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Abstract
Population growth and increasing demand for agricultural production continue to drive global cropland expansions. These 
expansions lead to the overexploitation of fragile ecosystems, propagating land degradation, and the loss of natural diversity. 
This study aimed to identify the factors driving land use/land cover changes (LULCCs) and subsequent cropland expansion 
in Trans Nzoia County in Kenya. Landsat images were used to characterize the temporal LULCCs in 30 years and to derive 
cropland expansions using change detection. Logistic regression (LR), boosted regression trees (BRTs), and evidence belief 
functions (EBFs) were used to model the potential drivers of cropland expansion. The candidate variables included proximity 
and biophysical, climatic, and socioeconomic factors. The results showed that croplands replaced other natural land covers, 
expanding by 38% between 1990 and 2020. The expansion in croplands has been at the expense of forestland, wetland, and 
grassland losses, which declined in coverage by 33%, 71%, and 50%, respectively. All the models predicted elevation, prox-
imity to rivers, and soil pH as the critical drivers of cropland expansion. Cropland expansions dominated areas bordering the 
Mt. Elgon forest and Cherangany hills ecosystems. The results further revealed that the logistic regression model achieved 
the highest accuracy, with an area under the curve (AUC) of 0.96. In contrast, EBF and the BRT models depicted AUC val-
ues of 0.86 and 0.77, respectively. The findings exemplify the relationships between different potential drivers of cropland 
expansion and contribute to developing appropriate strategies that balance food production and environmental conservation.

Keywords Cropland expansion · Remote sensing · Logistic regression · Boosted regression trees · Evidence belief 
functions

Introduction

Population growth and urbanization have pressured terres-
trial landscapes, increasing land utilization to meet socioeco-
nomic needs (Bowler et al. 2020; FAO 2017). As a result, 
agricultural production follows unsustainable practices that 
focus on enhancing the output per unit of land area. These 
practices may fail to achieve the intended purpose but drive 
the continuous impact on the environment as food produc-
tion and ecosystem functions exhibit some form of interde-
pendent relationship (Pellikka et al. 2013). The situation is 
even worse with the anticipation of 2.5 billion people being 
added to our planet by mid-century. Thus, the global demand 
for food will increase significantly, inducing anti-environ-
mental effects (Tilman et al. 2011).

Globally, agricultural production demand is central to 
LULCCs on the Earth's surface. These changes involve 
transformations within and between various land uses. 
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The most widespread form of LULCCs relates to cropland 
expansion. This transformation is often accompanied by 
losses in forestlands, grasslands, wetlands, and other features 
of ecological importance (Lark et al. 2020; Zeng et al. 2018). 
Empirical evidence suggests that human actions are central 
to LULCCs (Mwaniki and Möller 2015). These changes 
vary across diverse spatial scales and magnitudes based on 
underlying biophysical and climatic conditions. Globally, 
cropland expansion resulting from LULCCs has been associ-
ated with the growing population, poorly formulated govern-
ment action plans, environmental influences, and technologi-
cal advancements (Hassan et al. 2016; Jellason et al. 2021; 
Kindu et al. 2015; Nakalembe et al. 2017; Pham and Smith 
2014; Winkler et al. 2021).

In developing regions, cropland expansion portrays simi-
lar patterns and trends. Underlying this fact are the common 
challenges faced by smallholder farmers, who are the primary 
players in the food production chain in these regions. The chal-
lenges stem from an interplay of production factors such as land, 
income, market access, and prevailing climate conditions (Giller 
et al. 2021). Different from developed regions, unsustainable 
land-use practices such as charcoal burning, illegal encroach-
ments, overgrazing, and relaxed enforcement of the law encom-
pass the prevalent drivers of forestland, grassland, and wetland 
losses (Baldyga et al. 2008; Ewane 2021; Mwangi et al. 2020; 
Nakalembe et al. 2017). Consequently, these losses induce 
massive cropland conversions that have severe implications for 
ecosystem service provision (Song and Deng 2017), hydrologi-
cal balances (Baldyga et al. 2008), and food production (Hoque 
et al. 2020). Therefore, understanding LULCCs and intrinsic 
drivers is a step towards developing tenable and coherent land-
scape practices that drive sustainable agricultural production 
(Kindu et al. 2015).

Regular and up-to-date information on land use dynam-
ics and cropland expansion is required to formulate sound 
policies that foster sustainable human-environmental inter-
actions. Moreover, information on the drivers of cropland 
expansion is paramount to offering precise and timely solu-
tions to land-use decisions and regulatory measures. Remote 
sensing information combined with geospatial approaches 
provides the most feasible, cost-effective way of obtaining 
cropland expansion dynamics. The technology thus helps 
to address the issue of data limitation, especially in the 
data-sparse environments in developing regions. Kenya has 
experienced rapid conversions of natural ecosystems to crop-
lands in the recent past (Bullock et al. 2021). The expansions 
challenge the ecosystems' provision capacities and expose 
the land to degradation, soil erosion, and biodiversity loss 
(Mulinge et al. 2016). The expansion in croplands is gradual 
in high potential agricultural production zones (Kogo et al. 
2021). Consequently, it poses a threat to the sustainability 
of agricultural production, given that only 12% of Kenya's 
land mass falls under the high potential zones for production 

(Kabubo and Karanja 2007). However, the effects of various 
drivers on cropland expansion in these zones remain uncer-
tain, and comprehensive analysis has been lacking to date.

In recent years, various modelling approaches involv-
ing qualitative and quantitative data analysis have gained 
prominence in assessing drivers of cropland expansion. These 
approaches integrate remote sensing information and geospa-
tial analysis that allows explicit assessments of LULCCs. Some 
studies, for instance, used linear and spatial regression to assess 
the drivers of deforestation and agricultural expansion. For 
example, de Espindola et al. (2021) combined satellite infor-
mation and variables related to proximity, land management, 
technological resources, and environmental variables to assess 
drivers of LULCCs in the Amazon basin. Mwangi et al. (2020) 
combined boosted regression trees and geographically weighted 
regression to determine the significance and model the spatial 
influence of the drivers of LULCCs in Central Kenya. Neverthe-
less, in Kenya, Were et al. (2014) employed a logistic regression 
approach to uncover the drivers of LULCCs in Kenya-Afromon-
tane forest environments. Other studies have utilized machine 
learning approaches such as random forest (RF) classification 
to determine and evaluate the importance of various drivers of 
LULCCs in the northeastern United States of America (Zhai 
et al. 2020). Other studies combined qualitative and quantita-
tive data analysis, such as the study of Kindu et al. (2015), who 
evaluated drivers of LULCCs in Ethiopia. Moreover, Munthali 
et al. (2019) combined qualitative data analysis and geographic 
information systems (GIS)-based processing to assess the driv-
ers of LULCCs in Malawi.

The reviewed studies modelled observed LULCCs 
changes derived through the analysis of remotely sensed 
imagery as a function of socioeconomic and biophysical 
attributes of the landscape. Subsequently, they linked the 
geographical distribution of land-use transitions to ancil-
lary data to establish the significant drivers and uncover the 
underlying reasons for the observed patterns. Although their 
applications have been successful in LULCC studies, the use 
of evidence belief functions to assess drivers of LULCCs 
remains limited. Furthermore, multiapplication assess-
ment synthesizes the inherent strengths of the individual 
approaches. Therefore, this study combined logistic regres-
sion (LR), boosted regression trees (BRTs), and evidence 
belief functions (EBFs) to assess the drivers of cropland 
expansion in Trans Nzoia County. Campbell et al. (2005) 
concluded that complexities in LULCC processes, especially 
their linkages with social, ecological, economic, and institu-
tional contexts, require multiple approaches to disentangle 
the drivers of LULCCs.

The present study thus complements the literature in 
the following ways. First, three modelling techniques were 
applied to assess the accuracies of cropland expansions and 
the underlying processes. Second, the spatial prediction 
was conducted to depict varying probabilities of cropland 
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expansion across the study area. Finally, spatially modelled 
raster surfaces were used to enhance the definition of prox-
imity variables by combining cost functions and linear net-
work analysis in a geospatial environment. In this way, a 
more realistic measure of proximity is defined as opposed 
to the Euclidean and buffering approaches common in past 
studies (Sarkar and Chouhan 2020). Thus, this study aimed 
to achieve the following objectives:

1. To assess LULC changes in Trans Nzoia county and 
their contributions to cropland expansions.

2. To analyse the key drivers of cropland expansion using 
LR, BRTs, and the EBFs.

3. To assess the approaches for usability and the quality 
and accuracies in predicting cropland expansions at a 
county scale.

Materials and methods

Study area

This study was conducted in Trans Nzoia County, situated in 
the western part of Kenya and bordering Uganda to the west 

(Fig. 1). Agriculture is the main economic activity charac-
terized by both small- and large-scale farming. Small-scale 
farmers cultivate crops such as maize, beans, potatoes, and 
sorghum, while large-scale farmers focus on producing 
wheat, tea, and sugarcane (Mwaura and Kenduiywo 2021). 
Livestock keeping, poultry rearing, fishing, and apiculture 
are practised for subsistence and commercial purposes. Cli-
matically, the county exhibits a bimodal rainfall pattern. The 
long and short rainy seasons occur between March and May 
and October and December, respectively. The average annual 
precipitation is approximately 1300 mm, while the mean 
annual minimum and maximum temperatures are 12 °C 
and 26 °C, respectively (Nyberg et al. 2020). The county 
hosts Mt. Elgon and Cherangany forest ecosystems, part 
of Kenya's prominent water towers (Langat 2018). These 
ecosystems are catchments for the Nzoia and Suam rivers, 
which drain their waters into Lake Victoria and Turkana. 
The county population is approximately 990,000 people, 
according to the 2019 Kenya population and housing cen-
sus (KNBS 2019). Trans Nzoia County was selected for this 
study due to its leading role as the country's central food 
basket. In addition, recent substantial LULCCs in the region 
pose a serious challenge to food security and environmental 
sustainability.

Fig. 1  Location of the study area and bordering counties (a), the context of Kenya in Africa (b), and the context of Trans Nzoia County in Kenya 
(c)
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Data and data sources

This study used various datasets generated through primary 
and secondary data surveys, including archived remote sens-
ing images, existing GIS databases, field observations, and 
discussions with land-use experts. The primary data collec-
tion was conducted between May and September 2021. The 
data collected during this period include ground observa-
tions used in the training and validation process of the RS 
image classification. In addition, land management experts 
from the Trans Nzoia County lands department provided 
information about land-based transformations and potential 
drivers.

The third set of data was sourced from secondary data-
bases. The obtained variables include soil physical and 
chemical properties, precipitation, temperature, population 
density, accessibility to water sources, distance to major 
roads, and proximity to major trading centres. Soil informa-
tion data was obtained from the International Soil Refer-
ence and Information Centre (ISRIC), https:// www. isric. org/ 
explo re/ isric- soil- data- hub; precipitation and temperature 
variables were sourced from the climatology laboratory of 
the University of California, https:// www. clima tolog ylab. 
org/ terra clima te. html; The population density data were 
obtained from the Gridded Population of the World (GPW) 
Version 4 of the Socioeconomic Data and Applications 
Centre, https:// sedac. ciesin. colum bia. edu/ data/ colle ction/ 
gpw- v4/ sets/ browse; Road network data was obtained from 
the Humanitarian Data Exchange of the United Nations, 
https:// data. humda ta. org/ datas et/ kenya- roads; Rivers data 
was sourced from the World Resources Institute (WRI), 
https:// datas ets. wri. org/ datas et/ perma nent- and- non- perma 
nent- rivers- in- kenya; Market centres data was obtained from 
the Trans Nzoia County Department of Finance and Eco-
nomic Planning, https:// www. trans nzoia. go. ke/. The prox-
imity to roads, market centres, and rivers was modelled into 

raster surfaces using ArcGIS's cost distance functions. The 
detailed procedure for preparing proximity variables is out-
lined in the online resource of this article (ESM_1). In addi-
tion, the raster maps of all the variables used in this study are 
accessible from the online resource of this article (ESM_1).

The RS satellite images were acquired from different 
Landsat sensors, including thematic mapper (TM), enhanced 
thematic mapper (ETM+), and operational land imager/ther-
mal infrared sensor (OLI/TIRS). The data was processed 
within the Google Earth Engine (GEE) platform, but the 
individual scenes are available from https:// glovis. usgs. 
gov/. Three sets of Landsat images from 1990, 2005, and 
2020 provided the data for mapping LULCCs. The spectral 
bands used in this study include the blue, red, NIR, and 
SWIR bands, with spatial resolutions of 30 m. The processed 
images were acquired during a relatively dry season between 
November and March of the succeeding year. The period 
allowed for the best comparison assessments across the time 
epochs, as the phenologies of the land features appear rela-
tively similar. Table 1 outlines the sources, descriptions, and 
purposes of both the primary and secondary data used in 
modelling.

Image processing and LULC classification

The study used the GEE cloud computing environment to pro-
cess the Landsat images and generate a time series of land 
cover maps for three epochs: 1990, 2005, and 2020. The plat-
form permits large-scale data computing, thus minimising the 
tedious data downloading and storage requirements (Gorelick 
et al. 2017). Accordingly, surface reflectance data products 
were derived for the three epochs. The multitemporal prod-
ucts have already been preprocessed for radiometric and geo-
metric corrections, and the products have also been corrected 
for absorbing and scattering gases and aerosol atmospheric 
effects. Therefore, the study used level 2 surface reflectance 

Table 1  Overview of datasets used, sources, and their purpose in the study

WRI World Resources Institute, SEDAC Socioeconomic Data and Applications Centre, ISRIC International Soil Reference and Information Cen-
tre.

Datasets Where sourced Purpose

Landsat 5 TM
Landsat 7 ETM+
Landsat 8 OLI/TIRS

Processed from the Google Earth Engine To derive LULC for the years 1990, 2005, and 2020

Climatic variables Climatology laboratory, University of California To derive climatic variables
Population density
Rivers
Road network
Urban centres

SEDAC website
WRI data portal
Humanitarian data exchange
Trans Nzoia County government

To provide the socioeconomic data

Soil ISRIC data hub To derive soil attributes
Reference land use and land 

cover data
Google Earth and In situ measurements To provide training and validation samples for 

LULC classifications

https://www.isric.org/explore/isric-soil-data-hub
https://www.isric.org/explore/isric-soil-data-hub
https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/browse
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/browse
https://data.humdata.org/dataset/kenya-roads
https://datasets.wri.org/dataset/permanent-and-non-permanent-rivers-in-kenya
https://datasets.wri.org/dataset/permanent-and-non-permanent-rivers-in-kenya
https://www.transnzoia.go.ke/
https://glovis.usgs.gov/
https://glovis.usgs.gov/
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data corrected for radiometric and geometric defects. The 
cloud cover threshold was set at 20% to minimize the effect 
of clouds on the images. Any clouds present in the selected 
images were masked and replaced with pixels of images in 
the Landsat archive within 60 days of the acquisition date. 
The cloud score algorithm was used to mask pixels with high 
cloud cover based on a Landsat quality image file by comput-
ing a cloud-likelihood score from 0 (no clouds) to 100 (most 
cloudy). Finally, the normalised difference vegetation index, 
red, blue, NIR, and SWIR bands, were used as input features 
for the land use and land cover (LULC) classifications.

Supervised classification was performed using the random 
forest (RF) classifier (Breiman 2001) to map various LULC 
classes in the region. The algorithm is a nonparametric algo-
rithm used for ensemble learning. It solves classification prob-
lems by estimating multiple decision trees from the training 
datasets and assigns probable class values to the pixels based 
on the maximum vote of the decision trees. The classifier is 
robust, achieves high accuracy, and effectively handles outli-
ers and noisier datasets compared to other image classifiers 
(Belgiu and Drăguţ 2016). In this study, the number of decision 
trees was set at 500 to achieve a good balance between clas-
sification speed and accuracy (Belgiu and Drăguţ 2016). The 
default values were chosen for variablesPerSplit (√(n_bands)), 
and the fraction of the input to bag per tree was set to 0.5.

The classification was conducted based on existing LULC 
classes in the study area, which include croplands, forestlands, 
wetlands, grasslands, built-up areas, and other lands. The other 
land category comprises barren lands, unclassified areas, and 
other exposed surfaces that do not fall in the former LULC 
categories. The training and validation datasets were collected 
from field surveys, existing topographical maps, documented 
historical land use plans, the local knowledge of the two 
authors, and visual interpretation of high-resolution imagery 
derived from Google Earth. The period of study determined 
the training and validation data used. For instance, historical 
information was used for the 1990 and 2005 image classifica-
tions, whereas ground survey data and updated county spatial 
plans were used for the 2020 image classification. The number 
of sample points in 1990, 2005, and 2020 was 975, 1105, and 
1544, respectively. The samples were split into training samples 
for training the RF classifier (70%) and verification samples for 
accuracy verification (30%).

Accuracy assessment

Accuracy assessment is an integral part of digital image pro-
cessing, as it reveals the quality and reliability of the classified 
images. The accuracy of the LULC maps was assessed based 
on a confusion matrix using an independent validation set of 
ground-based data. Accuracy assessment metrics, such as 
producer accuracy, user accuracy, and overall accuracy, were 
used to evaluate the overall classification process (Congalton 

1991). Producer accuracy indicates how the ground features 
are correctly shown on the classified map. In contrast, user 
accuracy reveals how often a class on the classified map is 
depicted on the ground surface. The overall accuracy provides 
the percentage of correctly classified pixels for all class types. 
The recommendations of Olofsson et al. (2014) were adopted 
for accuracy assessment. The method outlines good practices 
for area estimation and accuracy assessment of RS image clas-
sification. In addition, it provides guidelines for proper refer-
ence sample selection and precise allocation of different class 
strata to achieve the desired samples.

Change analysis of land cover maps

Change analysis is a post-classification procedure that 
detects and quantifies changes in independently produced 
LULC classifications for different dates. The method pro-
vides transitions between land covers, quantifies the land 
cover changes, and presents information on the distribution 
of changes in the landscape. In this study, the analysis of 
changes and their distributions was used to derive binary 
maps of areas that were converted to croplands in the two 
time periods. Subsequently, they were used to assess the 
potential drivers of cropland expansion.

Modelling cropland expansion

Logistic regression

LR is a machine learning regression technique that assesses 
the relationships between dependent variables (binary or 
continuous) and a set of independent variables (Peng et al. 
2002). LR involves logit transformation of the dependent 
variable. The model has the following form:

where π (x) is the probability of the outcome of interest, α 
is the y-intercept, β represents the regression coefficients, ε 
corresponds to the model error term, and x represents a set 
of explanatory variables. The antilog of Eq. 1 yields Eq. 2, 
which predicts the probability of the occurrence of the out-
come of interest. The parameters α and β are estimated using 
the maximum likelihood (ML) method. LR is ideal for han-
dling dichotomous outcomes and can be applied in instances 
of nonnormality of the dependent variable.

Cropland conversion maps were created and used to 
define the binary outcome. Converted areas were coded as 1, 
whereas nonconverted zones were coded as 0. The potential 

(1)Logit Y = ln

(
π(x)

1 − π(x)

)
= � +

n∑

i=1

�ixi + �

(2)π(x) = Y|X = x
1
… xn) =

eα+�1x1+�2x2+…�nxn

1 + eα+�1x1+�2x2+…�nxn
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drivers of cropland conversion included proximity to riv-
ers, population density, soil type, precipitation, soil organic 
carbon, time to the nearest urban centres, time to the nearest 
major road, elevation, soil pH, and slope (Fig. 2). The spatial 
structure of the drivers was assessed using a semivariogram 
and interpolation conducted in ArcGIS version 10.8.1. 5,000 
random points were generated in the ArcGIS environment 
and used as representative samples to model the relation-
ship between cropland expansion and the potential drivers. 
Spatial dependency effects were minimized by maintaining 
a minimum distance of 200 m between each sample pair.

The selected points formed the basis for extracting the 
explanatory variables from the corresponding interpolated 
surfaces. The data were converted into ASCII format for 
ready import in R software. Subsequently, LR was imple-
mented using the generalised linear model function (R Core 
Team 2020). 80% of the samples were used for training the 
model, and 20% were used for model validation. First, a 
full model was fitted, followed by a multicollinearity assess-
ment among the predictors using the variance inflation fac-
tor (VIF) function in the companion to applied regression 
(CAR) package in R (Fox et al. 2019). Stepwise regression 
using the backwards selection procedure was then used to 
select the statistically significant variables at a 5% signifi-
cance level. The regression technique fits a full model and 
then iteratively drops predictors with less contribution to 
the outcome variable. The model with the lowest Akaike 
information criterion (AIC) was selected as the parsimoni-
ous model for generating probability surfaces of cropland 
expansion.

Boosted regression tree modelling

Boosted regression tree (BRT) modelling is an ensemble 
model that combines regression trees and boosting algorithms 
to generate nonparametric statistical models (Schapire 2003). 
In contrast to conventional statistical models, it fits multiple 
statistical modes to improve prediction accuracy. The rationale 
is that fitting multiple trees from several approximate rules 
and averaging them is easier than obtaining a single highly 
predictive model. The strengths of the BRT model include the 
potential for handling missing data, accommodation of dif-
ferent predictor variables, and robust modelling of nonlinear 
interactions between variables (Elith et al. 2008). The BRT 
model was implemented using the generalised boosted mod-
els package in R statistical software (Ridgeway 2005). The 
parameters specified for the model include a bagging fraction 
of 0.5, as recommended by (Elith et al. 2008), a tree complex-
ity of 5, and a learning rate of 0.005. The bagging fraction 
determines the split between the training and validation data, 
tree complexity controls whether interactions are fitted, and 

the learning rate determines the contribution of each tree to 
the growing model. The sample points used for training and 
evaluating the LR were also used in the BRT modelling.

Evidential belief function

The evidence belief function (EBF) model is founded on the 
Dempster–Shafer theory of belief (Dempster 1968). It is a 
data-driven approach that computes mass functions of belief, 
disbelief, plausibility, and uncertainty using spatial occur-
rences of phenomena on the Earth's surface (Park 2011). The 
concept behind estimating these functions is that the locations 
of geographical phenomena caused by diverse earth processes 
can be utilized to determine the probabilities of confounding 
variables. Accordingly, the confounding factors are catego-
rised into several class groups, which are then used to docu-
ment the various EBF functions. The EBF model is ideally 
suited for assessing spatial integration processes such as LULC 
changes (Arasteh et al. 2019). Accordingly, an evidential map 
layer of the geographical phenomenon is required to compute 
the various functions.

Based on the functions, high belief values indicate a high 
likelihood of a factor contributing to an event within a class 
category, whereas high disbelief values indicate a lower 
chance. Therefore, computations of the belief and disbelief 
functions integrate the total number of unit cells or pixels 
within a class category, the number of unit cells of the eviden-
tial map layer within the class category, and the total number 
of unit cells in the exploration area. Equations 3–6 were used 
to compute the belief and disbelief values, where Fij represents 
i confounding factors (drivers) with j class categories. N (Fij) 
represents the total number of unit cells in class j, whereas N 
(Fij ∩ A) is the number of unit cells in class j that were con-
verted to cropland. N (A) and N (T) indicate the total number 
of unit cells converted to cropland and the total number of unit 
cells in the exploration area, respectively. 

The numerator and the denominator in Eq. 4 correspond 
to the proportion of unit cells converted to croplands in each 
class factor and the ratio of unit cells converted to other land 
uses, respectively.

(3)BelFij
=

WFij(Converted pixels)∑n

j=1
WFij(Converted pixels)

(4)

WFij(Changed pixels)
=

N
(
Fij ∩ A

)
∕N(Fij)[

N
(
A) − N(Fij ∩ A

)
∕[N(T) − N(Fij)]

]

(5)DISFij
=

WFij(Non−converted pixels)∑n

j=1
WFij(Non−converted pixels)
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Evaluation of the BRT, LR, and EBF models

The models were evaluated using the area under the curve 
(AUC) of the receiver-operating characteristic (ROC) at sep-
arate classification thresholds. The ROC curve is a plot of 
sensitivity against specificity (Mas et al. 2013). Sensitivity 
gives the proportion of the positive class that was correctly 
classified, while specificity indicates the ratio of the negative 
class that was correctly classified. The AUC ranges from 0 
to 1. A perfect model yields an ROC value of 1, which indi-
cates an exact agreement between the predicted values and 
the observations. ROC was implemented using the PROC 
package in R (Robin et al. 2011).

Results

Land use and land cover changes in Trans Nzoia 
County

The land cover maps for Trans Nzoia County reveal chang-
ing land use and land cover dynamics. Across the study area, 
the dominant land cover class in the studied epochs was 
cropland. The initial coverage of cropland in 1990 was 33% 

(6)WFij(Unchanged pixels)
=

N
(
Fij) − N(Fij ∩ A

)
∕N(Fij)[

N(T) − N(A) − N
(
Fij) + N(Fij ∩ A

)
∕[N(A) − N(Fij)]

]

of the study area, and the coverage further increased to 66% 
and 72% in 2005 and 2020, respectively. The changes dem-
onstrate a rapid expansion of croplands between 1990 and 
2005, followed by a slow, albeit increasing, expansion until 
2020. Over the period, the area under croplands grew at the 
cost of forestlands, wetlands, and grasslands. Spatially, the 
land cover distribution indicates that croplands occupied the 
central areas of the county, whereas forestland and grass-
land classes dominated the western and northeastern parts, 
respectively (Fig. 3).

Built-up areas recorded positive growth over the study 
period. The coverage in 1990 was 2.4  km2, which translates to 
approximately 0.1% of the total land area. During the period, 
few pockets of built-up zones were evident in the main town, 
located at the centre of the county. However, the coverage 
increased to approximately 10  km2 by 2005, with most expan-
sions occurring in the surrounding areas of the main town. 
Additionally, some sections of the western and northern parts 
of the county experienced a notable increase in built-up cov-
erage. The highest coverage of built-up areas was recorded 
in 2020, with an approximate area of 36  km2. In this recent 
period, built-up areas expanded exponentially and extended 
along the main transport corridors through the county. 
Although the built-up area class accounted for the smallest 

Fig. 2  Summary of the 
workflow integrating land-use 
changes and potential drivers 
of cropland expansion based on 
machine learning and evidence 
belief functions
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proportion of the total land area, the findings of this study 
show that it experienced the highest growth in the study period.

Forestland recorded a decline in the 30 years. In 1990, the 
area under forest cover was approximately 500  km2. How-
ever, the coverage was reduced to 447  km2 and 335  km2 
in 2005 and 2020, respectively. The decline in forest cover 
was higher (− 25%) in the 2005–2020 period than in the 
1990–2005 period (− 11%). The reduction was more pro-
nounced in the forested areas of Mt. Elgon and Cherangany 
hills. The land cover maps further indicate that tree cover 
vegetation along river courses and creeks was drastically 
removed. Similarly, planted forest patches were gradually 
cleared. The effect is evident from the 2020 LULC map 
(Fig. 3c). Likewise, wetlands exhibited a continuous decline 
in the 30 years. The study area's wetlands comprise perma-
nent streams, open water, seasonal and permanent marshes, 
riverine vegetation, scrub, forested wetlands, and seasonal 
flood plains. In 1990, wetlands occupied 270  km2. However, 
the coverage declined to 230  km2 and 73  km2 in 2005 and 
2020, respectively. The decline was higher in the 2005–2020 
period (− 68.2%) than in the 1990–2005 period (− 15%).

Grasslands covered 19% of the total area in 1990 and 
declined by 16% in 2005. In 2020, there was a slight increase 
of 1% in grassland cover. Grasslands dominated the west-
ern region of the county and the periphery of the Cheran-
gany hills forest in 1990. The LULC dynamics show that 
extensive grassland areas were rapidly transformed into 
croplands in the 1990–2005 period. Approximately 72% 
of grassland cover was converted to croplands during this 
period (Fig. 3a,b).

Accuracy assessment

The accuracy assessment statistics of the LULC classifica-
tions are presented in Table 2. The overall accuracies for 
1990, 2005, and 2020 are 82%, 93%, and 93%, respectively. 
The producer accuracies were above 70%, except for the 
built-up area in 2020, which was 53%. The low accuracy 
in the built-up area classification can be attributed to the 
mixed-pixel problem common in urban areas, as they rarely 
transition to other land covers.

Fig. 3  LULC maps for a 1990, b 2005, and c 2020
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Change analysis of land cover maps

The Sankey plot (Fig. 4) characterizes the distribution of 
the major LULC transitions in the 30 years. A noticeable 
trend from the plot is that most of the LULC transitions 
were directed towards croplands, visible from the width of 
the links connecting each land cover node. From the plot, 
44% of wetland conversion between 1990 and 2005 occurred 
at the expense of cropland expansion, and the expansion 
increased to 62% in the 2005–2020 period.

The dynamics of the grassland cover show that 72% of 
grassland coverage converted to croplands between 1990 
and 2005. However, the conversion declined to 62% between 
2005 and 2020. On the same note, the forestland class lost 
26% of its coverage to croplands between 1990 and 2005. 
otherlands category, comprising barren land, artificial sur-
faces, pockets of water features, and other unclassified fea-
tures, lost 67.9% and 32.4% to cropland in the 1990–005 and 
2005–2020 periods, respectively. Overall, croplands gained 
significantly from the major land covers in the study area.

Drivers of cropland expansion

Logistic regression

The logistic regression results provide the relative influences 
of the individual drivers on the cropland expansion in the 
study area. Multicollinearity assessment revealed low Pear-
son correlation values among the drivers except for access 
to major roads and market centres (0.98). Accessibility to 
major roads, therefore, was dropped from any further analy-
sis. The retained drivers had low VIF values (< 2), thus con-
firming the absence of multicollinearity. The drivers were 
further analysed using stepwise regression to quantify their 
effect on cropland expansion. The aim was to obtain a par-
simonious model with statistically significant drivers that 
explain cropland expansion (Table 3). The drivers' estimates 
were transformed into percentage odds to assess the relative 
contribution of each driver to cropland expansion.

The findings show that the contribution of elevation 
was positive and revealed a increase of  2.1 percent odds 
in cropland expansion for every 1 unit increase in elevation 
while controlling for other variables (Table 3). Similarly, the 

Table 2  Overall, producer and 
user accuracies of the LULC 
classifications in 1990, 2005, 
and 2020

PA producer accuracy, UA user accuracy

LULC 1990 2005 2020

PA UA PA UA PA UA

Cropland 0.94 0.95 0.95 0.95 0.98 0.94
Forestland 0.91 0.97 0.94 0.91 0.92 0.99
Grassland 0.79 0.63 0.80 0.73 0.76 0.89
Built-up 0.86 0.97 0.86 0.79 0.53 0.92
Wetland 0.87 0.81 0.73 0.8 0.89 0.77
Other lands 0.91 0.92 0.92 0.97 0.66 0.96
Overall Accuracy 0.82 0.93 0.93

Fig. 4  Sankey plot showing 
land cover transitions in the 
1990–2005 and 2005–2020 
epochs



5770 Modeling Earth Systems and Environment (2022) 8:5761–5778

1 3

contribution of accessibility to market centres was also posi-
tive, and it showed that a unit increase from market centres 
increases the odds of cropland expansion by 0.7%. The result 
confirmed that croplands expand farther from market centres 
into rural setups, which is typical in Kenyan landscape envi-
ronments. Regarding soil drivers, soil pH was the only vari-
able that showed statistical significance and a large marginal 
effect among the drivers. Accordingly, a unit increase in soil 
pH increased the odds of cropland expansion by 25%. Acces-
sibility to water sources depicted a negative trend where a 
unit increase in proximity to water sources decreased the 
odds of cropland expansion by 1.27%.

Boosted regression trees

Partial dependence plots (PDPs) summarised the results 
obtained from the BRT model (Fig. 5). The plots model each 
driver's relationship to cropland expansion while control-
ling for other factors. The probability of cropland expan-
sion is indicated on the y-axis, whereas the data distribution 
is plotted on the x-axis. The assessed drivers demonstrated 
varied influence on cropland expansion based on the data 
range on the x-axis. For instance, areas with low slopes 
(< 10%) depicted a high likelihood of cropland expansion, 
with declined probability as the gradient increased. PDP for 
elevation revealed regions that range from 1750 to 2000 m 
to have a high likelihood of cropland expansion.

Soil properties indicated that regions characterised by 
low soil organic carbon (SOC) had high tendencies to be 
converted to croplands. However, areas with high SOC 
values were less likely to be converted to croplands. The 
possible explanation is that marginal areas are increas-
ingly experiencing exploitation for agricultural production. 
Regarding soil pH, regions with values that range between 
5.5 and 6.0 showed a high likelihood of expansion, which 
declined in the neutral and less acidic zones. Although the 
relative contributions of population density and proximity 
variables were low, the results showed a significant trend in 
their factor ranges. Notably, areas within 1-hour access of 
rivers indicated a high probability of cropland expansion. 
The plot showed a high likelihood of cropland expansion for 
population density in low-populated regions (0–900 people 
per square kilometre).

Evidence belief functions

The EBF functions of cropland expansions are presented in 
Table 4. The drivers showed high belief values, thus support-
ing strong evidence of cropland expansion. They comprise 
proximity to rivers, proximity to market centres, SOC, eleva-
tion, population density, soil pH, and precipitation.

The EBF model indicated that regions within 1 h of prox-
imity to water sources have a high likelihood of cropland 
expansion, as revealed by a high belief value (0.342). Simi-
larly, areas with a population density between 240 and 440 
people per square kilometre showed high probabilities of 
cropland expansion (Bel = 0.31). Low SOC (Bel = 0.423) 
and high soil pH zones (Bel = 0.42) revealed a high like-
lihood of conversion. For access to market centres, areas 
within 2 hours of proximity showed a high probability of 
experiencing cropland expansion (Bel = 0.281). The results 
further indicated that low precipitation zones were more 
likely to be converted to croplands (Bel = 0.368). The high 
belief values in low SOC and low precipitation zones imply 
that cropland expansions also target marginal zones. Crop-
land expansions were also prevalent in elevation ranges 
between 2000 and 2800 m and between 2400 and 2800 m, 
as indicated by high belief values and frequency ratio scores.

Performance of the models

The model performances were evaluated based on the 
receiver operating characteristic (ROC) curves (Fig. 6). The 
AUC values ranged from 0.77 to 0.96, with the LR model 
showing excellent performance and the BRT model achiev-
ing the lowest accuracy. The AUC value obtained using the 
EBF model was moderate (0.86). Nonetheless, the obtained 
values showed good to excellent performances of cropland 
expansion assessment in Trans Nzoia County.

Probability of cropland expansion

Cropland expansion probability maps (Fig. 7) were gener-
ated to visualize the spatial patterns and to establish the driv-
ers' contributions across the study area. The models agreed 
well in the characterization of the cropland expansion pat-
terns. The predicted surfaces revealed that the western parts 

Table 3  Logistic regression 
model estimates and percentage 
odds of cropland expansion 
drivers

***, **, *Denote significance at the 0.01, 0.05, and 0.1 levels of probability, respectively

Estimate Standard error z value Percentage odds

(Intercept) − 5.429*** 0.965 − 5.627 − 99.56
Rivers − 0.013*** 0.004 − 3.499 − 1.27
Soil pH 0.228** 0.112 2.032 25.55
Access to Markets 0.007*** 0.002 2.902 0.70
Elevation 0.002*** 0.001 5.194 0.21
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bordering Mt. Elgon forest and the Cherangany hills ecosys-
tems are at a high risk of cropland expansion. The BRT and 
EBF models revealed more similar expansion patterns than 
the LR model. Nonetheless, all models showed a high prob-
ability of cropland expansion in the western parts, which 
declined towards the central regions and increased in the 
western region.

The LR model showed a higher likelihood of cropland 
expansion in the western and eastern parts than in the south-
ern region. Additionally, few areas in the north revealed a 
high probability of cropland expansion. The predictions 
showed a close fit between the different approaches, thus 
demonstrating the robustness of the assessed drivers in char-
acterizing cropland expansion in the region. Blending dif-
ferent techniques provides an array of statistical measures 
that help to understand the magnitude, nature, and direction 
of cropland expansions. For instance, LR and BRT provided 
relative contributions of various factors, whereas BRT and 
EBF provided the factors' range of influence on cropland 
expansion.

Discussion

LULC classification and accuracies

In this study, a detailed evaluation of long-term LULCCs 
(1990–2020) was conducted in Trans Nzoia County. Six 
dominant land covers were mapped to assess their spatial 
coverage in the 30 years. The overall classification accura-
cies were above 82%, with a high classification accuracy 
of 93% in the 2005 and 2020 classifications. Similarly, the 
user and producer accuracies strongly agreed between the 
mapped classes and the reference data. One exception was 
in the classification of built-up areas, where the producer 
accuracy was 53%. A possible explanation for this obser-
vation is that the classifier may have misinterpreted urban 
areas because of mixed pixels. The spatial coverage of a 
single Landsat pixel used in the classification process was 
30 m. However, buildings and surfaces in the region have 
less coverage, resulting in mixed land use classes. The 
problem that always results in spectral confusion is domi-
nant in characterising urban footprints (Forget et al. 2018).

Fig. 5  Partial dependence plots indicating marginal effects of the drivers on cropland expansion. The x-axis shows the data distribution, and the 
y-axis indicates the probability of cropland expansion
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LULC changes and cropland expansion

The LULCCs show that the study area experienced losses in 
forestland, grassland and wetland land covers. Conversely, 
built-up land and croplands increased in the same period, 
with gains from wetlands, forestlands, and grasslands. Sim-
ilar cropland expansion trends and intra-class transitions 
have been observed in other studies conducted in western 
Kenya (Becker et al. 2016; Masayi et al. 2021; Rotich and 
Ojwang 2021). In the present study, the area under crops 
increased from 83,132 ha in 1990 to 166,420 ha in 2005 and 
then further increased to 180,222 ha in 2020. The observed 

expansion may be attributed to market forces, government 
extension initiatives, and population growth in the study 
region. The demographic assessment shows that in the 
1990s, Kenya witnessed a paradigm shift in the agricultural 
sector, brought about by market liberalization and increased 
access to credit services (De Groote et al. 2006). These ini-
tiatives fostered rapid agricultural development, especially 
in high-potential regions such as Trans Nzoia County.

Population growth also contributed substantially to crop-
land expansion in the county. According to Kenya's popula-
tion and housing census statistics, the population of Trans 
Nzoia County in 1989 was 393,682 people (GOK 1994). 

Table 4  Belief, disbelief, and uncertainty values for different drivers of cropland expansion

Spatial layers Class Number of class 
pixels

Pixels converted 
croplands

Frequency ratio EBF Functions

Bel Dis Unc

Proximity to rivers 0–30 2,088,315 243,269 1.020 0.342 0.155 0.502
30–60 561,271 68,146 1.063 0.341 0.155 0.504
60–90 68,726 4949 0.630 0.197 0.165 0.638
90–120 26,881 634 0.206 0.065 0.173 0.762
120–150 18,697 50 0.023 0.007 0.177 0.816
 > 150 13,221 230 0.152 0.048 0.174 0.778

Population density 58–240 737,552 73,316 0.870 0.180 0.202 0.618
241–440 1,047,579 147,348 1.231 0.310 0.188 0.502
441–910 901,684 88,889 0.863 0.175 0.203 0.622
911–2100 69,103 5717 0.724 0.156 0.205 0.640
2101–3921 21,193 2008 0.829 0.179 0.202 0.619

Precipitation 920–1000 280,371 49,948 1.559 0.368 0.182 0.450
1001–1100 1,450,326 157,473 0.950 0.199 0.200 0.601
1101–1200 579,328 68,445 1.034 0.231 0.196 0.573
1201–1300 448,189 41,110 0.803 0.171 0.203 0.626
 > 1300 18,897 302 0.140 0.031 0.219 0.750

Soil organic carbon 0–0.87 226,380 50,303 1.945 0.423 0.223 0.354
0.87–1.5 2,002,234 208,702 0.912 0.148 0.268 0.584
1.5–3.96 460,655 45,226 0.859 0.167 0.263 0.571
 > 3.96 87,842 13,047 1.300 0.262 0.247 0.492

Proximity to market centres 0–30 1,354,817 141,233 0.912 0.121 0.173 0.706
30–60 881,317 113,542 1.128 0.172 0.166 0.663
60–90 196,842 37,519 1.668 0.252 0.154 0.594
90–120 63,845 14,001 1.919 0.281 0.149 0.570
120–150 50,280 5955 1.037 0.149 0.169 0.682
 > 150 230,010 5028 0.191 0.026 0.189 0.785

Soil PH 0–5.4 485,422 46,715 0.842 0.162 0.264 0.575
5.4–5.7 1,919,182 198,996 0.908 0.149 0.267 0.583
5.7–7.1 159,356 24,171 1.328 0.269 0.246 0.485
7.1–8.3 213,151 47,396 1.946 0.420 0.223 0.357

Elevation 1578–2000 2,064,586 225,351 0.971 0.241 0.196 0.566
2000–2400 382,067 61,448 1.430 0.412 0.181 0.406
2400–2800 181,400 24,763 1.214 0.331 0.188 0.480
2800–3300 101,752 716 0.063 0.016 0.217 0.767
3300–4226 47,306 0 0.000 0 0.218 1
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The population rose by 44% between 1989 and 1999 and 
increased to 818,000 by 2009 (GOK 2010). The observed 
growth may have induced a direct effect on cropland expan-
sion due to the rising demand for land for settlement and 
food production purposes. KEFRI (2017) reported that 
human activities have increased in the area due to the rising 
population in Mt. Elgon and Cherangany forest hills and 
their borders. Our results also highlight massive losses of 
forested areas, wetlands, and grasslands bordering these tow-
ers. Population growth, therefore, played a primary role in 
the loss of forestland, wetlands, and grassland cover. Jayne 
and Muyanga (2012) also noted that Kenya's western region 
is densely populated.

The demographic dynamics in the region affected exist-
ing farming systems and management of land, encouraging 
unsustainable environmental practices such as deforesta-
tion, poor soil management, and encroachment of natural 
ecosystems (Allaway and Cox 1989). Ongugo et al. (2014) 
observed that politically motivated excisions in the Mt. 
Elgon forest ecosystem led to massive destruction of forests 
for settlement purposes. As a result, the beneficiaries took 

Fig. 6  ROC curves and AUC values showing the accuracies of the 
LR, BRT, and EBF models

Fig. 7  Surfaces showing the probability of cropland expansion based on a logistic regression, b evidence belief functions, and c boosted regres-
sion trees
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advantage of the scheme to clear extra land for agricultural 
use. Masayi et al. (2021) also noted intensive mixed farming 
in the Mt. Elgon forest ecosystem resulted in massive forest 
and biodiversity losses. The LULCCs dynamics and demo-
graphic influences corroborate previous studies conducted 
in western Kenya (Kogo et al. 2021; Mutoko et al. 2014).

Spatially, buffer zones and foothills of Mt. Elgon and 
Cherangany Hills forest ecosystems experienced rapid crop-
land expansion over the study period. Further expansions 
were prominent along the major river channels of the Nzoia 
and Sabwani Rivers. The finding agrees with the national 
environmental management authority (NEMA) district envi-
ronmental action plan of Trans Nzoia county, which docu-
mented encroachments on protected areas by the locals to 
boost their household food production (GOK 2019). Simi-
larly, Maua et al. (2022) and Ondiek et al. (2020) observed 
that the rich wetland resources of the Nzoia and Lake Vic-
toria drainage systems experienced rampant anthropogenic 
exploitation within the period under our study. Studies in 
Kenya have also attributed cropland expansion to agricul-
tural extensification practices (Eckert et al. 2017; Mwangi 
et al. 2018). At the SSA scale, cropland expansion in the late 
twentieth century resulted from rising economic activities, 
improved technology, declining soil fertility, and climate 
change variability (Jellason et al. 2021).

Cropland expansion and drivers

Cropland expansion in Trans Nzoia County was analysed 
using three modelling techniques, BRT, LR and EBF. The 
results revealed some consistencies in drivers’ influences and 
cropland expansion prediction. The three models revealed 
factors such as proximity to rivers, elevation, soil pH, and 
market accessibility as crucial factors of cropland expan-
sion in the region. Furthermore, the BRT and EBF functions 
found that slope, SOC, and population density significantly 
affected cropland expansion (p < 0.05). On the other hand, 
LR associated elevation and proximity to rivers with crop-
land expansion. Regular physical and chemical analyses of 
water quality parameters in the Nzoia Basin confirmed high 
levels of phosphates and nitrates in water sources caused 
by intensive agricultural activities (KEFRI 2018; Twesigye 
et al. 2011). Likewise, Enanga et al. (2011) found human 
activities to be the fundamental causes of increased pollution 
in riparian buffer strips of hydrological watersheds in Kenya. 
The rising contamination can be attributed to intensive agri-
cultural activities close to key water features.

The BRT model revealed a high likelihood of crop-
land expansions in areas of high soil acidity. According to 
Hijbeek et al. (2021), soils in western Kenya are predomi-
nantly acidic, which might have resulted in the more acidic 
samples used in the BRT model training. The EBF model 
uses class categories; thus, the observations might have 

captured the dynamics in the alkaline zones. In other stud-
ies in Kenya, for example, Were et al. (2014) found that soil 
pH was a key driver of LULCCs in the Eastern Mau forest 
reserve. Regarding population density, a high likelihood of 
expansion was reflected by the EBF model, whereas the BRT 
model revealed a medium influence. Accordingly, areas with 
a population density ranging from 240 to 440 people per 
square kilometre demonstrated a high likelihood of expan-
sion based on the EBF model. One possible explanation is 
that areas with low population densities have more space to 
be utilized for agricultural use than highly populated areas.

Other studies within the Kenyan context pointed out some 
of the drivers identified in this study as significant to crop-
land expansion. For instance, Serneels and Lambin (2001) 
noted accessibility to markets and agroclimatic factors as 
critical drivers in the Narok district. In addition, Mwangi 
et al. (2020) reported population, proximity to rivers, and 
proximity to roads as crucial drivers of cropland conversions 
in Central Kenya. Moreover, Were et al. (2014) found soil 
pH, population density, precipitation, distance to towns, and 
rivers to be the significant drivers of LULCCs in the Eastern 
Mau forest reserve. A study in the Eastern Arc Mountains 
of Taita in coastal Kenya found strong associations between 
proximity variables and woodland-cropland conversions 
(Maeda 2011). Another study in the agro-pastoral regions 
of the Kajiado district found that changing preferences from 
herding to crop production and population density were the 
prominent drivers of cropland expansion in the Kajiado dis-
trict (Campbell et al. 2005).

Comparable trends in cropland expansions are also noted 
in studies conducted in East Africa and the larger SSA 
region. Kindu et al. (2015) and Betru et al. (2019) found 
drivers of LULCCs in Ethiopia to fall within the broader 
categories of social, economic, environmental, policy, 
demographic, and technological forces. According to the 
researchers, some fundamental drivers included population 
density, livestock ranching, climate change, accessibility to 
markets, and accessibility to major road networks. In addi-
tion, Msoffe et al. (2011) found population and subsistence-
driven agriculture to be the main drivers of cropland expan-
sion in Northern Tanzania. A review of studies conducted 
in Uganda by Kilama Luwa et al. (2021) similarly noted 
population density as the primary driver of the observed 
LULCCs in the region. In Malawi, Li et al. (2021) and 
Munthali et al. (2019) found elevation, proximity to water 
sources, population, and human activities to be significant 
drivers of LULCCs.

Similar patterns of LULCCs and the associated drivers 
have also been found in studies conducted outside of Africa. 
For instance, Duraisamy et al. (2018) found access to water 
sources and improved road networks to be India's main driv-
ers of LULCCs. In another study by Zaveri et al. (2020), 
dry rainfall anomalies contributed to cropland expansion 
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in other developing regions outside the African context. 
Similar trends in cropland expansion have also been wit-
nessed in developed countries. For example, a study in the 
United States of America shows that cropland expansions 
marginally targeted agricultural zones (Lark et al. 2020). In 
the European Union, however, a study by Kuemmerle et al. 
(2016) showed mixed findings with declines and hotspots 
of cropland expansions based on the region. There is a clear 
divide in the factors driving cropland dynamics between 
developing and developed areas. While the developed 
regions appear to have well-regulated policies that guide 
land use and management, less developed regions still face 
challenges in enforcing land management policies. Poor land 
tenure practices and systems for controlling land manage-
ment are considered barriers to effective land management 
in these regions. Similarly, inequalities in land ownership 
promote illegal land-use activities that target land expansion 
(Keijiro and Frank 2014; Schürmann et al. 2020).

Overall, our study confirms that, similar to other global 
regions, drivers of cropland expansions in Trans Nzoia 
County, Kenya, are multifaceted, cutting across socio-
economic, climatic, and proximity factors. The modelling 
approaches used for assessment demonstrated an agree-
ment on the fundamental aspects of cropland expansions 
and their spatial prediction. At the same time, it provides 
an understanding of the drivers of changes in a spatially 
explicit manner.

Conclusion

The present study investigated cropland expansion and its 
drivers, driven by LULCCs in Trans Nzoia County, Kenya. 
The study found that the county experienced rapid land use 
transformation in the past three decades, resulting in the loss 
of forests, wetlands, and grasslands. Consequently, cropland 
areas increased at the expense of these land cover types. 
The study noted the expansion to have resulted from an 
interplay of socioeconomic, climatic, and soil drivers. LR, 
BRTs, and EBFs models assessed the relative contribution 
of the drivers and generated spatial prediction surfaces for 
cropland expansion.

Based on the modelling results, we conclude that eleva-
tion, soil pH, and proximity to rivers are critical drivers of 
cropland expansion in the region. In particular, soil pH has 
a significant influence based on the relative contribution 
assessment from the LR and BRT models and the belief val-
ues from the EBF model. We also conclude that climatic, 
soil, and biophysical drivers influence cropland expansion 
across landscapes. Logistic regression showed a better per-
formance in characterising the drivers of cropland expansion 
in the region. The application of the model and incorporating 

soil, proximity, and topographical variables is recommended 
for credible cropland expansion modelling in the future.

Therefore, the study provides insights into target areas 
for sustainable land management and conservation of the 
natural environment. Counties and national governments 
should integrate the drivers of LULCCs into their routine 
resource planning to foster harmony between food produc-
tion and environmental protection. Such approaches are cur-
rently scarce, and the findings of this study create a solution 
pathway, especially in light of the rapidly growing popula-
tion, urbanization, and increased human pressure on natural 
resources.
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