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Multi-trait and multi-environment analyses can improve genomic prediction

by exploiting between-trait correlations and genotype-by-environment

interactions. In the context of reaction norm models, genotype-by-

environment interactions can be described as functions of high-dimensional

sets of markers and environmental covariates. However, comprehensive

multi-trait reaction norm models accounting for marker × environmental

covariates interactions are lacking. In this article, we propose to extend a

reaction norm model incorporating genotype-by-environment interactions

through (co)variance structures of markers and environmental covariates to a

multi-trait reaction norm case. To do that, we propose a novel methodology

for characterizing the environment at different growth stages based on

growth degree-days (GDD). The proposed models were evaluated by variance

components estimation and predictive performance for winter wheat grain

yield and protein content in a set of 2,015 F6-lines. Cross-validation analyses

were performed using leave-one-year-location-out (CV1) and leave-one-

breeding-cycle-out (CV2) strategies. The modeling of genomic [SNPs] ×

environmental covariates interactions significantly improved predictive ability

and reduced the variance inflation of predicted genetic values for grain yield

and protein content in both cross-validation schemes. Trait-assisted genomic

prediction was carried out for multi-trait models, and it significantly enhanced

predictive ability and reduced variance inflation in all scenarios. The genotype

by environment interaction modeling via genomic [SNPs] × environmental

covariates interactions, combined with trait-assisted genomic prediction,

boosted the benefits in predictive performance. The proposed multi-trait
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reaction norm methodology is a comprehensive approach that allows

capitalizing on the benefits of multi-trait models accounting for between-trait

correlations and reaction norm models exploiting high-dimensional genomic

and environmental information.

KEYWORDS

genomic prediction, multi-trait, multi-environment, reaction norm, genotype by
environment interaction

Introduction

Genomic selection (GS, Meuwissen et al., 2001) is an
efficient selection method based on whole-genome prediction
(WGP) that has been successfully applied for a variety of
complex traits in animals and plants (De los Campos et al.,
2009; Hayes and Goddard, 2010; Gianola and Rosa, 2015; Crossa
et al., 2017). Over the last few decades, genomic models have
been extended to accommodate greater availability of data from
new technologies and increasing computational resources that
allow incorporation of high dimensional data. In plant breeding,
there has been an increasing interest in using multi-trait (MT)
multi-environmental (ME) models over single-trait (ST) single-
environmental models, as it may result in an improvement
in accuracy of selection and prediction (Malosetti et al., 2007;
Montesinos-Lopez et al., 2016; Montesinos-Lopez et al., 2019).
MTME models combine the benefits of exploiting between-trait
correlations from MT models and characterizing genotype-by-
environment interactions (G×E) from ME evaluations. Efficient
G×E modeling is required to counteract the negative impacts
of climate change, either by selecting more resilient lines
with decreased G×E or by developing lines well adapted to
specific environments.

The advantages of MT models lie in that they can
represent and exploit the correlation between traits, which can
increase prediction accuracy and reduce bias in predictions
compared to single-trait models (Henderson and Quaas, 1976;
Pollak et al., 1984). The use of between-trait correlations is
especially beneficial to enhance accuracy of predicted breeding
values when genetic and environmental correlations are of
opposite sign, and when MT models are used to infer low-
heritability traits genetically correlated with high-heritability
traits (Thompson and Meyer, 1986; Jia and Jannink, 2012; Jiang
et al., 2015). However, MT models increase statistical complexity
in the number of parameters to estimate, which could reduce
the accuracy of estimation and their benefits for prediction
(Haile et al., 2018; Lado et al., 2018). MT models are also useful
for predicting genetic values of individuals not phenotyped for
specific traits of interest but having phenotypic records for
correlated traits. This may represent an additional advantage for

the MT analysis, particularly if the trait of interest is difficult to
measure or has high phenotyping cost.

Modeling G×E has been valuable for wheat genomic
prediction (GP), as it has shown increases in prediction accuracy
ranging from 10 to 40 % (reviewed by Crossa et al., 2017) and
allows prediction of breeding values for lines not tested in the
target environment, but genetically related with other tested
lines. G×E can be identified in ME evaluations and incorporated
into statistical models to detect the responses of genotypes to
changing environments (also termed Macro-environmental
sensitivity); the differential response of genotypes to
environments is called the reaction norm (RN, Falconer,
1990; Falconer and Mackay, 1996; Calus and Veerkamp, 2003).
The G×E can be modeled in an RN framework as a function
of markers and environmental covariates (ECs) collected
from weather stations (e.g., temperature, precipitation, solar
radiation) and soil characterization (e.g., water storage capacity,
sand content, hydraulic conductivity). However, given the high
dimensional nature of genomic data and ECs, modeling marker
× ECs interactions can lead to computational challenges.

A computationally efficient approach to quantify the G×E
is using (co)variance structures. Burgueño et al. (2012) model
G×E in a ME version of the genomic best linear unbiased
predictor model (G-BLUP), where (co)variances structures of
molecular markers and pedigree were used to represent genetic
relationships within environments. The Burgueño et al. (2012)
approach can also be seen as an MT methodology since
environments were considered different traits, representing
heterogeneous variance and covariances among environments.
However, their approach did not include ECs to model
G×E. Jarquin et al. (2014) developed an RN model, where
the main and interaction effects of markers and ECs were
introduced using high-dimensional (co)variance structures of
markers and ECs. The ECs were specifically computed for
different phenological stages summarizing water availability,
temperature, and radiation. A similar definition of ECs has been
implemented by Heslot et al. (2014), but the phenological stages
were simulated using crop modeling instead of the empirical
measure of phenology. Such approaches can be interpreted
as RN models (Falconer, 1990; Falconer and Mackay, 1996;
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Calus and Veerkamp, 2003; Su et al., 2006) since phenotypes
are -implicitly- linearly regressed on ECs. The RN model
proposed by Jarquin et al. (2014) has been applied successfully
in breeding programs of cotton and wheat (Pérez-Rodríguez
et al., 2015; Crossa et al., 2016) and has recently been applied
in combination with historical weather records and simulation
to tackle the problem of predicting cultivars’ future performance
under uncertain conditions (De Los Campos et al., 2020). Other
methods have also been proposed to incorporate marker by
environment interaction into the GS framework, for instance,
models using Gaussian Kernel (Cuevas et al., 2016; Cuevas et al.,
2017) or deep learning methodologies (Montesinos-Lopez et al.,
2018) and have been successfully applied for GP.

Approaches for incorporating both MT and ME information
in GS have been developed using different methodologies
(Malosetti et al., 2007; Montesinos-Lopez et al., 2016;
Montesinos-Lopez et al., 2019; Ward et al., 2019). However,
to the best of our knowledge MT reaction norm models
(MTRN) incorporating ECs information are lacking. In our
study, we propose to extend a RN model incorporating G×E
through high-dimensional (co)variance structures of markers
and ECs (Jarquin et al., 2014; Pérez-Rodríguez et al., 2015;
De Los Campos et al., 2020) to the MT case (MTRN). To
do that, we propose a novel methodology for characterizing
the environment at different growth stages based on growth
degree-days (GDD) instead of phenological stages. Thus, GDD
periods (e.g., computed each 100-GDD) encompassing the
crop stages throughout the full season can be used. The GDD
have been broadly recognized as one of the main forces driving
phenology in wheat (Nuttonson, 1955; Slafer and Rawson,
1994; Salazar-Gutierrez et al., 2013; Aslam et al., 2017). We
hypothesize that using GDD to define wheat growth periods
can be useful for several reasons:

I. It simplifies the implementation of RN models since
phenological records or crop simulations are no longer
needed to infer the phenology of the lines. This may be
convenient for wheat breeding because, in most cases, the
full phenological stages are not recorded, or alternatively,
it avoids the use of crop simulations that can represent
a challenge for breeders since crop simulations are not
commonly used in breeding programs.

II. GDD periods represent a convenient approach to deal
with the differences in growth stages of breeding lines.
Accurately capturing differences in the growth stages
of breeding lines can be difficult using crop simulation
because the critical periods for different breeding lines can
occur at different moments within the same environment
(year-location combinations). Nevertheless, this is no
longer a problem when GDD periods are used.

III. Using GDD periods can be helpful when ECs is
determined for traits where the relationships between the
environmental conditions and resulting phenotype are not
well established; while this may not represent a problem

for wheat grain yield since these relationships have been
extensively defined (Meynard and Sebillotte, 1994), it can
be relevant for quality or diseases traits.

In addition, the proposed MTRN model using (co)variance
structures to incorporate G×E represent a convenient choice
to reduce the high demand on computational resources, which
have often been a relevant restriction for developing MTME
models. This study uses a large set of winter wheat breeding
lines phenotyped for grain yield and protein content in
multiple environments. The proposed models were evaluated
for both traits using cross-validation (CV) and trait-assisted
genomic prediction (TA-GP) in two prediction scenarios
relevant to plant breeders: (i) predicting the performance of
breeding lines that have been tested in some environments
but not in others (CV1, leave-one-year-location-out), and
(ii) predicting the performance of new lines across breeding
cycles (CV2, leave-one-breeding-cycle-out). The TA-GP was
performed considering the phenotypes of the additional trait to
exploit between-trait correlations, which is intended to improve
predictions of breeding values for the trait of interest.

Materials and methods

Plant material and phenotyping

In this study, 2,015 sixth-generation (F6) winter wheat lines
(T. aestivum L.) from the breeding company Nordic Seed A/S
were used; a subset of these data has been used in earlier studies
(Cericola et al., 2017; Kristensen et al., 2018; Tsai et al., 2020;
Raffo et al., 2022). The breeding lines came from seven breeding
cycles (BC) tested in years 2014–2019, and each breeding cycle
originated from approximately 60 parental line-crosses followed
by five generations of selfing, including creating single seed
descent (SSD) lines in generation F4. Each BC were composed
of around 330 lines sown in one or 2 years (cycle 1: 2014,
cycle 2: 2014–2015, cycle 3: 2015–2016, cycle 4: 2016–2017,
cycle 5: 2017, cycle 6: 2018, cycle 7: 2019) at three locations
in Denmark (DK): Odder (Central DK), Holeby (South DK),
and Skive (North-west DK). For breeding cycles from 2014 to
2016 (cycle 2, 3 and 4) lines were tested in 2 years instead
of one in order to have a quick construction of a reliable
training population for genomic prediction. Each year the field
trials were designed in 15 blocks of 46 line plots of 8.25 m2,
having two replicates of 21 F6 lines and two checks randomly
assigned per year-location combination. The traits analyzed
were grain yield measured as kg per plot (8.25 m2) and protein
content (%) determined by near-infrared spectroscopy (NIRS),
and both traits were chosen according to their high relevance
for breeding. Similar agronomic management was applied for all
trials (e.g., sowing and assessment time, fertilization, application
of treatments etc.).
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Genotyping

A modified CTAB method was used to perform DNA
extractions (Rogers and Bendich, 1985). The plant material was
genotyped using the 15K Illumina Infinium iSelect HD Custom
Genotyping BeadChip technology (Wang et al., 2014). Quality
control was carried out by removing genotyped SNPs with
minor allele frequency (MAF) lower than 5% and call rate lower
than 0.90. In total, 12,893 SNPs remained after quality control.

Environmental data and environmental
covariates

Climatic variables were collected on a daily basis and
described temperature, relative humidity, wind speed, vapour-
pressure deficit, and global radiation from weather stations
within 20 km from field trials; precipitation within 10
km; minimum and maximum temperature and potential
evaporation from the closest weather stations located in
Silstrup, Askov, and Flakkebjerg for Skive, Dyngby, and Holeby,
respectively (Plauborg, pers. comm.). Soil information was
available in each locality for depths 0–30, 30–60, 60–100, 100–
200 cm and described texture (clay, sand, silt), carbon content,
hydraulic conductivity and plant available water (Adhikari et al.,
2013; Kotlar et al., 2020).

The climatic variables were used to compute ECs
summarizing environmental descriptors linked to water
availability, radiation, and temperature at different crop stages
(see Figure 1 and Table 1), which together with the soil
information, were used to describe the environments at the

level of year-location. The crop stages were defined each 100
GDD, where GDD were estimated as the thermal sum of
daily average temperature over 0◦C (McMaster and Wilhelm,
1997; Salazar-Gutierrez et al., 2013) from sowing date until
August 15 (estimated end of harvest season in Denmark). The
100-GDD stages were intended to summarize environmental
conditions in short periods of days that encompass the crop
phases throughout the full crop period. In total, 17 climatic
variables were computed for each GDD stage, and seven
soil variables specific for each locality were defined for four
depths (0–30, 30–60, 60–100, 100–200 cm). Quality control
of ECs was performed by removing variables with more than
10% of missing values (NA) or 30% of repeated values as
indicated in Jarquin et al. (2014). After quality control, 300
climatic ECs from the first to the 27 GDD stages remained
for each year-location combination plus 23 soil ECs (300
climatic ECs + 23 soil ECs = 323 ECs; see Supplementary
material 1 for a complete description of variables obtained
after quality control). Climatic ECs for GDD stages above
2,700 GDD did not pass quality control due to presenting
more than 10% on NA values. The maturity date was simulated
for the different environments following Pullens et al. (2021),
and it was confirmed that all relevant growth stages until
maturity were within the 27 GDD stages obtained after
quality control.

Statistical analysis

In this study, five models were proposed to evaluate the
effect of including G×E interaction and MT modeling for grain

FIGURE 1

Computation of growth stages and environmental covariates (ECs) for year 2014 in the locality of Skive. In total, the complete crop cycle was
divided into 27 shorter periods of 100 GDD (27 growth stages). For each growth stage, a set of ECs summarizing environmental descriptors
linked to water availability, radiation and temperature were computed as described in Supplementary material 1. The same approach was used
for all year-location combinations. GDD: growth degree days, the GDD were estimated as the thermal sum of daily average temperature over
0◦C.
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TABLE 1 Environmental covariates (ECs) description, modified from Lecomte (2005) and Heslot et al. (2014).

Code Variable description Category

ave.glorad Average global radiation (MJ/m2) Radiation

ave.temp Average temperature (◦C) Temperature

ave.vpd Average vapour pressure deficit (VPD, kPa). VPD measures difference between air
moisture and potential moisture and is related to water loss

Water/evapotranspiration

cumglorad Accumulated global radiation (MJ/m2) Radiation

ratrdtmp Ratio between global radiation (MJ/m2) and temperature (◦C) Photothermal ratio

cumpospetp Accumulated positive precipitation (mm) – evaporation (mm) Water

cumnegpetp Accumulated negative precipitation (mm) – evaporation (mm) Water

cumpetp Accumulated total precipitation (mm) – evaporation (mm) Water

cumntdryd Number of total dry days [precipitation (mm) ≤ evaporation (mm)] Water

cumnsti4 Accumulated temperature (◦C) lower than−4◦C Frost/temperature

cumndt0 Number of days with minimum temperature (◦C) lower than 0◦C Frost/temperature

cumsti0 Accumulated temperature (◦C) lower than 0◦C Frost/temperature

cumprec Accumulated precipitation (mm) Water

cumvpd Accumulated vapour pressure deficit (kPa) Water/evapotranspiration

GDD Growth degree days estimated as the thermal sum of daily average temperature over 0◦C Temperature

ndi10m Number of days with radiation lower to 1,045 J/cm2 Radiation

sri10m Sum of daily radiation (MJ/m2) when radiation is lower to 1,045 J/cm2 Radiation

pvt Plant available water (%) Soil/water

wscmm Water storage capacity (mm) Soil/water

claynor Sand content (%) Soil

fsandno Fine sand content (%) Soil

gsandno Coarse sand content (%) Soil

kulstof Carbon content (%) Soil

siltnor Silt content (%) Soil

Ks_250 Saturated hydraulic conductivity (%) Soil

The ECs for the categories radiation, temperature, frost, photothermal ratio, water and evapotranspiration were computed each 100 GDD for the complete growth cycle starting from
the sowing date. The ECs for the category soil were available at all localities for four depths: 0–30, 30–60, 60–100, 100–200 cm. The ECs from the different categories were used together
to describe the environmental conditions in each year-location combination.

yield and protein content. The full data set was used for VCs
estimation to obtain estimates as accurate as possible. First, a
baseline mixed model without genomic information (M1) was
used as a starting point for constructing the other models; a
similar baseline model has been used in earlier works with
Nordic Seed A/S data (Cericola et al., 2017; Tsai et al., 2020).
Second, the baseline model was extended by a genomic [SNPs]
effect (M2), capturing the main additive genetic effects (Habier
et al., 2007; VanRaden, 2008). Third, a G×E effect based on
genomic [SNPs] by ECs interactions extended M2 to the RN
framework (M3). Lastly, M2 and M3 were extended to the MT
case (M4 and M5, respectively), considering grain yield and
protein content. A detailed model description is provided below.

Model 1 (M1, baseline model)
The M1 (Equation 1) is a mixed model considering the main

sources of variability affecting the data and the experimental
design. It was defined as:

yn = Xb+ Z1l+ Z2f + Z3s+ e (1)

where yn is the vector of phenotypes for grain yield (n = 1) or
protein content (n = 2); X and Zn(n = 1, 2, 3) are design matrices
for fixed and random effects, respectively; b is the vector of fixed
trial effects nested within year-location-breeding cycle, which
is intended to capture the variation due to overall effects of
year, location, the interaction between year and location as well
as effects of the spatial location of the trial within the field.;
l is a vector of line effect with l ∼ NIID

(
0, Iσ2

l
)
, where I is

an identity matrix and σ2
l is the variance due to uncorrelated

line effects; f is a vector of line × environment interaction
(L×E) with f ∼ NIID

(
0, Iσ2

f

)
, where σ2

f is the variance due
to uncorrelated L×E effects; s is a vector of spatial effect,
which follows a multivariate normal density (MVN) with s ∼
MVN

(
0, Sσ2

s
)
, where S is a spatial relationship matrix and σ2

s
is the spatial effect variance. The spatial effect was defined as
the combination of 9-spatial sub-components, where one sub-
component is the spatial effect for the square centered on the
plot of the observation (i.e., target plot), and the eight remaining
sub-components are the spatial effects for the square centered
on the eight plots surrounding the target plot (Figure 2). Virtual
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FIGURE 2

Representation of spatial information in a field trial. The target and eight surrounding plots were used together to correct the spatial variability
across the field. The trial borders’ effect was considered by adding virtual plots to complete the eight surrounding plots for all observations.
Virtual plots were also added in empty X-Y coordinates (with no plot observation registered) to ensure all plots have the eight surrounding plots.
Hence, the spatial effects on an individual plot is the sum of effects with the square centered on the plot itself plus the effects of the eight
surrounding plots with a square centered on those plots.

plots were added over trial borders and into empty spaces of
the X by Y grid to control border effects and ensure all plots
have eight surrounding plots. The spatial effects were identified
by assigning a unique id given by its X (row) and Y (column)
coordinates. The spatial relationship matrix S was computed
as S = XX′

tr(XX′)/n , where Xn×q is a n × q matrix, with n =
number of observations (i.e., number of real plots), and q =
number of real plus virtual plots. The Xn×q is an indicator
matrix relating observations to spatial effects in S. A heatmap of
the S matrix for a subset of the data (Dyngby, 2017) is shown
in Figure 3. Additional explanations for the modeling of the
spatial effect can be found in Tsai et al. (2020), where the spatial
effect was equivalently modeled by the first time, but with the
difference that for our case we used the relationship matrix S,
and they used the regression of the 9-spatial covariates for each
plot observation directly as random effects. However, although
these two implementations are mathematically equivalent, our
implementation is computationally faster. The e is a vector
of random residuals with e ∼ NIID

(
0, Iσ2

e
)
, where σ2

e is the
residual variance.

Model 2 (M2)
The M2 (Equation 2) extend M1 by adding a genomic [SNP]

additive effect using the VanRaden (2008) genomic relationship
matrix as (co)variance structure, and therefore, M2 can be seen
as a G-BLUP model (Habier et al., 2007; VanRaden, 2008). M2
was defined as:

yn = Xb+ Z1l+ Z2f+ Z3s+ Z4g+ e (2)

where yn, X, Zn, b, l, f , s, and e were defined as in M1; g is a
vector of the genomic additive breeding values (GEBVs), with
g ∼ MVN

(
0, Gσ2

g

)
, σ2

g is the genomic additive variance, and
G is the genomic relationship matrix (GRM) based on the first
method proposed by VanRaden (2008): G = ZZ′

2
∑

pi(1−pi)
, where

pi is the minor allele frequency (MAF) of the ith SNP; Z is M−P;
M is a SNP matrix coded −1, 0, 1, and P is a matrix with the
MAF of SNP i calculated as 1(2

(
pi − 0.5

)
) for column i.

The line effect (l) was kept in all genomic models since it is
intended to capture non-additive variance and additive variance
not captured by SNPs in the genomic effect; therefore, this
model definition helps to improve the characterization for the
specific additive genomic variance captured by the SNPs.

The narrow (h2) and broad-sense (H2) plot heritabilities
were estimated for M2 as h2

= d(G)σ2
g/σ

2
P and H2

= (σ2
l +

d(G)σ2
g)/σ

2
P, where d(G) is the mean diagonal value of G with

d (G) = 1.869, the d(G) value can be interpreted as 1 plus
the average genomic inbreeding coefficient for the population
(VanRaden, 2008); σ2

g and σ2
l are the genomic estimated additive

and line variance as defined for M2 and M1, respectively; σ2
P

is the estimated phenotypic variance of the plot calculated as:
σ2

P = σ2
l + d(G)σ2

g + σ2
f + σ2

s + σ2
e , with σ2

l , d(G), σ2
g , σ2

f , σ2
s ,

and σ2
e as defined previously in M2 and M1. Note that h2 and

H2 were reported at the plot level and not for family means as
sometimes are used in plant breeding.

Model 3 (M3)
The M3 (Equation 3) is the most developed model in

terms of definition of effects as it extends M2 by including a
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FIGURE 3

Heatmap of the spatial relationship matrix for locality Dyngby in the year 2017. A total of 311 plots were observed at Dyngby 2017, and the spatial
relationship between plots are represented. Higher to lower relationships are represented from yellow to light-blue colors; the dark blue
represents a lack of relationship between plots (not neighboring connections).

genomic [SNPs] × ECs interaction effect (gw), and therefore,
it can be viewed as a linear RN model where the genetic and
environmental gradients are specified as regressions on markers
and ECs. As pointed in Jarquin et al. (2014) and Pérez-Rodríguez
et al. (2015), the M3 uses the (co)variance patterns induced
by linear-by-linear reaction norm, where the intercept of the
reaction norm are implicitly in the main effects of lines and
environment and the slope in the genomic [SNPs] × ECs
interaction effect. The M3 was defined as:

yn = Xb+ Z1l+ Z2f+ Z3s+ Z4g+ Z5gw+ e (3)

where yn, X, Zn, b, l, f , s, g, and e were defined as in M1
and M2; gw is a vector of genomic [SNPs] additive × ECs
interaction values with gw ∼ MVN

(
0, (ZgGZ′g)◦�σ2

gw

)
, where

Zg is a design matrix connecting phenotypic observations with
cultivars, G is the GRM, and� is the (co)variance matrix
computed as in De Los Campos et al. (2020) and derived from
ECs as �= WW′

q , where Wnxq is a matrix of centered and scaled
ECs with n rows (number of phenotypic observations) and q

columns (number of ECs). The operator “◦” represents the cell-
by-cell (or Hadamard) product between matrices, and σ2

gw is
the variance term associated with the genomic [SNPs] × ECs
interaction effect.

Note that the inclusion of the line × environment
interaction (f ) and the genomic [SNPs] × ECs interaction
effects together in M3 is justified since ECs do not capture
all the environmental variability, and therefore, this definition
of interactions with the environment contribute to specifying
what is not captured by ECs. A similar concept is also extended
to the main line effect (L) effect, which are present in all the
defied models and are intended to cover the misspecification
of the SNPs on genetic effects. The inclusion of an additional
model term defining the main effect of ECs have also been
used in previous works (Jarquin et al., 2014; Pérez-Rodríguez
et al., 2015; De Los Campos et al., 2020); however, such an
effect is not possible to estimate in our case since the main
environmental effect is implicitly defined and estimated by the
fixed effects of our models.

All models presented so far have been implemented in a
single-trait (ST) approach for grain yield and protein content.
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In the following section we summarize the extension of ST
models to the MT case.

Multi–trait models (M4-M5)
The M2 and M3 were extended to the MT case by M4

and M5 (Equation 4), respectively. The MT models considered
grain yield and protein content in a bivariate analysis. The MT
methodology allows exploiting between traits (co)variances for
the different model effects, which modified the definition of
the random effects from ST models. Following, we present the
definition of the effects for the M5 (the most developed model
in terms of effects and traits included):[

y1

y2

]
=

[
X1 0
0 X2

][
b1

b2

]
+

[
Z1 0
0 Z2

][
l1
l2

]
+

[
Z3 0
0 Z4

][
f1
f2

]

+

[
Z5 0
0 Z6

][
s1

s2

]
+

[
Z7 0
0 Z8

][
g1

g2

]

+

[
Z9 0
0 Z10

][
gw1

gw2

]
+

[
e1

e2

]
(4)

where yn, X, Zn, b, l, f , s, g, gw are the same as defined in
the previous models for grain yield and protein content,
except for the random effect variances which under

the MT framework becomes:

[
l1
l2

]
∼ NIID

(
0, I

⊗
L
)
,

where
⊗

denotes the Kronecker product, and L the line

(co)variance matrix

[
σ2

l1 σ2
l12

σ2
l21 σ2

l2

]
;

[
f1
f2

]
∼ NIID

(
0, I

⊗
F
)

with F the line × environment (co)variance matrix[
σ2

f 1 σ2
f 12

σ2
f 21 σ2

f 2

]
;

[
s1

s2

]
∼ MVN

(
0, S

⊗
H
)

with H the spatial

(co)variance matrix

[
σ2

s1 σ2
s12

σ2
s12 σ2

s2

]
;

[
g1

g2

]
∼ MVN

(
0, G

⊗
K
)

with K the genomic (co)variance matrix

[
σ2

g1 σ2
g12

σ2
g12 σ2

g2

]
;[

gw1

gw2

]
∼ MVN

(
0, (ZgGZ

′

g)◦�
⊗

P
)

with P the genomic

[SNPs] × ECs (co)variance matrix

[
σ2

gw1 σ2
gw12

σ2
gw12 σ2

gw2

]
, and

[
e1

e2

]
∼ NIID

(
0, I

⊗
R
)

with R the residual (co)variance matrix[
σ2

e1 σ2
e12

σ2
e21 σ2

e2

]
. Moreover, for MT models (M4-M5), we calculated

the between-trait correlation for all model effects; for example,
the genetic correlation was: COVg12/

√
σ2

g11σ
2
g22, where COVg12

is the between-trait covariance for the genomic effect, and σ2
g11

and σ2
g22 are the variances associated to grain yield and protein

content, respectively.
A summary of the effects included in the models and the

ST or MT case is presented in Table 2. All proposed models

TABLE 2 Summary of the effect included in the models and
single-trait (ST) or multi-trait (MT) case.

Models Main effect Interactions ST/MT

l g s f gw

M1 (baseline) × × × ST

M2 × × × × ST

M3 × × × × × ST

M4 × × × × MT

M5 × × × × × MT

l line, g genomic [SNPs] additive effect, s spatial effect, f line× environment interaction,
gw genomic [SNPs] additive × ECs interaction. ST, single trait model; MT, multi-
trait model.

were developed under the context of a multivariate normal
distribution assuming Gaussian priors for random effects and
the analyses were performed using the BGLR R package (Pérez
and de los Campos, 2014) with 50,000 iterations, burn-in of
10,000, and a thinning of 10. The initial specifications in BGLR
were set to an R2 = 0.90 to approximate the R2 expected
of our models (known from previous data analysis using
Average Information Restricted Maximum Likelihood, Cericola
et al., 2017; Raffo et al., 2022) and degree of freedom (df)
= 0.0001 to set uninformative priors. The posterior standard
deviation (PSD) for VCs estimates was computed. In addition,
the convergence on parameter estimation was analyzed using
the package CODA in R (R Core Team, 2014) by estimating the
Monte Carlo standard errors (MCMC error), effective sample
(ESS) and by graphical analysis of Markov chains trace plots and
posterior density plot. The convergence analysis is presented in
Supplementary material 2.

Cross-validation analysis and model
validation

The predictive performance of the proposed models was
evaluated using two CV approaches. The CV1 (leave-one-
year-location-out) was carried out by masking the phenotypes
of one year-location in the validation set and using the
remaining phenotyped lines to predict the masked lines
(Supplementary material 3). This process was repeated n
times (n = number of year-locations = 17) until predictions
for all year-locations were obtained. The CV1 simulates the
prediction problem where breeding lines have been tested in
some environments but not in others, and the genetic values
for lines in the untested environment are desired. The CV2
(leave-one-breeding-cycle-out) was carried out by masking
the phenotypes of one BC in the validation set and using
the remaining phenotyped lines to predict the masked lines
(Supplementary material 3). This process was repeated n-times
(n = no. of breeding cycles = 7) until all BCs were predicted. The
CV2 simulates the prediction problem where a new generation
(newly developed lines) is predicted from parental and historical
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records. In addition, the MT models (M4-M5) were evaluated
using TA-GP, where the phenotypic data in CV1 and CV2 was
masked only for one of the traits in the validation set, and the
phenotypes for the second trait were available for all lines.

The predictive ability (PA, rĝ,p) of the models was calculated
as the Pearson correlation between the average value of lines
in each year-location after correcting by fixed effects and the
vector of predictions [ρ(y, ĝg) and ρ(yc, ĝg+ĝgw)]. The fixed
effects were estimated for each model using the full dataset
in order to obtain as accurate estimates as possible. The lines
corrected by fixed effects were computed subtracting the fixed
effects from each corresponding plot observation, and averaging
the resulting lines values within year-locations. The PA was
obtained for predictions of the main additive effect [ρ(yc, ĝg)]
of M2, M3, M4, and M5, and for predictions of the main
additive effect plus the genomic [SNPs]× ECs interactions effect
[ρ(yc, ĝg+ĝgw)] for M3 and M5. We used an ordinary non-
parametric bootstrap with replacement based on full sample size
(n = 2,015), and 10,000 replicates to obtain PA standard errors.
The PA between models was contrasted using a two-tailed paired
t-test (critical P-value = 0.01). The maximum PA was calculated
for g and g+gw predictions in the different models; for M2,
M4 it was calculated as

√
nh2

f /(1+ (n− 1)h2
f ), where n was

the average number of lines repetitions within year-location, h2
f

was the family-based heritability and hence is affected by the
experimental design (number of replications). For M3 and M5
it was calculated using the same formula but substituting h2

f
with the proportion of total variance explained by the genomic
additive plus the genomic interaction effects (genomic [SNPs]×
ECs interaction).

A test for variance inflation in the predicted genetic effects
was performed as the slope of the regression of predicted values
obtained with whole information (subscript w, estimations with

complete phenotypic information for all genotypes) on the
estimated with partial information (subscript p, predictions for
all genotypes from CVs when their phenotypes were masked):
bw,p =

cov(ûw ûp)
var(ûp)

(Legarra and Reverter, 2018).

Results

Phenotyping

The descriptive statistics for grain yield and protein content
are shown in Table 3. In total, 2,015 lines and 14,430 plot
observations were obtained, and normal distribution was
observed for both traits. Grain yield had an average value of
8.85 kg grain/8.25 m2 with a coefficient of variation of 11.63%.
Protein content had an average value of 9.84%, with a coefficient
of variation of 8.11%. The between traits correlation based on
the observed phenotypes was in general negative for the different
breeding cycles and had an average of −0.18 (Table 3). The
variance for descriptive statistics was 1.06 for grain yield and
0.64 for protein content.

Variance components, heritability and
trait correlations

Five proposed models differing in the incorporation (M2–
M5) or not (M1) of genomic information, the incorporation
of genomic [SNPs] × ECs interaction (M3 and M5), and the
single-trait (M1, M2 and M3) or multi-trait case (M4 and M5)
were used to estimate VCs for grain yield (Table 4) and protein
content (Table 5).

TABLE 3 Descriptive statistics for the grain yield and protein content of F6 wheat breeding lines.

Breeding cycle No. of lines* No. of plots Trait** Average (SD) Min.–Max. values Coef. of var. (%)

1 321 1,274 Yield 8.82 (0.83) 3.85–11.00 9.51

Protein 9.67 (0.93) 7.50–15.10 9.65

2 230 2,258 Yield 8.61 (1.09) 4.75–11.47 12.70

Protein 9.74 (0.87) 7.50–14.30 8.95

3 336 3,289 Yield 8.31 (1.11) 5.03–11.80 13.40

Protein 10.25 (0.69) 8.40–13.00 6.73

4 159 918 Yield 9.09 (0.98) 6.21–11.40 10.78

Protein 10.67 (0.57) 9.00–12.60 5.34

5 358 1,674 Yield 8.59 (0.46) 7.06–10.25 5.35

Protein 8.84 (0.41) 7.60–10.20 4.46

6 257 1,977 Yield 9.36 (1.10) 6.04–12.36 11.78

Protein 9.94 (0.51) 8.50–12.00 5.13

7 354 3,040 Yield 9.37 (0.68) 6.24–11.54 7.27

Protein 9.73 (0.59) 8.40–12.50 6.04

Total 2,015 14,430 Yield 8.85 (1.03) 3.85–12.35 11.63

Protein 9.84 (0.80) 7.50–15.10 8.11

*The values presented correspond to the obtained F6 populations after successful phenotyping and genotyping.
**Units of measure: yield (grain yield, kg grain/8.25 m2), protein content (%); No., number; SD, standard deviation; Min, Minimum; Max, Maximum; Coef. of var., Coefficient of variation.
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TABLE 4 Posterior mean of variance components for grain yield (kg
grain/8.25 m2).

Models Main effect Interactions Res.

l g s f gw

M1 (baseline) 0.093
(0.005)*

0.067
(0.003)

0.122
(0.002)

0.055
(0.002)

M2 0.049
(0.004)

0.060
(0.008)

0.067
(0.002)

0.122
(0.002)

0.055
(0.001)

M3 0.050
(0.004)

0.040
(0.008)

0.065
(0.002)

0.047
(0.002)

0.112
(0.008)

0.056
(0.002)

M4 0.051
(0.004)

0.064
(0.008)

0.067
(0.002)

0.122
(0.002)

0.056
(0.002)

M5 0.051
(0.004)

0.049
(0.007)

0.065
(0.002)

0.048
(0.003)

0.112
(0.008)

0.056
(0.002)

*The values between parentheses are the posterior standard deviation (PSD)
of the estimates.
l line, g genomic [SNPs] additive effect, s spatial effect, f line× environment interaction,
gw genomic [SNPs] additive× ECs interaction, Res. residuals.

TABLE 5 Posterior mean of variance components for
protein content (%).

Models Main effect Interactions Res.

l g s f gw

M1 (baseline) 0.076
(0.004)*

0.050
(0.002)

0.044
(0.002)

0.049
(0.001)

M2 0.032
(0.004)

0.069
(0.008)

0.050
(0.002)

0.044
(0.002)

0.049
(0.001)

M3 0.032
(0.004)

0.058
(0.007)

0.050
(0.002)

0.018
(0.002)

0.037
(0.003)

0.048
(0.001)

M4 0.033
(0.004)

0.067
(0.007)

0.050
(0.002)

0.045
(0.002)

0.048
(0.001)

M5 0.032
(0.004)

0.058
(0.007)

0.050
(0.002)

0.020
(0.002)

0.039
(0.003)

0.047
(0.001)

*The values between parentheses are the posterior standard deviation (PSD)
of the estimates.
l line, g genomic [SNPs] additive effect, s spatial effect, f line× environment interaction,
gw genomic [SNPs] additive× ECs interaction, Res. residuals.

The phenotypic variances (σ2
P) for the different models

represented a proportion of 31.9–35.8 % and 34.1–38.4 % of
the descriptive statistical variance for grain yield and protein
content, respectively. The difference between the variance from
descriptive statistics and σ2

P can be attributed to the considerable
amount of variation captured by the fixed effects. The M1
(model without genomic information) captured lower variance
related to the main genetic effect than models including the
additive genomic [SNPs] term. For example, comparing line
variance from M1 to line plus genomic variance from M2, the
M2 captured around 17 and 33 % more genetic variance for
grain yield and protein content, respectively; this is attributed
to correctly accounting for covariances among lines when the
additive genomic [SNPs] effect is included in the models.
The narrow- and broad-sense heritabilities at plot level were

estimated using M2, and higher values were observed for protein
content: h2 = 0.282 (PSD = 0.025) and H2 = 0.414 (PSD = 0.017)
than for grain yield: h2 = 0.168 (PSD = 0.020), H2 = 0.307 (PSD
= 0.153). The G×E variability was accounted for the line ×
environment (f ) and genomic [SNPs] × ECs interaction (gw)
effects, and a higher amount of G×E variance was observed for
grain yield (˜40% of σ2

P) than for protein content (˜ 17% of σ2
P).

The VCs estimates for single-trait models M2 and M4 were
similar to MT models M3 and M5, respectively. The between-
trait correlations were analyzed for all terms in M3 and M5
(Table 6), and negative correlations were observed for all the
effects. High negative between-trait correlations (>0.40) were
observed for the main genetic model effects [line (l), additive
(g)], and the interaction effects (line × environment (f ), and
genomic [SNPs]× ECs interaction ( gw).

The MCMC errors, effective sample (ESS), and graphical
analysis of trace and posterior density plots were performed
as control of convergence for VCs estimates (Supplementary
material 2). The parameters estimated for all models had good
convergence as revealed by the MCMC error in the order of
1 × 10−4 or lower, the high ESS, and the appropriate trace and
posterior density plots.

Predictive ability of genomic
predictions

The PAs (rĝ,p) of M2 to M5 in leave-one-year-location-out
(CV1) and leave-one-breeding-cycle-out (CV2) are shown in
Figure 4 for grain yield and Figure 5 for protein content.

The PA in CV1 varied from 0.296 to 0.528 for grain yield and
0.463 to 0.601 for protein content. A significant improvement
in PA was observed for using predictions of the main additive
effect plus the genomic [SNPs]× ECs interaction effect (g+gw)
compared to using only predictions from the main additive
effect (g). The inclusion of the gw effect represented a significant
increase of 16.4% for grain yield and 7.1% for protein content
(M3 compared to M2). The MT models performing TA-GP (M4
and M5) showed a significant improvement in PA compared

TABLE 6 Between-trait correlations for model effects of multi-trait
models (M4 and M5).

Models Main effect Interactions Res.

l g s f gw

M4 −0.500
(0.066)*

−0.404
(0.049)

−0.252
(0.027)

−0.687
(0.029)

−0.019
(0.019)

M5 −0.536
(0.063)

−0.419
(0.058)

−0.252
(0.027)

−0.597
(0.057)

−0.677
(0.032)

−0.016
(0.019)

*The values between parentheses are the posterior standard deviation (PSD) of
covariances estimates.
l line, g genomic [SNPs] additive effect, s spatial effect, f line× environment interaction,
gw genomic [SNPs] additive× ECs interaction, Res. residuals.
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FIGURE 4

Barplot of predictive abilities (PAs) for grain yield in
leave-one-year-location-out (CV1, upper panel) and
leave-one-breeding-cycle-out (CV2, lower panel)
cross-validations. M2: line + genomic [SNPs] additive effect +
spatial effect + line × environment interaction. M3 expand M2 by
adding a genomic [SNPs] additive × ECs interaction. M4 expand
M2 to the multi-trait case. M4-TA is the M4 using trait-assisted
(TA) genomic prediction. M5 expand M3 to the multi-trait case.
M5-TA is the M4 using TA genomic prediction. Black bars are the
95% confidence interval. Differences in the letter above the bar
represent significant differences between models (P-value <

0.01). Green lines are the theoretical maximum PAs.

to the ST models and MT models without TA-PA. The TA-GP
showed a significant PA increase of 37.9% for grain yield and
17.2% for protein content (M5 compared to M3). The highest
PAs were obtained for both traits when combined TA-GP and
G×E modeling through the genomic [SNPs] × ECs interaction
effect in M5 (grain yield PA: 0.528, protein content PA: 0.601).

In CV2, the PA showed similar trends as CV1. A significant
PA improvement was observed for models using the g+gw
predictions compared to models using only predictions from
the g effect. Using g+gw predictions represented a significant
increase of 40.2% for grain yield and 14.1% for protein content
(M3 compared to M2). The TA-GP for MT models provided a
significant increase compared to the ST models and MT models
without TA-PA, revealing a PA increase of 94.8% for grain yield
and 59.7% for protein content (M5 compared to M3). The
highest PA was obtained for both traits when TA-GP and G×E
modeling through the genomic [SNPs] × ECs interaction effect
in M5 (grain yield PA: 0.448, protein content PA: 0.452). In
comparison, the CV2 had lower PA than CV1 for both traits,
and higher benefits were observed in CV2 for modeling G×E
and using TA-GP.

The maximum potential PA followed a similar trend for
both traits, and the highest values were observed for the models
accounting for genomic [SNPs] × ECs predictions (M3 and
M5). The M1 (baseline) was not included in this section because

such a model has no PA in CVs due to independence between
lines is assumed.

Variance inflation analysis and model
validation

The estimates for variance inflation (bw,p) of the predicted
genetic effects (Legarra and Reverter, 2018) for CV1 and CV2
are shown in Table 7 for grain yield and Table 8 for protein
content.

Predictions for the main additive effect (g) did not present
variance inflation in CV1 since bw,p values were close to one
for both analyzed traits. The bw,p for predictions of the genomic
[SNPs]× ECs interaction effect (gw) indicated a moderate over-
dispersion for M3 (bw,p = 0.87) and M5 (bw,p = 0.85, without
TA-GP) for grain yield. The use of TA-GP resulted in a reduction
of over-dispersion in predictions of the gw effect for grain yield
(M5-TA-GP: bw,p = 0.92). For protein content the bw,p values
for predictions of the gw effect varied from 0.92 to 1.0, revealing
lower over-dispersion than grain yield.

CV2 had higher variance inflation of predicted values
than CV1, and trends were similar for both analyzed traits.
The predictions of the main additive effect (g) presented
the highest variance inflation for M2 (grain yield: bw,p =
0.80, protein content bw,p = 0.80) and the MT model M4
without TA-GP (grain yield: bw,p = 0.80, protein content bw,p

= 0.81). A systematic improvement in the variance inflation
for predictions of the main additive effect (g) was observed
for both traits when the genomic [SNPs] × ECs interaction
was included in the models (bw,p from 0.80 in M2 to 0.89 in
M3 for both traits). The bw,p for predictions of the genomic
[SNPs] × ECs interaction effect (gw) varied from 0.79 to 0.98
for grain yield and 0.86 to 0.98 for protein content, where in
general, the lowest values were associated in both traits to M3
and the MT model M4 without TA-GP, and the highest bw,p to
the M5 using TA-GP.

Discussion

In this study, we proposed a growth degree-day (GDD)
based reaction norm (RN) methodology to introduce genomic
[SNPs] × environmental covariates (ECs) interactions via
(co)variance structures in single-trait (ST) and multi-trait
(MT) frameworks. The developed models were used for VCs
estimation and genomic prediction of grain yield and protein
content in a large set of advanced wheat breeding lines from
the commercial company Nordic Seed A/S. The proposed
models were evaluated using cross-validation (CV) analysis and
trait-assisted genomic prediction (TA-GP) in two prediction
problems relevant for plant breeding: (i) predicting breeding
values for lines that have been tested in some environments
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FIGURE 5

Barplot of predictive abilities (PAs) for protein content in leave-one-year-location-out (CV1, upper panel) and leave-one-breeding-cycle-out
(CV2, lower panel) cross-validations. M2: line + genomic [SNPs] additive effect + spatial effect + line × environment interaction. M3 expand M2
by adding a genomic [SNPs] additive × ECs interaction. M4 expand M2 to the multi-trait case. M4-TA is the M4 using trait-assisted (TA) genomic
prediction. M5 expand M3 to the multi-trait case. M5-TA is the M4 using TA genomic prediction. Black bars are the 95% confidence interval.
Differences in the letter above the bar represent significant differences between models (P-value < 0.01). Green lines are the theoretical
maximum PAs.

TABLE 7 Slope of regression (bw,p) of estimated genetic values with whole information on genetic values with partial information for grain yield in
leave-one-year-location-out and leave-one-breeding-cycle-out cross-validations.

Models CV1: leave-one-year-location-out CV2: leave-one-breeding-cycle-out

g [main effect] gw [interaction effect] g [main effect] gw [interaction effect]

M2 1.02 – 0.80 –

M4 1.02 – 0.80 –

M4-TA 1.01 – 0.88 –

M3 1.02 0.87 0.89 0.79

M5 1.03 0.85 0.87 0.79

M5-TA 1.02 0.93 0.92 0.98

M2: line + genomic [SNPs] additive effect + spatial effect + line × environment interaction. M3 expand M2 by adding a genomic [SNPs] additive × environmental covariates
(ECs) interaction. M4 expand M2 to the multi-trait case. M4-TA is the M4 using trait-assisted (TA) genomic prediction. M5 expand M3 to the multi-trait case. M5-TA is the M4
using TA genomic prediction. g: genomic [SNPs] additive effect. gw: genomic [SNPs] additive× ECs interaction effect.

but not in others (CV1, leave-one-year-location-out), and (ii)
predicting breeding values for new lines across breeding cycles
(CV2, leave-one-breeding-cycle-out). In CV1, the RN developed
models have the potential to predict in environments where
no lines have been tested, and thus, it could be used either to
retrieve information from lines whose phenotyping has failed

in a target environment or to predict for a completely new
environment where no phenotyping has been performed before.
Combining the proposed RN methodology and TA-GP proved
to be an efficient approach to improve the predictive ability (PA)
and reduce variance inflation of grain yield and protein content
predictions in both CVs.

Frontiers in Plant Science 12 frontiersin.org

https://doi.org/10.3389/fpls.2022.939448
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-939448 September 1, 2022 Time: 9:25 # 13

Raffo et al. 10.3389/fpls.2022.939448

TABLE 8 Slope of regression (bw,p) of estimated genetic values with whole information on genetic values with partial information for protein
content in leave-one-year-location-out and leave-one-breeding-cycle-out cross-validations.

Models CV1: leave-one-year-location-out CV2: leave-one-breeding-cycle-out

g [main effect] gw [interaction effect] g [main effect] gw [interaction effect]

M2 1.04 – 0.80 –

M4 1.03 – 0.81 –

M4-TA 1.03 – 0.88 –

M3 1.04 0.98 0.89 0.86

M5 1.04 0.95 0.90 0.81

M5-TA 1.04 1.00 0.93 0.98

M2: line + genomic [SNPs] additive effect + spatial effect + line × environment interaction. M3 expand M2 by adding a genomic [SNPs] additive × environmental covariates
(ECs) interaction. M4 expand M2 to the multi-trait case. M4-TA is the M4 using trait-assisted (TA) genomic prediction. M5 expand M3 to the multi-trait case. M5-TA is the M4
using TA genomic prediction. g: genomic [SNPs] additive effect. gw: genomic [SNPs] additive× ECs interaction.

Variance components

The VCs were estimated for the different models in ST and
MT scenarios for grain yield (Table 4) and protein content
(Table 5). A significant proportion of genetic variance was
captured for both traits, as it can be observed in the narrow-
sense (h2) and broad-sense (H2) heritabilities for M2. In
agreement with previous studies using Nordic Seed A/S data,
higher heritability for protein content than grain yield was
observed (Kristensen et al., 2018; Kristensen et al., 2019; Guo
et al., 2020; Raffo et al., 2022). The M2 was extended in
order to better account for G×E interactions, and the genomic
[SNPs] × ECs interaction term (gw) was included in M3.
The gw effect captured a significant proportion of variance for
grain yield, and models including the G×E interaction terms
f (line × environment) and gw (M3 and M5) captured higher
proportion of G×E variance than models only including the f
effect (M1, M2 and M4). The higher G×E variance captured
by M3 and M5 can be likely attributed to better accounting
for genetic and environmental covariances between lines. The
trends were similar for protein content, but the variance for
G×E interaction was considerably lower than for grain yield.
As reported in previous studies (Jarquin et al., 2014; Pérez-
Rodríguez et al., 2015; De Los Campos et al., 2020), the modeling
of gw explain a limited proportion of G×E variance. It can
happen due to SNPs and ECs not fully capturing the additive
genetic effects (due to incomplete LD of QTLs and SNPs)
and the environmental variation (e.g., due to distance between
weather stations and the test field), respectively. To deal with
this issue, the line × environment interaction effect is defined
in the models to account for the mentioned misspecifications.
In addition, another model term specifying genomic [SNPs] ×
environment interactions have been considered in the models;
however, no significant contribution was observed and data
has not been displayed since such an effect does not have the
capacity of performing predictions in CV1. The inclusion of
an additional term defining the main effect of ECs has been

used in previous studies (Jarquin et al., 2014; Pérez-Rodríguez
et al., 2015; De Los Campos et al., 2020); nevertheless, such
an effect was not possible to estimate in our case as the main
environmental effect is already defined at the level of fixed
effects. Lastly, a significant proportion of spatial variance (σ2

s )
was observed for both traits, revealing a high spatial variability
in the experimental fields. Our proposed methodology for
modeling spatial effects has the advantage of not assuming
any gradient or specific pattern across the field, allowing for
spatial heterogeneity in any direction. This can present an
advantage compared to previous methodologies that use X and
Y coordinates (row-columns) as covariates to model spatial
variation, as they may assume a gradient in X and Y directions
(Bernal-Vasquez et al., 2014; Cericola et al., 2017); however,
although it can be practical given its simplicity, the spatial
variation can generally vary randomly without following a
gradient across the field. The estimate obtained for σ2

s of grain
yield in our study was consistent with the observed for a similar
dataset and spatial effect definition in Raffo et al. (2022), and it
was higher than in Cericola et al. (2017), where spatial effects
were modeled in a row-column setting for a subset of our
data. The differences between studies could be, at least in part,
attributed to the mentioned differences in model assumptions.
Given the significant proportion observed for σ2

s in our study,
the inclusion of spatial effects in selection models is justified as
it may help to improve the model specification.

The MT models showed similar VCs estimates to ST
models. In general, high negative between-trait correlations
were observed for the different model effects (Table 6).
From a breeding perspective, the negative genetic correlation
between grain yield and protein content implies an unfavorable
response in one trait when selecting on another (Falconer
and Mackay, 1996). The negative genetic trait correlations
can be due to pleiotropy or tight gene linkage disequilibrium
(Chen and Lübberstedt, 2010). Understanding the genetic basis
for the negative correlation can help to define an appropriate
breeding program and avoid affecting long-term breeding
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prospects. Note that for pleiotropic gene effect it can
be recommended to select against those genes, while for
undesirable linkage between genes the strategy would aim to
break the linkage through recombination (Falconer and Mackay,
1996; Lynch and Walsh, 1998).

Genomic predictive ability

The PA of the proposed models (Figures 4, 5) was calculated
as the correlation between the average value of lines in each
year-location after correcting by fixed effects and the vector of
predictions (prediction of g effect for M2 to M5; predictions
of g+gw effects for M3 and M5). The predictions for the main
additive effect (g) had the lowest values of PAs, and they were
significantly outperformed by the models accounting for the
genomic [SNPs] × ECs interaction when the sum of g+gw
effects was used. In CV1, using the sum of g+gw effects results
in an increase of 16.4% for grain yield and 7.1% for protein
content (comparing M3 to M2). Predictions for g+gw in CV1
are year-location specific and cannot be generalized to future
years. In CV2, similar trends to CV1 were observed, but the
increments for including the gw predictions were considerably
higher than in CV1, representing a 40.2% and 14.1% increase for
grain yield and protein content, respectively (comparing M3 to
M2). As shown in Figures 4, 5, the PAs were higher for protein
content than for grain yield. These results could be related to the
underlying architecture of the traits (Momen et al., 2018) and
the differences found in h2, where for the lower h2 values as in
grain yield, lower PA is expected (Wimmer et al., 2013; Muranty
et al., 2015).

The CV2 had lower PAs for all models. The decline in
PA can be explained by the higher genetic/pedigree distance
between the training and validation population in CV2 (Habier
et al., 2007; Wolc et al., 2011); while in CV1, the same line
can be present in different year-locations folds, and full sibs
are included in the training and validation sets, for CV2,
the replication of the same line or close relatives are not
shared between training and validation sets. This fact can also
be evidenced in the average genomic relationships between
reference and validation sets for CV1 and CV2. For example, the
average of genomic relationships for reference/validation sets in
CV2 was −0.009 with a standard deviation (SD) of 0.002; the
negative value of relationships can be interpreted as lines less
related than average. Conversely, in CV1, lines from the same
breeding cycle were included in reference/validation sets, and
the average genomic relationship within breeding cycles was
0.055 (SD: 0.015). The positive value obtained for relationships
within breeding cycles can be interpreted as lines more related
than average. As reported by Habier et al. (2007), the decline
in PA can result from the break-up of linkage disequilibrium
between SNPs and QTL between the training and validation
populations when relationships become more distant.

Multi-trait and trait-assisted genomic
prediction

The MT models were evaluated for GP with and without
TA-GP. The PAs of MT models without TA-GP were similar
to ST models for the two CVs and traits (Figures 4, 5).
Similar results have been found for wheat (Lado et al., 2018;
Kristensen et al., 2019), and other species (Jia and Jannink, 2012;
Schulthess et al., 2016), and it has been associated with high
trait complexity and low traits heritabilities (Jia and Jannink,
2012; Lado et al., 2018). Conversely, MT models with TA-
GP significantly improve PA compared to ST models and
MT models without TA-GP. The superior performance of MT
models with TA-GP can be explained by the use of “borrowed”
information from the trait with complete phenotypic records,
which is possible due the use of the between-trait correlations.
The highest benefits for TA-GP were observed for grain yield
PA, where it significantly increased (P-value < 0.01) by 14.0%
(M2 compared to M4-TA) and 37.9% (M3 compared to M5-TA)
for CV1, and by 57.9% (M2 compared to M4-TA) and 94.8%
(M3 compared to M5-TA) for CV2. For protein content, the
benefits provided by TA-GP were lower but still significant (P-
value < 0.01), increasing PA by 5.4% (M2 compared to M4-TA)
and 14.3% (M3 compared to M5-TA) for CV1, and by 28.2%
(M2 compared to M4-TA) and 59.7% (M3 compared to M5-TA)
for CV2. As reported by Jia and Jannink (2012) and Guo et al.
(2014), the highest benefits conferred by the MT approach are
expected for low heritability traits when they are used together
with high heritability traits. Accordingly, our study empirically
addressed this issue by combining a low heritability trait as
grain yield with an intermediate to high heritability trait as
protein content in bivariate analysis. Our results were consistent
with the literature, revealing the highest benefits for the lowest
heritability trait in all scenarios. Another factor contributing to
the large benefit observed in TA-GP is the substantial correlation
observed between grain yield and protein content (from−0.404
to −0.687 for genetic and G×E effects, Table 6). High between-
trait correlations are statistically useful since measurements of
one trait can more informative on the genetic values of the
other correlated traits (Henderson and Quaas, 1976; Schaeffer,
1984; Thompson and Meyer, 1986; Montesinos-Lopez et al.,
2016).

Inflation of variance

The variance inflation (bw,p) for prediction of the main
additive (g) and the genomic [SNPs] × ECs (gw) interaction
effects in CV1 and CV2 are shown in Tables 7, 8. The
CV1, did not present variance inflation for g predictions
as expected due to the high information in the training
population for the g effect. However, gw predictions revealed
over-dispersion in CV1. A possible explanation for this can be
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associated with the design of CV1, where no phenotypes for the
environment predicted are kept in the training population, and
therefore, differences in the QTL effect/expression in the specific
environment may not be captured by SNPs, resulting in inflation
of the predicted effects. In CV2, over-dispersion was observed
in g and gw predictions for both traits. This was expected
as the genetic relationships between training and validation
population are low, and over-dispersion due to genomic erosion
by recombination can occur (Dekkers et al., 2021). Despite this,
as described in the “Result” section, the over-dispersion of g
predictions was reduced when the gw effect was included in the
models. In addition, a reduction in the over-dispersion of g and
gw predictions was observed for both traits in the two CVs when
TA-GP was used in MT models. The benefits of using TA-GP can
be related to a reduction of genomic erosion since phenotypic
records of the additional trait are complete, and multi-trait
modeling allows to indirectly capture the genetic effects for
the trait of interest via the between-trait genetic correlations.
The reduction in variance inflation conferred by TA-GP is
consistent with previous studies, as reported by Pollak et al.
(1984), Jia and Jannink (2012), Hayes et al. (2017), and Lado
et al. (2018).

Final remarks and future prospects

The proposed GDD based methodology provides a
simplified approach to incorporate environmental information
into prediction models and assists in the implementation of
multi-trait reaction norm models. Our study showed that the
weather and soil information was efficiently exploited without
explicitly linking it to specific critical crop periods, which might
open an opportunity to work with traits and species where
the relationships between the environmental conditions and
resulting phenotype are not fully established. A future avenue
for developing the proposed models could be exploiting the
potentiality of reaction norms in predicting G×E for future
years (e.g., using average weather or soil variables to infer
future years). The developed models work under the Bayesian
Ridge Regression (BRR) framework and assume Gaussian
distribution for random effects, implying no specific QTLs or
ECs with large effects. Further studies exploring alternative
methodologies capable of performing differential shrinkage
or variable selection for genetic and environmental effects is
warranted.

Conclusion

In this study, we proposed a growth degree-day (GDD)
based reaction norm methodology to introduce genomic [SNPs]
× environmental covariates interactions through (co)variance
structures in a single-trait or multi-trait framework. The growth

degree-day based methodology provides a simplified approach
to introduce environmental information in prediction models
and assists in the implementation of multi-trait reaction norm
models. The modeling of genomic [SNPs] × environmental
covariates interactions, and the use of trait-assisted genomic
prediction in multi-trait models, significantly enhanced the
predictive ability and reduced variance inflation in the predicted
genetic values for grain yield and protein content in leave-
one-year-location-out (CV1) and leave-one-breeding-cycle-
out (CV2) cross-validations. The genotype by environment
interaction modeling via genomic [SNPs] × environmental
covariates interactions, combined with trait-assisted genomic
prediction, boosted the benefits in predictive performance.
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