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Summary
Background: Streptococcus equi subspecies equi (S equi) is the cause of Strangles, one 
of the most prevalent diseases of horses worldwide. Variation within the immuno-
dominant SeM protein has been documented, but a new eight- component fusion pro-
tein vaccine, Strangvac, does not contain live S equi or SeM and conservation of the 
antigens it contains have not been reported.
Objective: To define the diversity of the eight Strangvac antigens across a diverse S 
equi population.
Study design: Genomic description.
Methods: Antigen sequences from the genomes of 759 S equi isolates from 19 coun-
tries, recovered between 1955 and 2018, were analysed. Predicted amino acid se-
quences in the antigen fragments of SEQ0256(Eq5), SEQ0402(Eq8), SEQ0721(EAG), 
SEQ0855(SclF), SEQ0935(CNE), SEQ0999(IdeE), SEQ1817(SclI) and SEQ2101(SclC) in 
Strangvac and SeM were extracted from the 759 assembled genomes and compared.
Results: The predicted amino acid sequences of SclC, SclI and IdeE were identical 
across all 759 genomes. CNE was truncated in the genome of five (0.7%) isolates. SclF 
was absent from one genome and another encoded a single amino acid substitution. 
EAG was truncated in two genomes. Eq5 was truncated in four genomes and 123 ge-
nomes encoded a single amino acid substitution. Eq8 was truncated in three genomes, 
one genome encoded four amino acid substitutions and 398 genomes encoded a 
single amino acid substitution at the final amino acid of the Eq8 antigen fragment. 

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2022 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.
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1  |  INTRODUC TION

The host- restricted pathogen Streptococcus equi subspecies equi (S 
equi) causes the disease strangles, which is one of the most prevalent 
infectious diseases of horses worldwide.1– 5 S equi infects horses via 
the nose to nose contact with diseased animals, ingestion of contam-
inated food or water or contact with other fomites.4 Once within the 
mouth or nose, S equi attaches to and invades the lingual and palatine 
tonsils via an array of cell surface receptors,6– 8 before transitioning to 
the lymph nodes of the head and neck within a few hours of infection.9 
Within the lymph nodes, S equi uses a multitude of immune- evasion 
strategies to neutralise the effects of the innate immune system and 
establish infection.10– 14 Active recruitment of neutrophils to infected 
lymph nodes and failure of the immune system to kill S equi results 
in enlargement of lymph nodes and formation of abscesses, which 
may be refractory to antibiotic treatment.4 Treatment of cases with 
antibiotics may also impede the development of a humoral immune 
response15 and select for resistant strains.16– 18

Abscesses within the lymph nodes eventually burst, draining from 
the head of affected animals, releasing S equi into the local environ-
ment and providing an opportunity for transmission to naïve animals.4 
Most horses then recover from the disease. However, some recov-
ered horses remain persistently infected “carriers” of S equi, providing 
long- term potential for transmission of S equi through contact with 
naïve animals.4,19– 21 Therefore, biosecurity, diagnostic testing and 
vaccination measures to prevent the establishment of infection are 
of vital importance to control the spread of this disease.4,22– 25

The development of rapid methodologies for the generation and 
analysis of genome sequence information has shed unprecedented 
light on the evolution and transmission of S equi.17– 19,26,27 In a recent 
study, the genomes of a population of 670 isolates from 19 coun-
tries were found to cluster into six Bayesian analysis of population 
structure (BAPS) groups, based upon polymorphisms within a core 
genome comprising 1286 loci, with an average of 90.9 single nucle-
otide polymorphisms separating each group.19 The calculated mean 
substitution rate per core genome site per year was 5.22 × 10−7, sug-
gesting that, within a core genome of 1.8 Mb,26 approximately one 
base substitution accumulates per year. This dates the emergence of 
the contemporary strains of S equi to around the time of World War 
I.17,28 However, genes encoding antigenic proteins may be subject 

to much greater selective pressure, leading to much more rapid ge-
netic change. For example, genetic variation in the gene encoding 
the immunodominant SeM protein has been exploited in strain typ-
ing schemes, with 242 alleles described to date.11,17,19,29– 31 The SeM 
protein is used within several cell extract and live vaccines that tar-
get S equi.32– 36 However, the multicomponent fusion protein vaccine 
Strangvac does not contain SeM and instead uses eight different S 
equi proteins, the diversity of which has not been described previ-
ously.37 Thus, in this study, we examined the diversity of Strangvac 
antigens by combining and analysing three published genome collec-
tions18,19,27 that together comprised 759 S equi isolates from 19 coun-
tries, which were recovered from horses between 1955 and 2018.

2  |  MATERIAL S AND METHODS

2.1  |  Study collection

The origins of the genomes of the 759 isolates (three collections) of 
S equi analysed in this study are listed in Table S1. One of the col-
lections, of 54 genomes of S equi isolates recovered from outbreaks 
in the USA, has been used previously to study the transmission of S 
equi in Texas and Kentucky (Collection A).18 The largest collection 
of genomes used here, from 670 S equi isolates,19 included the com-
plete genome sequence of Se4047, which was used as the reference 
genome in this study as it was the first S equi genome sequenced 
to completion.26 Of these, 224 genomes were from a study of the 
effects of persistent infection17 and 445 genomes from a study of 
the international transmission of S equi (Collection B).19 Finally, a col-
lection of 35 genomes of isolates recovered from the USA (n = 21) 
or Sweden (n = 14) that have been used previously to examine the 
effects of persistent infection was included (Collection C).27

Together, the combined collection of 759 S equi genomes origi-
nated from isolates recovered between 1955 and 2018 from 19 coun-
tries that comprised: Argentina (n = 15), Australia (n = 26), Belgium 
(n = 14), Canada (n = 1), France (n = 14), Germany (n = 12), Ireland 
(n = 16), Israel (n = 14), Japan (n = 12), Kuwait (n = 1), the Netherlands 
(n = 17), New Zealand (n = 4), Poland (n = 11), Saudi Arabia (n = 5), 
Spain (n = 2), Sweden (n = 26), the United Arab Emirates UAE (n = 119), 
the UK (n = 307) and the USA (n = 143) (Table S1).

Trust, The Stafford Trust, Marjorie Coote 
Animal Charity Trust, Beryl Evetts and 
Robert Luff Animal Welfare Trust and 
The Anne Duchess of Westminster's 
Charitable Trust. H. Wilson is funded by 
a grant from the Petplan Charitable Trust 
(S19- 741- 780).

Therefore, at least 1579 (99.9%) of 1580 amino acids in Strangvac were identical in 
743 (97.9%) genomes, and all genomes encoded identical amino acid sequences for at 
least six of the eight Strangvac antigens.
Main limitations: Three hundred and seven (40.4%) isolates in this study were recov-
ered from horses in the UK.
Conclusions: The predicted amino acid sequences of antigens in Strangvac were 
highly conserved across this collection of S equi.

K E Y W O R D S
genetic conservation, horse, S equi, strangles, vaccine antigens
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2.2  |  Phylogenomic analysis

Genome assemblies for all 759 isolates were uploaded into the 
Pathogenwatch bioresource for S equi (https://cgps.gitbo ok.io/
patho genwa tch/) and phylogenetic reconstruction of the combined 
populations was generated as described previously.19 The collec-
tion in Pathogenwatch can be accessed at https://patho gen.watch/ 
colle ction/ j3qp5 viupj jh- antig en- varia tion. A curated set of 1286 loci 
in the core genome of the Se4047 reference, excluding the mobile 
genetic elements (φSeq1, φSeq2, φSeq3, φSeq4, ICESe1 or ICESe2), 
insertion sequences and sortase- processed proteins, was used for 
typing purposes.17,26 Alleles of loci for which multiple copies were 
encoded within the S equi genome, including hasC1 and hasC2, 
were also omitted.26 BLAST matches of the 1286 loci across each 
genome relative to the core genome of the Se4047 reference were 
extracted and aligned using MAFFT,38 and a database of the core 
genome segments with a per cent identity was constructed. Hits 
below 80% core gene length or identity were removed as fragments. 
Each specific combination of substitutions within the core genome 
loci relative to the Se4047 reference26 was assigned an allele. Indels 
were excluded from further analysis, as they are often the result of 
assembly or sequencing error.38 The variant sites between each pair 
of assemblies were then used to construct dendrograms using the 
APE package.39 The resulting tree was midpoint- rooted using the 
phangorn package.40 The phylogenetic reconstruction and associ-
ated metadata were visualised using Microreact41 and can be viewed 
at https://micro react.org/proje ct/8knxe bFjP9 6CrKj v3uA9xY.

2.3  |  Extraction of antigen sequences

The DNA sequence encoding the antigen fragments of 
SEQ0256(Eq5), SEQ0402(Eq8), SEQ0721(EAG), SEQ0855(SclF), 
SEQ0935(CNE), SEQ0999(IdeE), SEQ1817(SclI) and SEQ2101(SclC) 
in Strangvac were extracted in silico from the genome sequencing 
data using the Ridom SeqSphere+ version 7.0.5 software (Ridom 
GmbH, Münster, Germany) and the MLST and SeM- typing alleles 
using the BIGSdb software.30,42– 44 Differences in the predicted 
amino acid sequences of the antigen sequences and the N- terminus 
SeM were identified using MEGA X.45

3  |  RESULTS

3.1  |  The combined collections of S equi genomes 
clustered into six BAPS groups

Core genome multilocus sequence typing (cgMLST) analysis of ge-
netic variation was in agreement with Mitchell et al,19 differentiat-
ing the combined collection of 759 isolates of S equi into the same 
six BAPS groups (Figure 1). The genomes of isolates from the USA 
reported in Morris et al18,27 clustered into BAPS groups 1 and 6, 
while the genomes of isolates in Sweden clustered into BAPS group 

2. Overall, the combined collection contained 138 genomes in 
BAPS1, 339 genomes in BAPS2, 31 genomes in BAPS3, 56 genomes 
in BAPS4, 123 genomes in BAPS5 and 72 genomes in BAPS6. The 
BAPS4 group was split into two paraphyletic subgroups, containing 
29 and 27 genomes. The increased diversity within BAPS4 could be 
an effect of recombination, creating similarities between lineages 
that are detected by the BAPS algorithm, but which are not repre-
sented in the consensus phylogenetic tree.

3.2  |  The genomes of S equi isolates 
generally clustered with others from the same 
geographical regions

The genomes from Collections A and C clustered closest to those 
of isolates recovered from the same geographical region (the 
USA or Sweden) (https://micro react.org/proje ct/8knxe bFjP9 6CrKj 
v3uA9xY). However, isolates, ER14_125 and ER14_140, recovered 
from horses in Texas during 2014, which clustered most closely with a 
group of isolates from the UAE and Saudi Arabia recovered between 
2013 and 2015 (Figure 2). These data provide further evidence of a 
link between outbreaks in the UAE, Saudi Arabia and the USA that 
may have been associated with the international transport of horses.

3.3  |  The predicted amino acid sequences of the 
antigens targeted by Strangvac were conserved 
across the combined collections of S equi

Strangvac contains eight antigens based on the 1866 strain of S equi, 
which was recovered from a horse with strangles in Hälsingland, 
Sweden, in 2000 (Table S1). The core genome of strain 1866 clus-
tered into BAPS2, which was the most prevalent type of S equi caus-
ing strangles in horses within Europe in Collections B and C. The 
core genome of strain 4047 (UK4047 in Table S1), which served as a 
reference genome for this study and was used as the challenge strain 
in Strangvac vaccine trials, clustered into BAPS5, the second most 
prevalent type of S equi recovered from European horses.

Sequence analysis confirmed that the amino acid sequences of 
SclC, SclI and IdeE in Strangvac were identical to the predicted amino 
acid sequences of the homologous proteins encoded by all 759 (100%) 
genomes in the combined collection (Figure 3, Table 1 and Table S1).

The predicted amino acid sequence of CNE was identical to that 
used in Strangvac in 754 (99.3%) of the 759 S equi genomes in the 
combined collection. The exceptions were five isolates recovered 
from horses in Glastonbury or Scone in Australia between 2014 and 
2015, which clustered into BAPS3 and encoded truncated forms of 
CNE (Figure 3, Table 1 and Table S1). Therefore, the amino acid se-
quence of CNE in Strangvac was fully conserved in all 434 European 
genomes and all 144 North American genomes.

The predicted amino acid sequence of SclF was identical to that 
used in Strangvac in 757 (99.7%) of the 759 S equi genomes in the 
combined collection (Figure 3, Table 1 and Table S1). The BAPS1 
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strain NZLU, which was recovered from a horse in New Zealand 
in 2011, contained a deletion of the gene encoding SclF, while the 
BAPS1 strain UAE3229, which was recovered from a horse in Dubai 
during 2009, contained a nonsynonymous amino acid change from 
proline to leucine at amino acid position 85 (the final amino acid 
position of the SclF fragment in Strangvac). Therefore, the amino 
acid sequence of SclF in Strangvac was fully conserved in all 434 
European genomes and all 144 North American genomes.

The predicted amino acid sequence of EAG was identical to that 
used in Strangvac in 757 (99.7%) of the 759 S equi genomes in the 
combined collection (Figure 3, Table 1 and Table S1). The BAPS1 
strain USA07_22, which was recovered from a horse in Indiana in 
2009, and the BAPS2 strain UAE0015_3 (ST- 179), which was recov-
ered from a horse in Dubai in 2014, contained a truncation in the 
predicted EAG amino acid sequence. Therefore, the amino acid se-
quence of EAG in Strangvac was fully conserved in all 434 European 
genomes and 143 (99.3%) of 144 North American genomes.

The predicted amino acid sequence of Eq5 was identical to that 
used in Strangvac in 632 (83.3%) of the 759 S equi genomes in the 
combined collection (Figure 3, Table 1 and Table S1). The 123 strains 
in BAPS5 contained isoleucine to leucine substitution at amino acid 
position 201, which is conservative and not predicted to alter sig-
nificantly the antigenicity of Eq5. In support of this, the Se4047 
challenge strain, which encodes the same I201 to L amino acid vari-
ation, is clustered into BAPS5. Thus, the Se4047 strain provided a 
heterologous challenge and represented a diverse and relevant chal-
lenge strain to measure the protection conferred against the wider 
population of S equi circulating in horses. Eq5 was truncated in four 
BAPS4 strains recovered from horses in Argentina between 2013 
and 2015. Therefore, the amino acid sequence of Eq5 in Strangvac 

was fully conserved in 313 (72.1%) of 434 European genomes and all 
144 North American genomes.

The predicted amino acid sequence of Eq8 was identical to that 
used in Strangvac in 358 (47.2%) of the 759 S equi genomes in the 
combined collection. BAPS1 strain USA05_40, which was recovered 
from a horse in Iowa in 2003, contained four nonsynonymous amino 
acid changes (E212– G, E214– G, A218– D and L223– I) in the Eq8 antigen 
relative to Strangvac. Three strains, UAE0605 (BAPS2), Arg0107 
(BAPS4) and UK501771 (BAPS6), each contained a different trunca-
tion of Eq8. Finally, all 338 remaining BAPS2 strains, all 31 BAPS3 
strains and 29 (52%) of 56 BAPS4 strains contained a histidine to ty-
rosine amino acid substitution at position 225 (Figure 3, Table 1 and 
Table S1). This is the final amino acid of the Eq8 fragment in Strangvac 
and is not predicted to affect significantly the antigenicity of this pro-
tein relative to Strangvac. Therefore, the amino acid sequence of Eq8 
in Strangvac was fully conserved in 161 (37.1%) of 434 European ge-
nomes and 141 (97.9%) of 144 North American genomes.

Overall, all 759 genomes of S equi encoded at least six antigens 
identical to those in Strangvac and 1579 (99.9%) of the 1580 amino 
acids within the eight antigens in Strangvac were identical to those 
encoded by 744 (98.0%) of the 759 isolates of S equi.

3.4  |  The predicted amino acid sequences of SeM 
varied across the combined collections of S equi

A total of 111 different SeM alleles were identified across the com-
bined collection of 759 S equi genomes (Table S1 and Table S2). 
Analysis of the predicted 109 amino acids encoded by the 5' variable 
region of the SeM gene of these 759 genomes revealed that 44 (40%) 

F I G U R E  1  Distribution of isolates 
from Collections A, B and C into the 
six Bayesian analysis of population 
structure (BAPS) groups. Midpoint- rooted 
phylogenetic reconstruction of the 
Streptococcus equi population visualised 
in Microreact. The dendrogram was 
constructed from pairwise cgMLST scores 
using the APE package.39 The resulting 
tree was midpoint- rooted using the 
phangorn package.40 The scale bar relates 
to horizontal branch length and indicates 
the number of cgSNPs proposed to have 
occurred on the branches. Green and red 
circles indicate Collections A18 and C,27 
respectively. Unlabelled branches indicate 
Collection B19

BAPS4
(n = 27)
Collection A = 0
Collection B = 27
Collection C = 0

BAPS2
(n = 339)

Collection A = 0
Collection B = 325
Collection C = 14
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(n = 31)
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Collection C = 0

BAPS4
(n = 29)
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Collection C = 0
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(n = 138)
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Collection B = 106
Collection C = 12
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Collection B = 123
Collection C = 0

BAPS6
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Collection B = 29
Collection C = 9
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Collection C = 0
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of these amino acid positions had nonsynonymous variants generat-
ing 81 different amino acid changes across this population (Table S2).

Eleven (1.4%) of the 759 genomes in the combined collection, 
comprising one BAPS4 isolate and 10 BAPS5 isolates, encoded a 
SeM antigen identical to the consensus SeM1 allele. These 11 ge-
nomes included the isolate TW928 (NLTW928), which is used in 
the Equilis StrepE vaccine, the Arnica strain (NLArnica), which has 
been used in challenge studies to measure the efficacy of the Equilis 
StrepE vaccine, and two isolates, UK250223 and UK406006, recov-
ered, respectively, from the lip and submandibular lymph node ab-
scesses in horses post- vaccination with Equilis StrepE.

Forty- five (5.9%) genomes contained SeM alleles that differed 
from the consensus allele by one amino acid. Of the remaining ge-
nomes, 160 (21.1%), 429 (56.5%), 50 (6.6%), 16 (2.1%), 29 (3.8%), 
3 (0.4%) and 1 (0.1%) encoded SeM alleles that differed from the 

consensus allele by 2, 3, 4, 5, 6, 8 and 11 amino acids, respectively. 
Fifteen (2%) of the strains in the combined collection of S equi con-
tained deletions or insertions in the 5' region of the SeM gene, leading 
to the production of a truncated product (Table S1). On average, the 
744 S equi isolates which contained a full- length SeM gene encoded a 
product that contained 2.9 amino acid changes (2.7%) relative to the 
consensus 109 amino acids of the N- terminal region of SeM.

4  |  DISCUSSION

The collection of S equi genomes used in this study is the most 
comprehensive to date. However, large proportions of the ge-
nomes were from isolates recovered from horses residing in the 
UK and the USA (40.4% and 18.8%, respectively). Continued 

FI G U R E 2 Relationships of Bayesian analysis of population structure (BAPS) group 1 isolates from outbreaks in the USA, UAE and Saudi Arabia. 
Midpoint- rooted phylogenetic reconstruction of a BAPS1 subgroup of the Streptococcus equi population visualised in Microreact. The dendrogram 
was constructed from pairwise cgMLST scores using the APE package.39 The resulting tree was midpoint- rooted using the phangorn package.40 The 
scale bar relates to horizontal branch length and indicates the number of cgSNPs proposed to have occurred on the horizontal branches. Coloured 
circles indicate the country from which the isolates originated, as indicated in the key. Coloured bars indicate Collections A,18 B19 and C,27 as 
indicated in the key. Date of isolation is shown. The arrow indicates the position of the genomes of isolates ER14_125 and ER14_140
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UAE0428_19
UAE0183_03
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UAE0517
UAE8578
UAE8580
UAE8582
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Sab5416
UAE1813
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UAE0456
UAE12459b
UAE12051
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ER14_148
USA09_01
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USA05_61
USA06_79
USA05_66
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sequencing of isolates with more diverse geographical origins 
would shed further light on the diversity of S equi genomes and 
the antigens they encode.

Despite the majority of the isolates originating from a small num-
ber of countries, the diversity identified within the encoded SeM 
protein was very high. The SeM protein is an important immuno-
dominant component of S equi and the selective pressure exerted 
on this protein is evident in the variation in amino acid sequences 
encoded by different strains.17,19,29– 31,46 This selective pressure indi-
cates the potential for SeM- containing vaccines to exert a protective 
effect.47,48 However, sequencing of the SeM gene has shown that 
variants emerge over time within outbreaks and individual animals, 
suggesting that variation may permit evasion, at least in part, of an 
immune response directed only at this protein.30,49– 51 Eighty- six 
different amino acid variations, occurring at 44 (40.4%) of the 109 
positions within the variable region, were identified across the popu-
lation of S equi in the combined collection studied here. On average, 
each isolate contained 2.9 (2.7%) amino acid changes relative to the 
109 amino acids within the SeM1 consensus sequence.

Much less variation in the 1580 amino acids encoded by 
the eight antigens included in Strangvac was identified, with all 
759 isolates encoding at least six antigens that were identical 
to those in Strangvac. Seven different amino acid variations, 
across seven (0.4%) of the 1580 positions within the encoded 
antigens in Strangvac were identified in the population of 
S equi in the combined collection studied here. On average, 
each isolate contained 0.7 (0.04%) amino acid changes within 

the 1580 amino acids encoded within the Strangvac antigens. 
Furthermore, 744 (98.0%) of the 759 genomes of S equi en-
coded eight antigens that had none or one amino acid variation, 
providing evidence that these antigens are well- conserved 
across this population of S equi. Further analysis of the gene 
sequences encoding these antigens is important to determine 
whether vaccination with Strangvac increases the selective 
pressure exerted by the immune response. However, the in-
clusion of eight antigens in Strangvac may reduce the selective 
pressure exerted on any one individual gene, which could drive 
the selection of variant strains.

Fourteen (1.8%) of the 759 S equi genomes in the combined col-
lection contained a mutation that led to truncation or deletion in 
one of the genes encoding the eight antigens in Strangvac, likely 
preventing the production of the full- length encoded protein. One 
of these isolates, Arg0107, which was recovered from a horse in 
Buenos Aires in 2014, encoded CNE, SclC, SclF, SclI, EAG and IdeE 
that were identical to those in Strangvac, but the genes encoding 
Eq5 and Eq8 both encoded truncated products. Decay of the S equi 
genome of isolates recovered from persistently infected horses has 
been described previously.17 Loss (and mutation) of SeM, equibactin 
and the has locus has been suggested to confer a fitness advantage 
to strains causing persistent infection in the guttural pouch, but such 
mutations are believed to be disadvantageous during acute infec-
tion.17,49 In support of this, in a previous study on ponies and horses, 
an eqbE deletion mutant was shown to be significantly attenuated 
in ponies and none of the isolates recovered from horses with acute 

F I G U R E  3  Variation in Strangvac antigens encoded by the six Bayesian analysis of population structure (BAPS) groups. Midpoint- rooted 
phylogenetic reconstruction of the Streptococcus equi population visualised in Microreact. The dendrogram was constructed from pairwise 
cgMLST scores using the APE package.39 The resulting tree was midpoint- rooted using the phangorn package.40 The scale bar relates to 
horizontal branch length and indicates the number of cgSNPs proposed to have occurred on the branches. Coloured circles indicate the 
country from which the isolates originated, as illustrated in the key. The variation in the Strangvac antigens encoded within each of the BAPS 
clusters is highlighted
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disease contained deletions in the has locus, providing evidence that 
some decay events result in evolutionary dead ends.17 Interestingly, 
an outbreak of unusually mild disease in yearling horses on a farm in 
Germany was linked to the presence of a 61 bp deletion that trun-
cated SEQ0402(Eq8).52 Therefore, mutations that lead to truncation 
in the genes encoding antigens targeted by Strangvac may reduce 
the virulence of S equi.

Immune responses towards the antigens within Strangvac 
conferred significant levels of protection to vaccinated ponies 
against infection with S equi following experimental challenge.37 
Therefore, the high level of conservation of the proteins used in 
Strangvac, relative to the variation identified in SeM was surpris-
ing. The variability of Strangvac antigens may be restricted by 
functional constraints that do not affect variation in SeM to the 
same degree.46 The SeM protein of S equi is immunodominant53 

and it is evident that selective pressure on SeM leads to varia-
tion in this important protein.46 However, vaccines based on SeM 
failed to confer protection to horses.48 We speculate that the im-
munodominance of SeM during natural infection may divert selec-
tive pressure exerted by the equine immune response away from 
targeting other, less immunogenic, antigens the response to which 
may be more protective.

5  |  CONCLUSION

The predicted amino acid sequences of antigens in Strangvac were 
highly conserved across this collection of S equi. At least 1579 (99.9%) 
of 1580 amino acids in Strangvac were identical in 743 (97.9%) ge-
nomes, and all genomes encoded identical amino acid sequences for 

TA B L E  1  Variation in the eight Strangvac antigens in the combined population of 759 Streptococcus equi isolates

Strangvac 
antigen

Number of genomes in each BAPS group with 
antigen sequences identical to those in Strangvac Number of genomes in each BAPS group with variant antigen sequences

CNE BAPS1 (n = 138, 100%)
BAPS2 (n = 339, 100%)
BAPS3 (n = 26, 84%)
BAPS4 (n = 56, 100%)
BAPS5 (n = 123, 100%)
BAPS6 (n = 72, 100%)
Total (n = 754, 99.3%)

BAPS3 (n = 5, 16%) Truncation (AusZola, AusPenn, AusJoy, AusGlaston, 
AusZadiym)

SclC Total (n = 759, 100%)

SclF BAPS1 (n = 136, 98.6%)
BAPS2 (n = 339, 100%)
BAPS3 (n = 31, 100%)
BAPS4 (n = 56, 100%)
BAPS5 (n = 123, 100%)
BAPS6 (n = 72, 100%)
Total (n = 757, 99.7%)

BAPS1 (n = 1, 0.7%) P85 to L (UAE3229)
BAPS1 (n = 1, 0.7%) Deletion (NZLU)

SclI Total (n = 759, 100%)

EAG BAPS1 (n = 137, 99.3%)
BAPS2 (n = 338, 99.7%)
BAPS3 (n = 31, 100%)
BAPS4 (n = 56, 100%)
BAPS5 (n = 123, 100%)
BAPS6 (n = 72, 100%)
Total (n = 757, 99.7%)

BAPS1 (n = 1, 0.7%) Truncation (USA07_22)
BAPS2, ST- 179 (n = 1, 0.3%) Truncation (UAE0015_1)

Eq5 BAPS1 (n = 138, 100%)
BAPS2 (n = 339, 100%)
BAPS3 (n = 31, 100%)
BAPS4 (n = 52, 92.9%)
BAPS6 (n = 72, 100%)
Total (n = 632, 83.3%)

BAPS4 (n = 4, 7.1%) Truncation (Arg0003, Arg0021, Arg0106, Arg0107)
BAPS5 (n = 123, 100%) I201 to L

Eq8 BAPS1 (n = 137, 99.3%)
BAPS4 (n = 26, 46%)
BAPS5 (n = 123, 100%)
BAPS6 (n = 71, 98.6%)
Total (n = 358, 47.2%)

BAPS1, (n = 1, 0.7%) E212 to G, E214 to G, A218 to D and L223 to I (USA05_40)
BAPS2, ST- 179 (n = 1, 0.3%) Truncation (UAE0605)
BAPS4 (n = 1, 2%) Truncation (Arg0107)
BAPS6 (n = 1, 1.4%) Truncation (UK501771)
BAPS2 (n = 338, 99.7%) H225 to Y
BAPS3 (n = 31, 100%) H225 to Y
BAPS4 (n = 29, 52%) H225 to Y

IdeE Total (n = 759, 100%)

Abbreviation: BAPS, Bayesian analysis of population structure groups 1- 6.
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at least six of the eight Strangvac antigens. Our data suggest that 
the immune response generated following vaccination of horses 
with Strangvac will target the corresponding antigens produced by S 
equi regardless of geographical origin. Continued monitoring of the 
population of S equi for decay and variation of the genes encoding 
the antigens used in Strangvac will provide important insights into 
the continued evolution of S equi in the context of an adapted im-
mune response post- vaccination.
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