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first attempt at a standardized protocol for the detection, identification and quanti-
fication of hgc genes from metagenomes. Our Hg-cycling microorganisms in aquatic
and terrestrial ecosystems (Hg-MATE) database, a catalogue of hgc genes, provides
the most accurate information to date on the taxonomic identity and functional/meta-
bolic attributes of microorganisms responsible for Hg methylation in the environment.
Furthermore, we introduce “marky-coco”, a ready-to-use bioinformatic pipeline based
on de novo single-metagenome assembly, for easy and accurate characterization of
hgc genes from environmental samples. We compared the recovery of hgc genes from
environmental metagenomes using the marky-coco pipeline with an approach based
on coassembly of multiple metagenomes. Our data show similar efficiency in both ap-
proaches for most environments except those with high diversity (i.e., paddy soils) for

which a coassembly approach was preferred. Finally, we discuss the definition of true
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1 | INTRODUCTION

Environmental mercury (Hg) methylation is primarily a biotic pro-
cess carried out by microorganisms that transform inorganic Hg
into the more toxic and bioaccumulative monomethylmercury
(MeHg). The capacity to perform Hg methylation was historically
associated with certain sulphate-reducing bacteria, iron-reducing
bacteria and methanogenic archaea (Compeau & Bartha, 1985;
Fleming et al., 2006; Hamelin et al., 2011; Kerin et al., 2006). Field
observations revealed links between Hg methylation and sulphate-
reduction, iron-reduction and methanogenesis in organic matter-rich
anaerobic environments (Bravo & Cosio, 2020 for review), as well
as subsequent studies that tested cultured representatives of these
clades for Hg methylation capability (Fleming et al., 2006; Gilmour
et al., 2011, 2013, 2018). The discovery of the hgc genes (Parks
et al., 2013) has facilitated the detection of novel putative Hg meth-
ylating bacteria and archaea through cultivation-independent mo-
lecular methods (Gionfriddo et al., 2016; Podar et al., 2015). Recent
studies analysing publicly available genomes and environmental
metagenome-assembled genomes (MAGs) identified hgc-containing
(hgc™) microorganisms from microbial lineages not formerly associ-
ated with Hg methylation, such as members of the PVC superphylum
(Gionfriddo et al., 2019; Jones et al., 2019; Lin et al., 2021; McDaniel
et al., 2020; Peterson et al., 2020). Identifying hgc genes in microbial
genomes from meta-omic data sets greatly expanded our view of
the phylogenetic diversity of putative Hg methylators (Figure 1), but
we still do not fully understand which microorganisms are the main
drivers of Hg methylation in diverse environments, particularly out-
side of anoxic sediments.

Significant knowledge gaps in the identification of microor-
ganisms capable of Hg methylation remain, largely because of
the absence of hgc’ cultured representatives from novel clades
(i.e., outside the Desulfobacterota, Firmicutes, Euryarchaeota)

hgc genes and methods to normalize hgc gene counts from metagenomes.

bioinformatics, hg methylation, hgcAB genes, hg-MATE, marky-coco, mercury, metagenomics

with experimentally validated Hg-methylating capability (Gilmour
et al., 2018). One reason for this is the difficulty in selecting for hgc™
microorganisms during cultivation, and another is the lack of a suc-
cessful methodology for isolating all relevant microbes in controlled
laboratory conditions. Microbes that have yet to be cultivated, and
for which successful laboratory growth parameters need to be iden-
tified, are often referred to as the “unculturable” (Hug et al., 2016;
Steen et al., 2019). High-throughput meta-omic and targeted ampl-
icon sequencing studies have become the main methods for identi-
fying putative Hg-methylating microorganisms of this unculturable
fraction (Bravo et al., 2018; Gionfriddo et al., 2020; Xu et al., 2021).
While directly testing for Hg methylation capacity may not be a via-
ble strategy, pairing these sequencing methods with biogeochemical
measurements, Hg methylation assays, and other manipulation stud-
ies can connect a Hg-methylating microbiome to MeHg production
and metabolic activity and help to elucidate the potential contribu-
tion of these novel clades to Hg methylation (Bouchet et al., 2018;
Kronberg et al., 2016; Roth et al., 2021; Schaefer et al., 2020).

The detection of hgc™ MAGs provide the most precise informa-
tion about the taxonomic and metabolic characteristics of puta-
tive Hg methylators (Jones et al., 2019; Lin et al., 2021; Peterson
et al., 2020; Vigneron et al., 2021). However, the microbial diversity
in some environments is too high and/or Hg methylators are too
rare to identify them effectively (Christensen et al., 2019; Podar
et al., 2015). In these cases, read-based metagenomic analyses and
hgc metabarcoding are easier and more economical. Accurately
identifying Hg-methylating clades (and metabolic guilds) from hgc
sequences alone therefore requires a universally used and updated
hgcAB reference database, coupled to consistent and robust bioin-
formatic practices, in order to identify precisely the target genes in
complex meta-omic data sets. Further, methods for quantifying hgc
genes (and transcripts) from omics data are needed to predict the po-
tential for environmental MeHg formation (Christensen et al., 2019;
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Capo, Feng, et al., 2022). Estimating the relative abundance of hgc
sequences in a meta-genome/transcriptome requires normalization
strategies that account for differences in sequencing depth and cov-
erage to avoid over- or under-representing hgc* microorganisms and
their functional importance.

In this work, we introduce the "Hg-cycling Microorganisms in
Aquatic and Terrestrial Ecosystems" (Hg-MATE) database version 1
(https://doi.org/10.25573/serc.13105370.v1), an up-to-date hgcAB
catalogue compiled from isolated, single-cell and metagenome-
reconstructed genomes. Additionally, we present "marky-coco"
(https://github.com/ericcapo/marky-coco), a ready-to-use bioinfor-
matic pipeline to detect, identify and count hgc genes from metage-
nomes (Figure 2). We apply this pipeline to metagenomes collected
from paddy soils, brackish and lake waters, as well as sediments
from reservoirs and lakes, in which hgc genes have been previously
detected (Capo et al., 2020; Jones et al., 2019; Liu et al., 2018;
Millera Ferriz et al., 2021). Further, we specifically compared the
reliability of (i) applying the marky-coco pipeline based on de novo
single assembly approach from single metagenomes with (ii) coas-
sembling of multiple metagenomes (coassembly) prior to mapping
and identification. Finally, we discuss appropriate definitions and
cutoff criteria for hgc genes and also best practices to normalize
data for an accurate count of hgc genes in metagenomes from envi-

ronmental samples.

2 | MATERIALS AND METHODS
2.1 | Description of the Hg-MATE database v1
The Hg-MATE database version 1 was released on 14 January 2021

(https://doi.org/10.25573/serc.13105370.v1), and contains an ex-
tensive hgcAB data set from a wide range of microorganisms and

Miscellaneous
orders  Planctomycetota

FIGURE 1 Simplified unrooted
phylogenetic tree of hgcA sequences
from the Hg-MATE database. Taxonomy
is based on GTDB classification Microbial
groups with the highest diversity of hgc*

Euryarchaeota . .
microorganisms are denoted by colours.

Verrucomicrobiota

Miscellaneous
orders

Syntrophobacterales

Bacteroidota

environments. The catalogue contains 1053 unique HgcA/B amino
acid sequences (Table 1). We categorized the HgcAB amino acid se-
quences into four types depending on whether they were encoded
in (i) pure culture/environmental microbial isolates (ISO) (ii) single-
cell genome sequences (CEL) (iii) metagenome-assembled genomes
(MAGsS) (iv) or an environmental meta-omic contig (CON). Amino
acid sequences of HgcA, HgcB, and concatenated HgcA and HgcB
were included in the database. If hgcB was not colocalized with hgcA
in the genome and/or could not be identified, then “na” was listed
in the “HgcB” sequence column. Both genes need to be present
and encode functional proteins for a microbe to methylate Hg (see
Parks et al., 2013; Smith et al., 2015). One reason hgcB may not be
identified in some genomes carrying hgcA is because HgcB is highly
homologous to other 4Fe-4S ferredoxins. Therefore, hgcB can be
difficult to differentiate from other ferredoxin-encoding genes if not
colocalized with hgcA on a contiguous sequence. In addition, hgcB
may be missing from “MAGs”, “CEL” and “CON” sequences due to
incomplete coverage of the genome or incomplete contig assembly,
or failure to bin the contig carrying hgcB. Some hgc genes are pre-
dicted to encode a “fused HgcAB” protein which has previously been
described (Podar et al., 2015), and is characterized by one gene that
encodes for a 4Fe-4S ferredoxin-like protein with shared homology
to HgcA and HgcB. This fused HgcAB protein contains the corrinoid
iron-sulphur and transmembrane domains characteristic of HgcA as
well as the 4Fe-4S ferredoxin motif of HgcB (e.g., Uniprot Q8U2U9,
NCBI Refseq: WP_011011854.1, Pyrococcus furiosus DSM 3638).
These sequences are provided in the “HgcA” column, and labelled
fused HgcAB in the HgcB column. These fused HgcAB sequences
should be treated with caution because, while they share significant
sequence homology to HgcA and HgcB from confirmed Hg methyla-
tors, to date all organisms with a fused HgcAB that have been tested
do not seem to produce MeHg in culture (Gilmour et al., 2018; Podar
etal., 2015).
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FIGURE 2 (a) Workflow illustrating how the hgcAB gene catalogue hg-MATE database was built. (b) Simplified workflow of the marky-
coco pipeline. (c) lllustration of the two assembly approaches compared in this work: Single assembly versus coassembly.

The resources within the Hg-MATE database version 1 include
a catalogue with the amino acid sequences and metadata of all mi-
croorganisms. Only sequences with genomic identifying information
(i.e., “ISO”, “CEL", “MAG”") were used to compile further resources.
Resources include: (i) FASTA files containing Hgc amino acid se-
quences; (i) Multiple sequence alignments (MSA) in FASTA format
of Hgc amino acid sequences built with MUSCLE implemented in
MEGAX (Kumar et al., 2018) with the cluster method UPGMA,; and

(iii) Hidden Markov models (HMM) of aligned Hgc amino acid se-
quences built from MSAs using the hmmbuild function from the
hmmer software (version 3.2.1, Finn et al., 2011). Additionally, re-
sources include reference packages that can be used to identify and
classify: (i) the corrinoid-binding domain of HgcA which corresponds
to residues ~37-156 of the HgcA sequence from Pseudodesulfovibrio
mercurii ND132 and includes the characteristic cap helix domain
(i) full HgcA sequence and (iii) concatenated HgcA and HgcB. Each
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TABLE 1 Summary of HgcAB sequence
Total HgcA(B) Encodes both Encodes Only HgcA (or tvpes in versictjn 1 of Zhe h %MATE qu
Genome type sequences HgcA and HgcB fused HgcAB  HgcB) present yp g
database
ISO 204 173 10 21
CEL 29 4 18 7
MAG 787 696 17 74
CON 33 9 0 21(3)

reference package contains sequence alignments, an HMM model,
a phylogenetic tree, and NCBI taxonomy. Reference packages were
constructed using the program Taxtastic (https://github.com/fhcrc/
taxtastic) for HgcA(B) amino acid sequences from 1SO, CEL and
MAG. Phylogenetic trees were built from MSA files by RAXML using
the GAMMA model of rate heterogeneity and LG amino acid sub-
stitution matrix (Le & Gascuel, 2008). Trees were rooted by HgcA
paralogue sequences, carbon monoxide dehydrogenases (PF03599)
from non-HgcA coding microorganisms Candidatus Omnitrophica
bacterium CG1_02_41_171 and Thermosulfurimonas dismutans.
These organisms were chosen because of their distant phyloge-
netic relationship to hgcA* microorganisms. Confidence values on
branches were calculated from 100 bootstraps. Using the HgcA ref-
erence tree, a simplified tree of “ISO”, “CEL", “MAG”" hgcA genes was
built using iTOL (Letunic & Bork, 2019) and clades were collapsed by
the dominant monophyletic group, when possible, for visualization

ease.

2.2 | Data collection

A total of 29 metagenomes from recent studies studying hgc genes
in environments with known active Hg methylation were used
for the bioinformatic analyses performed in this work (Table 1,
Appendix S1). Metagenomes from brackish waters (BARMS8s) were
collected in 2014 in the Gotland Deep basin of the Central Baltic Sea.
Out of 81 available metagenomes (Alneberg et al., 2018; BioProject
ID PRJEB22997), eight metagenomes where hgc genes have been
detected (Capo et al., 2020) were used in the present analysis.
Water depths of these metagenomes ranged from 76 to 200 m with
oxygen concentrations either low (hypoxic zone) or undetectable
(anoxic zone), salinity ranging between 9.2-12.1 psu and MeHg con-
centrations measuring up to 1640fM (Soerensen et al., 2018). Lake
sediments and water metagenomes (MANGA6s) were obtained in
2013-2014 from the sulfate-impacted Manganika lake in Northern
Minnesota (Jones et al., 2019, BioProject ID PRJNA488162). This
hypereutrophic lake is characterized by dissolved oxygen approach-
ing 16 mg/L (nearly 200% saturation) near the surface, pH exceeding
8.7 and MeHg accumulating over 3 ng/L in bottom waters. Dissolved
oxygen and pH decreased with depth, and anoxic conditions were
encountered below 4 m. Sulphide concentrations up to 2mM were
observed in bottom waters and sediments. Water samples were
collected at these anoxic depths. Five metagenomes (RES5) were
obtained from reservoir sediments from the St. Maurice River near
Wemotaci, Canada in 2017 and 2018 (Millera Ferriz et al., 2021,

GOLD-JGI Ga0393614 Ga0393582, Ga0393617, Ga0393586,
Ga0393589). The studied river section has been affected by the
construction of two run-of-river power plant dams and its watershed
has been disturbed by a forest fire, logging, and the construction
of wetlands. MeHg concentrations in samples varied from <0.02
to 19ng/g. Metagenomes from paddy and upland soils (PADDY10s)
were collected from two historical Hg mining sites, Fenghuang
(FH) and Wanshan (WS), in Southwest China in August 2016 (Liu
et al.,, 2018, BioProject ID PRINA450451). The pH of paddy soils
ranged from 6 to 7.5. Historical discharge from Hg mining opera-
tions and ongoing atmospheric deposition contribute to high con-
centrations of MeHg in the soils around these areas with values up

to 7.9 ng/g in the collected samples.

2.3 | Bioinformatics

The detection, taxonomic identification and counting of hgc genes
was done with the marky-coco snakemake-implemented pipeline
(https://github.com/ericcapo/marky-coco). A brief overview of this
workflow is as follows: the metagenomes were trimmed and cleaned
using fastp (Chen et al., 2018) with the following parameters: quality
threshold of 30 (-q 30), length threshold of 25 (-1 25), and with trim-
ming of adapters and polyG tails enabled (--detect_adapter_for_pe
--trim_poly_g --trim_poly_x). A de novo single assembly approach,
in which each metagenome was assembled individually, was applied
using the assembler megahit 1.1.2 (Li et al., 2016) with default set-
tings. The annotation of the contigs for prokaryotic protein-coding
gene prediction was done with the software Prodigal 2.6.3 (Hyatt
et al., 2010). The DNA reads were mapped against the contigs with
bowtie2 (Langmead & Salzberg, 2012), and the resulting .sam files
were converted to .bam files using samtools 1.9 (Li et al., 2009). The .
bam files and the prodigal output .gff file were used to estimate read
counts by using featureCounts (Liao et al., 2014). In order to detect
hgc homologues, HMM profiles derived from the Hg-MATE database
version 1 were applied to the amino acid FASTA file generated with
Prodigal from each assembly with the function hmmsearch from
HMMER 3.2.1 (Finn et al., 2011). The reference package “hgcA” from
Hg-MATE.db was used for phylogenetic analysis of the HgcA amino
acid sequences. Briefly, the predicted amino acid sequences from
gene identified as putative hgcA gene were (i) compiled in a FASTA
file, (i) aligned to the Stockholm formatted HgcA alignment from the
reference package with the function hmmalign from HMMER 3.2.1
(iii) placed onto the HgcA reference tree and classified using the
functions pplacer, rppr and guppy_classify from the program pplacer
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(Matsen et al., 2010). For more details, see the README.txt of the
Hg-MATE database version 1 (https://doi.org/10.25573/serc.13105
370.v1). Additionally, to compare the efficiency of the marky-coco
pipeline to detect hgc genes from metagenomes with a coassembly
approach (multiple metagenomes used for assembly), we performed
coassemblies on metagenomes within each environmental system
(BARM8s, MANGAG6s, RES5s, PADDY10s, Table 2). Post-assembly,
all other steps of the analysis procedure were performed similarly
to the marky-coco pipeline. Detection of dsrA genes were detected
in metagenomes with the function hmmsearch and HMM profile
from TIGRFAM (Selengut et al., 2007). The amount of sequencing
required to cover the total diversity and the estimated diversity
of each metagenome were evaluated using the Nonpareil method
(Rodriguez-R & Konstantinidis, 2014).

2.4 | Stringency cutoffs for the definition of true
hgc genes

Based on knowledge from confirmed isolated Hg methylators, we
propose several stringency cutoffs that could be used to distinguish
between hgcA gene which appear to be functional for Hg methyla-
tion and an hgcA-like gene that encodes for a protein of unknown
Hg methylation capability. (i) High stringency cutoff: amino acid
sequence includes one of the cap-helix motifs with the conserved
cysteine (Cys93 in P. mercurii ND132), NVWCAAGK, NVWCASGK,
NVWCAGGK, NIWCAAGK, NIWCAGGK or NVWCSAGK. This cut-
off is based on previous findings that showed isolated microorgan-
isms carrying HgcA proteins with the cap helix domain are capable
of Hg methylation (Cooper et al., 2020; Gilmour et al., 2018; Parks
et al., 2013; Smith et al., 2015). Within the high stringency cutoff,
there is a possible need to distinguish between the amino acid se-
quences from fused HgcAB-like proteins and those from true HgcA
proteins, since isolates that encode fused HgcAB-like genes do not
have the capacity to methylate Hg in culture (Gilmour et al., 2018;
Podar et al., 2015). The fused HgcAB include the cap-helix and ferre-
doxin motifs of HgcA and HgcB. (ii) Moderate stringency cutoff: in
addition to amino acid sequences that include the motifs described
above, any sequence with a bitscore value obtained from the HMM
analysis greater than or equal to 100 is included (iii) Low stringency
cutoff: in addition to amino acid sequences that include the motifs
described above, any sequence with a bitscore value greater than or

TABLE 2 Metagenomes collected from previously published
studies investigating the presence of hg methylators in the
environment

No. metagenomes Data set ID References

8 BARMS8s Capo et al. (2020)

6 MANGA6s Jones et al. (2019)

5 RES5s Millera Ferriz et al. (2021)
10 PADDY10s Liu et al. (2018)
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equal to 60 is included. For hgcA-like genes detected with medium
and low-stringency cutoffs, cap helix domains could still be identi-
fied but without the six motifs listed above and found in the amino
acid sequences of HgcA proteins encoded by isolated organisms
verified for their Hg methylation capacities (Gilmour et al., 2018).
For hgcB gene homologues, we propose two cutoffs that could be
used for their description as hgcB genes. (i) High stringency cut-
off: their amino acid sequences include one of the following motifs
featuring the conserved Cys (Cys73 in P. mercurii ND132, Cooper
et al., 2020), C(M/I)ECGA motifs and that the genes are found on the
same contig as an hgcA genes. (ii) Moderate stringency cutoff: amino
acid sequences include the C(M/I)ECGA maotif, but the gene are not

colocated on a contig with an hgcA gene.

2.5 | Estimation of hgcA abundance in
metagenomes

Coverage values of hgcA genes were calculated, for each gene and
each sample, as the number of reads mapping to the gene divided
by the length of the gene (read/bp). We compared the reliabil-
ity of four procedures for normalizing read counts of hgcA genes.
Normalization metrics were (i) the total number of mapped reads
(ii) the summed coverage values of rpoB genes, (iii) the median cov-
erage values of 257 marker genes (GTDB-Tk r89 release, Chaumeil
et al., 2019), or (iv) the genome equivalents values calculated using
the software MicrobeCensus (Nayfach & Pollard, 2015) which nor-
malizes the relative abundance by the metagenomic data set size
and the community average genome size of the microbial commu-
nity. The coverage of each marker gene was calculated as the sum of
the coverages of all the ORFs assigned to that gene (Appendix S1).
The rpoB and the 256 other marker genes were detected using the
function hmmsearch from hmmer software (v3.2.1, Finn et al., 2011)
and applying the trusted cutoff provided in HMM files (GTDB-Tk r89
release, Chaumeil et al., 2019).

2.6 | Data analysis

A principal coordinate analysis (PCoA) was performed applying
the function wcmdscale to a Bray-Curtis dissimilarity matrix built
with the function vegdist from the hgcA gene coverage values table,
clustered at the lowest level of NCBI taxonomic identification
(txid), obtained with single assembly and coassembly approaches
(Appendix S1). A Mantel test with a permutation procedure analysis
(9999 permutations) and Spearman's method was performed using
the function mantel from R basis to evaluate the level of concord-
ance of the outputs between both approaches. The functions rcorr
from the R package Hmisc (Harrell & Harrell, 2013), corrplot from
the R package corrplot (Taiyun et al., 2017) and plot3D from the R
package rgkl (Adler & Murdoch, 2003) were used to investigate cor-

relations between normalization methods.
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3 | RESULTS
3.1 | Data setoutputs

A total of 29 single assemblies (one for each metagenome) and four
coassemblies (reads from each of the BARM8s, MANGA®6s, RES5S,
and PADDY10s metagenome sets assembled together) were used to
compare the efficiency of a single assembly using the marky-coco
pipeline and a coassembly approach to detect, identify and count
hgc genes from metagenomes (Figure 2). The number of mapped
reads of the analysed metagenomes ranged between 10.2-110.9 M
reads (average, 29.4 +19.6) with single assembly and 16.6-120.7 M
reads (average, 36.0+19.9) with coassembly, with the percentage of
mapped reads ranging between 16%-76% and 24%-89%, respec-
tively (Appendix S1). Nonpareil diversity index values (N ;) of metage-
nomes were between 18.7 and 23.7 with the highest found in paddy
soil metagenomes (Figure S1, Table 3). Nonpareil curves showed that
paddy soil samples from this study required the highest sequenc-
ing effort for nearly complete coverage followed by reservoir sedi-
ments, and then lake sediment and lake waters and brackish waters

(Figure S1). Estimated coverage of paddy soils metagenomes was

relatively low (average, 0.30-0.37) compared to other metagenomes
(0.49-0.83) showing that only a portion of the diversity of these en-
vironmental samples was recovered despite the relatively high se-
quencing depth (88.6+5.6 M reads) (Table 3). Seven metagenomes
(502,503, 519,522,526, 528, S29) that were used in coassemblies but
with low hgcA coverage values (i.e., <0.40 obtained from coassem-
blies) were not used for further comparison analysis. The remaining
22 metagenomes, labelled MG01-MG22, had hgcA (unnormalized)
coverage values between 0.44 and 3.06 (1.22+0.79) (Appendix S1).
Only hgcA genes (and not hgcB) from these metagenomes were used
for comparison of the two assembly approaches as hgcAB gene pairs
were not 100% similar between the two approaches (Appendix S1).
Additionally, hgcAB-like homologues that are predicted to encode for

fused HgcAB proteins were excluded from further analysis.
3.2 | Distribution of hgcA genes with different
stringency cutoffs

By definition, all hgcA genes detected with the high stringency cut-

off are predicted to encode proteins that include the conserved

TABLE 3 For each metagenome, Nnonpareil diversity index values, estimated average coverage, number of mapped reads, number of

«. n

wn

hgcA genes and hgcA coverage values (reads/bp) for coassembly “c” and single assembly “s” approaches

Nonpareil Estimated
diversity average

Environments Metagenomes id index coverage
Brackish water MGO1 19.51 0.83
MGO02 21.12 0.55
MGO3 19.49 0.70
MGO04 20.52 0.63
MGO5 18.69 0.76
MGO06 20.73 0.48
Reservoir MGO7 22.46 0.59
sEdment MG08 21.99 0.64
MGO09 21.82 0.68
MG10 22.10 0.63
MG11 22.15 0.63
Lake sediment MG12 20.55 0.62
MG13 20.75 0.57
Lake water MG14 21.57 0.49
MG15 20.24 0.66
MG16 19.51 0.67
Paddy soils MG17 23.48 0.34
MG18 23.31 0.33
MG19 23.67 0.27
MG20 23.14 0.37
MG21 23.49 0.30
MG22 23.64 0.30

Note: See Appendix S1 for extended description of the data set.

Number of mapped Number of hgcA hgcA coverage
reads (millions reads) genes values

c s c s c s
120.7 110.9 38 14 2.04 1.85
33.9 25.5 40 16 1.05 0.91
32.0 25.8 29 7 1.01 0.75
35.1 26.9 34 10 0.84 0.75
35.6 30.5 23 5 0.52 0.46
16.6 10.2 29 4 0.58 0.35
28.6 21.8 147 69 3.06 2.36
33.6 29.4 103 53 2.19 1.98
47.2 43.5 74 35 1.98 1.78
36.1 32.7 102 68 2.32 3.00
36.7 29.8 122 62 2.69 2.43
227 26.7 23 10 0.83 0.78
27.2 22.5 26 9 0.41 0.32
29.6 24.8 31 13 1.19 1.05
38.5 34.6 31 8 0.62 0.50
30.5 29.2 19 10 0.47 0.50
31.1 20.4 77 21 0.69 0.45
30.8 18.5 60 13 0.59 0.33
27.1 14.3 85 20 0.76 0.43
37.5 28.8 61 15 0.58 0.32
30.5 18.7 57 25 0.60 0.51
30.6 20.5 84 33 1.12 0.89

85U80|7 SUOWLWIOD dAeaID 8|qedt|dde ay3 Aq pausenob afe ssjonie YO ‘8sN JO Se|n. 10} Areiq1T8ulUQ A8 UO (SUORIPUOO-pUE-SWLBYLICD" A8 |1 ATe1q1jBUI [UO//:SANY) SUORIPUOD PUe SWie 1 8y3 88S *[£202/T0/20] Uo AReiq1aulluo A3 1M ‘Uepems auelyooD Aq 89T '8660-GS.LT/TTTT OT/I0p/wo0 A3 1M Akeiq1jeutjuoy/sdny wo.j pepeojumod ‘T ‘€202 ‘8660SG.LT



CAPO ET AL.

amino acid motifs characteristic of functional HgcA proteins, while
this is not the case for those additionally detected when lowering
the stringency cutoffs (i.e., moderate or low). We therefore con-
sidered that gene homologues to hgcA found with bitscore values
below 100 and without conserved motifs cannot with confidence
be defined as true hgcA genes. Nevertheless, we wanted here to
highlight how “false” hgcA genes, detected without the conserved
amino acid motifs characteristic of functional HgcA proteins,
were taxonomically assigned using the pplacer approach applied
to the Hg-MATE hgcA reference tree. The hgcA genes detected
with a high stringency cutoff and those additionally detected with
moderate stringency cutoffs were predominantly identified as
Desulfobacterota, Chloroflexota and Euryarchaeota (Figure S2). In
contrast, the hgcA genes additionally detected with low stringency
cutoff were primarily identified as members of the PVC superphy-
lum but were unclassified at lower taxonomic levels. For further
comparison, we used information only from hgcA genes detected
with the high stringency.

3.3 | Comparison between coassembly versus
single assembly approaches

For all metagenomes, 1.50-7.25 times more hgcA genes were de-
tected in coassemblies (19-147 genes) compared to linked single
assemblies (4-69 genes) (Table 3). We investigated the differences
in hgcA gene lengths, discriminating between genes (i) found at the
extremity of contigs (potentially truncated) and (ii) in contigs ex-
pected to be complete. A higher number of “complete” hgcA gene se-
quences were detected with the coassembly (1-17, average 6.8 +4.4
genes) compared to the single assembly (0-6, average 2.0+2.7
genes), for example, for metagenomes from brackish and lake wa-
ters (Appendix S1). No complete genes were identified in the single
assemblies that were not also identified in the coassembly. Violin
plotsillustrated that, overall, a higher number of “complete” hgcA se-
quences (>950bp) were found with the coassembly versus the single
assembly (Figure S3).

In a comparison of HgcA amino acid sequences recovered from
the two assembly approaches, no HgcA sequence from the single
assembly had 100% sequence identity to sequences in the coas-
sembly (Appendix S1). The highest sequence similarity of HgcA se-
quences from different assemblies of the same data set was 99%.
To compare, we investigated differences between assemblies for
detecting dsrA gene, which encodes for dissimilatory sulphite re-
ductase subunit A, an essential enzyme in sulphate reduction and
expected to be present in these data sets. Identical amino acid se-
qguences of DsrA-encoding genes were found when comparing sin-
gle assemblies to the related coassembly with numbers ranging from
1 to 33 depending on metagenomes (Appendix S1). Comparatively,
dsrA genes were 3-34x more abundant (in coverage) than hgcA
genes. This higher abundance helps explain why more identical dsrA
were found between coassembly and single assembly approaches
than for hgcA genes.
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Distribution plots showed unnormalized coverage values of hgcA
genes clustered by environment types (Figure 3a) or for each metag-
enome (Figure S4). Importantly, unnormalized values were used
here to compare single assembly versus coassembly results for each
metagenome but not to compare difference between environments
for which normalization would be required (Figure S4). Overall,
higher hgcA coverage values were observed with the coassembly
for all types of environments (Figure 3a) and for each metagenome
with the exception of reservoir sediment MG10 (Figure S4, Table 3).
For each metagenome, the PCoA analysis showed a high level of
similarity in taxonomy-based hgcA inventories obtained from sin-
gle assembly versus coassembly (Figure 3b). This was confirmed by
Mantel tests that showed significant correlations between the hgcA
inventories obtained between both assembly approaches (r = .86,
p<.001). Looking at each data set independently, brackish waters
and paddy soils showed significant correlations (r = .85, p =.001 and
r=.73, p = .01) while lake waters and reservoir sediments had non-
significant correlations (p>.05; no statistics possible with only two

metagenomes for lake sediments).

3.4 | Comparison between normalization methods

In order to compare normalization methods to estimate the abun-
dance of hgcA genes, we calculated the (i) total number mapped
prokaryotic reads, (i) rooB genes coverage values, (iii) median cover-
age value of 257 marker genes and (iv) genome equivalents values
(calculated as the total bp sequenced divided by average genome
size in bp) (Figure 4, Appendix S1). Overall, significant correlations
were observed between the total number of reads, rpoB cover-
age values, and the median coverage values of 257 marker genes
(Figure 4a), while no significant correlations were observed between
these metrics and genome equivalent values. The 3D plot shows the
relationships between the total number of reads, the median cov-
erage values of 257 marker genes and genome equivalent values
(Figure 4b).

4 | DISCUSSION

4.1 | Identification of true hgc genes from
environmental genomic data

The absence of cultured representatives of hgc* microorganisms
from novel clades (i.e., outside the Desulfobacterota, Firmicutes,
Euryarchaeota) with experimentally validated Hg-methylating capa-
bility (Gilmour et al., 2013, 2018) hampers confirmation that newly
discovered hgc genes from environmental samples truly code for Hg
methylating enzymes. Indeed, the recent analysis of publicly avail-
able metagenomes revealed the high diversity of microbial lineages
with hgc™ members, with the vast majority yet uncultured and there-
fore unstudied for Hg methylation activity (Gionfriddo et al., 2019;
McDaniel et al., 2020). To date, all hgcA* microorganisms that have
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(a) Abundance of hgcA genes in metagenomes
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obtained with the single assembly approach.

been experimentally tested have been found shown to produce
MeHg (except for those with fused hgcAB-like sequences) (Gilmour
et al., 2013, 2018), and protein modelling of novel hgcA sequences
suggest they have comparable active sites to HgcA sequences in
experimentally verified Hg methylators. Therefore, although re-
cent findings revealed relationships between microbial expression
of hgc transcripts and MeHg formation in the environment (Capo,
Feng, et al., 2022), and some putative hgcAB genes have been

computationally modelled to possess functionality for methylation
(Gionfriddo et al., 2016; Lin et al., 2021), we remain cautious about
defining true hgc genes from environmental samples. As such, some
studies have qualified hgc genes found in the environment as hgc-
like genes (e.g., Bowman et al., 2020; Capo et al., 2020; Gionfriddo
et al., 2016; Villar et al., 2020).

Here, we defined three stringency cutoffs to describe hgcA genes
in environmental metagenomes. By definition, the HgcA-encoding
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genes detected with the high stringency cutoffs include the key
amino acid residues (i.e., the cap helix motif N[V/I]WC[A/S][A/G/S]
GK, Parks et al., 2013) present in HgcA from known Hg methyla-
tors. In contrast, all other hits to the HMM, from moderate and low
stringency cutoffs, have a cap-helix motif but lack these amino acid
residues affecting potentially protein functionality. To date none of
the isolates lacking these key amino acid residues has been found to
methylate Hg, or no cultured isolate exists to test for Hg methyla-
tion capability (Gilmour et al., 2018). Substitution of some of these
amino acids in the cap helix of HgcA may not result in loss of Hg
methylation activity, as demonstrated by site-directed mutagenesis
experiments with P. mercurii ND132 (Smith et al., 2015). However,
in addition to the cap helix domain of HgcA, the transmembrane
domain of HgcA may also be required for Hg methylation activity.
Unfortunately, the transmembrane region of HgcA has no detect-
able sequence homology (Cooper et al., 2020).

Thus, we recommend using the high stringency cutoff defined
in the present study for routine identification of hgcA from environ-
mental metagenomes. Lower stringency could reveal novel HgcA
sequences that have lower similarity to HgcA from known Hg meth-
ylators, but if the lower stringency cutoff is used, we advise careful
manual inspection of the sequences to ensure that they have im-
portant motifs and other HgcA features like the cap-helix region. If
the amino acid sequence in the cap helix domain is highly divergent
from known sequences, we recommend protein modelling efforts
to determine if the active site is similar enough to known sequences
to validate classification as HgcA. Additional verification of true
HgcA sequences include prediction of transmembrane domain re-
gions (e.g., using TMHMM software, Krogh et al., 2001) and iden-
tification of other key conserved residues (Jones et al., 2019; Parks
et al., 2013; Smith et al., 2015). A combination of several methods
will certainly help to improve our description of hgcA genes in the

coming years.

4.2 | Effectiveness of the Hg-MATE database

The Hg-MATE database originates from the combination of two re-
cent studies (Gionfriddo et al., 2019; McDaniel et al., 2020). The pre-
sent work is a collaborative project of the Meta-Hg working group
that aimed to provide a living database that will be periodically up-
dated. It provides several useful tools (HMM profiles and references
phylogenetic trees) and a documented workflow that allows for the
identification of hgc genes for easy comparison between studies.
One major advantage of Hg-MATE is the assignment of NCBI tax-
onomy IDs (txid) to hgcA genes allowing for easy comparison with
datasets from other studies that also use the Hg-MATE database
(Appendix S1). In contrast, outputs from previous hgc-related stud-
ies are difficult to compare with each other because hgc taxonomic
identification is usually done with different in-house databases and/
or phylogenetic tools, and is based on the manual inspection of phy-
logenetic trees increasing the level of uncertainties and subjectivity
in taxonomic identification. While the used pplacer approach here
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is not perfect - since phylogenetic relatedness of the gene does not
necessarily mean the same organismal taxonomy because of poten-
tial horizontal gene transfer (McDaniel et al., 2020) - it is a standard-
ized approach allowing for a robust and automated identification of
hgc genes from metagenomes.

A side-by-side comparison of previous and present taxonomic
identification of putative Hg methylators is presented in this sec-
tion. For water and sediment metagenomes from Lake Manganika
our identification by hgcA phylogeny showed consistent results
with previous identification from hgc* MAGs (Jones et al., 2019),
with Desulfobacterota, Acidobacteriota, Verrucomicrobiota and
Spirochaetota being the predominant putative Hg methylators. In
the case of Baltic Sea water metagenomes, the comparison of our
Hg-MATE taxonomy identification with the previous identification
using a set of hgc sequences from Podar et al. (2015) revealed consis-
tency in the predominant hgc* groups detected (Desulfobacterota,
Spirochaetota, Verrucomicrobiota) but noticeable differences for
others, such as Planctomycetota (Appendix S1). Consistent with pre-
vious characterization, reservoir sediments were characterized by
predominant hgct Euryarchaeota, Desulfobacterota, Bacteroidota
and Chloroflexota. Finally, in paddy soils, Liu et al. (2018) identified
mostly hgc* Desulfobacterota, Firmicutes and Euryarchaeota while,
in the present study, the two last microbial groups were found less
predominant to the benefit of hgct Nitrospirota and Chloroflexota.

In addition to using phylogenetic placements of hgc genes in ref-
erence trees from the Hg-MATE database, a more precise approach
to identification of putative Hg methylators is probably the identifi-
cation of hgc* MAGs (i.e., Jones et al., 2019; Lin et al., 2021; Peterson
et al., 2020). However, the recovery of MAGs from metagenomes
is not always possible due to (i) the difficulty of obtaining MAGs
from certain environments such as sediments and (ii) the low pre-
dominance of Hg methylators compared to other microorganisms in
the environment, and therefore the lower probability of recovering
hgc™ MAGs. A recent study revealed the good congruence between
the identification of hgc* MAGs and a hgc phylogeny based on Hg-
MATE phylogeny (Capo, Feng, et al., 2022) highlighting that both ap-
proaches could be used to ensure the reliability in the identification

of Hg methylators.

4.3 | Assembly methods depend of the
diversity of the metagenome

The increasing amount of publicly available environmental genomic
data (Nayfach et al., 2021; Thompson et al., 2017) opens avenues
to answer ecological questions related to the biogeography pat-
terns and dispersal barriers of Hg methylators in interconnected
systems (such as the global ocean and coastal systems). Coassembly
of multiple metagenomes has been shown to have many important
benefits compared to single assemblies including improved binning
and better recovery of low abundance environmental genomes from
studies that use multiple low-coverage metagenomes. However,
coassembly requires higher computational costs and potentially
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masks microdiversity by collapsing the genomes of multiple related
strains into a single MAG (Delgado & Andersson, 2022; Narasingarao
et al., 2012; Paoli et al., 2022; Ramos-Barbero et al., 2019; Tamames
et al., 2019; van der Walt et al., 2017). Here, we compared hgcA re-
covery from single assembled metagenomes versus coassemblies of
multiple metagenomes from the same environment. Our analysis re-
vealed that no identical amino acid sequences were obtained when
comparing outputs from single assembly and coassembly meth-
ods for each metagenome for hgcA genes but not for dsrA genes
for which identical amino acid sequences were found. Our results
highlight the differences that can be observed between both ap-
proaches in the composition of hgcA sequences in accordance with
a recent work showing the aggregation of near identical genes (i.e.,
99% clustering cutoff) occurring during coassembly. In all cases ex-
cept one, coassembly significantly increased the recovery of hgcA
genes (Figure S4). Additionally, we showed that when the diversity
and composition of the hgcA* community was compared across all
the samples included in the analysis, single assemblies and coassem-
blies performed similarly in this regard, suggesting that also single
metagenomes can provide adequate information (similar level of hgc
coverage and detected diversity) on the hgct community.

Differences in the diversity of environments can have an ef-
fect on the recovery of hgc genes from metagenomes. Nonpareil
diversity index values of the metagenomes ranged between 18.7
and 23.7 with the highest being found in paddy soils metagenomes
(Figure S1, Appendix S1). Here, for the paddy soils that exhibited
higher Nonpareil diversity index values (Figure S1), consistently
with Rodriguez-R and Konstantinidis (2014), the coassembly ap-
proach outperforms single sample assemblies in the recovery of
hgc genes (Figure 3). Noticeably, although no identical HgcA amino
acid sequences were detected between single assembly and coas-
sembly approach, identical DsrA amino acid sequences were ob-
served. We hypothesize that the low proportion of hgcA genes in
metagenomes, compared to dsrA genes, explained such discrepan-
cies, although it did not strongly impact the overall hgcA coverage
values recovery. In these situations, we recommend aiming for ei-
ther higher depth of coverage or sequencing of multiple adjacent or
linked metagenomes or replicates from a single sample. In contrast,
we recommend avoiding the coassembly of metagenomes from dif-
ferent environments that could produce more misassembles and
chimerism (Mikheenko et al., 2016; Sczyrba et al., 2017; Tamames
et al., 2019). For other environments such as brackish and lake wa-
ters, our work highlights that using the marky-coco pipeline based
on a single assembly approach provide similar results to a coas-
sembly approach in detecting hgc genes. Long-read metagenomic
sequencing could help reduce discrepancies between coassembly
and single assembly approaches (Driscoll et al., 2017; Van Goethem
et al., 2021). However, long-read approaches require high quality
intact DNA and come with a trade-off in base-call accuracy and as-
sembly coverage. Also, genome assembly from long-read HTS may
be best suited for dominant members of low diversity microbiomes
and therefore less applicable to hgc* organisms due to their relative
rarity in microbiomes.

4.4 | Robust normalization methods are needed for
quantitative inferences

The normalization of gene counts from environmental metagen-
omes and metatranscriptomes is a key aspect of works aiming to
study the prevalence of certain microorganisms in specific environ-
ments (Pereira et al., 2018; Pierella Karlusich et al., 2022; Salazar
et al., 2019). In hgcAB omics studies, the number of mapped reads
and the coverage values of marker genes or housekeeping genes is
usually used to normalize the coverage values of hgc genes (Capo,
Broman, et al., 2022; Capo, Feng, et al., 2022; Lin et al., 2021; Tada
et al., 2020; Vigneron et al., 2021). Tests here revealed that a wide
range of contrasting normalization methods all provided reasonable
abundance estimates that were significantly correlated with one
another with the exception of genome equivalent values (Figure 4).
Nonsignificant correlations found between genome equivalent val-
ues (Nayfach & Pollard, 2015) and other metrics can be explained
by the weaker relationships observed for the metrics in paddy soils
and reservoir sediments metagenomes, while metrics from brackish
waters, lake sediment and waters appear to have linear relationships.
We hypothesize that this discrepancy between normalization met-
rics is due to the differential contribution of DNA sequences from
nonprokaryotic organisms to calculate genome equivalent values in
more diverse environments (paddy soils, reservoir sediments) com-
pared to others (brackish waters, lake waters and lake sediments).
Therefore, we do not strongly recommend any single method over
others. Instead, we suggest that it may be prudent to report data
that employ multiple normalization methods to allow for easy com-
parisons to be carried out between studies. Such normalizations can
without too much of an effort be included in the supporting informa-
tion for later usage. Suggested normalization methods include the
total number of prokaryotic reads, coverage values of rpoB genes
and the median coverage values of 257 marker genes (example in
Appendix S1).

5 | CONCLUSION

The study of the taxonomic diversity and metabolic capacities
of microorganisms involved in Hg methylation will lead to a bet-
ter understanding of the environmental factors triggering mi-
crobial methylation of inorganic Hg. Although metagenomic and
metatranscriptomic-based studies have provided better insights
into the environmental role of those microorganisms, there is still a
need to standardize methods to detect hgc genes from environmen-
tal omic data. Furthermore, since Hg methylators often constitute
such a small proportion of the microbiome, methods outlined in this
study provide best practices for improving their detection and re-
covery from metagenomes. We provide here an up-to-date hgc gene
catalogue, Hg-MATE database v1, and the marky-coco bioinformatic
pipeline to detect, identify and count hgc genes from metagenomes.
We recommend using our high stringency cutoff to detect hgcA
genes in metagenomes and applying our protocol in future prospects
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of Hg methylation genes, especially for cross-comparison between
studies. Finally, although a co-assembly approach should be chosen
when analysing metagenomes from highly diverse environments
(e.g., paddy soils), we recommend using marky-coco pipeline, based
on a de novo assembly for recovering hgc genes in metagenomes
from aquatic environments.
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