

(i) combine selected crops to produce all possible two-crop combi-
nations by applying sequence restrictions defined with expert 
knowledge on plausible crop rotations considering timing, 
nutrient demand and pest and disease management to validate 
the rotations generated with the method of (Reckling et al., 
2016b)  

(ii) combine the crop sequences into 3–6 years rotation. For a given 
generated rotation, a filter is applied based on minimum 
sequential break of a crop, maximum frequency of crop, 
maximum frequency of crop type. 

The result was a series of 3–6 year rotations (cover crops were 
neglected). One rotation was selected for each ENZ, except for two ENZs 
(4 and 6) where several rotations were simulated with more data 
available (Fig. 1) to test the sensitivity of results to the selected rotation. 
The resulting rotations for each ENZ were then resampled to the simu-
lation units. For each grid, RCP-GCM combination, simulations were 
repeated by the number of crops in the rotation, each time starting the 
simulations with a new crop ordering to avoid year by crop order effects 
(Teixeira et al., 2015). Finally, average yields for the target crop were 
calculated as the average over all possible sequences. 

2.4. Model parameterization and testing 

The SIMPLACE model has been widely applied at European scale for 
assessing the climate change impacts (Webber et al., 2015, 2018; Zhao 
et al., 2015) and for modeling crop rotations (Kollas et al., 2015; Yin 
et al., 2017). 

For phenology, observations of crop sowing, anthesis, maturity and 
harvest from the JRC Mars database (https://ec.europa.eu/eurostat/we 
b/main) were used to calibrate the crop model thermal time parameters. 
First phenology observations were aggregated to the level of environ-
mental zone across Europe (Metzger et al., 2005). Then the phenology 
observations were assigned to each simulation unit (grid cell), and 
thermal time requirement TSUM1 (from emergence to anthesis) and 
TSUM2 (from anthesis to maturity) were calibrated for each simulation 
unit based on the approach used in Zhao et al. (2015) adopted from 
(Therond et al., 2011; Balkovič et al., 2013). Therefore, in each envi-
ronmental zone there are different crop varieties as related to a specific 
temperature within a grid cell. When phenology observations were 
missing, sowing dates were generated from similar crops in the same 
environmental zone (Metzger et al., 2005) by preserving the relationship 
between the average differences for these crops. 

All others crop growth parameters, for grain maize and winter wheat 
cultivars were derived from Webber et al. (2018). Silage maize values 
were based on those of grain maize. Cultivar parameters for winter 
barley, winter rapeseed and sugar beet used calibrated values reported 
by Kuhn et al. (2020). Finally, crop growth parameters for potato used 
default values reported by Boons-Prins et al. (1993). There was no effect 
of elevated [CO2] on radiation use efficiency (RUE) for C4 crops: grain 
maize and silage maize (Kimball, 2016; Durand et al., 2018). For C3 
crops, RUE increased of 8%, 13% and 20% when [CO2] increased from 
442 ppm for RCP2.6, 499 ppm for RCP4.5 and 571 for RCP 8.5, 
respectively, relative to the baseline of 360 ppm (Wolf, 2012). The effect 
of elevated [CO2] on crop transpiration and RUE were parametrized 
based on Kimball (2016). 

SOC model was parametrized and tested in North Rhine-Westphalia 
(NRW), Germany with most of the parameters were derived from 
(Corbeels et al., 2005b) and from our sensitivity analysis (for details see 
Section 2.5). 

Fig. 1. Schematic overview of the simulation 
experiment. BARL: winter barley; MAIF: silage 
maize, MAIZ: grain maize, POTA: potato, RAPE: 
winter rapeseed, SUGB: sugar beet and WW: 
winter wheat. The environmental zone are: 
Alpine North (1), Boreal (2), Nemoral (3), 
Atlantic North (4), Alpine South (5), Continen-
tal (6), Atlantic Central (7), Pannonian (8), 
Lusitanian (9), Mediterranean Mountains (11), 
Mediterranean North (12) and Mediterranean 
South (13). RAPE-WW-WW-WW-BARL and 
WW-BARL-RAPE-WW-BARL-POTA rotation are 
additionally simulated in ENZ4 and WW-BARL- 
MAIF, RAPE-BARL-MAIF-WW-BARL and RAPE- 
WW-BARL in ENZ6.   
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2.5. Simulation exercise setup 

This study is conducted at EU-27 level at 25 km resolution based on 
climate data for seven crops (winter wheat, winter barley, winter 
rapeseed, potato, sugar beet, silage maize and grain maize). Simulations 
were conducted for baseline (1980–2005) and scenario (2040–2065) 
periods. We assumed no adaptation in varieties between baseline or 
climate change scenarios. 

The simulation experiment was performed based on three sets of 
scenarios (climate, re-initialization, and crop residue retention rate, see 
Fig. 1) using a factorial design, combining all levels of each scenario 
(where feasible, explained below). The first set of scenarios explored 
focused on climate: RCP2.6 (2 GCMs), RCP4.5 (5 GCMs) and RCP8.5 (5 
GCMs). In the second set of scenarios, the implication of the re- 
initialization procedure were explored for three cases: (i) monocrop 
with re-initialization of initial soil water, nitrogen and carbon each year, 
(ii) continuous monocrop allowing soil water, nitrogen and carbon 
balance calculations to continue over the entire simulation period; and 
(iii) plausible crop rotation allowing soil water, nitrogen and carbon 
balance calculations to continue over the entire simulation period. 
Finally, in the third set of scenarios, three residue retention rates in the 
field after harvest were considered (0, 50 or 100% above ground resi-
dues retained, where residues refer to leaves and stems above the cutting 
height for the grain crops). The total amount of green and dry leaves and 
stems was calculate after harvest and multiply by a factor of 0 or 0.5 or 1 
for the three respective cases above for the amount of residue retained in 
the field. Note, for silage maize this set of scenarios could not be assessed 
as leaves and stems constitute part of the main harvest product. Again, 
all levels of each scenario were combined in factorial combination, 
except that for re initialization scenario, because there was no impact of 
residue retention as initial soil values are reset. As the model does not 
simulate tillage systems, residues were not incorporated into the soil, 
but rather simulated as remaining on the soil surface. Therefore, our 
consideration of no tillage systems here was due to the fact that our 
current model does not yet simulate soil tillage processes. 

A 50 years spin-up period was used to initialize simulations for both 
the continuous monocrop and rotation cases, for both baseline and 
scenario simulations to allow the soilCN module to reach an equilibrium 
to initialize the carbon pools. The 50 years spin-up was chosen based on 
an evaluation of the SOC evolution over a 400 years period in three 
different ENZ which showed that 50 years period with the original 
parameterization was satisfactory to nearly reach equilibrium (Fig. S3). 
This initialization minimizes any implications of how the initial value of 
SOC is specified to influence the mineralization and immobilization of 
nitrate and ammonium. A sensitivity analysis was performed to deter-
mine the most sensitive parameters in the soilCN module using a 
simulation period for 400 years though repeating the same 30 years of 
weather data (1981–2010). The parameters used in the sensitivity 
analysis were identified based on literature concerning this and other 
SOC models (Table S1). The fast99 method of Saltelli et al. (1999) was 
implemented in R with the sensitivity package. The results of the main 
effects and the interactions for each parameters are represented for the 
case of no fertilizer application with 100% residue retention in Fig. S4. 
The soilCN was parametrized using specific crop characteristics as well 
as soil variables such as soil sand and clay content, soil depth of each 
horizon, surface litter amount, litter composition, depth of mineraliza-
tion, where parameter values used were taken from literature. 

Final results are presented for simulations that considered water - 
nitrogen limited yields. To derive plausible nitrogen rates to be used in 
the climate scenarios, we made the assumption that production in-
tensity, as indicated by nitrogen fertilization to achieve a particular 
yield gap, would remain approximately the same (Webber et al., 2015). 
To estimate this, all simulations were first conducted with only water 
limitation and relative yield changes calculated. Finally, we assumed no 
adaptation of new crop varieties in simulated future periods (growing 
season duration). 

2.6. Simulation results aggregation and relative yield change 

Fully irrigated and fully rainfed simulations were conducted for each 
of 8057 simulation units across the EU-27 at 25 km x 25 km resolution 
Simulated grain yields were aggregated over each simulation period and 
crop rotation using the MIRCA20002 (Monthly Irrigated and Rainfed 
Crop Areas around the year 2000) dataset to allowing weighting of 
rainfed and irrigated simulations at the simulation unit level (Eq. (2)). 
The MIRCA2000 dataset was also used as an area weighting based on 
current production areas for aggregation to EZ or European level. Final 
yield was determined by production divided by harvest area for a given 
level after combining the shared rainfed and irrigated production. In 
each simulation unit production was determined as the yield simulated 
by production area, while at European level production was determined 
as the sum over all pixels with: 

YEU =
P
A

(1)  

where YEU yield at EU level either for rainfed or irrigated using MIRCA 
production area, P is the total production (rainfed or irrigated) and A is 
the harvest area (rainfed or irrigated). 

Yaggregated =

(
(100 − IR) ∗ Yrainfed + IR ∗ Yirrigated

)

100
(2)  

where Yaggregated is the final yield either at pixel level or EU level, Yrainfed is 
the rainfed yield, Yirrigatedis the irrigated yield and IR is the irrigation 
ratio in % calculated in Eq. (3). 

IR =
Irrigated area

Irrigated area + Rainfed area
∗ 100 [%] (3) 

The relative change in grain yield was calculated as: 

ΔY =
Yscenario − Yibaseline

Ybaseline
∗ 100 [%] (4)  

where ΔY is the relative yield change, Yscenario is the simulated yield for 
the scenarios period and Ybaselineis the simulated yield for the baseline. 

To aid in understanding what was driving differences in projected 
yield changes between the different initialization and residue retention 
cases, we also quantified the relative change in SOC as: 

ΔSOC =
SOCs − SOCb

SOCb
∗ 100 [%] (5)  

where ΔSOC is the relative SOC change, SOCs is the simulated SOC 
average value over the future scenario 2040–2065 and SOCb is the 
simulated SOC average value over the baseline 1980–2005, always for 
the same respective initialization and residue retention cases. 

3. Results 

Comparing across all crops and various climate, re-initialization and 
residue retention scenarios, European aggregate relative yield changes 
ranged between + 36% yield gains for C3 crops (winter wheat) to as 
much as 21% yield losses for grain maize, a C4 crop (Table S4) for in-
dividual simulation units and years. Irrespective of the RCP, re- 
initialization or residue retention scenario, across crops it was evident 
that climate change impacts were generally positive for the C3 crops 
(winter barley, winter rapeseed, winter wheat and sugar beet) except for 
potato where there was relatively limited yield change projected. On the 
other hand, for grain maize relative yield changes were negative, while 
for silage maize relative yield changes depicted a slight positive impacts 
(Fig. 2). For the winter sown C3 crops, relative yield changes were 

2 https://www.uni-frankfurt.de/45218031/data_download 
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highest for RCP8.5 and lowest for RCP2.6. Comparing across crop types, 
there was less uncertainty across GCMs (as indicated by the spread of 
boxplots in Fig. 2) for the winter sown crops compared to grain maize, 
potato and sugar beet, where there was much greater uncertainty across 
GCMs in the simulated yield impacts, particularly with warmer sce-
narios (RCP4.5 and RCP8.5). When considering the impact of the re- 
initialization strategy, simulations conducted considering plausible ro-
tations generally had more positive relative yield changes for winter 
rapeseed, winter wheat and winter barley and sugar beet. The influence 
of residue retention strategy is less pronounced, but removal of all res-
idues tended to increase the projected positive impacts on the C3 crops 
compared to the 50% or 100% residue retention cases (Table S4). Indeed 
for all crops, the uncertainty across GCMs was generally much greater 
than any signal from residue management or re-initialization scenario, 
especially for grain maize (Fig. 2). Across all crops, the key observation 
was that the largest differences were across C3 crops vs C4 crops and 
between climate scenarios (Fig. S5). For the C3 crops, the climate signal 
varied most with RCP whereas for the C4 crops, the greatest source of 
uncertainties was rather across GCMs. The effects of re-initialization and 
residues retention scenario were less pronounced and were crops 
dependent. 

These aggregate results hide much information about the spatial 
variation of simulated yield changes, shown in Fig. 3 for winter wheat 
and RCP4.5. Regardless of the re-initialization or residue retention 
scenario, simulated yield changes were generally more positive in the 
northern areas. For the case of 0% residue retention, relative yield 
changes were highest in the north and north east with wheat yield 
change projected as high as 60% in Norway and Finland when rotations 
were considered (Fig. 3). On the other hand, we see in large parts of 
Southern Europe and France that wheat yields were essentially 

unchanged and even had negative trends in some areas of Spain. Across 
crops, the spatial patterns for 50% and 100% residue retention were 
largely the same and less pronounced as for the case of 0% residue 
retention (Fig. 3). However, there was no marked difference between 
simulations with re-initialization, continuous monocropping or rota-
tions. Spatial variability of the relative yield changes across GCMs 
increased with RCP8.5 irrespective of the crops (Fig. S10). Considering 
the difference between GCMs, simulations with the GFDL-CM3 model 
had greater spatial variability across Europe than the others (Fig. S9). 

To facilitate understanding the results, for the rest of the results 
section we will focus on contrasting results for maize and winter wheat. 
Consideration of residues retention scenario did not have a substantial 
effect on the simulated yield impacts for either maize or wheat (Fig. 4). 
Leaving all residues on the field after harvest (100% residue retention) 
had a marginal tendency to reduce yield losses in maize, whereas it 
limited the positive yield change for winter wheat by − 10% points for 
the RCP8.5. 

Considering results for the re-initialization strategy, relative yield 
changes for winter wheat were more positive when rotations were 
simulated compared to the annual re-initialization case or continuous 
monocrop simulations. For grain maize, relative yield changes were 
largely insensitive to the re-initialization strategy, though yield changes 
tended to be slightly less negative when rotations were simulated. There 
was less uncertainty in simulated impacts across GCMs for winter wheat 
when rotations were simulated compared to annual re-initialization or 
continuous monocrop, though this effect was not present for maize 
(Fig. 4). 

For understand what was driving these different yield responses in 
our model between initialization and residue retention cases, we also 
considered the relative climate change impacts on SOC for each assumed 

Fig. 2. Relative yield change for RCP4.5 on winter barley, maize grain, potato, winter rape, silage maize, sugar beet and winter wheat. The yields at pixel level were 
aggregated over years and EU level for the estimated period 2040–2065 relative to the baseline 1980–2005 using MIRCA2000 landuse data. Box-and-whisker plots 
depict distribution across GCMs for the 25th and 75th percentile the median is shown as a horizontal bar in each box and whiskers extend to the maximum/minimum 
value within 1.5 times the interquartile range (outliers are not shown). Purple, dark cyan and yellow bars depict annual re-initialization, continuous monocrop and 
plausible rotations, respectively. Three residues retention rates were considered: 0% residue (top row), 50% residue (medium row) and 100% residue (bottom row). 
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Fig. 3. Spatial patterns of relative yield change for winter wheat and RCP4.5 for each residue retention rate (0%, 50% and 100% residues retention rates in the 
columns). The top row shows simulations with re-initialization, the middle row the continuous monocrop simulations and the bottom row the simulations with 
rotations. Results are shown here for the MPI-ESM-MR GCM. 
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case. Our model projections showed that the relative change in SOC was 
negative for continuous monocrop and rotation simulations, irrespective 
of the residue retention with higher uncertainty for the warming sce-
narios (Fig. 5). The relative change in SOC ranged between − 1% to 
− 2% for 0% and 100% of residue retention rates respectively 
(Table S5). Recall that this is a comparison of climate impact on the 
different residue management strategies (i.e., same management was 
assumed in baseline and scenario) and does not imply that SOC would be 
lower when all residues were left on the field than when they were 
removed. However, comparing the continuous monocrop and rotation 
simulates revealed no substantial interactions with residue retention or 
RCP scenarios. There was greater uncertainty across GCMs when rota-
tions were simulated as compared to continuous monocrop simulations 
in particular with RCP 4.5 and 8.5. Across RCPs, both sets of simulations 
had higher SOC losses with RCP8.5 than with RCP4.5 or RCP2.6. The 
spatial patterns of changes in SOC across Europe revealed regions in the 
South and East of Europe (Spain and Italy) would have losses of approx. 
− 5%, considerably larger than in Northern regions. The spatial vari-
ability in SOC changes were higher under the RCP8.5 than RCP4.5 or 
RCP2.6 (Fig. 5). 

4. Discussion 

4.1. Impact of climate change on crop yield in Europe 

Our study coupled a process-based SOC model assuming first order 
kinetics governing SOC mineralization with a process-based crop model 
to evaluate the sensitivity of climate change impacts on crop yield across 
Europe with respect to different model settings regarding model re- 

initialization and residue management. The projected increase in yield 
of C3 crops for large parts of Europe in our study was largely explained 
by CO2 fertilization, which provides much less benefit for C4 crops 
except in cases of low to moderate drought stress (Fig. S11). The positive 
response of C3 crop is attributed by the fact that the higher temperature 
effect on growth and phenology is compensated by the effect of CO2 
fertilization, which reduces stomatal conductance and transpiration and 
improves water use efficiency. Also, winter crops can also profit from 
avoiding summer drought conditions by accelerated phenology from 
warming in large parts of Europe. These findings were consistent with 
previous work of Webber et al. (2018) and Jägermeyr et al. (2021) who 
reported yield gains for winter wheat and yield losses for grain maize. 
Similarly, a global study on wheat found an increase in wheat yields in 
Europe for the 1.5 and 2.0 ◦C scenarios compared to the baseline 
1980–2010 (Liu et al., 2019). There was a slight increase in potato yield 
for RCP4.5 and RCP8.5 while Raymundo et al. (2018) projected yield 
reductions in Eastern Europe and a yield increase for Western Europe by 
2055 for RCP8.5. These results were largely consistent with other 
climate impact studies that have used process-based crop models for 
these crops in Europe (Zhao et al., 2015; Zimmermann et al., 2017; 
Webber et al., 2018) though studies using statistical models have pro-
jected yield declines for winter wheat and winter barley in France 
(Gammans et al., 2017) which could be explained by the water avail-
ability and heat stress for the scenario RCP8.5. 

4.2. Sensitivity of simulated impacts to re-initialization and residue 
management 

Our study suggests that simulated climate change impacts were not 

Fig. 4. Effect of residues retention on yield change under elevated scenario on grain maize (top row) and winter wheat (bottom) RCP2.6, RCP4.5 and RCP8.5. Data 
were aggregated over years and to the EU level considering current production shares for the scenario period 2040–2065 relative to the baseline 1980–2005. Box- 
and-whisker plots depict distribution across GCMs for the 25th and 75th percentile, with median and whiskers extend to the maximum/minimum value within 1.5 
times the interquartile range (outliers are not shown). Purple, dark cyan and yellow bars depict re-initialization, continuous monocrop and rotation respectively. 
Column depict 0% residue (left), 50% residue (middle) and 100% residue (right) retention rates. 

B. Faye et al.                                                                                                                                                                                                                                     



European Journal of Agronomy 142 (2023) 126670

9

as sensitive to assumptions about the re-initialization or residue reten-
tion strategies as compared to the effects of the RCPs or even the un-
certainty across GCMs. However, our results show that the amount of 
residue retained had an effect on the magnitude of the simulated climate 
change impacts for winter cereals. This was related to the direct role that 
residues play in reducing soil water evaporation from the soil surface in 
the model through a parameter in the FAO-56 dual coefficient procedure 
for partitioning evapotranspiration to transpiration and soil evapora-
tion. This parameter “Fraction of soil surface available for evaporation” 
controlling the effects of residue retained on the soil water evaporation 
was adjusted between 0.7, 0.15 and 0.05 for the 0, 50 or 100% of resi-
dues retention respectively (Allen et al., 1998). The relative yield change 
due to climate change was more positive when all residues were 
removed from the field. However this largely reflects that with residues 
retained on fields, absolute yields were higher (for both 50% and 100% 
retention rates) by 22–42% yield gain respectively compared to 0% 
residue retention for winter wheat (Fig. S12). One explanation of the 
greater yield increases due to climate change with no residue retention 
was that, simulated yields were lower in both baseline and future sce-
nario with no residue retention. This lower yield under the 0% residue 
retention case in the baseline leads to larger relative yield changes, 
though the absolute future yield changes are still small. In the 50 or 
100% of residue retention cases, higher yields in the baseline simula-
tions lead to relatively lower relative yield increases simulated for the 
scenarios. 

To aid understanding simulated sensitivity to residues and re- 
initialization strategy, we looked at how our model was projecting 
SOC to change with climate change for each assumed case. Note, for a 
number of reasons discussed in the next section, we do not consider 
these results as robust projections of how SOC will evolve under climate 
change. We saw that SOC generally decreased under climate change for 

both simulations assuming a continuous monocrop and the plausible 
rotation, irrespective of the residue retention scenario. The relative 
decrease in SOC was highest under RCP8.5 likely due to higher tem-
perature which increase the mineralization rate in the active and in-
termediate pool (Poeplau et al., 2011). These results were consistent 
with Qi et al. (2016) who reported that temperature changes regulate 
soil enzyme activities by changing the soil labile organic carbon frac-
tions and driving higher rates of SOC mineralization. In addition to 
temperature, soil enzyme activities and soil labile organic carbon frac-
tions could be affected by management factors, such as fertilization, 
tillage, irrigation (Mandal et al., 2007; Lefevre et al., 2014). Other factor 
such as a good supply of organic matter could influenced the labile 
organic carbon fractions. When soil moisture was not limiting, in our 
model soil organic carbon mineralization increases with increasing 
temperature, which acts to a decrease of SOC. Similarly, Xu et al. (2011) 
found SOC losses due to increase SOC mineralization driven by the 
future increase in temperature. These findings are supported by 
Crowther et al. (2016) who report that increased temperature would 
increase soil carbon losses to the atmosphere. 

Relative SOC losses decreased with increasing residue retention rates 
for both continuous monocrop and rotation, with the difference between 
residue retention rates being higher under continuous monocrop. These 
results were comparable with findings from Stella et al. (2019) who 
found that returning all crop residues to the soil can reduce SOC losses in 
North Rhine-Westphalia (Germany). However, the decrease of SOC with 
all residues retention scenarios was mainly an artifact of how we were 
calculating the relative change in SOC, as we assume the same residues 
retention strategy in both the baseline and scenario period. This asser-
tion was supported by Liu et al. (2006) who found that the choice of crop 
rotations can maintain or increase SOC quantity and quality, whereas 
residue management alone could not maintain SOC levels. 

Fig. 5. (a) Spatial patterns of relative change in SOC for RCP4.5 for each residue retention rate (0%, 50% and 100% residues retention rates in the columns). The top 
row shows simulations with continuous monocrop simulations and the bottom row the simulations with rotations. (b) Relative change in SOC for continuous 
monocrop (top row) and rotation (bottom row) for RCP2.6, RCP4.5 and RCP8.5. Data are aggregated over years and EU level for the estimated period 2040–2065 
relative to the baseline 1980–2005. Box-and-whisker plots depict distribution across GCMs for the 25th and 75th percentile, with median and whiskers extend to the 
maximum/minimum value within 1.5 times the interquartile range (outliers are not shown). Purple, dark cyan and yellow bars depict 0% residue, 50% residue and 
100% residue retention respectively. 

B. Faye et al.                                                                                                                                                                                                                                     



European Journal of Agronomy 142 (2023) 126670

10

4.3. Uncertainties and limitation of the study 

Given the already very complex nature of our simulation experiment, 
we had to make a number of assumptions and simplification which may 
have implications for generalizing our results. Our study did not 
consider adaptations of sowing dates and growing season length. 
Adaptation strategies were expected to reduce yield losses in Europe 
depending on the crop and region (Zimmermann et al., 2017). Challinor 
et al. (2014) reported that adaptation strategies will be more effective 
for wheat than maize, an assertion supported by the study Webber et al. 
(2018). However, Moore and Lobell (2014) suggested a larger adapta-
tion potential for maize and sugar beet than for wheat, though it was 
unclear the extent to which their study differentiated irrigated from 
rainfed production, which would moderate high temperature responses 
(Siebert et al., 2017). 

Another limitation of our study was that we used only one crop 
model despite the large uncertainty embedded in the choice of the crop 
model, which was demonstrated in many studies (Bassu et al., 2014; 
Martre et al., 2015; Müller et al., 2017), and even model setup proced-
ures (Confalonieri et al., 2016; Folberth et al., 2019). Another limitation 
was that we considered only seven crops in generating crop rotations 
and generally only one crop rotation was used for each ENZ except in 
ENZ 4 and ENZ 6. This was clearly not representative of actual crop 
management, as farmers can use many rotations in a given area for 
different reasons. However, in our evaluation for ENZ 4 and 6, simulated 
yield impacts demonstrated that the choice of rotation did not have an 
effect on the climate change signal (Fig. S13). However, the rotations 
generated also did not consider legume crops, grass leys or fallows as 
rotation components that are well known to diversify cropping systems 
(Hufnagel et al., 2020), affect yields and environmental impacts (Costa 
et al., 2021). The assumptions about residues retained would not be 
representative of the actual farmers’ practices as the residues manage-
ment will depend on crop rotations and soil tillage. Additionally, in this 
study we did not include the effect of cover crops which increase SOC as 
investigated by Poeplau and Don (2015) and Kaye and Quemada (2017) 
who demonstrated a substantial benefit of cover crops for SOC mainte-
nance. Finally, we did not address the effect of crop rotations and crop 
residues on the soil microbial activity which, may improve the nutrient 
availability to roots (Reinhold-Hurek et al., 2015). 

Importantly, our SOC model relies on modeling concepts on soil 
organic matter (SOM) dynamics that are relatively outdated and not 
state of the art in the soil organic matter community. There, SOC is now 
conceived of and measured as particulate and mineral associated 
organic matter, differing in size and density, as well as turn over dy-
namics. Nevertheless, to the best of our knowledge, no cropping system 
models consider such pools and our SOC model is quite representative of 
others in crop models. Additionally, the study also suffers from the lack 
of a long term SOC dataset at European scale for model calibration and 
testing. Nevertheless, the model was tested with long term SOC dataset a 
field scale (Seidel, 2020). A second dataset were considered for model 
evaluation. This study reports SOC changes from a long term experiment 
with nine crops (winter wheat, sugar beet, silage maize, winter rye, 
linseed, potato, spring barley, field pea and pea) from Brandenburg, 
Germany, a continental agro-ecological region with very sandy soils 
(Fig. S1). Further, though our model considered the effect of crop resi-
dues on soil water evaporation rates by adjusting the parameter of the 
wetted soil fraction in the FAO-56 dual coefficient module (Allen et al., 
1998), it did not consider effects of increased SOC on altering water 
holding capacity. Our SoilCN model does not directly link SOC to soil 
water holding characteristics of the soil, e.g. field capacity or wilting 
point which would be important to explore and evaluate these effects on 
SOC dynamics. This was because these are treated as static values in the 
SlimWaterModified module. There was no linear relationship between 
the relative change in yield and the relative change in SOC. This was 
because the impacts of weather variables on crop yields (temperature 
and precipitation) are most sensitive than the impacts of SOC (Fig. S14). 

Finally, our model did not consider the effect of crop residues to reduce 
the vulnerability to soil erosion by wind and water though continues soil 
coverage (Panagos et al., 2015). Soil erosion effects on yield decreases or 
even yield failure and on SOC loss with sediment transport maybe is 
more relevant with the climate change scenarios because of a higher 
frequency of extreme rainfall events (Auerswald and Menzel, 2021). 

4.4. Implications and next steps 

Our study has demonstrated that simulation of climate change im-
pacts on crops was not particularly sensitive to how model re- 
initialization or residue management strategies were specified, for our 
SIMPLACE based crop model solution. This result provides some vali-
dation of previous climate change impact studies that have reinitialized 
their model each year (Asseng et al., 2013; Zimmermann et al., 2017; 
Webber et al., 2018). This allows greatly simplified simulation setups as 
compared to the current study. Inclusion of rotations involves many 
uncertainties related to the lack of data specifying rotations and asso-
ciated fertilization and residue treatments, as well as the potential for 
error propagation in the year-to-year carryover effects in specifying 
rotations. 

On the other hand, simulation of SOC dynamics under climate 
change seems to require consideration of both crop rotations as well as 
being sensitive to assumptions about residue retention rates. This clearly 
suggests that for mitigation studies, formulation of plausible rotation 
and their simulation was required, and this will be fraught with un-
certainties about future land use, crop prices and other crop manage-
ment technologies for pest, weed and disease control, among others. 
While the SoilCN model does account for feedbacks with SOC, miner-
alization and soil plant available N, this was not very relevant for the 
highly fertilized crops typical of large parts of Europe. However this 
mechanism is obviously more important for world regions were SOC 
mineralization constitutes a main source of nutrients for crops (Corbeels 
et al., 2019). It will become more important also in Europe where 
adaptation and socio-economic pathways related to climate change call 
for energy saving, resource efficient production (Mitter et al., 2020). 
Here, traditional agronomic measures employing agro-ecological prin-
ciples including diversified crop rotations and residue management for 
pest and disease control and nutrient management may witness a re-
naissance. They may well be combined with modern digitalized man-
agement and sensing technologies (Basso and Antle, 2020). Modeling 
such systemic interactions is a challenging but necessary step to provide 
the evidence base for future agronomic management decision. Such a 
systemic approach would also need to address other, not immediately 
agronomic soil service such as water purification and belowground 
biodiversity (Vogel et al., 2018). 

Parametrization of the process-based SOC model to simulate the soil 
carbon dynamics was challenging as very few countries and regions 
have published long-term carbon datasets which can be used to verify 
model accuracy. Ogle et al. (2010) demonstrated that uncertainty in 
simulating SOC accumulation was associated with model structure and 
that improvement will depend on model parameterization and the 
number of field measurements. Here, the availability of data from long 
term field experiments (LTE) for systematic reuse would be an important 
step forward, if their locations can represent spatial agro-climatic and 
soil quality variations (Grosse et al., 2020). The uncertainty in simu-
lating SOC would be exacerbated in a very sandy soil. Additionally, the 
initialization of the carbon distribution between the different carbon 
pools was critical for the SOC model prediction which in general as-
sumes that carbon stocks were near steady state. However, optimization 
of the initialization procedure was a necessary exercise that could 
improve the estimation of the SOC in the soil. With measured data at 
specific locations, Basso et al. (2011) developed a procedure to facilitate 
initialization of the SOC pools focusing on the intermediate carbon pool. 
In our study, we used sensitivity analysis testing the most sensitive pa-
rameters in the model (Corbeels et al., 2005b). A comparison of 
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simulations from different models, such as performed by Ozturk et al. 
(2018) could further confirm these results and better inform about the 
relative importance of each source of uncertainty related to the as-
sumptions investigated here. 

5. Conclusions 

This study assessed climate change impacts on crop yield for Euro-
pean cropping systems to the sensitivity of assumptions about re- 
initialization strategy and residue management for winter barley, 
grain maize, potato, winter rapeseed, silage maize, sugar beet and 
winter wheat for a scenario period 2040–2065 relative to the baseline 
1980–2005. Our analysis showed yield gains for C3 crops and yield 
losses for C4 crops across climate, re-initialization and residue man-
agement scenarios. The effects of re-initialization and residues retention 
scenarios were less pronounced than climate scenarios and were crop 
dependent and were more important for SOC than for crop yields. 

Further, investigation on SOC effect on water holding capacity is 
needed to be explored in order to better evaluate the overall picture of 
the C and N dynamics. Data from long-term field studies across Europe 
will be beneficial in this regard. A comparison of simulations from 
different models will also be helpful to inform about the uncertainty of 
the considered model components and assumptions. 
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