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ABSTRACT
The gut microbiota plays a fundamental role in human nutrition
and metabolism and may have direct implications for type 2
diabetes and associated preconditions. An improved understanding
of relations between human gut microbiota and glucose metabolism
could lead to novel opportunities for type 2 diabetes prevention,
but human observational studies reporting on such findings have
not been extensively reviewed. Here, we review the literature on
associations between gut microbiota and markers and stages of
glucose dysregulation and insulin resistance in healthy adults and
in adults with metabolic disease and risk factors. We present the
current evidence for identified key bacteria and their potential
roles in glucose metabolism independent of overweight, obesity,
and metabolic drugs. We provide support for SCFAs mediating
such effects and discuss the role of diet, as well as metabolites
derived from diet and gut microbiota interactions. From 5983 initially
identified PubMed records, 45 original studies were eligible and
reviewed. α Diversity and 45 bacterial taxa were associated with
selected outcomes. Six taxa were most frequently associated with
glucose metabolism: Akkermansia muciniphila, Bifidobacterium
longum, Clostridium leptum group, Faecalibacterium prausnitzii,
and Faecalibacterium (inversely associated) and Dorea (directly
associated). For Dorea and A. muciniphila, associations were inde-
pendent of metabolic drugs and body measures. For A. muciniphila
and F. prausnitzii, limited evidence supported SCFA mediation
of potential effects on glucose metabolism. We conclude that
observational studies applying metagenomics sequencing to identify
species-level relations are warranted, as are studies accounting
for confounding factors and investigating SCFA and postprandial
glucose metabolism. Such advances in the field will, together with
mechanistic and prospective studies and investigations into diet–gut
microbiota interactions, have the potential to bring critical insight
into roles of gut microbiota and microbial metabolites in human
glucose metabolism and to contribute toward the development of
novel prevention strategies for type 2 diabetes, including precision
nutrition. Am J Clin Nutr 2022;116:862–874.

Keywords: glucose metabolism, gut microbiota, humans, insulin
resistance, prediabetes, short-chain fatty acids, microbial metabo-
lites, diet–gut microbiota interactions, type 2 diabetes prevention,
precision nutrition

Introduction
Mounting evidence has linked the gut microbiota to health

status in humans. It has become evident that gut microbes play
a fundamental role in human nutrition and metabolism (1, 2)
and that alterations in microbiota composition, diversity, and
function may have direct implications for metabolic derange-
ments including type 2 diabetes and associated preconditions
(1, 3). This insight has led to extensive research to identify
microbial taxa and functions which could dictate or be targets for
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preventative actions and treatment, including dietary strategies
(4–6). At present, we recognize that specific dietary components,
such as certain dietary fibers, can increase the abundance of
specific gut bacteria (7, 8) or result in differential health responses
determined by specific bacteria (9). Yet, it is unknown which gut
bacteria, and if bacteria determined a priori, can be utilized for
precision prevention in the general population or in different risk
groups.

Type 2 diabetes is a global epidemic and prevalence is
projected to increase (10, 11). Human observational studies
show significant differences in the composition and function
of the gut microbiota between healthy individuals and people
with prevalent type 2 diabetes (3, 12, 13). However, these
observations could partly or entirely be driven by antidiabetic
medication, drugs for common metabolic comorbidities (14, 15),
overweight or obesity (16, 17), and other confounding factors.
Causal evidence for the role of gut microbiota in the etiology
of type 2 diabetes is mostly limited to animal studies and it
remains unclear in what specific processes of the pathogenesis
gut microbiota may be involved (3).

Perturbed glucose metabolism plays a central role in type 2
diabetes development. Interactions between the gut microbiota
and diet, especially dietary fibers, are closely linked with glucose
regulation (18–22), potentially through mechanisms involving
microbial metabolites including, but not limited to, SCFAs and
succinate (13, 23–25). Novel insights into relations between gut
microbiota, microbial metabolites, and dysregulations in glucose
metabolism can contribute to the understanding of the role of
gut microbiota in type 2 diabetes development and lead to novel
opportunities for prevention. Yet, despite the increasing number
of human observational studies in this field, this literature has not
been extensively reviewed.

The aim of this scoping review was to identify and summarize
the evidence for gut bacteria most frequently and consistently
associating with markers and stages of glucose dysregulation
and insulin resistance in adults with and without metabolic
disease and common metabolic risk factors. We assessed if there
was evidence supporting a role for these bacteria in glucose
metabolism independent of overweight, obesity, and metabolic
drugs and the potential mediation by SCFAs and succinate.
Finally, we identified limitations in the current literature and
provide future directives that could contribute toward the
development of novel microbiota-based prevention strategies for
type 2 diabetes, including precision nutrition.

Methods
A scoping review was conducted through PubMed literature

searches to capture studies reporting on associations between
fecal bacteria at different taxonomic levels, as well as α diversity,
and diabetes risk outcomes related to blood glucose and insulin.
Glucose-related outcomes included fasting and postprandial
glucose, glycated hemoglobin (HbA1c), and presence of predi-
abetes as opposed to normoglycemia. Insulin-related outcomes
included fasting and postprandial insulin concentrations and
insulin resistance, e.g., HOMA-IR, insulin sensitivity measured
with euglycemic clamp, and presence of insulin resistance.

The included literature was identified and reviewed based
on defined search strategies, criteria, and research questions

defined using the PICo (population or problem, interest, and
context) framework (26, 27) and the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses extension
for Scoping Reviews (PRISMA-ScR) checklist (Supplemental
Figure 1, Supplemental Table 1). No protocol was registered
or published a priori. PubMed-specific title and abstract words
(TiAb) and Medical Subject Headings (MeSH) search terms
were used for title and abstract words and study index
categories, respectively (Supplemental Tables 2–4). Three
literature searches acted complementarily: 1 initial search (22
November, 2019) and 2 searches specified to capture the most
recently published literature (14 June, 2021) and to expand the
review on associations with postprandial glucose and insulin
(21 December, 2021), respectively (Supplemental Tables 2–4).
Duplicate articles were removed using the Amsterdam Efficient
Deduplication (AED) method (28). The gut microbiota–related
search terms were general to allow for identification of any
relevant associations for fecal bacteria regardless of prior
knowledge. A broad range of study designs were eligible,
including intervention studies from which baseline associations
were extracted. For quality control purposes, studies with
populations or groups (for group-based comparisons) with ≤5
participants were excluded (Supplemental Table 1). Studies were
also excluded if populations had undergone recent treatments
that could influence the gut microbiota (e.g., antibiotic or
antidiarrheal treatment) or presented with extreme bowel habits
or gastrointestinal symptoms. Other exclusion criteria were non-
English publications and studies with populations with diseases
other than type 2 diabetes or cardiovascular disease or traits that
were considered nonrepresentative of the general population, e.g.,
professional athletes and pregnant females.

Records were first assessed based on titles and abstracts using
Rayyan QCRI (29); each record was evaluated by 2 individuals
in a blinded manner and conflicting assessments were resolved
upon discussion or assessment of the full text. Eligible full texts
were read by ≥1 individuals. Each included study was charted
through an independent process and a piloted form and extracted
results were limited to statistically significant results and, if
applicable, results that remained statistically significant after
adjusting for multiple comparisons (Supplemental Table 5).
Adjustments, including adjustments for diet, sex, and age, were
noted for each included article, as were whether studies reported
on SCFAs, SCFA-associated enzymes, other metabolites, or
incretins. Results were only included if there were ≥2 studies
supporting an inverse/direct association with either glucose- or
insulin-related outcomes. Any studies reporting on contradictory
findings were also included. For example, if 2 studies found
direct associations between a bacterium and glucose outcomes,
and 1 study found an inverse association, all 3 studies were
reviewed and reported. Taxa were reported using the name
recognized by NCBI Taxonomy (30) at time of submission,
bacteria reported under different synonyms were merged, and
any strain-level results were reported as species. Notably, results
for “Clostridium leptum” were reported as “C. leptum group”
when group-specific qPCR primers had been used, because the C.
leptum group (also known as Clostridial cluster IV) includes other
species and is predominated by Faecalibacterium prausnitzii, not
C. leptum (31).

Charted data on study characteristics were summarized and
visualized as a bar plot. Taxonomic trees were generated using
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FIGURE 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram summarizing the process of screening and
identification of the literature in the scoping review. (A) Original literature search. (B) Updated literature search specified to capture recent studies reporting
on associations with glucose and insulin and differences across glycemic and insulinemic groups. (C) Literature search specified for postprandial glucose and
insulin.

PhyloT version 2 (32) and visualized and annotated using iTOL
version 6 (33). Venn diagrams were created using tools available
at http://bioinformatics.psb.ugent.be.

Results

Characteristics of reviewed studies

A total of 45 studies out of 5982 initially identified records
were eligible and included in this review (Figure 1, Supplemental
Table 5). This included 20 cross-sectional studies, 15 case–
control studies, and 10 intervention-based designs, many with
study populations ranging from 100 to 2000 participants
(Figure 2) and the majority published in the past 5 y (n = 33).
Most studies (n = 40) included females and males and had 1
study location, but 2 studies included populations from different
countries (34, 35) and 1 study included a discovery cohort
and a validation cohort based in the same country (Sweden)
(36). Asian (n = 21) and European (n = 15) populations
were overrepresented. Most studies (n = 28) had applied 16S
ribosomal RNA (rRNA) gene amplification and sequencing
to measure the gut microbiota, fewer had used metagenomic
shotgun sequencing (n = 11) or qPCR (n = 6). Only 3 studies
had investigated postprandial glucose and insulin response in
relation to gut microbiota (18, 37, 38), 1 of which also reported
on associations with fasting glucose and insulin concentrations
(37) (Supplemental Figure 2B).

Bacteria associated with glucose metabolism outcomes and
their taxonomic relations

In total, 45 taxa (phyla, orders, families, genera, and species)
and α diversity were identified to be related to the studied
outcomes (Tables 1 and 2, Supplemental Figure 2A). Out
of these, 40 taxa were associated with glucose and 17 were
associated with insulin. Most taxa were presented as species.
Based on the totality of the studies included, we found that
F. prausnitzii was inversely associated with both fasting (39–
41) and postprandial insulin (37, 38) and HOMA-IR (42).
Enterobacteriaceae had a direct association with fasting (35, 43)
and postprandial glucose (18) and Haemophilus parainfluenzae
was inversely associated with fasting glucose and HbA1c
(40), prediabetes (44), and postprandial glucose (37) (Tables 1
and 2, Supplemental Table 5). [Ruminococcus] gnavus had a
higher abundance in groups with prediabetes (45) and glucose
intolerance (36) and was elevated with postprandial glucose (37).

The taxonomic relations between bacteria were investigated
in relation to our findings (Figures 3 and 4). Overall, there
were consistent inverse associations with glucose and insulin
for taxa belonging to the Oscillospiraceae family (formerly
known as Ruminococcaceae) including Faecalibacterium, F.
prausnitzii, and the C. leptum group. Inverse associations were
also found with insulin for Bifidobacterium and Bifidobacterium
longum (Figure 4). For glucose, direct associations were observed
with Enterobacteriaceae and its taxa Escherichia-Shigella and
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FIGURE 2 Bar plot of main characteristics of reviewed studies (n = 45). Data are presented as percentages of studies belonging to the different categories
of study design, study size, type of population with regards to metabolic disease and obesity, sex, geographical country of population, and main type of methods
measuring the gut microbiota. 1Only baseline results from intervention studies were included. CVD, cardiovascular disease; rRNA, ribosomal RNA; T2DM,
type 2 diabetes mellitus.

Escherichia coli, Megasphaera and Megasphaera elsdenii, and
with Streptococcus and Streptococcus salivarius (Figure 3). The
Bacteroidetes phylum and genera (Prevotella, Bacteroides, and
Alistipes) as well as Akkermansia and Akkermansia muciniphila
were inversely associated with glucose. Results were typically
more consistent for genera and species than for phyla and orders.

Evidence for the role of key gut bacteria in glucose
regulation

The most consistent and inverse associations with glucose-
and/or insulin-related outcomes were found for A. muciniphila,
B. longum, Faecalibacterium, the C. leptum group, and F.
prausnitzii (Tables 1 and 2, Figures 3 and 4). Dorea was
consistently elevated with prediabetes and positively associated
with glucose concentrations. The findings for these bacteria are
discussed in greater detail in what follows. Special attention
was given to taxonomic relations and associations with SCFAs
and microbial genes encoding for enzymes involved in SCFA
biosynthesis. We also report on evidence that supports or
contradicts the potential role of these taxa in glucose metabolism
independent of body weight, body composition, and metabolic
drugs.

A. muciniphila and Akkermansia

The abundance of A. muciniphila was inversely associated
with fasting glucose and HbA1c (45–49) and with insulin
concentrations and insulin resistance (46–48, 50) and was
lower in treatment-naïve individuals with prediabetes than in
normoglycemic controls (45, 51) (Tables 1 and 2, Figures 3
and 4). Inverse associations were also found for the genus
level (52, 53), where the association between Akkermansia and

fasting glucose withstood statistical correction for metabolic
disease diagnosis, use of metabolic drugs, as well as sex, age,
and lifestyle factors (52) (Table 1, Figure 3). Similarly, several
studies found the relation between A. muciniphila and blood
glucose and insulin to be independent of BMI (45, 47), diabetes
diagnosis and treatment (45), as well as sex and age (46, 47, 50)
(Supplemental Table 5). In 2 studies, bimodal distributions of
A. muciniphila were identified, where individuals with the lower
A. muciniphila abundance had higher glycemic and insulinemic
measures (46, 47), including an elevated glucose response after
an oral-glucose-tolerance test (46). Another study found that
patients with refractory diabetes, defined as a persistent elevation
in HbA1c despite glucose-lowering medications, had lower A.
muciniphila abundance than individuals with type 2 diabetes and
lower HbA1c levels (49).

A. muciniphila is a mucin-degrading bacterium known to
produce acetate and propionate (54), 2 SCFAs which have been
suggested to affect β-cell function and insulin secretion (55–57)
(Figure 5). In the study by Dao et al. (46), A. muciniphila was
correlated with circulating acetate, consistent with the proposed
mechanisms. Neither propionate nor butyrate were measured, nor
were SCFAs in feces.

F. prausnitzii, C. leptum group, Faecalibacterium, and
Oscillospiraceae

We found consistent evidence for reduced abundances of
F. prausnitzii (37–42), C. leptum group (42, 48, 58, 59), and
Oscillospiraceae (45, 60) with elevated insulin concentrations
and insulin resistance (Table 2, Figure 4). This included 2 studies
that reported on postprandial insulin responses and inverse asso-
ciations with F. prausnitzii (37, 38). Several studies had excluded
participants taking antidiabetic medications (39, 45, 59) and
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TABLE 2 Summary of reported associations between bacteria on different taxonomic levels and insulin-related outcomes1

Gut microbiota Insulin2 Postprandial insulin

Unadjusted
association

Adjusted for body
measures3

Adjusted for
metabolic drugs4

SCFAs or enzymes
measured

Phyla
Bacteroidetes ↓ (48, 89)

↑ (60) (60)
Firmicutes ↓ (48) ↓ (41, 60) ↓ (39, 41) (60)

↑ (39)
Proteobacteria ↓ (41) ↓ (41)

↑ (89) ↑ (60) (60)
Order

Eubacteriales5 ↓ (39, 41)
↑ (39)

Families
Clostridiaceae ↓ (45, 78, 95) ↓ (45, 78)
Lachnospiraceae ↓ (39, 41, 45)

↑ (41)
Oscillospiraceae6 ↓ (60) ↓ (45) (60)

Genera
Bifidobacterium ↓ (48) ↓ (58) ↓ (58)
Blautia ↑ (39, 45)
Clostridium ↓ (78) ↓ (39, 45, 78)

↑ (39)
Prevotella ↑ (48, 87)

Species
Akkermansia

muciniphila
↓ (46, 48, 50) ↓ (47) ↓ (47) (46)

Bacteroides
intestinalis

↓ (40) ↓ (41)

Bifidobacterium
longum

↓ (58) ↓ (39) ↓ (39)

Blautia coccoides
group

↓ (58) ↓ (58, 59)

Clostridium leptum
group

↓ (42, 48) ↓ (59) ↓ (58, 59)

Faecalibacterium
prausnitzii

↓ (40, 42) ↓ (41) ↓ (39, 41) ↓ (37, 38)

1Associations with postprandial insulin concentrations and remaining insulin outcomes are shown separately and further divided according to whether
estimations were unadjusted or accounting for body measures and/or metabolic drugs and whether SCFAs or genes encoding for enzymes in SCFA
biosynthesis were analyzed. ↓ and ↑ refer to inverse and direct associations, respectively.

2Insulin includes the studied outcomes fasting insulin, HOMA-IR, and measures of insulin resistance/sensitivity and comparisons between groups of
individuals with or without insulin resistance.

3Body measures refers to BMI, body weight, body fat or body fat percentage, waist circumference, or waist-to-hip ratio.
4Metabolic drugs include drugs such as antidiabetic drugs and drugs lowering blood pressure or blood lipids.
5Previsously Clostridiales.
6Previously Ruminococcaceae.

other metabolic drugs (59) and 1 study found null associations
with metformin, a common antidiabetic drug (41) (Supplemental
Table 5). There was limited and overall inconclusive evidence for
potential bias of overweight and obesity.

Consistent inverse associations were also observed for glucose
with the C. leptum group (42, 48, 59, 61) and Faecalibacterium
(39, 61–65), with the exception of 1 study with inconclusive
results for Faecalibacterium and prediabetes (34) (Table 1,
Figure 3). Five studies, which had applied metagenomics
sequencing (36, 39, 40, 44) or qPCR (42), showed consistent
inverse associations between F. prausnitzii and fasting glucose,
HbA1c, and prediabetes. In contrast, 3 studies using 16S rRNA
gene amplification and sequencing (with lower specificity for F.

prausnitzii) found direct associations with fasting glucose and
prediabetes (34, 45, 66). Inconsistent results were also found
for Oscillospiraceae but could not be attributed to differences
in methodology (34, 35, 43, 45, 67) (Supplemental Table
5). There was no conclusive evidence regarding the role of
adiposity and metabolic drugs in the associations with glucose
for the C. leptum group, F. prausnitzii, Faecalibacterium, or
Oscillospiraceae.

None of the studies for F. prausnitzii, the C. leptum group,
Oscillospiraceae, or Faecalibacterium had measured butyrate, a
major fermentation product for these taxa (e.g., after dietary fiber
degradation (68)) and an SCFA which has been shown to affect
fasting and postprandial glucose metabolism through various
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Glucose
Postprandial glucose
Inverse association
Direct association
Inconclusive association
Not included in review

Symbols

Proportion of inverse associations
Proportion of direct associations
2 articles
4 articles
8 articles

Phyla
Verrucomicrobia
Synergistes
Proteobacteria

a
b
c

Remaining taxa Common ancestors
1
2
3
4
5
6
7
8
9
10
11

Bacteroidetes
Actinobacteria
Firmicutes

d
e
f

Akkermansia
Enterobacteriaceae
Escherichia
Streptococcus

Megasphaera
Veillonellaceae

Eubacteriales
Oscillospiraceae
Faecalibacterium
Lachnospiraceae
Blautia

a

c

1

2

f

e

d

b

4

11

3

10

98

5

7

6

Gammaproteobacteria
Lactobacillales
Terrabacteria group

i
ii

iii

i

ii
iii

2

FIGURE 3 Taxonomic trees for fecal bacteria associating with glucose-related outcomes and differences across glycemic groups. The 40 bacterial taxa
associating with glucose belonged to 5 phyla and organized into 27 leaves. Meaning of symbols and colors are explained in the accompanying box. Pie charts
show the proportion of studies that reported on inverse and direct associations, respectively. The size of the pie chart is proportional to the number of studies and
studies that reported on both an inverse and a direct association for any given taxon were counted twice (supporting both the inverse and the direct association).
1Clostridium leptum refers to results both for the C. leptum group, where all studies showed inverse associations, and for C. leptum with unknown specificity,
showing a direct association with insulin. 2Escherichia refers to results for Escherichia-Shigella.

mechanisms (23, 57, 69–72) (Figure 5). However, Wu et al. (36)
found that the lower abundance of F. prausnitzii in individuals
with prediabetes was accompanied by a reduction of bacterial
genes linked to butyrate biosynthesis. Some Oscillospiraceae taxa
produce acetate, and 2 studies found a direct association between
Oscillospiraceae and circulating acetate (60, 73). Plasma acetate
was furthermore inversely correlated to HbA1c and was lower
in individuals with obesity and insulin resistance than in insulin-
sensitive controls with obesity (60).

B. longum and Bifidobacterium

The abundance of B. longum was frequently found to be lower
with elevated glucose (36, 39, 74, 75) and insulin measures
(39, 58) (Tables 1 and 2, Figures 3 and 4). Several studies
reported on relations that were independent of BMI, body
fat, age, and sex (36, 39), and dietary intake (39, 58), but
not for BMI and dietary intake combined (58) (Supplemental
Table 5). Similar results were found on the genus level.
Bifidobacterium was inversely associated with insulin and insulin
resistance in participants with obesity in 2 studies (48, 58),
where 1 of the studies had adjusted for dietary intake and
for BMI and excluded participants taking any medications

(58) (Table 2, Figure 4). Two studies reporting on B. longum
(39) and Bifidobacterium (48) had excluded participants based
on probiotic consumption (e.g., B. longum) before enroll-
ment.

Notably, there were inverse associations between baseline B.
longum and 2-h glucose measures at a 4-y follow-up time point
as well as the change in glucose concentrations over time, in a
nested case–control study where B. longum had correlated with
fasting glucose at baseline (75).

Bifidobacteria mainly produce acetate (and formate) during
fermentation (76, 77) (Figure 5). No study reporting on
Bifidobacterium or B. longum had measured acetate or other
SCFAs.

Dorea

Dorea was consistently and positively associated with glucose
measures, possibly independently of metabolic drugs as shown
in all 4 studies (34, 39, 45, 78) (Table 1, Figure 3). Fasting
glucose was positively correlated with Dorea in 3 studies (39,
45, 78), a correlation which remained statistically significant after
adjustment for age, body fat, and diet in females with obesity
(39), and was not associated with BMI in a population with
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FIGURE 4 Taxonomic trees for fecal bacteria associating with insulin-related outcomes and differences across insulinemic groups. The 17 bacterial taxa
associating with insulin belonged to 5 phyla and organized into 9 leaves. Meaning of symbols and colors are explained in the accompanying box. Pie charts
show the proportion of studies that reported on inverse and direct associations, respectively. The size of the pie chart is proportional to the number of studies and
studies that reported on both an inverse and a direct association for any given taxon were counted twice (supporting both the inverse and the direct association).

overweight and obesity (78) (Supplemental Table 5). Two studies
showed elevated concentrations in subjects with prediabetes in
comparisons with normoglycemic controls, matched or adjusted
for age and sex (34, 45) and for waist-to-hip ratio and
inflammatory markers (34). In 1 of these studies, Dorea was only
elevated in Danish but not Indian individuals with prediabetes
(34). However, 2 Dorea species (D. formicigenerans and D.
longicatena) were elevated in the Indian group of individuals with
prediabetes which had comparable weight and waist-to-hip ratio
with the normoglycemic controls. Three of the 4 studies included
Danish populations (34, 39, 45).

None of the studies measured acetate, one of the main end
products of fermentation for Dorea.

Discussion
In this scoping review we identified α diversity and 45 taxa,

from phyla to species, that were associated with the selected
glucose metabolism outcomes. Among these, A. muciniphila,
B. longum, Faecalibacterium, the C. leptum group, and F.
prausnitzii were most consistently inversely associated with
glucose and/or insulin, whereas Dorea was directly associated
with glucose. These taxa represent key candidates for future
investigations and development of type 2 diabetes prevention
strategies. Moreover, there was some evidence to suggest that
associations may be independent of body measures, metabolic
drugs, and other covariates (e.g., age, sex, and diet), particularly
for A. muciniphila and Dorea, as well as potential mediation by
SCFAs for A. muciniphila and F. prausnitzii.

Our findings should be placed in context with the strengths
and limitations of the reviewed literature. Of the 45 eligible
studies, the majority were published in the past 5 y, many
with moderate to large study populations (100–2000) and
mixed-sex study populations. Study design, glucose metabolism
outcomes, and the presence of metabolic disease and risk
factors varied. There was a lack of metagenomics sequencing,
postprandial measures of glucose and insulin, and SCFA analysis;
study populations were predominantly Asian or European; and
there is a need for procedures accounting for confounding
factors. Importantly, evidence from prospective studies and well-
controlled intervention trials in this field is warranted to infer
causality. Owing to the broad nature of this scoping review and
for feasibility purposes, null, rare, or statistically nonsignificant
associations were not included, neither were associations for
co-occurring bacteria or groups of bacteria sharing functional
traits (e.g., butyrate-producing bacteria). For the same reason,
although we assessed whether studies had accounted for diet
when reporting gut microbiota–glucose metabolism associations,
we did not assess response to dietary trials. We regard work
on gut microbiota–diet interactions and evidence toward using
diet to alter the abundance and activity of specific (key) bacteria
as crucial and complementary to the current literature and the
present review.

Some microbial taxa belonging to the same lineage had similar
relations with glucose metabolism outcomes. This can reflect
shared attributes among bacteria within a taxon but also result
from differences in sequencing depth across studies. In other
words, associations for taxa at higher taxonomic ranks (including
Akkermansia and Faecalibacterium) may to a large extent reflect
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FIGURE 5 Proposed mechanisms of how SCFA-producing bacteria and SCFAs affect fasting and postprandial glucose metabolism in humans in the context
of dietary fiber and based on present knowledge. SCFA-producing bacteria included in this review are shown. A. muciniphila, Akkermansia muciniphila; F.
prausnitzii, Faecalibacterium prausnitzii; GLP-1, glucagon-like peptide-1; PYY, peptide YY.

associations for 1 or few prominent taxa at lower ranks (e.g.,
A. muciniphila and F. prausnitzii). Studying relations at the
species level, and also strain and clade level, using metagenomic
sequencing is warranted to elucidate relations for gut microbiota
with glucose metabolism in humans and to distinguish between
similarities and unique characteristics for bacteria within a
given taxon. This includes investigating whether F. prausnitzii
or other bacteria drive the associations for the C. leptum
group. Metagenomic sequencing can also provide information
on bacterial function and metabolic capabilities and thus provide
insight on functional gene redundancy independent of taxonomic
origin as well as on potential underlying mechanisms. It is also
important to acknowledge that methodological steps such as
DNA isolation and extraction can affect gut microbiota analysis
and contribute to differences in results between studies and that
method harmonization is needed (79–82).

SCFA production remains one of the best-characterized
metabolic attributes of human gut bacteria and SCFAs are
commonly proposed to underlie observed relations between gut
microbiota and health outcomes in humans. Despite this, only 5
studies in the current literature reported on SCFAs (43, 46, 60,
73, 83), 2 reported on genes that encode for enzymes involved in
SCFA biosynthesis (35, 36), and no study reported on succinate.
Yet, taken together, results support the proposed mechanism:
direct associations for A. muciniphila and Oscillospiraceae with
circulating acetate (46, 60, 73), a coinciding reduction of F.
prausnitzii and bacterial genes related to butyrate production with

prediabetes (36), an inverse association between plasma acetate
and insulin resistance (60), and inverse associations for total
organic acid content, acetate, and propionate with HbA1c. The
exception is the direct association between Dorea and glucose
concentrations and the acetate-producing capabilities of Dorea.
It is well established that SCFA concentrations measured in
feces and blood poorly reflect SCFA production in the gut
but are meaningful indicators of the locally and systemically
available SCFAs that could exhibit different biological effects
(84). Ongoing research is investigating SCFA concentrations,
and differences in SCFA production across individuals, after the
consumption of different dietary fibers (6, 8, 85) and whether
supplementation of butyrate or butyrate-producing bacteria can
prevent or delay development of type 2 diabetes (13). There
are also investigations into cross-feedings and co-occurrence of
bacteria, the flux of SCFAs, and shifts in the gut microbiota
metabolism with type 2 diabetes (1, 57). This development
will contribute complementary and critical insight to the role
of SCFAs in glucose regulation as well as to the complex
relations between human gut bacteria and potentially toward
novel preventative strategies for diabetes. Importantly, SCFA
production may only represent a fraction of the mechanisms
through which gut microbiota may affect glucose metabolism and
effects may also be mediated by microbial metabolites such as
trimethylamine N-oxide (TMAO), indole-3-propionic acid (IPA),
imidazole propionate (ImP), and bile acids, and be contingent on
diet (86).
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Lastly, Bifidobacterium, A. muciniphila, Faecalibacterium,
and F. prausnitzii have consistently been found at lower
abundances in individuals with prevalent type 2 diabetes than in
individuals with normal glucose regulation (12), thus supporting
a potential role of these bacteria in contrasting the progression
toward type 2 diabetes. The inverse associations between baseline
B. longum and type 2 diabetes incidence and the change in
blood glucose over time (75) are also promising in terms of
prevention but require further investigation. Mechanistic studies
are required to disentangle the roles of individual bacteria in
type 2 diabetes etiology and whether gut bacteria are involved in
specific steps of diabetes development. In the present literature
we found little support for a gradual shift toward the type 2
diabetic state for taxa reported in this review (36, 41, 44, 51,
53, 75, 87), with the exception of Akkermansia (53) and a shift
in the overall microbial composition toward impaired glucose
tolerance and untreated type 2 diabetes (36). Future studies
may also evaluate the potential to use baseline A. muciniphila
abundance for screening and stratification purposes for type 2
diabetes prevention, based on the bimodal abundance reported
(46, 47).

Conclusions
In this scoping review we identified and extensively reviewed

45 original studies and identified A. muciniphila, B. longum,
Faecalibacterium, the C. leptum group, F. prausnitzii, and
Dorea as key bacteria for future investigation. For some of
these bacteria, there was evidence to suggest SCFA mediation
as well as associations independent of overweight, obesity,
and metabolic drugs, and all, except Dorea, have previously
been consistently and inversely associated with prevalent type
2 diabetes. Yet, several limitations in the present literature
must be addressed in future studies, including an increased
application of metagenomic sequencing with harmonized sample
preparation procedures, increasing diverse representation in
study populations, taking measures to account for confounding
factors, and increasing investigations into postprandial glucose
metabolism and mediation by SCFAs and other microbial
metabolites. In addition, prospective studies, well-controlled
intervention trials, and studies investigating the role of diet–
gut microbiota interactions are needed to infer causality. Taken
together, this will have the potential to bring critical insight
into roles of gut microbiota and microbial metabolites in human
glucose metabolism and to contribute toward the development
of novel prevention strategies for type 2 diabetes, including
precision nutrition.
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