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Abstract
Maize production in low-yielding regions is influenced by climate variability, poor soil fertility, suboptimal agronomic prac-
tices, and biotic influences, among other limitations. Therefore, the assessment of yields to various management practices 
is, among others, critical for advancing site-specific measures for production enhancement. In this study, we conducted a 
multiseason calibration and evaluation of the DSSAT–CERES-Maize model to assess the maize yield response of two com-
mon cultivars grown in Trans Nzoia County in Kenya under various agricultural strategies, such as sowing dates, nitrogen 
fertilization, and water management. We then applied the Mann–Kendall (MK), and Sen’s Slope Estimator (SSE) tests to 
establish the yield trends and magnitudes of the different strategies. The evaluated model simulated long-term yields (1984–
2021) and characterized production under various weather regimes. The model performed well in simulating the growth and 
development of the two cultivars, as indicated by the model evaluation results. The RMSE for yield was 333 and 239 kg  ha−1 
for H614 and KH600-23A, respectively, representing a relative error (RRMSE) of 8.1 and 5.1%. The management strategies 
assessment demonstrated significant feedback on sowing dates, nitrogen fertilization, and cultivars on maize yield. The sow-
ing date conducted in mid-February under fertilization of 100 kg of nitrogen per hectare proved to be the best strategy for 
enhancing grain yields in the region. Under the optimum sowing dates and fertilization rate, the average yield for cultivar 
KH600-23A was 7.1% higher than that for H614. The MK and SSE tests revealed a significant (p < 0.05) modest downwards 
trend in the yield of the H614 cultivar compared to the KH600-23A. The eastern part of Trans Nzoia County demonstrated 
a consistent downwards trend for the vital yield enhancement strategies. Medium to high nitrogen levels revealed positive 
yield trends for more extensive coverage of the study area. Based on the results, we recommend the adoption of the KH600-
23A cultivar which showed stability in yields under optimum nitrogen levels. Furthermore, we recommend measures that 
improve soil quality and structure in the western and northern parts, given the negative model response on maize yield in 
these areas. Knowledge of yield enhancement strategies and their spatial responses is of utmost importance for precision 
agricultural initiatives and optimization of maize production in Trans Nzoia County.
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Introduction

Sub-Saharan Africa (SSA) faces food shortage problems 
due to highly variable and less predictable weather condi-
tions, poor soil fertility, unsustainable agricultural prac-
tices, low adoption of technology, and pest and disease 
attacks (Connolly-Boutin & Smit, 2016; de Graaff et al., 
2011; Kalele et al., 2021). These challenges, compounded 
by the fast-growing population, impede the region’s capac-
ity to meet the people’s daily and seasonal nutritional and 
food security needs (Hall et al., 2017). Therefore, sound 
and sustainable agricultural strategies are feasible path-
ways for addressing the frequent agricultural challenges 
in the region (Garzon et al., 2020). These strategies, ide-
ally aligned at the political level with the United Nations 
(UN) sustainable development agenda and other goals of 
national importance, can propel SSA to a self-sufficient 
food region. As a result, the region may experience pov-
erty decline, hunger reduction, and increased resilience 
of agricultural systems to current and anticipated climate 
shocks (UN, 2015). Like any other developing nation, 
Kenya is witnessing a rapidly growing population and 
increasing climate change effects, including rapid inner 
migrations. Approximately 80% of the landmass consti-
tutes arid and semi-arid lands (ASAL), with less favour-
able conditions for food production (Sombroek et  al., 
1982). The region is prone to environmental hazards such 
as droughts, soil erosion, floods, and biodiversity losses, 
which exacerbate land degradation and significantly lower 
agricultural potential (Kanyenji et al., 2020; Klisch & Atz-
berger, 2016). As a remedial measure, populations in the 
ASAL areas adopt climate-smart practices such as cultivat-
ing drought-resistant crops and livelihood diversification 
for their socioeconomic well-being (Karienye & Macharia, 
2020; Kirui et al., 2021). In contrast, Kenya's medium to 
high agricultural potential areas constitute only 12% of the 
total landmass (Kabubo-Mariara & Karanja, 2007). These 
areas exhibit optimal climatic conditions and improved 
soil structure and fertility compared to ASAL areas.

Maize is the primary cereal crop devoted to the produc-
tive zones in Kenya. As the most consumed and primary 
staple food, it accounts for one-third of the total per capita 
caloric intake (Mohajan, 2014). Additionally, it occupies 
more than half of the total land for crop production. Fur-
thermore, it contributes to the food and household income 
needs of 98% of the population, who are the majority 
of smallholder farmers (Kirimi et al., 2011). The aver-
age production of maize in Kenya has stagnated at 1.7 
tonnes per hectare, below the world average of 4 tonnes 
under the same acreage (Mumo et al., 2018). The low 
yields have persisted despite some of the earliest yield 
enhancement strategies, such as the green revolution, 

market liberalization and technology growth (Hugo De 
Groote et al., 2005). In response to poor production, the 
government is promoting policies for increasing produc-
tion and ensuring household self-sufficiency. The services 
include the provision of subsidized agricultural inputs, 
expanded dissemination of extension services, devolution 
of agriculture, and promotion of research services (Bou-
langer et al., 2022; Shelmith, 2019). These services are 
mainly policy-oriented and have been the focus of most 
literature. Despite their importance in quantifying yield 
effects in various environments, studies on Site-Specific 
Agricultural Management Strategies (SSAMS) and their 
spatiotemporal response across agricultural landscapes 
are lacking. Site-oriented target measures are critical in 
optimizing policy implementation and ensuring maximum 
economic returns in a particular production environment. 
Therefore, combining agronomic practices with site condi-
tions enhances the understanding of local yield responses 
and aids decision-making.

The SSAMS matches inputs with spatially varying crop 
requirements and environmental conditions (Pringle et al., 
2003). The strategy differs from conventional management, 
whereby field or landscape crop production conditions 
are considered to have a uniform influence on production. 
According to Olwande and Smale (2012), SSAMS are 
critical in enhancing maize production and bridging yield 
gaps. Long-term experimental trials are conventionally 
used to evaluate SSAMS and their responses to agricultural 
yields (Vilayvong et al., 2015). These trials are, however, 
costly to manage and incur substantial time and resources. 
Therefore, with the advent of low-cost crop modelling 
approaches, SSAMS evaluations have been made easier. 
In particular, they give continuous input to decision-
maker’s dialogue at various scales (Corbeels et al., 2018; 
Webber et al., 2014). Ideally, these crop models should 
be provided with the necessary inputs and accurately 
calibrated for reliable assessments. Calibration ensures that 
the model adequately mimics crop growth and yield output. 
Additionally, the process ascertains the transferability of the 
model parameters for use in various applications and under 
different environments. A range of agronomic measures 
have been embedded in existing crop models. For example, 
the Decision Support System for Agro-technological 
Transfer (DSSAT) model evaluates the response of various 
sowing dates, different cultivars, nitrogen fertilization 
levels, and different irrigation water amounts, among other 
measures. The highly ranked model combines crop models 
that simulate different cropping strategies (Jones et  al., 
2003). The DSSAT modelling system includes the Crop 
Environment Resource Synthesis (CERES-Maize) model 
used for simulating maize (Zea mays L.) growth and yield 
under various environmental conditions. The model has been 
used to address a range of applications, such as evaluating 
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strategies to cope with limited weather and soil conditions 
(Malik & Dechmi, 2019), evaluating climate change impacts 
on crop production (Babel & Turyatunga, 2015; Jiang et al., 
2021; Lin et al., 2015), optimizing agronomic practices for 
increased production (Mubeen et al., 2016), and assessing 
the performance of various cultivars and their suitability in 
different environmental conditions (Chisanga et al., 2021c; 
Feleke et al., 2021). Researchers have tested the model under 
various production environments such as the Tropical, the 
Mediterranean, and Temperate regions (Ahmad et al., 2021; 
Arefi et al., 2017; Banterng et al., 2010; Getachew et al., 
2021; Kothari et al., 2019; Vilayvong et al., 2015). The 
model application in these environments has been informed 
by its ability to characterize maize growth and development 
reasonably. However, to achieve reliable estimations and 
extend the model's applicability for various applications, it 
is essential to acquire multiple datasets for parameterizing 
the model. The datasets acquired via different means and 
the complexity of the model structure in approximating soil 
and crop processes often introduce uncertainties in model 
predictions (Dokoohaki et  al., 2021). To address these 
uncertainties, techniques such as assimilation with external 
data sources have been suggested to constraint the model 
simulations over time (Joshi et al., 2019; Li et al., 2015). In 
addition, application of model ensembles has been adopted 
to characterize biophysical processes across agricultural 
landscapes (Chisanga et al., 2021b; Feleke et al., 2021). 
Another requirement for the DSSAT-CERES-Maize model 
is that investment in significant amount of experimental 
resources is necessary to account for the variability in 
various seasons (Hoogenboom et al., 2019). Nevertheless, 
the reliability of the DSSAT-CERES-Maize model has 
opened frontiers for assessing SSAMS and optimizing 
farm-level decisions for increasing maize yield in different 
regions.

Site-specific agricultural measures (SSAMS) have been 
the focus of most literature. Subsequently, process-based 
crop models have an essential function in assessing their 
effects on yield enhancement in various parts of the world. 
(Nóia Júnior & Sentelhas, 2019) evaluated the impacts of 
sowing dates on soybean-maize succession across Brazil 
using different crop models. Furthermore, Saddique et al., 
(2019) examined the sowing date and irrigation interaction 
effects on maize yield in China. In the Sudan Savanna region 
of Nigeria, Adnan et al., (2017) investigated the influence 
of sowing dates and different maturing varieties on maize 
yield. Additionally, in Tanzania, Volk et al., (2021) assessed 
management strategies, including full irrigation, deficit 
irrigation, mulching and nutrient management, to evaluate 
their effects on maize yield under current and projected 
climatic conditions using the DSSAT-CERES-Maize model. 
Although the literature has demonstrated the efficacy of 
the DSSAT-CERES-Maize model in assessing SSAMS, 

existing evaluations have been conducted at a point scale. 
The assessments, therefore, do not account for the spatial 
responses of the practices on yield in more regionalized 
and heterogeneous contexts. Furthermore, there is a dearth 
of knowledge on the spatial response of SSAMS across 
diverse soil and climatic conditions in Kenya. Attempts to 
incorporate the spatial aspect into modelling are covered in 
the studies of Liu and Basso, (2017) & Ojeda et al., (2021) 
conducted in Malawi and Australia, respectively. However, 
these studies covered few agronomic measures and did 
not incorporate trend analysis in the considered strategies. 
Against this background, a comprehensive assessment of 
spatial responses to multiple/simultaneous crop management 
strategies remains a challenge for further future simulations 
to better adapt to climate change.

This study expanded on the scope of the literature in 
evaluating the spatial response of maize yield under various 
SSAMS in Trans Nzoia County in Kenya. Therefore, this 
research hypothesises that the application of SSAMS 
increases production and reduces interannual variability 
in maize yields. The objectives drawn from the hypothesis 
include; (i) to calibrate and evaluate the DSSAT–CERES-
Maize model for simulating the growth and development 
of two maize cultivars using multiseason field experiments, 
(ii) to assess the response to various management measures, 
acting independently and in their interactions on maize 
yield, and (iii) to explore the spatio-temporal yield trends 
of various SSAMS.

Materials and Methods

Study Area, Weather, and Soil Data

The study was carried out in Trans Nzoia County, western 
Kenya, situated between longitudes 34° 35ʹ E and 35° 21ʹ E 
and latitudes 00° 48ʹ N and 01° 16ʹ N. The elevation ranges 
from 1500 m above sea level in the southern parts to above 
4000 m in the Mt. Elgon region. The soil distribution varies 
from deep, well-drained Humic and Rhodic Nitisols in the 
slopes of Mt. Elgon region to deeply weathered Humic 
Ferralsols in the undulating central and southern parts. 
According to Koppen Geiger’s climate zone classification, 
the climate of the study area is rainforest. The precipitation 
pattern is bimodal, with long rains occurring between April 
and July and short rains between October and December. 
Precipitation varies between 900 and 1700 mm. The annual 
mean temperature is 18 °C. The major crops grown include 
maize, wheat, barley, sunflower, coffee, potatoes, and 
beans. The county plays a significant role in both high crop 
production and a high ratio of agriculturally productive 
areas in Kenya. Although the region receives high rainfall, 



560 International Journal of Plant Production (2022) 16:557–577

1 3

its potential for maize production has not been fully tapped, 
with current annual yields ranging between 3000 and 
4000 kg  ha−1 (GOK, 2020).

Field Experiments and Data Acquisition

The experimental data for calibrating and evaluating the 
DSSAT–CERES-Maize model were sourced from 42 pure-
stand maize fields in various parts of the county (Fig. 1). The 
data collection was conducted between March and Novem-
ber 2021, coinciding with the long rainy season in Kenya. 
The cultivars that were grown in the fields were KH600-23A 
and H614. KH600-23A is a white, semiflint, late-maturing 
cultivar owned by the Agricultural Development Corpora-
tion (ADC) and first released in 2008. The H614 cultivar 
is relatively old, stable, and well adopted by farmers and 
was first released in 1976 in Kenya (Johnson, 1980). The 
two cultivars were selected mainly because of their high 
yield potential, resistance to pests and diseases, suitability 

to local climatic conditions, and wide adoption by farmers 
in the region.

Ploughing of the fields was conducted between January 
and February following practices commonly adopted by 
farmers in the study area. Afterwards, harrowing was car-
ried out to break up soil caps and obtain a fine seedbed. 
Sowing varied across the fields between early March and 
early May 2021. The planting density was 53,333 plants per 
hectare with a row spacing of 75 cm and a sowing depth of 
10 cm. The sowing was conducted according to the recom-
mended inorganic fertilizer rate of 75 kg N  ha−1 (Chebet 
et al., 2017). Calcium Ammonium Nitrate (CAN) at a rate 
of 60 kg N  ha−1 was used to provide an additional nitrogen 
dose at the sixth leaf collar stage (V6) in all fields. Other 
management practices, including pest, disease, and weed 
control, were conducted according to standard local pro-
cedures. Figure 2 shows maize growth and development at 
various phenological stages recorded across the experimen-
tal sites in the 2021 growing season.

Fig. 1  Map of the study area: a Trans Nzoia County, b the distribu-
tion of fields used for calibrating and validating the DSSAT-CERES-
Maize model, c the position of Trans Nzoia County within Kenya. 

Background: A 30-m Shuttle Radar Topographic Mission (SRTM) 
digital elevation model showing the elevation variation
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Independent data for the model evaluation were obtained 
from experiments conducted in the 2015 planting season 
for both cultivars as part of research work by Bartolomew 
et al., (2016). The experiments involved the collection of 
essential data, including field management, biomass, phe-
nological stages, weather variables, and yield. Similarly, 
seasonal variables, including soil moisture and LAI, were 
obtained. Sowing in the 2015 growing season was conducted 
between 03 March and 28 April under the same nitrogen 
fertilization rates relative to the 2021 season. Soil analysis 
was also conducted, and therefore, the physical and chemi-
cal characteristics of the soils were adequately represented. 
The experimental fields in both planting seasons were kept 
free from weeds using the integration of both herbicides and 
manual weeding. A mixture of Gavana (Acetochlor 340 g 
 L−1, Mesotrione 40 g  L−1, and Atrazine 200 g  L−1) and 2, 
4-D at a rate of 1 L  ha−1 was applied immediately after sow-
ing. The dates for data collection and recording of vital phe-
nological stages are provided in Table 1.

Weather and Soil Data

The daily weather variables (minimum and maximum 
temperatures (°C), precipitation (mm), average global 
radiation (W  m−2), relative humidity (%) and daily wind 
speed (km/h)) for the 2015 and 2021 growing seasons were 
obtained from three weather stations distributed in the 
study area. The weather stations include Magero, Kenya 
Seed Company and Katuke. A complete set of weather 
variables was available at the Magero weather station 
(Fig. 3a, b), whereas precipitation amounts and temper-
ature were available at the remaining stations. The data 
were adjusted to DSSAT format using the WeatherMan 
data utility program in DSSAT (Pickering et al., 1994).

Soil sampling was conducted before sowing to deter-
mine both physical and chemical conditions. The physi-
cal properties measured include soil texture, water satura-
tion content, and bulk density. The chemical properties 
were pH in water, cation exchange capacity (CEC), total 

Fig. 2  Maize growth at the V6, vegetative tasseling, and R1 phenological stages in Trans Nzoia County during the 2021 growing season. The 
photos were taken at the a Sabwani, b Olngatongo, and c Katuke sites

Table 1  Summary of data collected from the experimental sites during the 2015 and 2021 growing seasons

BD basal dressing, PS phenological stages, BS biomass sampling, HS harvest sampling

Site Katuke Sabwani Olngatongo

Growing season 2015 2021 2015 2021 2015 2021
Land preparation January–March January–February January–March January January–March January
Planting/BD 03 March 10 March 28 March 08 March 03 March 27 April
Top dressing 09 May 28 April 13 May 12 May 07 May 02 June
PS
 Emergence 11 March 18 March 04 April 17 March 12 March 27 April
 V4 09 April 11 April 01 May 16 April 02 April 20 May
 R1 04 July 27 June 28 June 01 July 24 June 04 August
 R6 28 October 14 October 29 October 28 October 26 October 06 November

BS
 V6 20 April 28 April 16 May 27 April 23 April 05 June
 R1 04 July 14 July 01 August 12 July 08 July 15 August
 R6 28 October 21 October 28 October 28 October 01 November 05 November
 HS 16 October 23 October 24 October 21 October 22 October 11 November
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nitrogen (%N), soil organic carbon (OC), and electri-
cal conductivity (EC). The soil profile properties (each 
20–100 cm depth) were obtained in all fields. Table 2 
shows the study area's physical and chemical properties 
of the representative sites.

DSSAT‑CERES‑Maize Model Calibration 
and Evaluation

The 2021 growing season data were used for model 
calibration and included crop phenology, grain yield, 
aboveground biomass and leaf area index. Cultivar Spe-
cific Parameters (CSPs) for the H614 and KH600-23A 

cultivars were calibrated using the DSSAT-Generalized 
Likelihood Uncertainty Estimation (GLUE) submodule 
in DSSAT (Jones et al., 2011). The DSSAT-GLUE opti-
mization process adjusts the CSPs (P1, P2, P5, G2, G3, 
and PHINT) by minimizing the difference between the 
simulated and observed yields, LAI, and the number of 
days to attain different phenological stages. In the present 
study, the phenological parameters (P1, P2, and P5) were 
calibrated by specifying 6000 runs, followed by a similar 
number of runs to estimate the growth parameters (G2, G3, 
and PHINT). The thresholds for phenological and growth 
parameters were guided by values obtained in other field 
experiments conducted in the East African region and 

Fig. 3  Daily average air 
temperature, daily maximum 
and minimum temperatures, 
daily precipitation, and daily 
radiation during a 2015 and b 
2021 maize growing seasons for 
Magero Weather station (34° 
52ʹ E, 01° 05ʹ N)
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subsequently adjusted for in the parameter file (Gummadi 
et al., 2020; Mourice et al., 2014).

The DSSAT–CERES-Maize model was evaluated using 
observed grain yield from field experiments conducted in the 
2015 growing season. The CSPs derived from the calibration 
process were used to assess the robustness of the model for 
both cultivars in Trans Nzoia County. The model’s ability to 
simulate soil water content was also evaluated. In the three 
experimental sites, soil moisture analysis was conducted at 
sowing, emergence, sixth leaf collar stage, silking, and grain 
filling. The computed values were then compared with the 
DSSAT-CERES-Maize simulations of soil water balance. 
The evaluation of the DSSAT-CERES-Maize model was 
essential for model application.

Statistical Evaluation and Model Performance 
Analysis

Statistical metrics, root mean square error (RMSE), relative 
mean square error (RRMSE) and mean absolute error (MAE), 
were used to quantify the goodness of fit of the DSSAT-
CERES-Maize model simulations against the observed data 
(Ali & Abustan, 2021). The metrics evaluate the statistical 
distances and dispersion between the actual and simulated 
values to determine the model skill scores for model outputs. 
Additionally, we assessed the model skill score using 
Wilmott’s index of agreement (IOA) (Willmott, 1981). The 
statistical metrics are computed using Eqs. 1, 2, 3, 4, 5.

where n is the number of observations, ŷi is the predicted 
value, yi is the observed value, and m is the mean of the 
observations.

The root mean square error measures the average difference 
between the predicted values and the actual observations. The 
RRME statistical measure shows the error as a fraction of the 
average measured values, while MAE expresses the average 
absolute deviation between the predicted and measured 
values. RMSE and MAE values of zero indicate a perfect 
fit (Moriasi et al., 2007). A low value of RMSE and MAE 
indicates predicted values that tend to be close to the observed 

(1)
RMSE =

�����
n∑
i=1

�
ŷi − yi

�2

n

(2)
RRMSE =

�����
n∑
i=1

�
ŷi − yi

�2

n
×
100

m

(3)MAE = 1∕n

n∑
i=1

||ŷi − yi
||

(4)IOA = 1 −

n∑
i=1

�
ŷi − yi

�2

n∑
i=1

��ŷi − yi�+�yi − yi
�2

Table 2  Physical and chemical 
soil analyses for Katuke, 
Sabwani, and Olngatongo

TN total nitrogen, OC organic carbon, EC electrical conductivity, and pH potential hydrogen ions in water

TN (%) PH (water) OC (%) EC (Ms/cm) Sand (%) Clay (%) Silt (%)

Katuke
 0–20 0.1 5.48 2.1 0.36 62 24 14
 20–40 0.09 5.49 1.3 0.20 64 27 9
 40–60 0.08 5.48 1.02 0.29 60 32 8
 60–80 0.10 5.64 1 0.27 56 34 10
 80–100 0.05 5.78 0.61 0.24 55 37 8

Sabwani
 0–20 0.12 5.53 2.73 0.78 54 27 19
 20–40 0.1 6.00 2.58 0.70 55 25 20
 40–60 0.08 6.00 1.26 0.43 52 32 16
 60–80 0.07 6.3 1.3 0.39 51 35 14
 80–100 0.08 6.10 0.92 0.22 39 45 15

Olngatongo
 0–20 0.12 5.75 2.72 0.7 51 28 21
 20–40 0.11 6.3 1.93 0.66 49 37 14
 40–60 0.06 6.92 1.29 0.76 42 43 15
 60–80 0.06 6.84 0.92 0.71 40 48 12
 80–100 0.05 7.22 0.88 1.12 36 51 13
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values. A RRMSE value of less than 20% is considered good, 
while between 20 and 30% is considered fair. Wilmott’s IOA 
represents the ratio between the sum of squared errors and 
a ‘potential error’ obtained by the sum of squared absolute 
values of deviations from the observed values to the mean 
observed values. A value of 1 indicates a perfect model fit, and 
a value of zero indicates a poor fit.

Impact Assessment of the Agricultural Management 
Strategies

The responses of various management strategies to yield 
were evaluated at the county scale using the validated model. 
Accordingly, long-term (1984–2021) yield simulations were 
conducted at 77 sites in the study area (Fig. 4). The sites 
correspond to soil profile locations from the global high-res-
olution soil database for crop modelling applications (Han 
et al., 2015). The dataset was synergistically generated by 
combining ISRIC SoilGrids (http:// soilg rids. org/) and the 
AfSIS (http:// afric asoils. net/) projects, yielding global soil 
information at a 10 km resolution (0.10° × 0.10°). Each 
selected location had the physical and chemical properties 
required by the DSSAT model simulations. The data attrib-
utes included bulk density, organic carbon, clay percentage, 
silt percentage, soil pH, and cation exchange capacity at 
various soil profile levels. In addition, soil hydraulic prop-
erties, including saturated hydraulic conductivity, soil water 
content at field capacity, wilting point, and saturation, were 

estimated using pedo-transfer functions (Han et al., 2019). 
The global high-resolution soil database for crop modelling 
applications also contained country-specific data. SOL files. 
These files were merged with the point shapefile to extract 
the soil profile properties at various soil depths.

The 77 locations were also used to extract weather 
variables from weather databases. Long-term precipitation 
data were sourced from the Climate Hazards Infrared 
Precipitation (CHIRPS) (Funk et al., 2015). The global 
product has been generated by blending satellite and 
observed station data. CHIRPS has provided reliable weather 
data for conducting environmental assessments, especially 
in the context of SSA, where weather station coverage is 
poor and with incidences of missing data (Kiprotich et al., 
2021; Sacré Regis et al., 2020). Daily CHIRPS precipitation 
datasets covering 1984–2021 were accessed and extracted 
for the selected locations using the Google Earth Engine 
(GEE) and saved in table format. Daily solar radiation and 
minimum and maximum temperature data for the same 
period were obtained from the National Aeronautics and 
Space Administration (NASA) Langley Research Center 
(LaRC) Prediction of Worldwide Energy Resources 
(POWER) using the nasapower package in R (Sparks, 
2018). The weather files were prepared according to the 
DSSAT input-specific format using the Weatherman Version 
4.7.5.0 tool in DSSAT (Pickering et al., 1994). Together with 
management and the imported soil grids, simulations for the 
strategies were conducted, and statistical yield metrics such 

Fig. 4  Locations used in simu-
lating long-term (1984–2021) 
maize yield in Trans Nzoia 
County

http://soilgrids.org/
http://africasoils.net/
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as the mean, standard deviation, and variance were used for 
further analysis.

The present study evaluated 60 independent factorial 
combinations from four management strategies. The 
management strategies comprised five sowing dates (15 
February, 01 March, 15 March, 01 April, and 15 April), 
two water management strategies (rainfed and irrigation 
at 40 mm 40 days after sowing), and three nitrogen levels 
(N1 = 30 kg  ha−1, N2 = 50 kg  ha−1, and N3 = 75 kg  ha−1), all 
for the two different cultivars CV1 = H614 and CV2 = KH600-
23A. The evaluation was conducted for each cultivar and 
covered 38  years (1984–2021). The five sowing dates 
correspond to very early, moderately early, early, mid, and 
late sowing dates, which are regular sowing practices in the 
region. The 30 N kg  ha−1 corresponds to the low nitrogen 
application rate, and the 50 and 75 N kg  ha−1 represent the 
conventional and the recommended nitrogen fertilization rates, 
respectively (Chebet et al., 2017). Four weeks after planting, 
an equal amount of nitrogen was top dressed in the form of 
urea for each fertilization strategy. The assessment of water 
management tested the effect of providing supplementary 
irrigation to support early growth under situations of late 
precipitation onset or inadequate precipitation.

The multi-factorial analysis of variance (ANOVA) 
analyzed the 60 management strategies to identify whether 
(a) individual management strategies and (b) whether multi-
factorial feedback mechanisms impact maize yield (Chambers 
et al., 2017). ANOVA estimates multi-variate best-fitting linear 
combinations for the different combinations of management 
strategies on yield. Based on these linear combinations and 
residuals, the  H0-hypothesis ‘there are no feedbacks between 
the management strategies’ was tested at a significance level 
(p = 5%). If the calculated p value is less than or equal to the 
significance, the test is significant, and the  H0-hypothesis is to 
be rejected. This would indicate with a high probability that 
yield is not independent of the management strategies. For 
the multi-factorial ANOVA, the test shows whether feedbacks 
amongst multiple factors are detectable. The ANOVA variance 
was calculated using the ‘aov’ function in the ‘dplyr’ package 
(Wickham & François, 2014) of the R programming software 
(R Core Team, 2020).

Maize Yield Trends and Stability

The trend of maize yield under the management strategies 
was analysed using the Mann–Kendall (MK) (Kendall, 1975; 
Mann, 1945) and Sen’s Slope Estimator (SSE) (Sen, 1968) 
statistical tests. MK is a nonparametric test that detects the 
monotonic trend in time series data. The method’s tau statistic 
shows whether the monotonic trend is increasing or decreasing. 
The p value score shows the significance or nonsignificance of 
the monotonic trend at a 5% significance level.

The MK test is mathematically expressed as:

where n represents the time series data points (X1, X2……
Xn) and sgn is a value assigned to each data point based on 
the difference between each pair of time series data. The 
conditions for sgn are:

Kendall’s tau τ is computed as:

Accordingly, τ ranges from − 1 for a monotonic negative 
trend to + 1 for a monotonic positive trend.

The SSE statistic (Eq. 8) indicates the magnitude and 
direction of the trend. The statistic is a ratio of the difference 
between data points and their respective ranks. SSE is 
expressed as:

where n represents the time steps, and j and k represent 
the ranks of the data points. Accordingly, the n values are 
arranged from smallest to largest in the calculation of the 
SSE.

The SSE magnitude is computed as the median value of 
the slopes using Eq. 9.

The MK technique is robust in handling outliers and can 
effectively model space–time data. Furthermore, it tolerates 
skewed distributed data and thus transcends the assumptions 
present in parametric tests (Hamed, 2008). The trend 
analysis was based on the long-term (1984–2021) annual 
maize yield simulations. The trend analysis was conducted 
at the pixel level to provide insights into spatial variation and 
involved only those strategies with significant effects based 
on the factorial ANOVA.

Mann Kendall and SSE statistical tests have currently 
gained traction in assessing maize yield responses to trends 
of meteorological variables (Gadedjisso-Tossou et al., 2020; 
Mumo et al., 2018). Other studies have extended the capa-
bilities to evaluate maize yield trends in evolving climates 
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(Bekuma Abdisa et al., 2022; Ojara et al., 2022; Zhang 
& Lu, 2021). Therefore, the 38 years of yield simulations 
from a well-calibrated and evaluated DSSAT-CERES-Maize 
model were analysed in the study region. Point-based yield 
estimations were interpolated to produce continuous raster 
surfaces using the kriging technique in the ArcGIS envi-
ronment. The raster surfaces for the management strategies 
were then subjected to trend analysis using the ‘raster’ and 
‘Kendall’ packages in R statistical software (Hijmans et al., 
2022; McLeod, 2005). The ‘calc’ function from the Kendall 
package generated surfaces of Kendall's tau, p values, and 
Sen’s slopes. The raster surfaces for the p values (not shown) 
were significant at a 5% significance level.

Results

DSSAT–CERES‑Maize Model Calibration

The DSSAT–CERES-Maize model calibration results 
using GLUE for cultivars H614 and KH600-23A are 
shown in Tables 3 and 4, respectively. The accuracy of 
the simulations from the calibrated CSPs (Table 3) was 
assessed by comparing the simulated days to anthesis, days 
to maturity, LAI, and dry weight at harvest to the cor-
responding observations (Table 4). The results revealed 
excellent agreement between the model simulations and 
the measured parameter values. The simulated days to 

Table 3  Calibrated CSPs for the 
H614 and KH600-23A cultivars

P1-Thermal time from seedling emergence to the end of the juvenile phase (expressed in degree days above 
a base temperature of 8 °C) during which the plant is not responsive to changes in photoperiod
P2-Extent to which development (expressed as days) is delayed for each hour increase in photoperiod 
above the longest photoperiod at which development proceeds at a maximum rate (which is considered to 
be 12.5 h)
P5-Thermal time from silking to physiological maturity (expressed in degree days above a base 
temperature of 8 °C)
G2-Maximum possible number of kernels per plant
G3-Kernel filling rate during the linear grain filling stage and under optimum conditions (mg/day)
PHINT-Phyllochron interval, the interval in thermal time (degree days) between successive leaf tip 
appearances

P1 (°C day) P2 (day) P5 (°C day) G2 (No. 
Kernels/
ear)

G3 (mg/day) PHINT (°C day)

H614 290.8 0.471 921.2 796.8 5.26 39.74
KH600-23A 345.6 0.5 971.2 777.3 7.12 36.78

Table 4  The DSSAT–CERES-Maize model calibration statistics for anthesis, physiological maturity, LAI, and grain yield for maize cultivars 
H614 and KH600-23A

DW is dry weight, LAI is leaf area index, and DAS is days after sowing

H614

Observed mean 
n = 42

Simulated mean 
n = 42

MAE RMSE RRMSE (%) IOA

Anthesis (DAS) 98 97 1 2 2.0 0.95
Maturity (DAS) 191 198 1 2 1.0 0.89
Maximum LAI  (m2  m−2) 3.82 3.70 0.29 0.35 9.2 0.69
Grain yield (kg DW  ha−1) 4150 4134 264.8 332.9 8.1 0.75

KH600-23A

Observed mean 
n = 36

Simulated mean 
n = 36

MAE RMSE RRMSE (%) IOA

Anthesis (DAS) 106 108 7 8 3 0.92
Maturity (DAS) 209 206 6 7 3.4 0.48
Maximum LAI  (m2  m−2) 3.9 4.2 0.44 0.50 12.8 0.58
Grain yield (kg DW  ha−1) 5209 5316 185.3 238.6 5.1 0.81
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anthesis were in close agreement with the observed days 
for both cultivars. However, the model slightly underes-
timated the anthesis for the H614 cultivar and overesti-
mated the anthesis for the KH600-23A cultivar. The oppo-
site was, however, noted in the simulation of the days to 
maturity. In this case, the model overestimated the days to 
physiological maturity for the H614 cultivar and underes-
timated those for KH600-23A.

The simulated and observed days to anthesis and 
maturity statistical values ranged between 1 and 7 days 
for MAE, 2 and 8 days for RMSE, and 0.48 and 0.95 for 
IOA for both cultivars. The IOA value for KH600-23A 
was low compared to that of the H614 variety, implying 
that the model simulations for the latter agreed well with 
the observations (Willmott, 1984). Additionally, the LAI 
and yield simulations for both cultivars were adequately 
simulated. The LAI RMSE was 0.35 (H614) and 0.44 
(KH600-23A). Both cultivars displayed RRMSE values 
below 13% for the LAI, signifying good model performance. 
The grain yield RMSE values were below 350 kg  ha−1 for 
both cultivars, indicating excellent model performance. 
The obtained accuracies demonstrate the credibility of the 
CERES-Maize model in representing genetic variation in 
Trans Nzoia County.

DSSAT‑CERES‑Maize Model Evaluation

The model performance was evaluated independently using 
experimental data from the 2015 growing season. Grain 
yield (Fig. 5) and soil water content were the variables with 
complete data at all sites and were therefore used for the 
evaluation (Figures S3-S5 in the supplementary file). The 
assessment of the DSSAT–CERES-Maize model showed 
high accuracy, with RMSE values of 642 and 810 kg  ha−1 

for the H614 and KH600-23A cultivars, respectively. The 
plot showed that the model underestimated low yields and 
overestimated high yields for the H614 cultivar. For the 
KH600-23A cultivar, the overestimation of yields was more 
pronounced across the different yield ranges. For example, in 
some fields, the model overestimated yields by about 400 kg/
ha (Fig. 5b). The overestimation increased the RMSE error 
and decreased the coefficient of determination relative to 
the H614 cultivar. However, the DSSAT-CERES-Maize 
model reliably characterized the maize growth conditions 
of the cultivar types in the study area. In addition, the model 
represented well the soil water content across the different 
crop phenological stages. The measured versus simulated 
soil water balance comparisons showed a close agreement 
between the measured and model simulated values (Fig-
ures S3-S5 in the supplementary file).

Impact Assessment of the Agricultural Management 
Strategies

The calibrated and evaluated model identified feasible strat-
egies for enhancing yields in the study region. The results 
from the Tukey-HSD (Fig. 6) and the factorial ANOVA 
(Table 5) are presented.

The main effects of three independent management 
strategies, sowing dates, cultivars, and nitrogen levels, 
were significant (p < 0.05) based on the factorial ANOVA. 
However, the main effect of the water management strat-
egy was not significant. The model simulated high yields 
and low yield variability for early sowing dates (Figure 
S1a of the supplementary file). The earliest sowing date 
(SD1) revealed the highest average yield of 5124 kg  ha−1 
and the lowest standard deviation of 1244 kg  ha−1. SD4 
showed the lowest average yield of 4790 kg  ha−1, while the 

Fig. 5  Comparison of observed and simulated grain yield for the A H614 and B KH600-23A cultivars using experimental data for the 2015 
maize growing season. The solid red line indicates the regression line, and the dashed blue lines are the 95% confidence interval
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highest variability was observed on the SD3 date (standard 
deviation = 1320 kg  ha−1). The nitrogen fertilization effect 
on yield showed that the highest nitrogen rate (N3) could 
yield an average of 5738 kg  ha−1 (Figure S1b of the sup-
plementary file). The variability under this nitrogen rate 

was similarly high (standard deviation = 1195 kg   ha−1). 
The lowest nitrogen application rate had the lowest aver-
age yield (3872 kg  ha−1) and variability (standard devia-
tion = 795 kg  ha−1). The mean yield for cultivar CV1 was 
4636  ha−1 (Figure S2 of the supplementary file), with a 

Fig. 6  DSSAT-CERES-Maize simulated yields under a various nitro-
gen fertilization rates and sowing dates interactions and b nitrogen 
fertilization rates and cultivars interactions. SD1, SD2, SD3, SD4, 
and SD5 are sowing dates corresponding to mid-February, early 
March, mid-March, early April, and mid-April, respectively. N1, N2, 

and N3 nitrogen levels at 30, 50 kg  ha−1, and N3 = 75 kg  ha−1. CV1 
and CV2 show H614 and KH600-23A cultivars. The bar charts rep-
resent the mean, and the error bars represent the standard deviation. 
Treatments that share a common letter are not significantly different 
(p > 0.05)

Table 5  Results of the factorial 
ANOVA showing the main 
effects and their interactions 
on maize yield in Trans Nzoia 
County

Significance. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1
SD sowing date, N nitrogen, CV cultivar, WM water management

Strategy Df Sum Sq Mean Sq F value Pr (> F)

SD 4 7.76E + 07 1.94E + 07 21.754  < 0.001**
CV 1 4.69E + 08 4.69E + 08 525.574  < 0.001**
N 2 2.89E + 09 1.45E + 09 1620.523  < 0.001**
WM 1 3.30E + 06 3.30E + 06 3.701 0.05
SD:CV 4 7.41E + 06 1.85E + 06 2.077 0.081
SD:N 8 4.98E + 07 6.22E + 06 6.978  < 0.001**
CV:N 2 1.96E + 07 9.78E + 06 10.968  < 0.001**
SD:WM 4 1.05E + 05 2.63E + 04 0.029 0.100
CV:WM 1 2.55E + 03 2.55E + 03 0.003 0.957
N:WM 2 1.28E + 05 6.41E + 04 0.072 0.930
SD:CV:N 8 1.40E + 06 1.75E + 05 0.196 0.992
SD:CV:WM 4 1.24E + 05 3.11E + 04 0.035 0.1
SD:N:WM 8 1.73E + 05 2.17E + 04 0.024 1
CV:N:WM 2 3.55E + 04 1.77E + 04 0.02 0.980
SD:CV:N:WM 8 4.51E + 04 5.64E + 03 0.006 1
Residuals 4560 4.07E + 09 8.92E + 05
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standard deviation of 1188 kg  ha−1. CV2 revealed the high-
est average yield (5273 kg  ha−1) and variability (standard 
deviation = 1291 kg  ha−1).

The factorial ANOVA further revealed significant 
effects in the interactions of the main effects (Fig. 6). The 
interaction between sowing dates and nitrogen fertilization 
was significant at the 5% significance level. Early sowing 
dates and the highest nitrogen level revealed the highest 
yields. SD1 and N3 fertilization had the highest yield of 
approximately 6062 kg  ha−1. SD1 and SD2 interaction with 
the highest nitrogen fertilization rate showed significantly 
higher yields than late sowing dates. Similarly, N2 
fertilization interaction with early sowing dates showed 
significantly higher yields than late sowing dates. The 
average yields under the nitrogen levels N2 and N3 
decreased as the sowing dates advanced gradually, and the 
variability also increased. The KH600-23A cultivar revealed 
high yields (6148 kg  ha−1) under N3 nitrogen application. 
The H614 cultivar showed low yields (3611 kg  ha−1) under 
the lowest nitrogen fertilization (N1). The results revealed 
the lowest yield deviation between the highest and the lowest 
fertilization levels compared to the KH600-23A cultivar. 
The results confirm nutrient availability as a yield-limiting 
factor in the study region.

The interaction effect of the sowing dates and cultivars 
was not significant. Additionally, sowing dates and water 
management interaction strategy did not show a significant 
effect. This was also similar to the third-order management 
interactions. Based on the evaluation of the management 
strategies, the combination of the early sowing dates, the 
KH600-23A cultivar, and the highest nitrogen fertilization 
was found to be a feasible strategy for enhancing maize yield 
in the study area. Sowing in late February and early March 
may be beneficial to farmers in boosting yields. The statistics 
showed that farmers could improve production by 52% if 
cultivar KH600-23A was planted in mid-February under 
nitrogen fertilization of 75 kg  ha−1 with equal top dressing 
amount compared to the latest sowing date, with low 
nitrogen level and the slightly low yielding H614 cultivar.

The application of supplementary irrigation did not sub-
stantially affect maize yield (Table 5). The main effect of 
water management showed no significant effect on maize 
yield. This means that the precipitation in the region is 
currently sufficient for maize growth, and any moisture 
enhancement at the early vegetative stage may not signifi-
cantly impact maize production. Similarly, the water man-
agement interaction with both cultivar and nitrogen levels 
did not significantly affect maize yield. A similar effect was 
observed for the third-order interactions of water manage-
ment and other strategies.

Maize Yield Trends

The SSE was used to evaluate the yield trends for the high 
potential management strategies. Consequently, the early 
sowing date (SD1) was used to model the trend and mag-
nitude of the long-term yield simulations. The analysis 
informed regions in our study area where particular man-
agement practices should be intensified. Maps (Fig. 7) were 
used to visualize the spatial variation in the magnitude 
results from the MK and SSE tests.

The SSE variation from the MK trend analysis revealed 
the varied magnitude of yield trends in the region. The 
maps showed a significantly decreasing trend in most parts 
of the study region (light green to red colour). Some areas 
in the northern and southern parts of the county indicated 
a significant increasing trend under various management 
practices. The eastern region of the county showed a 
significantly decreasing trend in yields, and the decrease was 
more pronounced under high nitrogen levels. The decrease 
influenced both cultivars in the eastern regions of the county. 
In contrast, the significant positive magnitude of the H614 
cultivar was higher than that of KH600-23A in the western 
region under the high nitrogen level. In addition, the results 
revealed a modest yield decrease in the H614 cultivar under 
nitrogen levels N1 and N2.

Discussion

Calibration and Evaluation of the DSSAT–
CERES‑Maize Model

The present study calibrated and evaluated the DSSAT-
CERES-Maize model using multiseason experimental data 
in Trans Nzoia County. The model was further applied to 
assess various agricultural management strategies and 
their effects on maize yield. Generally, the model statistics 
from the calibration and evaluation processes showed 
excellent performance of the DSSAT-CERES-Maize 
model in simulating maize growth and development in the 
study region. The model’s credibility was indicated by the 
low RMSE and MAE values and a high IOA between the 
observed yield and the simulated values. Additionally, the 
simulation of phenological development and grain yield at 
maturity were within the acceptable thresholds (< 10%) and 
(< 20%), respectively, according to Jamieson et al., (1991). 
The accuracy of the DSSAT-CERES-Maize model for maize 
yield simulation aligned with other studies in Kenya that 
calibrated and evaluated the model for various applications 
(Aluoch et al., 2022; Gummadi et al., 2020). In addition, 
other studies conducted in the wider East Africa and SSA 
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regions found robust accuracies in the CERES-Maize model 
calibration and evaluation under various managements 
(Chisanga et al., 2020; Mourice et al., 2015; Volk et al., 
2021). Other studies that tested nitrogen and irrigation 
applications achieved relative accuracies to our study in 
predicting maize yield (Malik et  al., 2019). Similarly, 
studies that evaluated the model’s performance in simulating 
phenological stages found comparable results to our findings 
(Feleke et al., 2021).

Simulation of Agricultural Management Strategies

The main management strategies with respect to sowing 
dates, nitrogen levels, and cultivars revealed significant 
influences on maize yield in the region. Based on the 
results, early sowing dates, especially SD1, contributed to 
the highest yield outcome. The effect could be attributed to 
the interplay of factors, including the suitability of weather 
conditions at various plant stages and the duration of the 

Fig. 7  Maps indicating the 
spatial variation in the magni-
tude of the maize yield trend 
for the study area under the 
early sowing date (SD1). Light 
green to red colour shows a 
monotonically decreasing trend, 
whereas forest green to dark 
green indicates a monotonically 
increasing trend in maize yields. 
The variations for cultivar H614 
at nitrogen levels N1, N2, and 
N3 are represented by maps 
(a), (c), and (e), respectively. 
Maps (b), (d), and (f) show the 
variation in cultivar KH600-
23A at nitrogen levels N1, N2, 
and N3. The generated surfaces 
were statistically significant at p 
value < 0.05 (maps not shown)
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linear and exponential grain-filling phases (Tsimba et al., 
2013). Sowing date is a critical factor in crop growth, as 
it influences the amount of intercepted radiation and its 
contribution to photosynthesis (Honnaiah et  al., 2021). 
Additionally, the different sowing dates may have influenced 
the attainment of particular phenological stages, for 
example, the grain-filling stage, which is highly sensitive 
to weather variation (Zhou et al., 2017). The early sowing 
allows the vegetative and grain-filling stages to coincide 
with the high rainfall experienced in May and July in the 
region. Therefore, moisture deficiency is reduced, and the 
plant attains the maximum possible kernels per ear (Walne 
& Reddy, 2022). The benefits of early sowing dates on crop 
growth and yields have been confirmed by other studies 
conducted in western Kenya (Almekinders et al., 2021). 
Crop modelling applications in the African continent also 
revealed that production is highly dependent on planting 
windows (Chisanga et al., 2019; MacCarthy et al., 2018; 
Tofa et al., 2020).

The main effect of the cultivar revealed a huge potential 
of the KH600-23A cultivar for enhancing yields in the 
region. The cultivar is relatively new, with a yield potential 
between 9.5 and 15 tonnes per hectare, out-performing other 
cultivars that have been in existence (Wamalwa, 2013). H614 
is one of the oldest cultivars and is popular among farmers, 
especially in high-altitude regions (Almekinders et  al., 
2021). According to Obunyali et al., (2019), new cultivars 
are slowly being adopted due to a lack of performance 
data under farmers’ conditions. The assertion suggests 
that evaluating various cultivars in different production 
conditions is crucial for agrotechnology transfer and 
farmers’ adoption. The calibration results from the present 
study showed that the KH600-23A cultivar needed more 
heat units to attain the juvenile and physiological maturity 
stages than the H614 cultivar. The difference in crop life 
cycles of the cultivars is a possible explanation for the 
variation in yield response. Other studies that assessed the 
response of maize growth cycles found differences in yield 
resulting from unique cultivar traits (Lana et al., 2017).

The contribution of the main effect of nitrogen application 
levels on the maize yields was also significant. The lowest 
nitrogen application level (N1) attained significantly lower 
yields than the recommended nitrogen level. In Kenyan 
and African landscapes, nitrogen is the most limiting 
factor in maize production, and its supply in optimum 
quantities improves yields (Yue et al., 2021). The nitrogen 
application rates in the region fall short of the required 
amounts for better yield production (Pasley et al., 2020). 
In addition to the poor soil fertility in Kenya, other nutrient 
enhancement barriers include soaring fertilizer prices 
and land degradation that exacerbate nutrient depletion 
(Chebet et al., 2017; Kiboi et al., 2021; Nathan et al., 2022). 
Therefore, soil nutrient mining without replenishment efforts 

or amendments significantly hampers soil productivity and 
leads to lower yields. Consistent with the current assessment, 
studies conducted in nitrogen-limited conditions in Kenya’s 
western region showed that an increase in inorganic and 
organic fertilizer resources significantly increased maize 
yield (Chebet et al., 2017). The same observations were also 
noted in other studies conducted in central Kenya (Jindo 
et al., 2020; Oduor et al., 2021). Therefore, opportunities 
for enhancing nitrogen fertilization are paramount, given 
the high nitrogen use efficiency in Kenyan environments 
(Bonilla-Cedrez et al., 2021).

Supplementary irrigation 40 days after sowing did not 
increase maize yields as anticipated. Trans Nzoia County 
falls within Kenya's humid and subhumid agroclimatic 
zones (Kabubo-Mariara & Karanja, 2007). These 
zones are characterized by sufficient moisture and low 
evapotranspiration levels. Deep and highly porous clay 
soils characterize the present study region with good water 
retention capacity (Muchena & Gachene, 1988). The current 
study tested the supplementary irrigation potential six 
weeks after sowing. The period coincides with the onset 
or continuity of the long rains; therefore, increasing the 
water supply in the model simulations may not impact the 
harvested yields. During this time, soil water is sufficient, 
and therefore, any additional amount of water has a minimal 
effect on yield. Based on a long-term assessment of rainfall 
characteristics in western Kenya by Mugalavai et  al., 
(2008), Trans Nzoia County receives annual mean rainfall 
amounting to over 1200  mm and equally early rainfall 
onsets. Additionally, Bryan et al., (2013) reported that in 
humid sites with adequate rainfall, soil water conservation 
measures might have a limited effect on yield, sometimes 
resulting in reduced yield due to increased nitrogen leaching. 
Our findings are corroborated by Torrion and Stougaard, 
(2017), who found a poor irrigation response on the harvest 
index in the Montana region of the United States. The study 
found a positive influence of the practice on yields only 
during hot and dry years.

The interaction effects of sowing date and nitrogen level 
significantly impacted maize yield. Similarly, nitrogen levels 
and cultivar interactions had a significant effect on maize 
yield. The study revealed that high nitrogen levels and early 
sowing dates combined with the high-yielding cultivar 
increased regional production. Chisanga et al., (2021a) also 
noted the significance of the interaction of sowing dates and 
nitrogen fertilization on maize yield and yield components 
in the Zambian agricultural landscapes. Sowing dates 
affect the accumulated temperature units and duration of 
radiation interception, which influences nitrogen uptake and 
utilization efficiency (Caviglia et al., 2014). Synchronizing 
fertilizer amounts with sowing dates can increase nitrogen 
use efficiency, especially under optimum weather conditions 
(Hussain et al., 2022). Srivastava et al. (2018) also found 
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the significance of sowing dates and fertilization rate on 
nitrogen use efficiencies and losses in maize production. 
Similarly, the interaction effects of cultivar and nitrogen 
were significant, with KH600-23A and high nitrogen 
fertilization levels showing the most feasible strategy for 
increasing maize yields. Abera et al. (2017) similarly found 
a significant interaction effect between improved maize 
varieties and grain yield.

Maize Yield Trend Analysis

Based on the trend analysis, the management strategies 
demonstrated spatial variation in yield variation. The 
response of the management strategies to the increasing 
and decreasing trends in yield varied across the study 
region. The results indicated that the southern and 
western parts of Trans Nzoia County respond better to 
maize yield increase than the eastern regions. Maize yield 
in the eastern region showed a decreasing trend of up to 
20 kg  ha−1 annually. However, the trend in the western 
and southern parts demonstrated an increase of up to 
10 kg  ha−1. A possible explanation for this observation 
is the varying soil and weather conditions unique to the 
region. While the western part of Trans Nzoia County 
is characterized by soils of Humic Nitisol and Cambisol 
origin with high water-holding capacities, the eastern 
part is dominated by Ferralsols and Regosols with limited 
water-holding capacities and poor chemical properties. 
The poor condition of soils has motivated farmers to invest 
in organic manures and leguminous trees as alternatives to 
improving soil fertility (Nekesa et al., 2007). In addition, 
the western and southern regions of Trans Nzoia receive 
high rainfall (Trans Nzoia County Government, 2018).

The spatial assessment of the yield magnitude showed 
a modest decrease under low nitrogen fertilization than 
under high nitrogen fertilization, especially in the eastern 
parts of the county. A possible reason for this finding is 
that the combined precipitation and nitrogen effects may 
have resulted in a higher loss of nutrients. A study on 
leaching and fertilizer losses in western Kenya showed 
that leaching is significantly lower in drought seasons 
(Russo et al., 2017). Compounded with highly porous and 
well-drained soils in the eastern region of Trans Nzoia 
County, the leaching of nutrients might have been the 
reason for the high decrease in yields under the highest 
nitrogen level. Our study revealed yield enhancement 
spots where management needs to be upscaled to optimize 
resource use and enhance production. Tailored measures 
for improving nutrient use efficiency in the eastern region 
are feasible, whereas an increase in fertilizer application 
may improve yields in the northern parts. The testing of 
supplementary irrigation at different stages may also be 
conducted to investigate the effect of irrigation on yields in 

this region. Our study found no significant impact of early 
irrigation on maize yield. However, examining scheduling 
and varying irrigation levels at various crop stages may 
further reveal significant effects.

The performance of the DSSAT–CERES-Maize in 
modelling maize growth conditions and production in 
Trans Nzoia County was evaluated with satisfactory model 
accuracies for yield and phenological stages predictions. 
However, it should be noted that crop models have 
inherent limitations that stem from input data, calibration 
processes, and evaluation procedures. As such, the model 
might not account for all the functions in the plant, soil, 
and atmosphere continuum. As such, some biotic and 
abiotic factors that influence plant growth and production 
may not be fully accounted for by the model. For example, 
the DSSAT–CERES-Maize has no modules for modelling 
pests, disease and weed effects (Lin et al., 2015). Also, the 
crop model parameters are relevant for regions where the 
data was sourced, calibrated and evaluated. The conditions 
underpin the validity of the model for application in 
local environments where environmental conditions are 
adequately represented. Transferring these parameters to 
other locations with significant shifts in environmental 
factors may result in large model uncertainties.

Conclusion

This present study on multi-management maize yield 
assessment underpins the merits of cultivars, sowing 
dates, and nutrient management as potential strategies for 
improving maize yields in Trans Nzoia County. Cultivars, 
sowing dates and nutrient application were shown to increase 
yield by up to 600, 300 and 750 kg   ha−1, respectively. 
Supplementary irrigation did not affect maize yield in the 
studied region implying sufficient water availability under 
no irrigation conditions. The study concludes that the 
application of 100 kg N  ha−1 and early sowing spanning 
mid-February to Mid-March has a greatest potential for 
enhancing yields in the study region. Also, cultivar KH600-
23A is preferred for stabilizing yields in the area spanning 
the southern to northern parts of the county, whereas 
H614 is better for stabilizing yields in the western zone. 
Therefore, we recommend that agricultural extension 
services should be aligned with site-specific measures for 
optimal production returns. Additionally, low maize yield 
regions need to intensify integrated soil fertility measures, 
including organic manures, cereal‒legume intercropping, 
agroforestry, and minimum tillage to improve soil fertility. 
These practices benefit resource-constrained smallholder 
farmers who cannot afford mineral fertilizers. The less 
costly measures that include early sowing and proper 
cultivar choice are critical in improving production and 
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maximising resource use by smallholder farmers. The 
assessment provided insights into the regional dimensional 
effects on maize yield and enhanced the understanding of 
yield enhancement measures at various locations. Based on 
the study’s findings, farmers would benefit in particular in 
the low-yield response zones by aligning their production 
with better suited management practices for their region. 
Future studies could assess the SSAMS and its response 
to maize production in other agroclimatic zones in Kenya 
given field specific yield data. The findings of this study 
are of primordial importance to farmers, the government, 
and policy-makers in devising region-specific measures for 
improving maize production.
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