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Abstract: This study aimed to develop the Addis Ababa Driving Cycle (DC) using real-time data
from passenger vehicles in Addis Ababa based on a neural network (NN) and principal component
analysis (PCA) approach. Addis Ababa has no local DC for automobile emissions tests and standard
DCs do not reflect the current scenario. During the DC’s development, the researchers determined
the DC duration based on their experience and the literature. A k-means clustering method was also
applied to cluster the dimensionally reduced data without identifying the best clustering method.
First, a shape-preserving cubic interpolation technique was applied to remove outliers, followed
by the Bayes wavelet signal denoising technique to smooth the data. Rules were then set for the
extraction of trips and trip indicators before PCA was applied, and the machine learning classification
was applied to identify the best clustering method. Finally, after training the NN using Bayesian
regularization with a back propagation, the velocity for each route section was predicted and its
performance had an overall R-value of 0.99. Compared with target data, the DCs developed by the
NN and micro trip methods have a relative difference of 0.056 and 0.111, respectively, and resolve the
issue of the DC duration decision in the micro trip method.

Keywords: Addis Ababa; driving cycle; emissions; neural network; vehicle

1. Introduction

A driving cycle (DC) is a plot of vehicle speed versus time and is used to assess a
vehicle’s performance, emissions, and energy consumption [1]. Various standard DCs, such
as WLTC, FTP 75, and JC08, have been created [2]. There is wide agreement among re-
searchers that driving characteristics are unique due to different vehicle fleet compositions,
driving behaviors, and roads [3]. The China Light-Duty Vehicle Test Cycle for Passenger
Cars (CLTC-P) is close to reality in China, but notably different from other standard DCs
based on a comparison analysis [4]. For this reason, existing standard DCs have failed to
estimate exhaust pollutants and fuel consumption accurately in various countries. Several
studies have therefore focused on constructing DCs using real-world driving data collected
on the road. There is no local DC for estimating and testing automobile emissions in Addis
Ababa, Ethiopia’s capital city, either for official purposes or for research. Standard DCs do
not reflect the current scenario in Addis Ababa.

The typical DC development method used for emissions levels and fuel consumption
is the Micro Trip (MT) method [2,5,6], in which several researchers decide on the DC
duration based on their experience and previous DC durations. During DC development,
they randomly select and chain MTs until the desired DC duration is obtained and repeat
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this step several times to obtain candidate cycles. The authors of [5] initially opted for
a DC duration of between 1200 s and 1300 s and developed two DCs with a duration of
1216 s and 1261 s. To develop the DC for hybrid buses in the city of Zhengzhou in China,
Peng et al. (2015) determined the duration of the designed DC to be 1200 s [7]. Similarly,
the authors of [6] decided on a DC duration of 1200 s. The authors of [8] developed three
DCs for different routes separately, randomly constituting a DC until the required cycle
duration was achieved. However, the DCs developed by this method are not repeatable and
the cycle length is not representative of actual conditions. Furthermore, the DC duration
has an impact on emission and fuel consumption estimates. Adopting a methodology for
DC length based on obtained real-time data can therefore be more representative than using
conventional DC durations described in the literature. In order to resolve these issues, in
the present study a trip-based method of DC development is proposed.

During DC development, the classification method is applied to kinematic segments
to cluster them into heterogonous classes based on statistical properties. Several re-
searchers have applied principal component analysis (PCA) using the k-means clustering
method [5,6,9–11]. The authors of [12] applied PCA to reduce fifteen characteristic pa-
rameters to three factor scores, Liu et al. (2018) applied PCA to reduce fifteen kinematic
characteristics values to four principal components based on the eigenvalue [10], and
Zhou et al. (2017) reduced eight driving parameters to three principal components using
PCA [13]. However, there has been no evaluation of which clustering method offers the
best performance with PCA. Therefore, in order to identify the best clustering method, a
machine classification learner was applied using MATLAB. This trains the model to classify
data using supervised machine learning algorithms. All classification learner methods
available were applied to the input dataset, and the algorithms then computed the accuracy
scores using the observations.

Machine learning currently offers the best theoretical foundation for DC prediction
with deep learning [14]. Chen et al. (2019) used a DC prediction method based on a
convolutional neural network [15], while Qiu et al. (2018) used a recurrent neural network-
based technique to develop DCs for light-duty vehicles in Beijing [16]. To improve fuel
economy, Zhao et al. (2018) proposed a deep reinforcement learning framework for hybrid
electric vehicle power control [17].

Inspired by the recent breakthrough in machine learning, this study proposes the use
of principal component analysis (PCA) and neural network (NN) prediction methods to
develop a DC. To demonstrate the significance of the proposed methodology in this study,
the authors also developed the DC using the MT method using the same data used for the
NN method. Then, the authors compared the developed DCs with processed experimental
(target) data using characteristic parameters to evaluate their representativeness. The real-
time driving data used in this study were taken from five vehicles using a global positioning
system (GPS) in Addis Ababa city. By means of MATLAB, outliers were found and filled
in using shape-preserving cubic interpolation (PCHIP), then the Bayes wavelet signal
denoising technique was used to remove noise from the data. Subsequently, seventeen trip
indicators were generated for each trip after the denoised data were separated into trips
based on predetermined criteria. The dimensions of the trip indicators were then reduced
using PCA. After the NN clustering divided the trips into highly diverse categories, the
best trip selection followed. In order to train the NN to predict the vehicle speed for each
road type, Bayesian regularization with a back-propagation training algorithm was used.
The predicted speeds were then joined to generate a representative Addis Ababa DC.

The main aim of this project was to create the Addis Ababa DC using real-time data
from passenger vehicles. The Addis Ababa DC was developed based on the data collected,
evaluating their characteristic indicators and comparing them with the produced cycle and
standard DCs. The analysis results indicate that the developed Addis Ababa DC using NN
prediction is more representative of real-time collected data than the MT method and is
significantly different from standard DC characteristic parameters.
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2. Materials and Methods
2.1. Study Area

Addis Ababa has a total population of 5,227,794 urban and rural inhabitants and
is growing at a rate of 4.42% [18]. Addis Ababa has five main entry and exit roads to
neighboring cities such as Akaki, Sendafa, Sululta, Holeta, and Sebeta. Addis Ababa’s
road network is greatly affected by topographic changes, resulting in positive uphill and
negative downhill slopes, with an average road gradient of almost 4% [19]. Addis Ababa’s
main roads to different parts of the country and live traffic retrieved from Google Maps on
25 September 2021 are shown in Figure 1.

Figure 1. Study area map and live traffic on Addis Ababa’s main roads to different cities.

The city is plagued by severe traffic congestion, which exacerbates vehicle emissions.
Tarekegn and Gulilat (2018) discovered that the vehicle growth rate is 9.88% per year,
while the road network expansion rate is 8.22%, and they counted 168 vehicles along a
one-kilometer stretch of a single-lane asphalt road [20]. In 2020, there were 596,084 vehicles
in Addis Ababa city [19], while 627,460 vehicles were registered there [13]. Passenger
cars, light commercial vehicles, heavy-duty vehicles, motorcycles, and buses account for
41%, 34%, 18%, 3.96%, and 2.99% of vehicles, respectively [14]. Of the vehicles registered
in the city, 43.43% are petrol and 56.57% are diesel-fueled vehicles [20]. Just over half
(53.5%) of the vehicles in Addis Ababa city are over 20 years old, while 29.3% are over
30 years old [21]. This indicates that most cars have exceeded their usable service life and
are heavily polluting the city. For the majority of citizens, city buses and minibus taxis are
accessible, economical modes of public transport [19]. Congestion, delays, and stress on
individuals are caused by the city’s poor transport infrastructure, which results in more
traffic accidents [22].
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2.2. Data Collection and Setup

As a paradigm for DC development, the primary driving data were collected from
Addis Ababa, Ethiopia. Raw data from 7442.203 km of driving data were collected from
1 October 2021 to the end of December that year using on-board diagnosis (OBD) II-based
GPS devices installed on Toyota Corollas, Tacoma and 5L mini-buses, and Hyundai and
Isuzu mid-buses registered and travelling in Addis Ababa city. The entire set of collected
data for modeling comprised 1,893,256 s of speed-time points. The real-time driving data
logged from the installed GPS devices were timestamp, latitude and longitude, vehicle
speed, number of satellites used for data collection, location name at each timestamp, and
ignition switch position. Data collection periods included working days and weekends,
and the drivers were allowed to travel as they usually did on their day-to-day journeys.

The data collection devices used in this study collected geographical locations with
their local names according to Google Map naming. The location names were carefully
checked with Google Maps. Based on the identified location name and experience, data
collected from the Addis–Adama expressway and ring roads in Addis Ababa city were
easily separated. When evaluated, almost every trip covered urban, extra-urban, and rural
roads, but ring road and expressway data were only available for some trips. Therefore,
ring road and expressway data points were removed from the trip analysis. After removing
outliers, de-noising the data points, and removing driving data out of Addis Ababa city,
urban roads covered 4895.43 km, rural roads covered 1505.14 km, ring roads covered
475.28 km, and the expressway covered 566.35 km. Figure 2 shows the percentage of
distance traveled on each road type.

Figure 2. Percentage of distance traveled on each route type.

2.3. DC Development Method

This section covers the methodological aspects of DC development. The methodology
adopted in this part of the study included a literature review, vehicle selection, data
collection, and an evaluation of the results. DCs were obtained using the trip methods
with neural-network-based prediction after trips were classified by means of principal
component analysis. Moreover, a DC utilizing the micro trip method from the same
data used for the NN prediction method was developed to demonstrate the significance
of the methodology provided in this study. There are three critical components in the
development of a DC: vehicle selection, data collection, and cycle construction. The various
steps in real-time DC development are outlined in Figure 3. Finally, the ability of the
obtained DCs to represent the driving conditions in Addis Ababa using characteristic
parameters was assessed.
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Figure 3. Framework of the proposed method.

2.4. Data Filtration

Considering possible GPS errors caused by vibration, the data points with acceleration
above 4.5 m/s2 and below −4.5 m/s2 were removed at the start of data processing based
on the WLTC standard. The speed, acceleration, and road slope distribution of the original
data are shown in Figure 4.

Figure 4. Speed, acceleration, and slope distribution.

Before denoising the speed, road grade, and distance of the data collected, time
stamps were converted to serial time using MATLAB. Outliers were identified using
shape-preserving cubic interpolation (PCHIP) by implementing the moving mean window-
centered method. After filling outliers, the noise had to be removed from the collected raw
data using the Bayes wavelet signal denoising method.



Sustainability 2022, 14, 13772 6 of 27

Then, speed values below 3.6 km/h were changed to 0 km/h to remove the error due
to the data collection device, and speed values above 120 km/h were adjusted to 120 km/h
because the maximum speed allowed in Ethiopia is 120 km/h. The 974 data points of road
grade that were above 10 degrees were adjusted to 10 degrees, and the 1078 data points
that were below −10 degrees were adjusted to −10 degrees. Finally, to complete the data
denoising process, acceleration was determined for each point of filtered speed data and
checked for maximum and minimum values. The maximum and minimum acceleration
values were 2.486 m/s2 and −2.45 m/s2, respectively. Excessive idle times were adjusted
to a duration of three minutes [5].

2.5. Neural Network (NN) Prediction Method of DC Development
2.5.1. Approach to Developing the Trip-Based Model

A trip is defined here as a driving process from an origin to a destination with a short
stop duration. This may include driving from home to the workplace with a preceding
short parking time. Real-world driving trips may contain long and short parking durations,
with multiple starts and stops between the origin and the final destination for different
reasons, such as vehicle users planning multiple activities to be performed within a single
trip and traffic accidents. The collected driving data were segmented into numerous trips
based on a parking (stop) duration longer than 30 min, but parking duration was not used
in the subsequent analysis. From the collected data, the speed and time plot for one sample
trip is shown in Figure 5.

Figure 5. Speed vs. time of a sample trip.

A stop duration of over 30 min was considered to be a cut-point of the trip, which
means that if the stop duration is less than 30 min the vehicle has not reached its final
destination point and a stop of this kind will be due to congestion, an accident on the road,
shopping, etc., and then the trip will continue. Based on this assumption, the screened data
were classified into trips and a trip code was assigned to each trip.

A MATLAB program was used to divide the experimental data into trips. In all,
726 trips were obtained (data on 273, 126, 134, 86, and 107 trips were collected from Toyota
Corollas, Tacoma and 5L mini-buses, and Hyundai and Isuzu mid-buses, respectively).
In this study, based on the common practice of DC development, 17 trip indicators or
assessment parameters were selected. In contrast to average speed, which includes idling
phases, average driving speed is the mean of the vehicle running speed excluding idle
periods. A vehicle’s speed and acceleration are directly related to the amount of power
the engine needs to move it forward. The load put on the engine cannot be adequately
described by a single variable. However, the best measurement is provided by combining
them. Therefore, the trip indicators relative positive acceleration (RPA) and positive kinetic
energy (PKE) were used. RPA is the integral of the instantaneous speed and positive
acceleration product across a specific trip section. PKE is the sum of differences between the
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squares of the final and initial speeds in successive accelerations, divided by the distance
traveled. These are shown in Table 1.

Table 1. Trip indicators.

S/N Trip Indicators Abbreviation Unit

1 Driving time Ttotal s
2 Distance traveled Ssum m
3 Average driving speed Vdavg km/h
4 Average speed Vavg_all km/h
5 Maximum speed Vmax km/h
6 The standard deviation of speed Vsd
7 Average acceleration aavg m/s2

8 Maximum deceleration decmax m/s2

9 Maximum acceleration amax m/s2

10 The standard deviation of acceleration asd m/s2

11 Stop per kilometer Nspkm /km
12 Relative positive acceleration RPA m/s2

13 Positive kinetic energy PKE m/s2

14 Percentage of idle mode Pidl %
15 Percentage of acceleration mode Pacc %
16 Percentage of cruising mode Pcru %
17 Percentage of deceleration mode Pdec %

Seventeen trip indicators or assessment statistics were then computed for the data
from each of the 726 trips. Vehicle speed, time, and distance traveled were collected directly,
but for any given time point the value of acceleration was determined according to the
WLTP standard. Then, based on the value of acceleration, the following driving modes
were determined: idle (velocity is zero), acceleration (greater than 0.1 m/s2), deceleration
(less than −0.1 m/s2), and cruising state (between −0.1 and 0.1 m/s2) [8].

To select the most valuable data points, frequency and cumulative frequency were
determined for all 726 trips to remove very short trips from further analysis. Trips of less
than 540 s or that covered a distance of less than 500 m were removed. Data from 199 short
trips were not used in the subsequent analysis due to their limited information that could
have led to incorrect interpretations.

As previously stated, the collected datasets should include diverse characteristics
for various route types in terms of different times of day, days of the week, and districts
served. Therefore, a cluster analysis technique was employed to classify the 527 trips based
on the 17 trip indicators. The number of variables in the data reduces the computational
efficiency and undermines the clustering effect [5]. Thus, 17 trip indicators was too many
and therefore the dimensions were reduced by means of principal component analysis.

2.5.2. Principal Component Analysis (PCA)

PCA is a method that transforms a set of complex variables into a few principal
components [6,13]. PCA refers to combining original parameters into a new set of un-
correlated comprehensive parameters for analysis, rather than using the original param-
eters [7,23]. As mentioned in [5], the PCA method simplifies data and obtains results
with more effective information. When PCA is applied for decomposition, the common
factors F = (F1, F2, . . . , Fn) and the original variables are modeled as linear combinations of
common factors. Generally, a transformation method such as Varimax rotation is used to im-
prove the interpretation of the results through the rotation of factors in a multidimensional
space to utilize the best-simplified structure [24].

In this study, Eigen decomposition and Varimax rotation were used with the Kaiser
Normalization methods. After reducing the dimension, trips were divided using the
clustering method.
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2.5.3. Trip Clustering

The groupings are built to be as statistically different as possible between groups and
as statistically homogeneous as possible within a group [8]. Different clustering methods
can develop different clustering solutions; therefore, to identify the best clustering method,
a classification learner was applied using MATLAB. This trains models to classify data
using supervised machine learning algorithms. All of the available classification learner
methods are applied to the input dataset, and then the algorithms compute the accuracy
scores using the observations. This also creates predictions based on these observations
and calculates the confusion matrix and ROC curve accordingly. After training a model in
the classification learner, the model’s performance or validation accuracy score is compared
with the trained data, which aids in the selection of the appropriate clustering strategy. The
trip clustering method was chosen based on the results of the classification learner, as we
selected the method with the highest validation accuracy. In this study, neural network
clustering performed better than the other methods.

Neural network clustering is a technique that uses a self-organizing map to train a
neural network on patterns such that the network can classify them based on their similarity
and relative topology. A self-organizing map consists of a competitive layer that can classify
a dataset of vectors with any number of dimensions into as many classes as the layer’s
neurons. The neurons are placed in a 2D topology, allowing the layer to represent the
distribution and approximate the topology of the dataset in two dimensions. As depicted
in Figure 6, the factor scores (FACs) of all trips were classified using the neural network
clustering technique, which employs a self-organizing map to train a neural network based
on batch weight rules, after the dimension of the 17 trip indicators was reduced to five
dimensions of FACs using PCA. This network divided the inputs (5 FACs of 527 trips) into
9 classes (output). After the applied clustering technique divided the trips into significantly
different groups, the best trip selection followed.

Figure 6. Neural network clustering diagram.

2.5.4. Selection of the Best Trip

Given the input information, appropriate trips were selected based on a calculated
similarity score for each cluster. The similarity score was based on the sum of relative errors
between the indicators of the candidate trips and the target DC. Given the values of target
cycle indicators, the relative error of each indicator of the candidate trip was calculated for
each group in accordance with Equation (1):

εβk =

∣∣∣∣∣∣
(

Mβk −Mk

)
Mk

∣∣∣∣∣∣ (1)

where
εβk = the relative error for the kth parameter of candidate trip β, where β is the number

of candidate trips and k = 1, 2, . . . , N, where N is the total number of trip indicators,
Mβk = the magnitude of the kth trip indicator of the candidate trip β, and

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 28 
 

ε𝛽𝑘 = the relative error for the kth parameter of candidate trip β, where β is the 
number of candidate trips and k = 1, 2, …, N, where N is the total number of trip 
indicators, 𝑀𝛽𝑘 = the magnitude of the kth trip indicator of the candidate trip β, and �̅�𝑘 = the mean of the kth trip indicator (the target trip). 

Then, the similarity score of a candidate trip could be calculated in accordance with 
Equation (2): 

1

11
N

k
kS

Nβ β
=

 = −  
 
  (2)

where 𝑆𝛽 is the similarity score for candidate trip β. 
The similarity score was calculated using 1 minus the average relative errors coming 

from the indicators of candidate trip β. The score ranges from 0 to 1 (where 1 means no 
errors and fully matches the target cycle). The candidate trip with the highest score is the 
best trip that matches the provided input information to the greatest extent. It should be 
noted that the trip indicators were treated equally in the calculation. The trip that best 
matched the trip-level indicators was selected as the best trip. 

The best trips from each cluster were divided into micro trips (MTs). An MT is a 
driving sequence between two idling events [2]. WLTC standards were followed to 
divide the driving sequence into MTs for the selected best trips and ring road and 
expressway data points. Each MT was then assigned a code name. Finally, based on the 
relative error, the two best MTs were selected that best represented their cluster. 
Additionally, in order to include ring road and expressway data points in the final DC, 
one MT from each was chosen. The selected MTs were arranged in a time series 
sequentially as urban, extra-urban, rural, ring road, and expressway parts. 

2.5.5. NN-Based Vehicle Speed Prediction 
Prediction is a kind of dynamic filtering in which past values of one or more time 

series are used to predict future values. Dynamic neural networks, which include 
delay-line taps, are used for nonlinear filtering and prediction. In a study to develop a DC 
for light-duty vehicles in Beijing, a recurrent NN approach was adopted [16]. The authors 
of [15] predicted a DC using a convolutional NN and [25,26] established a DC recognizer 
using an NN algorithm. The NN model divides the target time steps into training, 
validation, and testing datasets. The network randomly assigns 70%, 15%, and 15% of the 
target time steps to the training, validation, and testing datasets, respectively. A 
nonlinear autoregressive with external input (NARX) model as shown in Equation (3) 
was applied to predict the output Y(t). Y(t) = f(x(t − 1), … , x(t − d), y(t − 1), … , y(t − d)) (3)

where Y(t) is the predicted vehicle speed at time t (output), d is the past speed value of 
Y(t), x(t) is the collected vehicle speed series of MTs of the respective route (input data), 
and y(t) is the speed series of the best selected MTs defining the desired output (targets). 

All trip data were converted to a time series and used as the training data (input 
data) of their route, and the selected MTs from each route were used as the test data 
(target) during the application of the NN. A sigmoid transfer function was used in the 
hidden layer of the applied NARX network model (Figure 7), and a linear transfer 
function was used in the output layer. The NARX network’s output provides feedback to 
the network’s input. Ten hidden neurons were used during the training. 

= the mean of the kth trip indicator (the target trip).



Sustainability 2022, 14, 13772 9 of 27

Then, the similarity score of a candidate trip could be calculated in accordance with
Equation (2):

Sβ = 1− 1
N

(
N

∑
k=1

εβk

)
(2)

where Sβ is the similarity score for candidate trip β.
The similarity score was calculated using 1 minus the average relative errors coming

from the indicators of candidate trip β. The score ranges from 0 to 1 (where 1 means no
errors and fully matches the target cycle). The candidate trip with the highest score is the
best trip that matches the provided input information to the greatest extent. It should be
noted that the trip indicators were treated equally in the calculation. The trip that best
matched the trip-level indicators was selected as the best trip.

The best trips from each cluster were divided into micro trips (MTs). An MT is a
driving sequence between two idling events [2]. WLTC standards were followed to divide
the driving sequence into MTs for the selected best trips and ring road and expressway
data points. Each MT was then assigned a code name. Finally, based on the relative error,
the two best MTs were selected that best represented their cluster. Additionally, in order
to include ring road and expressway data points in the final DC, one MT from each was
chosen. The selected MTs were arranged in a time series sequentially as urban, extra-urban,
rural, ring road, and expressway parts.

2.5.5. NN-Based Vehicle Speed Prediction

Prediction is a kind of dynamic filtering in which past values of one or more time
series are used to predict future values. Dynamic neural networks, which include delay-line
taps, are used for nonlinear filtering and prediction. In a study to develop a DC for light-
duty vehicles in Beijing, a recurrent NN approach was adopted [16]. The authors of [15]
predicted a DC using a convolutional NN and [25,26] established a DC recognizer using an
NN algorithm. The NN model divides the target time steps into training, validation, and
testing datasets. The network randomly assigns 70%, 15%, and 15% of the target time steps
to the training, validation, and testing datasets, respectively. A nonlinear autoregressive
with external input (NARX) model as shown in Equation (3) was applied to predict the
output Y(t).

Y(t) = f(x(t− 1), . . . , x(t− d), y(t− 1), . . . , y(t− d)) (3)

where Y(t) is the predicted vehicle speed at time t (output), d is the past speed value of Y(t),
x(t) is the collected vehicle speed series of MTs of the respective route (input data), and y(t)
is the speed series of the best selected MTs defining the desired output (targets).

All trip data were converted to a time series and used as the training data (input data)
of their route, and the selected MTs from each route were used as the test data (target)
during the application of the NN. A sigmoid transfer function was used in the hidden layer
of the applied NARX network model (Figure 7), and a linear transfer function was used in
the output layer. The NARX network’s output provides feedback to the network’s input.
Ten hidden neurons were used during the training.

Figure 7. Neural network diagram.
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Bayesian regularization with a back-propagation training algorithm was applied to
train the network. Although this technique takes longer, it can provide a high level of
generalization for complex, tiny, or noisy datasets. Training stops were based on adaptive
weight minimization (regularization). The NN-predicted speed value from each road
category was combined to construct a representative DC. Finally, the developed AADC
was compared to the DC developed using the micro trip (MT) method, collected data, and
standard DCs.

2.6. Micro Trip Method of DC Construction

The best method for building DCs is the micro trip (MT) method [2,27]. We created
a DC utilizing the MT approach using the same data used for the NN prediction method
to demonstrate the significance of the methodology provided in this study. The driving
characteristic parameters were calculated after the speed time data were denoised and
segmented into MTs. Using MATLAB, 9451 MTs were obtained from the data. The very
lengthy MTs (longer than 1000 s) and very short MTs with very few driving points (less
than 30 s) were excluded. With the help of the K-means clustering algorithm, the remaining
6680 MTs were grouped into six clusters. The closest MT to cluster centers is chosen as the
typical MT in order to create a DC from each cluster. Until the time sharing requirement is
satisfied, the MT selection procedure continues until enough MTs are selected from each
cluster. The proportion of each cluster or traffic condition in the final DC is proportional to
the duration of that condition in the collected data. Based on the WLTC and the present
DC durations, we decided to use a DC duration between 1500 s [28] and 1800 s [4].

The representativeness of the driving pattern contained in the candidate DC was
evaluated. The driving patterns in the collected driving data and contained in the clustered
group were described by a set of characteristics parameters (CPs), which are also called tar-
get parameters. Then, the candidate DC was also described by its characteristic parameter
(CP*). Finally, we established that a DC represents a driving pattern when the characteristic
parameters of the candidate DC are approximately similar to the target parameters. Thus,
the degree of representativeness of a candidate DC was evaluated as the relative difference
between paired CPs according to Equation (4) [27].

RDi =
|CPi − CP∗i |

CPi
(4)

During a cycle’s development, the maximum acceptable difference among the paired
CPs is 15% [29]. The process of obtaining a candidate DC is repeated several times until
an acceptable threshold is obtained. The candidate DC that fulfils this threshold becomes
the representative DC. Using this approach, we produced different candidate DCs. From
among these, we selected the best one that had the least paired CPs and compared it to the
processed experimental data and the DC developed by the NN prediction method.

3. Results

Once the two methods presented above had been employed, we obtained their re-
spective DCs and assessed how closely the obtained DCs reflected the data collected in
real time.

3.1. NN Prediction Method

To reduce the dimension of the trip indicators, we applied principal component
analysis (PCA) using SPSS 26 on all trip indicators from 527 trips. A correlation test was
applied before the PCA analysis. The KMO (a measure of sampling adequacy) was found
to be greater than 0.7 and the significance was zero, as shown in Table 2, indicating that the
sample collected was sufficient for PCA analysis.
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Table 2. KMO and Bartlett’s test.

Kaiser–Meyer–Olkin Measure of Sampling Adequacy 0.709

Bartlett’s Test of Sphericity

Approx. Chi-Square 9288.263

df 136

Sig. 0.000

Components 1, 2, 3, 4, and 5 had an eigenvalue above 1 and the cumulative percentage
of variance was 80.247%, indicating that important information was included. As men-
tioned in [12], a cumulative contribution greater than 80% is acceptable. Components that
had an eigenvalue of less than 1 were ignored as they did not contain sufficient informa-
tion. The component matrix obtained is shown in Table 3 and the eigenvalue scree plot is
displayed in Figure 8.

Table 3. Total variance.

Component
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total % of
Variance

Cumulative
% Total % of

Variance
Cumulative

% Total % of
Variance

Cumulative
%

1 5.652 33.249 33.249 5.652 33.249 33.249 3.648 21.459 21.459
2 3.187 18.748 51.997 3.187 18.748 51.997 3.48 20.469 41.928
3 2.13 12.531 64.528 2.13 12.531 64.528 2.861 16.828 58.756
4 1.51 8.88 73.408 1.51 8.88 73.408 2.143 12.608 71.364
5 1.163 6.839 80.247 1.163 6.839 80.247 1.51 8.883 80.247
6 0.934 5.495 85.742
7 0.588 3.46 89.202
8 0.422 2.484 91.686
9 0.347 2.039 93.724

10 0.339 1.993 95.717
11 0.252 1.482 97.199
12 0.187 1.098 98.297
13 0.126 0.743 99.04
14 0.062 0.364 99.404
15 0.053 0.311 99.716
16 0.034 0.202 99.918
17 0.014 0.082 100

Figure 8. Scree plot.
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The score of the five rotated component matrices depicted in Table 4 clearly shows the
trip indicators clustered on the basis of their similarities. Factor one (F1) includes velocity
and distance-related indicators, factor two (F2) includes the proportion of acceleration
and deceleration time, the PKE, and the average and standard deviation of acceleration,
factor three (F3) includes stop-related indicators and the percentage of constant speed
driving, factor four (F4) includes maximum acceleration and deceleration, and factor five
(F5) includes RPA and trip duration.

Table 4. Rotated component matrix.

Indicators F1 F2 F3 F4 F5

Vdavg 0.888 0.126 −0.215 0.113 0.023
Vmax 0.869 0.149 −0.001 0.264 0.144
Vsd 0.833 0.003 −0.007 0.144 −0.052

Vavg_all 0.754 0.089 −0.565 0.083 0.035
Ssum 0.673 0.204 −0.121 0.016 0.626
Pdec 0.068 0.941 −0.127 0.05 0.158
Pacc 0.204 0.82 −0.291 0.218 0.076
aavg 0.086 −0.766 −0.142 0.444 −0.178
PKE 0.193 0.673 0.414 0.345 −0.203
asd 0.222 0.579 0.038 0.442 −0.1
Pidl −0.079 −0.12 0.947 0.005 0.049
Pcru 0.08 −0.403 −0.852 −0.065 −0.051

Nspkm −0.285 −0.337 0.723 −0.141 0.003
amax 0.216 −0.032 0.032 0.904 0.125

decmax −0.174 −0.269 0.088 −0.781 −0.226
Ttotal 0.265 0.3 0.182 0.06 0.785
RPA −0.083 −0.082 −0.017 0.122 0.539

The trip data matrix and the rotated component matrix for each trip were multiplied
as stated in Equation (5) to produce the scores of component matrices (FACs). Scores of the
five principal components were taken as the research object for clustering.

FAC_1 = 0.888Vdavg + 0.869Vmax + 0.833Vsd + 0.754Vavg_all + 0.673Ssum + 0.068Pdec + 0.204Pacc

+ 0.086aavg + 0.193PKE + 0.222asd − 0.079Pidl + 0.08Pcru − 0.285Nspkm + 0.216amax

− 0.174decmax + 0.265Ttotal − 0.083RPA

FAC_2 = 0.126Vdavg + 0.149Vmax + 0.003Vsd + 0.089Vavg_all + 0.204Ssum + 0.941Pdec + 0.82Pacc

− 0.766aavg + 0.673PKE + 0.579asd − 0.12Pidl − 0.403Pcru − 0.337Nspkm − 0.032amax

− 0.269decmax + 0.3Ttotal − 0.082RPA

FAC_3 = −0.215Vdavg − 0.001Vmax − 0.007Vsd − 0.565Vavg_all − 0.121Ssum − 0.127Pdec − 0.291Pacc (5)

−0.142aavg + 0.414PKE + 0.038asd + 0.947Pidl − 0.852Pcru + 0.723Nspkm + 0.032amax

+ 0.088decmax + 0.182Ttotal − 0.017RPA

FAC_4 = 0.113Vdavg + 0.264Vmax + 0.144Vsd + 0.083Vavg_all + 0.016Ssum + 0.05Pdec + 0.218Pacc

+ 0.444aavg + 0.345PKE + 0.442asd + 0.049Pidl − 0.065Pcru − 0.141Nspkm + 0.904amax

− 0.781decmax + 0.06Ttotal + 0.239RPA

FAC_5 = 0.023Vdavg + 0.144Vmax − 0.052Vsd + 0.035Vavg_all + 0.626Ssum + 0.158Pdec

+ 0.076Pacc − 0.178aavg − 0.203PKE − 0.1asd + 0.049Pidl − 0.051Pcru + 0.003Nspkm

+ 0.125amax − 0.226decmax + 0.785Ttotal + 0.239RPA
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3.1.1. Clustering Result Analysis

After training a model in a classification learner, the model’s performance or validation
accuracy score is checked against the trained data, helping with the selection of the best
model. MATLAB software was used to calculate the accuracy score of the classification
learning techniques. The accuracy score is represented as the proportion of true results (true
positives and negatives) divided by the total number of cases examined (true positives,
false positives, true negatives, and false negatives). The accuracy score results of the input
data are summarized in Table 5. Based on the accuracy score, the neural network classifier
method provided the best performance; therefore, the NN clustering method was applied
to categorize the trips into different groups.

Table 5. Accuracy score of classification learner methods.

S/N Methods Accuracy (Validation)

1 Decision trees 63.9–71.3%
2 Discriminant analysis 65.0–82.0%
3 Naïve Bayes classifiers 61.3–71.2%
4 Support vector machines 68.5–85.2%
5 Nearest neighbor classifiers 71.3–74.4%
6 Neural network classifier 82.9–86.5%

3.1.2. Checking the Confusion Matrix Performance of Each Class

To understand how the selected classifier performed in each class, a confusion matrix
plot was employed. True positive rates (TPRs) and false negative rates (FNRs) were used
to determine how well the classifier performed in each class. The proportion of correctly
identified observations per true class is referred to as the TPR. The FNR is the percentage
of observations that are erroneously categorized in each class. Scattered plots are shown in
Figure 9. Figure 10 reveals that 94.7%, 84.6%, 87.4%, and 72.9% of the extra-long trips (ELTs),
long trips (LTs), medium trips (MTs), and short trips (STs), respectively, were correctly
classified, as shown in the blue cells in the TPR column.

Figure 9. Scattered plot of narrow NN.

The receiver operating characteristic (ROC) curve in Figure 11 shows true and false
positive rates for the NN-trained classifier. The false positive rate (FPR) of the selected
method was 0.01, which indicates that the classifier assigns 1% of the observations incor-
rectly to the positive class. A TPR of 0.95 indicates that the classifier assigns 95% of the
observations correctly to the positive class. The area under the curve is the measure of
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the overall quality of the classifier. The area under the curve of 0.97 indicates a better
classifier performance.

Figure 10. Validation confusion matrix of the NN classifier.

Figure 11. ROC curve of the NN classifier.

3.1.3. NN Clustering Results Analysis

To cluster the five score values of PCA, a 3× 3 matrix dimension was set for the number
of classifications using the NN clustering algorithm. It categorized the 527 trips into nine
groups. As shown in Figures 12–14, the self-organizing map neighbor weight distances,
neighbor connections, and weight positions indicated the best clustering performance. The
Figure 12 uses the following color coding: the blue hexagons represent the neurons; the
red lines connect neighboring neurons, the colors in the regions containing the red lines
indicate the distances between neurons, the darker colors represent larger distances, and
the lighter colors represent smaller distances. In Figure 13 SOM layer denotes neurons as
gray-blue patches and its direct neighbor relations with red lines in SOM neighbor weight
distances. Black to yellow color patches shows how close each neuron’s weight vector
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to its neighbors. In Figure 14 the button shows the locations of the data points and the
weight vectors. In SOM weight positions, green dots denotes input vectors and shows how
SOM classifies the input space by showing blue-gray dots for each neuron’s weight vector
and connecting neighboring neurons with red lines represents the data on various clusters.
Each cluster is shown in different colors. Gray-blue patches denote SOM layer neurons and
red lines as their direct neighbor relations.

Figure 12. Self-organizing map neighbor weight distances.

Figure 13. Self-organizing map neighbor connections.

The number of trips in these nine categories was 77, 58, 75, 25, 31, 136, 15, 68, and 42
for clusters 1–9, respectively.

3.1.4. Selected Trips and Micro Trips

After computing the relative error and similarity score for each cluster, the trips that
best represented their cluster were selected as the best trip. Based on this, nine best trips
were selected. The similarity score of the nine best trips was 0.97, 0.95, 0.96, 0.87, 0.92, 0.98,
0.86, 0.99, and 0.98 for cluster numbers 1–9, respectively. However, the trip indicators were
treated equally in the calculation.
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Figure 14. Self-organizing map weight positions.

The nine best trips selected were divided into MTs, and characteristic parameters
were determined for each. The MTs that best represent their group were selected based
on similarity scores. From the nine clusters, 18 MTs were chosen. As shown in Table 6,
sequence numbers 1–12, 13–16, and 17–18 represent selected MTs of urban, extra-urban,
and rural road sections, respectively. Additionally, all ring road and expressway driving
data were divided into MTs. One best MT was selected for the ring road section (sequence
number 19 in Table 6), and one best MT was selected for the expressway section (sequence
number 20 in Table 6).

Table 6. Selected MTs.

Sequence
Number MT Code Ttotal Tidle Tdrive S Route

1 EMT1 245 174 71 245.766 Urban
2 DMT7 229 107 122 430.225 Urban
3 CMT12 154 101 53 300.688 Urban
4 IMT8 119 45 74 332.236 Urban
5 EMT6 72 41 31 130.299 Urban
6 CMT2 82 37 45 281.14 Urban
7 HMT26 70 19 51 288.133 Urban
8 HMT10 72 19 53 240.567 Urban
9 FMT4 160 17 143 664.625 Urban

10 DMT11 50 10 40 79.368 Urban
11 FMT12 70 8 62 244.875 Urban
12 BMT6 51 7 44 183.937 Urban
13 AMTC29 90 35 55 434.186 Extra-urban
14 AMTC2 110 35 75 491.025 Extra-urban
15 BMT7 111 15 96 609.743 Extra-urban
16 GMT90 130 9 121 643.646 Extra-urban
17 IMT4 339 25 314 2098.639 Rural
18 GMT33 180 5 175 1210.502 Rural
19 RRMT3 160 3 157 1918.478 Ring road
20 EWMTC18 100 24 76 820.486 Expressway

Total 2594 736 1858 11,648.57

3.1.5. NN-Based Speed Prediction

To predict a series of vehicle speeds y(t) for each route type based on a past value
d of y(t) and another series of data x(t) using the NN, the nonlinear autoregressive with
external input (NARX) model was applied. To train the network, Bayesian regularization
and a back-propagation training algorithm were used. The best training performance was
obtained at 177, 431, 554, 676, and 214 epochs for the urban, extra-urban, rural, ring road,
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and expressway sections, respectively. The response of the speed output element with
training and test data is shown in Figure 15 for each route category.

Figure 15. Response of the time series to the predicted vehicle speed.
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The regression fit of the training data, the test data, and all training and test data is
shown in Figure 16. The regression fit of the training and test data is shown in Appendix A
(Figure A1), as the R-value for each route was indicated to be greater than 0.99, which
indicates the best fit. Therefore, the predicted value of speed for the given time series was
used in the final AADC.

Figure 16. Regression fit of all training and test data.

3.1.6. Developed Addis Ababa Driving Cycle (AADC)

The DC developed was derived by combining the predicted vehicle velocity of the
urban, extra-urban, rural, ring road, and expressway sections, as discussed in the section
on NN-based prediction. The urban, extra-urban, rural, ring road, and expressway sections
had durations of 1374 s, 441 s, 519 s, 160 s, and 100 s, respectively, as shown in Table 7.

A final speed–time profile of the DC in Addis Ababa is shown in Figure 17 and its
characteristic parameters are presented in Table 7. This is the transient DC, which consists
of 20 MTs. The total duration of the DC was 2594 s, the distance covered was 11.885 km,
and the average and maximum speed were 16.495 km/h and 117.67 km/h, respectively.

In this approach, a machine classification learner was applied to classify trips, and the
NN clustering method was found to provide better performance accuracy than the other
approaches. However, [6,7,10,13] applied the k-means clustering algorithm to the principal
component score to classify the driving sequences into different clusters.
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Table 7. AADC characteristic parameters of each route section.

Indicators Urban Extra-Urban Rural Ring Road Expressway

Ssum 3400.659 2176.239 3306.434 1946.877 1055.271
Ttotal 1374 441 519 160 100
Vdavg 15.797 22.644 24.39 44.64 50.652
Vmax 29.847 37.919 45.10 79.762 117.67
Vsd 2.497 3.212 2.95 4.057 9.525

Vavg_all 8.91 17.766 22.936 43.805 38
decmax −2.133 −1.824 −1.198 −3.584 −4.5

amax 1.975 1.876 2.147 2.705 3.44
asd 0.291 0.393 0.333 0.73 1.205

Nspkm 3.529 1.838 0.605 0.514 0.948
RPA 0.079 0.1 0.091 0.173 0.507
PKE 0.175 0.215 0.191 0.365 1.06
Pidl 0.436 0.215 0.06 0.019 0.25
Pacc 0.146 0.215 0.249 0.331 0.43
Pcru 0.272 0.37 0.451 0.45 0.05
Pdec 0.146 0.2 0.241 0.2 0.27

Figure 17. Developed AADC.

The DC duration was not determined on the basis of previous studies; rather, the
methodology proposed in this study provided the DC duration that best matched the data
collected in real time. Based on this method, a DC duration of 2594 s was obtained, and
it had a deviation of 0.14 from the daily average trip duration, which indicates that the
duration of this DC is close to the real-time driving data. However, [5] initially decided to
apply a DC duration of between 1200 s and 1300 s, and two DCs were developed that have
a duration of 1216 s and 1261 s. Peng et al. (2015) defined the duration of the designed DC
as 1200 s [7]. Similarly, the authors of [6] decided on a DC duration of 1200 s, while the
authors of [8] randomly constituted a DC until the required cycle duration was achieved.
Additionally, the distance covered by this DC is 11.885 km with a relative difference of 0.13,
which is close to the average daily trip distance of 13.667 km.
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3.2. Micro Trip Method

The driving characteristic parameters reported in Table 8 were calculated after the
speed time data were denoised and segmented into MTs using MATLAB. With the help of
the K-means clustering algorithm, 6680 MTs were grouped into six clusters. As shown in
Table 8 and Figure 18, the distributions of composite characteristic parameters in clusters 1,
2, 3, 4, 5, and 6 are considered to be expressway, extra-urban, rural, ring road, congested
(urban low-speed phase), and urban (medium-speed phase) conditions, respectively. There
are 1296, 1495, 1754, 1438, 593, and 104 micro trips in the congested, urban, extra-urban,
rural, ring road, and expressway sections, respectively.

Table 8. Composite characteristic parameters in each cluster.

Parameters
Cluster

1 2 3 4 5 6

Number of
MTs 104 1754 1438 593 1296 1495

Share of total
duration 0.049 0.191 0.32 0.091 0.064 0.284

Vmax 120 40 50.2 80 9.2 30

Vavg 50.035 16.471 23.11 42.083 4.972 8.561

Vdavg 55.068 21.345 25.02 46.522 6.871 15.478

Accmax 3.556 2.066 2.384 2.919 1.106 1.868

Decmax −4.399 −2.004 −1.238 −3.272 −1.278 −2.5

PAccavg 0.732 0.25 0.188 0.297 0.15 0.222

Decavg −1.287 −0.273 −0.272 −0.394 −0.201 −0.261

Pacc 0.249 0.247 0.286 0.312 0.142 0.155

Pcru 0.464 0.285 0.309 0.333 0.388 0.239

Pdec 0.24 0.239 0.27 0.288 0.192 0.167

Pidl 0.097 0.228 0.136 0.067 0.278 0.439

Traffic condi-
tion/route Expressway Extra-urban Rural Ring road Congested Urban

Figure 18. Clustering of MTs in the two-dimensional feature space.
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Using this MT approach, we produced different candidate DCs. From among them,
we selected the best one that has the least paired CPs. Its characteristic parameters are
shown in Table 9, and the candidate DC developed using the MT method is shown in
Figure 19. The total time (Ttotal) of this cycle is 1539 s, of which the urban, extra-urban,
rural, ring road, and expressway sections covered 553, 299, 434, 144, and 109 s, respectively.
The total distance of the cycle is 8.73 km, of which the urban, extra-urban, rural, ring
road, and expressway sections covered 1.24, 1.35, 2.65, 1.69, and 1.79 km, respectively. The
DC developed using the MT method contains a total of 10 MTs (including 2 MTs in the
congested section, 3 MTs in the urban section, 2 MTs in the extra-urban section, 1 MT in the
rural section, 1 MT in the ring road section, and 1 MT in the expressway section) with a
total duration of 1539 s and a distance of 8.732 km. Figure 19 depicts the candidate cycle’s
speed profile, which includes the cycle’s top speed of 109 km/h, overall average speed of
20.426 km/h, driving average speed of 27.287 km/h, and idle ratio of 0.252.

Table 9. Characteristic parameters of the candidate DC based on route analysis.

CPs Vmax Vavg Vdavg Accmax Decmax PAccavg Decavg Pacc Pcru Pdec Pidl

Urban 30 8.102 14.178 1.3279 −1.4 0.194 −0.251 0.16 0.242 0.17 0.428
Extra-
urban 40 16.25 21.408 1.776 −1.662 0.25 −0.277 0.22 0.341 0.194 0.241

Rural 51.8 22.008 25.47 1.2526 −1.332 0.263 −0.263 0.26 0.325 0.279 0.136
Ring road 69.1 42.285 45.44 2.8559 −2.749 0.345 −0.465 0.39 0.306 0.236 0.069
Expressway 109 59.222 64.552 3.0556 −4.469 0.601 −0.786 0.36 0.303 0.257 0.082

Overall
DC 109 20.426 27.287 3.0556 −4.469 0.281 −0.325 0.24 0.293 0.218 0.252

Figure 19. Candidate DC developed using the MT method.

4. Discussion

Following the application of the two approaches described above, we determined
each method’s corresponding DC and evaluated how well the DCs corresponded to the
driving circumstances in Addis Ababa. The values obtained for the paired CPs of each
route compared to the target are given in Figure 20. We used all of the CPs provided
in Table 9 to evaluate the representativeness of the developed DCs. With regard to the
urban, extra-urban, rural, ring road, and expressway sections, the applied NN method
represents 96.91%, 96%, 95.81%, 92.85%, and 85.3%, respectively, compared with the target
data. However, the MT method represented 89.48%, 90.1%, 88.6%, 88.73%, and 86.1% of
the urban, extra-urban, rural, ring road, and expressway sections, respectively. This result
indicates that the NN method improved the degree of representativeness by 7.43%, 5.9%,
7.21%, and 4.11% for the urban, extra-urban, rural, and ring road sections, respectively. For
the NN prediction method, the resulting DC precisely depicts all the CPs that describes
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each route compared with the MT method except for the expressway section. Due to the
expressway’s extended travel distances without stops, we noticed that the paired CPs
for the NN method are quite close to the maximum established deviation. Additionally,
compared with the training data for the other routes, fewer data were used to train the NN
on the expressway.

Figure 20. Route-based relative difference in paired CPs compared with the target.

The duration characteristics of DCs developed using the NN prediction and MT meth-
ods were compared. From the comparison of duration characteristics, the DC developed
by the NN method is longer (2594 s), while the DC developed using the MT method is
relatively short (1539 s). The DC duration obtained using NN prediction is very close to
the daily trip average duration of 3051 s. The distance of the DC obtained using NN-based
prediction is longer (11.885 km), and the MT-based cycle distance is shorter (8.732 km).
However, the daily average trip distance of the collected data is 13.667 km, which is very
close to the distance of the DC obtained using NN prediction with a relative difference of
0.13.

Figure 21 shows the comparison of vehicle velocity characteristics of the processed
experimental data and the DCs developed using the two methods. From the perspective of
the maximum velocity, average velocity, and average driving velocity, the NN method is the
closest to the target compared with the MT method. This means that the speed distribution
of the NN method is consistent and representative of the actual driving conditions of Addis
Ababa city.

From the point of view of the maximum acceleration and deceleration, the NN-based
DC has a relative deviation of 0.005 and 0.023 and the MT method has a relative deviation
of 0.116 and 0.016 from the target, respectively. From the comparison of the average
acceleration and deceleration, it was found that the NN-based DC is closest to the target
data compared with the MT-based DC. Additionally, the values of the acceleration-related
parameters of the DC developed using the NN are higher than those of the MT-based cycle,
indicating that the acceleration and deceleration processes are more aggressive than the
MT method.

From the distribution of the driving mode ratio of the idle, acceleration, deceleration,
and cruising times, the driving modes of the developed DCs are very close to the processed
experimental data as shown in Figure 22. However, the deviation of the driving modes of
the MT-based cycle is smaller than that of the NN method.
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Figure 21. Comparison of vehicle velocity characteristics.

Figure 22. Comparison of driving mode characteristics.

The DC developed using NN prediction is closer to the results of the processed
experimental data compared with the DC developed using the MT method in terms of all
characteristic parameters. We also found that all CPs of the DC developed using the MT
method were within the threshold except for the average deceleration (Decavg). As shown
in Table 10, the DC developed using NN prediction has smaller deviations than the DC
developed using the MT method, which has a relative difference (RD) of 0.056 and 0.111,
respectively. This indicates that the cycle developed using the NN improved the degree of
representativeness by 5.5% compared with the MT method.

The NN prediction method proposed in this study, as the result demonstrates, consid-
erably enhances the whole cycle’s representativeness by 5.5% and resolves the issue with
the DC duration decision and the lower degree of representativeness of the MT method.
The following factors contributed to the results: the trip method proposed in this study
is the foundation for the determination of the DC duration, applying machine learning
classification for clustering, and, after being processed, the collected driving data were
used to train an NN, which then predicted the velocity of the DC. Therefore, the DC devel-
oped in this study using the NN method accurately represents the driving conditions in
Addis Ababa.
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Table 10. The relative difference in CPs between the target and developed DCs.

CPi Target
NN MT

AADC RDi DC RDi

Vmax 120 117.67 0.019 109 0.092
Vavg 18.064 16.495 0.087 21.247 0.131

Vdavg 23.241 23.242 0.001 27.476 0.141
Accmax 3.456 3.44 0.005 3.056 0.116
Decmax −4.399 −4.5 0.023 −4.469 0.016
PAccavg 0.338 0.355 0.05 0.304 0.15
Decavg −0.491 −0.47 0.043 −0.398 0.338

Pacc 0.218 0.2 0.084 0.236 0.083
Pcru 0.303 0.327 0.078 0.295 0.033
Pdec 0.214 0.182 0.128 0.218 0.018
Pidl 0.264 0.29 0.099 0.251 0.045

RD 0.056 0.111

Comparison of AADC with Standard DCs

Compared with existing standard DCs, the AADC has the capacity to describe actual
traffic conditions on Addis Ababa’s roads most accurately. A comparison of characteristic
indicators from the FTP-75, WLTC, CLTC, collected data, and final DC developed in this
study (AADC) was performed (Table 11). The results show that the method proposed in
this study solved the problem of determining the DC duration. The relative difference of
the AADC, WLTC, FTP-75, and CLTC was −0.056, 0.528, 0.398, and 0.344, respectively.
This indicates that, compared with existing DCs in other countries, the AADC developed
here better suits the actual road and traffic conditions in Addis Ababa in terms of all
characteristic parameters used in this study. Additionally, the characteristic parameters of
the developed AADC are closer to the data sources and are thus representative.

Table 11. Comparison of the developed AADC with standard DCs.

CPi Target AADC RDi WLTC RDi FTP-75 RDi CLTC RDi

Vmax 120 117.67 0.019 131.31 0.094 91.25 0.240 114 0.050
Vavg 18.064 16.495 0.087 46.5 1.574 33.89 0.876 28.96 0.603

Vdavg 23.241 23.242 0.001 53.15 1.287 25.82 0.111 37.15 0.599
Accmax 3.456 3.44 0.005 1.75 0.494 1.48 0.572 1.47 0.575
Decmax −4.399 −4.5 0.023 −1.5 0.659 −1.48 0.664 −1.47 0.666
PAccavg 0.338 0.355 0.05 0.42 0.243 0.51 0.509 0.45 0.331
Decavg −0.491 −0.47 0.043 −0.44 0.104 −0.58 0.181 −0.49 0.002

Pacc 0.218 0.2 0.084 0.309 0.417 0.311 0.427 0.286 0.312
Pcru 0.303 0.327 0.078 0.278 0.083 0.247 0.185 0.228 0.248
Pdec 0.214 0.182 0.128 0.286 0.336 0.271 0.266 0.264 0.234
Pidl 0.264 0.29 0.099 0.127 0.519 0.172 0.348 0.221 0.163

RD 0.056 0.528 0.398 0.344

When looking at acceleration-related indicators, the driving characteristics for the
AADC were quite different from those of standard DCs. The cycles developed in this
study exhibited significantly higher acceleration and deceleration rates as well as much
longer idling periods than standard DCs. The frequent vehicle stops and movements due to
traffic congestion and closer traffic light signals revealed long idling periods in the AADC.
The developed AADC has a relatively long duration (2594 s) but a shorter trip length
(11.885 km) compared with the WLTC, FTP-75, and CLTC.
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5. Conclusions

The analysis of real-time driving data collected from passenger vehicles in Addis
Ababa using GPS devices revealed that standard DCs deviate considerably from the actual
conditions, and therefore an Addis Ababa DC should be developed and used for the
evaluation of vehicle emissions and fuel consumption.

In this study, a trip-based approach combining principal component analysis and
neural network prediction was proposed in order to construct a representative DC and
compared with the micro trip approach to DC development in order to solve the issue of
having to determine DC duration based on experience and the literature. The collected data
were divided into 726 trips. Using eigenvalue decomposition, principal component analysis
reduced the 17 trip indicators to five principal components. The machine classification
learner results indicate that the neural network classifier had an accuracy of between 82.9%
and 86.5%. The applied neural network algorithm classified 527 trips into nine clusters
based on the factor scoring of each trip.

After training the neural network, the Addis Ababa DC speed was predicted with
an overall R-value of 0.99, indicating the best fit between the input and target parameters.
The comparative analysis of the neural network and micro trip methods with processed
experimental data showed a relative difference of 0.056 and 0.111, respectively. Additionally,
compared with the daily average trip length, the DC duration and distance obtained
using the neural-network-based method show the smallest deviations of 0.14 and 0.13,
respectively. The results of the comparison show that the DC created using the neural-
network-based method more accurately represents the actual driving conditions in Addis
Ababa compared with the micro trip method due to the application of the trip approach,
machine learning classification, and neural-network-based speed prediction. Additionally,
compared with standard DCs, it reflects the actual driving conditions more closely than
WLTC, FTP-75, and CLTC. Consequently, the developed AADC can also be used for the
evaluation of the emissions and fuel consumption of vehicles in Addis Ababa. We strongly
suggest that the administration of Addis Ababa make the AADC the legislative driving
cycle of the city. Future studies on DCs could test the proposed methodology using bulk
driving data and apply weightings to trip indicators.
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Appendix A

Figure A1. Regression fit of training and test data.
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