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Long-lived perennial plants optimize their shoot architecture by responding

to seasonal cues. The main strategy used by plants of temperate and boreal

regions with respect to surviving the extremely unfavourable conditions of

winter comprises the protection of their apical and lateral meristematic tis-

sues. This involves myriads of transcriptional, translational and metabolic

changes in the plants because shoot architecture is controlled by multiple

pathways that regulate processes such as bud formation and flowering,

small RNAs, environmental factors (especially light quality, photoperiod

and temperature), hormones, and sugars. Recent studies have begun to

reveal how these pathways are recruited for the seasonal adaptation and

regulation of shoot architecture in perennial plants, including the role of a

regulatory module consisting of antagonistic players terminal flower 1

(TFL1) and like-ap1 (LAP1) in the hybrid aspen. Here, we review recent

progress in our understanding of the genetic control of shoot architecture

in perennials compared to in annuals.

Introduction

Environmental factors such as light and temperature

play crucial roles in the regulation of plant growth

and development. Both of these factors constantly

change throughout the day and seasonally throughout

the year. In temperate and boreal regions, these

changes can be very extreme. In summer, days are

long and temperatures are moderate, favouring plant

growth and development, whereas, in winter, days are

shorter and temperatures are lower, restricting active

growth. Thus, perennial plants in these regions must
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cyclically protect their sensitive meristematic tissues

that are responsible for growth in the unfavourable

conditions prevailing in winter through dormancy and

then restart active growth when favourable conditions

return in spring [1,2]. However, other than external

environmental factors, various internal factors (such

as hormones, sugars and other metabolites) also par-

ticipate in the control of plant growth [1,3], and so

both environmental and internal factors control and

tune the seasonal growth and dormancy in perennial

plants.

Key architectural features of perennial plants, par-

ticularly trees and shrubs, include the terminal (or

apical) buds and the axillary (or lateral) buds located

at leaf axils, which enclose the axillary meristems

responsible for branch formation. Substantial infor-

mation on the seasonal cues and controls of apical

meristem growth and its cessation is available [4–8].
By contrast, how seasonal cues regulate the growth

and development of axillary meristems remains poorly

understood, despite the apparent importance of the

tight regulation of axillary bud development, dor-

mancy and outgrowth for plant survival, growth and

architecture. The fate of an axillary bud to outgrow

or remain dormant is also developmentally and sea-

sonally regulated.

Shoot branching has been mainly investigated in

annual plants, especially Arabidopsis and pea, and sev-

eral putative regulatory mechanisms have been pro-

posed for this process [9,10]. These plants present

several advantages for their investigation, including a

short life cycle, available genome sequences, well-

understood genetic properties and a convenient size

[11–13]. However, they cannot provide information on

key aspects of perenniality, and so, in recent years,

studies have been extended to many perennial model

systems, such as Arabis alpina, rose, apple, grapevine,

peach, and several species and hybrids of Populus

(hereafter poplars) [14–21]. In many of the plants

noted above, studies of shoot branching regulation

have focused on the effects of apical dominance on

branching, largely in classical decapitation experi-

ments, rather than effects of seasonal regulation, and

so the key questions remain unanswered. Few studies

have been carried out previously on A. alpina, a peren-

nial relative of Arabidopsis, with the aim of exploring

the annual to perennial transition and the involvement

of seasonal factors [22,23]. In this review, we discuss

our understanding of shoot branching, the mechanisms

involved and its regulation by seasonal factors, espe-

cially photoperiod and temperature, in perennials.

Also, how similar and different are various models in

perspective of temperate trees.

Seasonal control of branching in
perennial plants

Genetic, molecular and biochemical studies involving

many branching-related genes and hormones, such as

branched 1 (BRC1), auxins, strigolactones (SLs), cyto-

kinins (CKs) and gibberellins (GAs), in annual and

perennial plants suggest a very high level of functional

conservation in branch development in evolutionary

transitions from annuality to perenniality, and vice

versa [9,10,15,16,19,24,25]. However, environmental

factors, mainly light and temperature, play additional

roles in seasonal regulation in perennials. For example,

vernalization or low-temperature treatment induces

flowering in Arabidopsis and A. alpina, whereas, in the

latter, it also enhances dormancy of axillary buds, and

hence participates in the seasonal control of its

branching [21]. Further clues about the seasonal regu-

lation of axillary bud outgrowth have been obtained

from overexpression of Castanea sativa related to ABI3

and viviparous 1 (RAV1), a homologue of Arabidopsis

tempranillo 1 (TEM1), in poplar. The transgenic

poplar line overexpressing RAV1 develops early

branches in the same seasons compared to control

wild-type plants. CsRAV1 mRNA expression shows a

robust circadian rhythm pattern, peaking at noon in

chestnut plantlets grown under long-day conditions,

and it is strongly expressed during winter in buds,

clearly suggesting its participation in the seasonal con-

trol of lateral bud outgrowth [26].

In temperate regions, photoperiod and temperature

vary enormously during the seasons, and both have

long been known to influence apical and axillary plant

growth [27–30]. Environmental factors regulate plant

growth and development by acting through internal

factors. In trees with multiple axillary buds, it is cru-

cial to control the number and position of the out-

growth of axillary buds during changing seasons for

survival and maintenance with respect to energy source

and sink balance. In the next section, we discuss the

major components that are involved directly or indi-

rectly in the seasonal control of branching in trees.

Photoperiod and temperature control
over seasonal branching in trees

Environmental factors, mainly light and temperature,

are known to influence plant growth and architecture.

Light is more robust, whereas, in temperate trees, tem-

perature is also crucial and remains underexplored.

Both light quality and quantity are known to affect

apical and axillary bud outgrowth [27,28,31–35]. Phy-
tochromes and cryptochromes sense light and activate
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the downstream processes involved in bud outgrowth.

Phytochrome B (phyB) can sense both light and tem-

perature cues [36,37] and is known to promote branch-

ing by suppressing auxin signalling in Arabidopsis [38].

However, in trees, its role in branching regulation has

still not been elucidated. Recently, PhyB was shown to

interact with phytochrome interacting factor 8 (PIF8)

and control the seasonal growth of apical meristem by

acting on flowering locus T (FT) and TFL1 in poplar

plants [39], although how the phyB and phyB-PIF8

module regulates lateral bud growth in perennial

plants is unknown and will be interesting to investigate

in the future in the context of seasonal growth.

Downstream of photoreceptors, the constans-

flowering locus T (CO-FT) module plays a key con-

served regulatory role in many pathways, such as flow-

ering, tuber formation and the seasonal control of

apical growth in perennial plants [4,40]. Very recently,

a genetic framework responsible for the regulation and

seasonal adaptation of shoot architecture has been

described in hybrid aspen trees [41]. This suggests that

the CO-FT module does not appear to be crucial for

lateral bud outgrowth because FT-overexpressing

(FToe) plants do not produce more branches than

wild-type plants [25]). Instead, in the seasonal control

of lateral bud growth, a recently described module

consisting of antagonistic players terminal flower 1

(TFL1) and like-apetala 1 (LAP1) appears to be more

important than CO-FT (Fig. 1). TFL1 is a negative

regulator of flowering and growth and hence an antag-

onist of FT [42,43]. Unlike FT, the primary function

of TFL1 is to keep plant growth suppressed. TFL1

expression is induced in lateral buds in response to

short photoperiods in autumn and lower temperatures

than those occurring during the long summer days of

the growing season, consolidating its negative effect on

lateral bud outgrowth. Plants in which TFL1 is down-

regulated produce significantly more branches than

Fig. 1. Seasonal control of branching: axillary bud outgrowth in temperate trees. (A) During winter, when plants experience short days and low

temperatures, a seasonal repressor module operates in axillary buds that helps them remain in the dormant/non-growing stage. The module

consists of TFL-LAP1-BRC1 and their downstream components. Short photoperiods induce the expression of TFL1, which restricts expression of

LAP1, a growth-promoting TF. Downstream LAP1 promotes expression of AIL1 and cytokinin biosynthesis genes, which regulate cell division.

Simultaneously, short photoperiods induce expression of BRC1, a central branching regulator, which participates in the regulation of ABA

biosynthesis, signalling and maintenance of the ABA levels required to maintain dormancy. (B) Following the return of summer and accompanying

increases in day length (long days) and temperatures, expression of LAP1 increases, which suppresses the negative regulators of growth, TFL

and BRC1. Simultaneously, LAP1 promotes increases in AIL expression and cytokinin levels, leading to activation of cell division and axillary bud

outgrowth. The roles of sugars and hormones (most importantly auxin and strigolactones) in the seasonal branching of temperate trees are not

well understood, and so their depiction is based on information from other plant systems.
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wild-type counterparts. By contrast to TFL1, LAP1 is

a positive regulator that promotes apical and lateral

bud growth [5,41]. LAP1-overexpressing (LAP1oe)

plants are insensitive to short photoperiod and low-

temperature seasonal cues. They also produce branches

at almost every node. Genetic evidence suggests that

LAP1 acts downstream of TFL1 because LAP1 expres-

sion is enhanced in lateral buds of TFL1-RNAi plants

(i.e. with TFL1 expression suppressed by RNA inter-

ference). Furthermore, knocking out LAP1 in these

plants suppresses their branching phenotype. Although

the branching phenotype of both TFL1-RNAi and

LAP1oe plants is suppressed by short photoperiods

and low temperatures, it is restored in TFL1-RNAi/

LAP1oe plants (Fig. 1). These findings suggest that, to

overcome the effects of unfavourable seasonal cues,

downregulation and upregulation of TFL1 and LAP1,

respectively, is required. This fine-tuning of TFL1 and

LAP1 expression could have significant applications.

Another critical player downstream of LAP1 is ain-

tegumentalike1 (AIL1), which plays an important role

in seasonal control of apical growth [44]. AIL1 expres-

sion in apical and lateral buds is reduced under short-

photoperiod and low-temperature conditions [25,44].

AIL1 promotes branch development because lines

overexpressing AIL1 and lines in which its function is

suppressed (by SRDX domain-mediated repression)

produce more and fewer branches than their wild-type

counterparts, under long-photoperiod conditions,

respectively (Fig. 1). Thus, placing AIL1 expression

under the control of short-photoperiod-inducible pro-

moters could be potentially useful for developing crops

and plants with longer growing periods, thereby

extending the environments in which they can com-

plete their life cycles during cultivation and/or provide

products such as fruits. Reductions in levels of CKs

and AIL1 in short-photoperiod and low-temperature

conditions probably affect the expression of key cyclin

genes required for cell division. AIL1 directly interacts

with the promoter of CYCD3.2, a D-type cyclin gene,

and promotes its expression, thereby delaying short-

photoperiod-induced apical growth cessation [25,44].

Such a molecular mechanism may also be involved in

the control of branching via lateral buds.

Hormonal regulation of shoot
branching

Seasonal environmental factors activate axillary buds

to form branches interactively with endogenous fac-

tors, especially hormones. Major hormones involved in

the process include auxins, CKs, SLs and, to some

extent, GAs. Generally, auxins and SLs inhibit shoot

branching, whereas CKs promote axillary bud out-

growth [9]. Auxins are the first and most important

hormone identified in shoot branching regulation,

whether it be apical dominance or seasonal regulation.

To date, the polar auxin transport mechanism com-

prises one of the most extensively studied models for

branching regulation. Auxins are polarized toward the

root through the xylem parenchyma and are known to

suppress cytokinin (in buds) and upregulate strigolac-

tone biosynthesis (in roots). This mechanism of action

of auxin in the control of axillary bud growth has been

elucidated in herbaceous plants, although how it works

in trees of larger size still needs to be deciphered.

The role of CK in promoting axillary bud outgrowth

has been established for a long time in annuals and

herbaceous plants [9,10,45], as well as recently in trees

[25]. They promote plant growth by promoting cell divi-

sion and also participate in axillary bud release from

dormancy. CK levels decline in short-photoperiod con-

ditions, thereby inducing faster growth cessation in api-

cal buds. Similarly, CKs and components of CK

signalling pathways decrease in response to short pho-

toperiods and low temperatures, leading to a reduction

in the frequency of lateral bud outgrowth, and hence

branch formation [41]. In addition, a reduction in cyto-

kinin levels significantly suppresses the highly branching

phenotype of LAP1oe plants, confirming that they are

important downstream participants in the seasonal con-

trol of shoot branching in trees (Fig. 1). Similarly, the

antagonistic role of SLs in shoot branching has been

more intensively investigated in herbaceous plants than

in trees. Mutations causing deficiency in SL biosynthesis

induce profuse branching in Arabidopsis and other

annual plants. The negative function of SLs in shoot

branching in perennials is also conserved. Downregula-

tion of SL biosynthesis gene MAX4 in poplar using an

artificial microRNA silencing approach leads to a

change in shoot architecture as a result of the produc-

tion of more branches [24]. Furthermore, a CRISPR/

Cas9 knockout line of another SL biosynthesis gene car-

otenoid cleavage dioxygenase 8 also forms more

branches than the control plant [15]. In herbaceous

plants, SLs are synthesized in roots and travel acrope-

tally towards axillary buds, whereas, in trees, they are

reportedly synthesized and supplied to axillary buds via

nodes rather than roots [46].

Abscisic acid (ABA) and GAs act antagonistically

during dormancy and bud break. GA-deficient

mutants are dwarf and bushy, suggesting that GAs

play an inhibitory role in shoot branching in annuals

and perennials. By contrast to annuals, a bud

outgrowth-promoting GA function has been proposed

in perennial hybrid aspen plants. Different GAs have
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different proposed activities in axillary bud outgrowth,

particularly GA3 and GA4, which putatively inhibit

and promote the process, respectively [46]. The plant

hormone ABA has been shown to have inhibitory

effects on plant apical growth [7,47,48]. Similar to GA,

no direct role of ABA has been confirmed in shoot

branching, although there are indications that it is

indirectly involved in the process in Arabidopsis.

BRC1, a branching inhibitory transcription factor in

Arabidopsis, represses lateral bud growth by promot-

ing the expression of some ABA biosynthesis and sig-

nalling genes, such as NCED3, HB21, HB40 and

HB53 [49]. Because the expression of these genes is

also induced by short photoperiods and low tempera-

tures in lateral buds of hybrid aspen, these two modes

of ABA action could also be involved in lateral bud

outgrowth.

Sugars: signalling molecules or simply
energy sources in branching
regulation?

Sugars are the primary sources of energy for metabolic

processes, and sucrose is considered to act as a mobile

signal in diverse developmental processes in plants

[50,51]. In shoot branching, sugar signals are more

strongly involved in activation of dormant buds than in

seasonal growth, sugar fluxes can mimic decapitation

effects, and sugars rapidly accumulate in axillary buds

after decapitation [33]. A recent study showed that the

overexpression of the peach Early bud-break 1

(PpEBB1) gene in poplar leads to the formation of more

branches by differentially regulating the genes and pro-

teins involved in light response, brassinosteroid signal-

ing and nitrogen metabolism [17]. Further analysis of

PpEBB1oe plants also revealed the accumulation of var-

ious sugars, such as fructose, glucose, sucrose, trehalose

and starch, which were correlated with an increased

number of branches. In addition, areas of photosyn-

thetic tissues (and photosynthetic rates) are positively

related to sugar production in leaves and bud out-

growth, clearly indicating positive feedback effects

between sugar production and bud outgrowth: increases

in sugar production result in more and longer branches,

and vice versa. These relationships have been well estab-

lished in herbaceous plants, although they require fur-

ther confirmation in trees and other perennials.

However, the production of new branches in trees

clearly occurs in favourable growth conditions, with

long photoperiods and moderate temperatures, suggest-

ing that similar mechanisms are involved.

Dormant axillary buds have low sugar contents and,

to initiate their outgrowth, they must compete for

sugars. Moreover, their sugar acquisition is apparently

related to their growth relative to that of other buds

along the same axis in many perennials, although this

still needs validation [52]. Similarly, in A. alpina, axil-

lary bud growth zones are putatively controlled by ver-

nalization, and sugars may play a role in the process

that warrants attention. In herbaceous plants such as

pea, rose and Arabidopsis, sugars interact with hor-

mones in the regulation of axillary bud activation and

branch outgrowth. Increases in sugar levels in axillary

buds result in auxin efflux and simultaneous suppres-

sion of SL biosynthesis genes [10]. Conversely, phyto-

hormones can also regulate sugar levels in various

organs. In the absence of apical dominance, sugars are

re-distributed to the lateral buds, which in turn sup-

presses the expression of BRC1, a key transcriptional

regulator responsible for maintaining bud dormancy,

thereby promoting lateral bud growth [53]. Thus, mul-

tiple physiological networks (and environmental fac-

tors) are involved in controlling sugar levels during

plant development. Overall, studies to date indicate

that sugars are not only energy sources, but also act as

signalling molecules (especially sucrose) in the initial

activation of axillary bud outgrowth. During this acti-

vation, increases in trehalose-6-phosphate levels and

activities of hexokinases, which act as sucrose sensors,

are consistent with indications that sucrose acts as a

mobile signal in the regulation of shoot branching.

Conserved but different molecular
regulation in apical versus axillary
meristem genes with divergent roles

Apical/terminal buds are very similar to axillary buds,

and both enclose shoot apical meristems. Axillary bud

outgrowth in plants is regulated by multiple pathways

associated with diverse developmental and environmental

factors [54]. Although the growth of both kinds of buds

(axillary and terminal) involves the same fundamental

mechanism, their regulation has certain differences. For

example, unlike apical buds, axillary buds are subject to

control by apical dominance. Environmental and devel-

opmental factors also have different regulatory effects on

the outgrowth of apical and lateral buds of hybrid aspen,

despite great similarities, including in the expression of

many meristem-specific and bud/branching-related mar-

ker genes such as centroradialislike1/terminal flower 1

(CENL1/TFL1), BRC1, BRC2 and the SL biosynthesis

gene more axillary branches 1 (MAX1) [55]. However,

these studies have not shown how branching is seasonally

regulated in poplar.

BRC1 is a key negative regulator of branching in

plants because brc1 mutants produce significantly more
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branches than wild-type plants [56]. It acts as an inte-

gration point for the multiple pathways involved in

branching regulation [20,54]. However, a recent study

has shown that BRC1 expression only regulates bud

activation potential and is not necessary and sufficient

for inhibiting bud growth in Arabidopsis [57]. The

negative functional role of BRC1 in branching is also

conserved in higher perennial plants. Lines with BRC1

or its close homologue BRC2 knocked out by

CRISPR-Cas9 genome editing reportedly produce

more branches than their respective wild-type plants

[24]. BRC1 homologue in grapevine (VvBRC1) also

inhibits branch formation by differentially regulating

the transcript levels of the ABA pathway and cell

cycle-related genes[16]. VvBRC1 inhibits branch forma-

tion by promoting the transcripts of ABF3, ABI5,

HB21, HB40 and HB53 at the same time as downregu-

lating the expression of CYCD3 and HISTONE H4

genes. Very recently, it was also found that BRC1 is

involved in seasonal regulation of apical growth in

hybrid aspen plants [41], suggesting that it plays diver-

gent roles in different tissues. This seasonal regulatory

role of BRC1 also appears to be conserved in lateral

branches. Seasonal cues such as short photoperiods

and low temperatures induce expression of BRC1 in

both apical and lateral buds, thus inhibiting their

growth in unfavourable conditions. This may be a pos-

sible adaptation strategy used by perennial plants to

protect their meristematic regions from the incoming

future extreme cold conditions prevailing in the tem-

perate and boreal parts of the world, during which

snow injuries can kill these regions. By protecting these

meristematic regions, plants ensure their potential

growth in the upcoming spring and summer seasons,

during which BRC1 expression declines. Targeting

BRC1 to modulate plant branching phenotypes could

have immense biotechnological and agricultural impor-

tance. Keeping the BRC1 level low will generate plants

with fewer branches, which could be helpful for timber

industries. Conversely, genes that promote lateral bud

growth could be overexpressed or expressed in lateral

buds under the control of promoters such as BRC1

promoters to induce more bud growth and obtain pro-

fusely branched plants. These strategies could enhance

the production of fruits and other edible products

from plant shoots.

Conclusions and future perspectives

Shoots have strong architectural plasticity, adopting

myriads of shapes and forms in response to develop-

mental signals associated with diverse endogenous and

exogenous factors, including natural seasonal cues.

Antagonistic players TFL1 and LAP1 are key regulators

of the growth of perennial plant lateral buds in these

responses. Other players such as CKs, AIL1, BRC1 and

ABA act downstream of the TFL1-LAP1 regulatory

module. Overall, a complex network of biochemical and

molecular players seasonally fine-tune the growth of

plant lateral buds. In the future, it should be possible to

engineer and develop perennial plants with socio-

economically desirable features using combinations of

genetic and modern biotechnological advances. For

example, knowledge obtained from studies of the sea-

sonal regulation of branching could be used to engineer

single-stemmed trees or trees with minimal branches, as

preferred by timber-processing industries. Such strategies

could also be used to modulate plant biomass and

develop more plants such as columnar apple trees,

which can be grown and provide edible fruits in gardens

or buildings with less space than conventional apple

trees require. Conversely, more profusely branched

plants capable of providing more edible and other valu-

able materials in broader environmental conditions than

current crops (and hence potentially cope with antici-

pated environmental changes) can be developed to sup-

port increasing global demands. Furthermore,

combining knowledge from studies of annual and peren-

nial plants could strongly help efforts to meet urgent

needs to develop more climate-smart perennial plants

with socio-economically valuable traits.
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