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K. Piikki a,*, M. Söderström a, H. Stadig b 

a Department of Soil & Environment, Swedish University of Agricultural Sciences (SLU), P.O Box 234, SE-53223 Skara, Sweden 
b The Rural Economy and Agricultural Societies (Hushållningssällskapet), Järnvägsgatan 18, SE-53230 Skara, Sweden   
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A B S T R A C T   

Optimised nitrogen (N) fertilisation can be used to increase farm profits, to realise the achievement of quality 
goals for produce, and to reduce environmental risks in the form of leaching and/or volatilisation of N com-
pounds from the fields. This study examined options and challenges for remote sensing-based variable rate 
supplemental N fertilisation in winter wheat (Triticum aestivum L.). The models were based on data from ten field 
trials conducted in different regions across Sweden over three years. A two-step approach for modelling optimal 
N rates, suitable for practical implementation in precision agriculture, was developed and evaluated. The ex-
pected accuracies for new sites and years were assessed by leave-one-entire-trial-out cross-validation. In a first 
step, the average N rate was modelled from site-specific information, including data that can be obtained from 
on-farm experiments, i.e. N uptake in plots without N fertilisation (zero-plots) and N uptake in plots with non- 
limiting N supply (max-plots). In the second step, additions or subtractions from this average N rate was 
modelled based on vegetation indices (VIs) mapped by remote sensing. Mean absolute error of the best prediction 
was 14 kg N ha− 1. In a practical application, however, there will be additional uncertainty from several sources, 
e.g. uncertainty in the assessment of yield potential. The best mean N rate model was based on geographical 
region, cultivar, N uptake in zero-plots and yield potential, while the best model of relative N rate within the field 
used a new multispectral index (d75r6), which was designed to give a standardized measure of the steepness of 
the red edge of reflectance of a crop canopy spectrum. Several other multispectral VIs also performed well but 
red-green-blue indices were less useful. We conclude that remote sensing (to capture within-field spatial vari-
ation patterns), on-farm experiments (to determine the field mean N rate), and the farmers’ experience and 
knowledge on local conditions (e.g. to assess the yield potential), is a useful combination of information sources 
in decision support systems for variable rate application of N. Options and remaining research needs for the setup 
of such a system are discussed.   

1. Introduction 

Food production needs to increase significantly in coming decades, 
but global cropland area is finite and environmental impacts must be 
minimised (FAO, 2017). Thus, appropriate methods are needed to ach-
ieve sustainable intensification (SI; see definition by Pretty and Bharucha, 
2014) of agricultural production. Improving fertiliser use efficiency (see 
definition by FAO, 2019) for nitrogen (N) and other plant nutrients is 
essential for SI, since crop production has major impacts on the global 
cycles of these macronutrients. On global scale, nitrogen (N) use effi-
ciency in cereal production is estimated to be 33% (Raun and Johnson, 

1999). One of many measures to improve SI and nutrient use efficiency 
is to tailor fertiliser rates to local and current needs, such that yield 
potential is exploited, while risks of nutrient losses by leaching or vol-
atilisation are minimised (European Parliament, 2019; IPCC, 2019). This 
is the core of the concepts precision agriculture (see definition by Inter-
national Society of Precision Agriculture, 2018) and site-specific fertil-
isation. Prerequisites for efficient adaptation of fertiliser rates to local 
and current needs in mechanised production are that: i) relevant bio-
physical conditions can be mapped or measured on-the-go at an 
appropriate scale; ii) collected data can be integrated with agronomic 
knowledge and translated into site-specific optimal fertiliser rates; iii) 
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infrastructure is in place for functional data flow from data acquisition 
to actual use of the data in the field; and iv) there are no major hin-
drances, such as lack of adequate machinery, lack of awareness among 
farmers and advisory officers, too high cost or too demanding proced-
ures, to wider adoption of variable rate application (VRA). This study 
examined supplementary fertilisation of N in winter wheat (Triticum 
aestivum L.) in Sweden. 

1.1. Current methods to adapt N fertilisation in winter wheat 

Current methods to adapt N fertilisation in winter wheat include split 
doses (for temporal optimization) and VRA of the final dose (for spatial 
optimization). In Sweden, the first N dose is typically given at around 
growth stage DC21–24 on the Zadoks scale (Zadoks et al., 1974), the 
main dose at around DC31 and the third dose at DC37–45, with possibly 
also a later dose. Various tools are available for adjustment of these N 
doses, especially later supplemental doses: e.g. leaf colour charts, 
handheld crop canopy reflectance sensors or leaf fluorescence or 
transmittance sensors, used in combination with information on pre-
ceding crop, soil organic matter content and expected yield (Ali et al., 
2017). Supplemental N rate can also be adjusted on-the-go using a 
tractor-mounted crop canopy sensor (Raun et al., 2001; Reusch, 2003). 
Alternatively, a prescription map for variable N rate can be prepared 
using an unmanned aerial vehicle (UAV) or satellite-based decision 
support system (DSS) (Söderström et al., 2017; Vizzari et al., 2019). A 
key issue in determining optimal supplemental N rates is that empirical 
models linking the proximally or remotely sensed crop canopy reflec-
tance data to the crop N status are not universal, but sensitive to e.g. the 
developmental stage of the crop (e.g. Chen, 2015). Therefore, local and 
current information, e.g. from on-farm experiments (OFE; Lacoste et al., 
2022) or targeted crop canopy measurements of actual N status (Nutini 
et al., 2018, 2021) can be useful in an operational context. To support 
decisions on supplemental N rate for a farm, field or management zone, 
some farmers use miniature OFEs, with zero-plots (no N fertilisation) 
and sometimes also max-plots (sufficient N applied to ensure N is not 
limiting for crop growth). These plots indicate the current-year level of 
soil N supply and yield potential, respectively (e.g. Raun et al., 2001). 
Adaptation of rates is now widely used in the field, e.g. in 2021 an 
estimated 40–50% of the Swedish winter wheat acreage was fertilised 
with a variable N rate using tractor-mounted N sensors or satellite-image 
based DSS (unpublished statistics from Yara AB, Malmö, Sweden; un-
published survey by Federation of Swedish Farmers LRF, 2020). 

1.2. Remote sensing-based DSS 

Satellite-based DSS is an efficient means to provide decision support 
for VRA of N at a broad scale (Alshihabi et al., 2019). The Sentinel-2 
satellites collect reflectance data every 2–5 days depending on latitude 
(ESA; Paris, France). Several DSS already use these free data for deriving 
nitrogen VRA prescription files or maps (Vizzari et al., 2019). Similar 
functionality exists in DSS based on images collected by UAVs (e.g. 
Solvi.ag; Solvi AB, Gothenburg, Sweden). The DSSs constitute an effi-
cient data flow from acquisition to the end-use in the tractor, but 
agronomic recommendations based on the remote sensing data (abso-
lute N rates) are still lacking. There are different benefits and drawbacks 
with different remote sensing platforms. Sentinel-2 data are free but may 
suffer from gaps in time series of useful images due to clouds, while UAV 
data collection may be associated with costs (both hardware and soft-
ware). UAV-based vegetation index (VI) mapping may also be consid-
ered too time consuming, for a time critical action like N topdressing, 
during a busy period. 

1.3. A new way of developing the necessary recommendations 

Our overall aim was to develop models that are applicable in remote- 
sensing based DSSs (satellite or UAV), but as the trial plots were too 

small to be linked directly with Sentinel-2 data, the remote sensing of 
field trials to collect data for model development and evaluation was 
done by UAV. Relevant Sentinel-2 bands have a spatial resolution of 10 
or 20 m, whereas N fertilisation plots in Swedish crop field trials are 
often about 2 m × 10 m. There are multispectral UAV cameras available 
with bands that are spectrally identical to those of the Sentinel-2 satel-
lites (in the spectral range 400–900 nm) (Nocerino et al., 2017). This 
makes it possible to collect reflectance data corresponding to Sentinel-2 
data, but with sufficiently high spatial resolution to identify individual 
plots in field trials. This opens up new possibilities; models based on 
UAV measurements in field trials can be applied on satellite data in 
DSSs, although direct transfer of models can be challenging (e.g. Wolters 
et al., 2022). 

1.4. Aim and scope 

Open algorithms can facilitate wide adoption of VRA for supple-
mental N fertilisation to grain crops. The specific objective in this study 
was to develop and evaluate models to translate remotely collected crop 
canopy reflectance data into directly applicable N rate maps for sup-
plemental N fertilisation in winter wheat (around stage DC37). The 
hypotheses were that:  

• optimal average supplemental N rate could be modelled with good 
enough accuracy for practical use based on combinations of the 
following local predictors: yield potential, cultivar, geographic re-
gion and N status in on-farm trial plots.  

• optimal relative supplemental N rate, i.e the N rate to add to or 
subtract from the average rate, could be modelled from different 
vegetation indices to take current crop N status into account. 

2. Materials and methods 

2.1. Field trials 

Data were collected over three years (2019–2021) in a Swedish field 
trial series (code L7–150) testing six nitrogen rates in ten winter wheat 
cultivars at growth stage DC37 in four trials per year. Dates and site 
locations are shown in Fig. 1. The trials were located within the main 
agricultural districts across southern Sweden. Cambisols dominate the 
whole area and the field trials were located in areas with soils mostly 
classified as silty clay, silty clay loam and clay (Piikki and Söderström, 
2019). The climate is classified as Köppen region Dfb in the northeast 
whereas the west and south is Cfb (Kottek et al., 2006). Trial design was 
an orthogonal combination of 10 cultivars and six N levels (0, 80, 140, 
200, 260 and 320 kg N ha− 1 in total, of which 25% applied at tillering 
(DC21–24), 50% around beginning of stem elongation (DC31), and 25% 
just after the flag leaf was visible (DC37)). All treatments had four 
replicates. The trial plots were approximately 2 m × 10 m. The set of 
cultivars tested changed each year, but five cultivars (Etana, Julius, 
Hallfreda, Informer, RGT Reform) were used in all three years of the 
present study. Trial plans and agronomic data are available via the 
Nordic Field Trial System (https://nfts.dlbr.dk/). Data from the same 
trials (2019–2020) have been used previously by Söderström et al. 
(2021) for remote sensing-based yield mapping at DC69, and by Wolters 
et al. (2022) for modelling of crude protein content, also at DC69. 

2.2. UAV-based multispectral data collection 

For data collection, we used a MAIA-S2 camera (Eoptis Srl, Trento, 
Italy) mounted in a fixed position on a custom-built octocopter 
(Explorian-8; Pitchup, Gothenburg, Sweden). This camera records light 
in nine spectral bands with the same widths and midpoint wavelengths 
as bands 1–8 and 8A of the Sentinel-2 satellites (European Space Agency, 
Paris, France), nomenclature used for the MAIA-S2 bands in this study. 
The midpoint wavelength of the nine MAIA-S2 bands is 453, 490, 560, 
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665, 705, 740, 783, 842 and 865 nm, respectively. One image per band 
was collected, at frequency 1 Hz, 80 m above ground level and flight 
speed 5 m s− 1. The route was planned using the UGCS ground control 
software (SPH Engineering, Riga, Latvia) so that the images overlapped 
by at least 80% along and between flight lines. Each flight took around 
10 min and was carried out in as uniform light conditions as possible, e. 
g. avoiding cloud shadows. Flight dates varied somewhat depending on 
differences in crop development at the trial sites (Fig. 1). For practical 
reasons, time of day also differed between the flights, with sun elevation 
varying between 35 and 53 degrees (based on https://www.suncalc. 
org). 

Before each flight, five 50 cm × 50 cm near-lambertian reflectance 
plates with known reflectances (2%, 9%, 23%, 44% and 75%; Mosaic 
Mill Oy, Vantaa, Finland) were placed along each of the short edges of 
the trial. When necessary, these plates were placed on racks to avoid 
shading by the crop. 

2.3. Reflectance data preparation 

2.3.1. Geometric correction by test image 
Images were acquired in RAW 12-bit format by the sensor. Nine-band 

images (tiff) were generated using the image-processing software sup-
plied with the MAIA camera (MultiCam Sticher Pro). The software 
performs spatial co-registration of the different bands, as well as geo-
metric and radiometric corrections. The UAV was equipped with an 
incoming light sensor (ILS) that continuously recorded ambient light for 
each band of the camera, data used by the software for radiometric 
correction. 

2.3.2. Mosaicking 
The geometrically corrected images were stitched to orthomosaic 

raster images by the Solvi web application (https://solvi.ag; Solvi AB, 
Gothenburg, Sweden). Polygons of the plots were generated in the Solvi 
application, and all data were downloaded and further processed in 
ArcGIS Desktop (version 10.8; ESRI Inc., Redlands, CA, USA). The me-
dian digital number (DN) of all raster cells within each trial plot 
(avoiding approximately 0.2–0.3 m along the edges of the plots) was 
extracted, as was that for all reflectance panels. 

2.3.3. Spectral correction by reflectance plates 
Linear regression models between known panel reflectance values 

(ρpanel) and the digital numbers extracted from the mosaics (DNpanel) (Eq. 
1) were used to calibrate the trial plot reflectance model. The linear 
regression models for calibration were parameterised for each trial and 
reflectance band. 

ρpanel = a × DNpanel + b (1)  

2.4. Data cleaning 

There were problems with some of the data collected. Data from two 
of the 12 trials had to be omitted, because of abnormal soil N supply at 
one site (zero-plot grain yield of 10 tonnes ha− 1; Alnarp 2019) and 
unrealistic reflectance values at another site (Mulltorp 2019). In addi-
tion, a few individual plots had to be omitted because of partial cloud 
shadows during the flight, erroneous treatments (cultivar or N rate not 
according to trial plan) or missing agronomic data. No entire treatment 
(N rate × cultivar combination) was discarded. In the few cases of dis-
carded plots, treatment median values were based on fewer than four 
replicates. The remaining dataset consisted of median values for 300 
individual treatments (six N rates × five cultivars × 10 trials). This data 
cleaning was performed before any data analysis was conducted. 

2.5. Modelling setup and nomenclature 

The modelling of optimal supplemental N rate was split into two 
steps on different scales. In the first step, the trial average N rate was 
modelled and in the second step, the optimal relative supplemental N 
rate in four realistic N treatments was modelled (larger or smaller N rate 
than the average). The modelling in the study was designed to be 
transferable to practical use in variable-rate application of N in precision 
agriculture. In the present study, field trials represent fields, and trial 
treatments (median of four replicates) represent variation within the 
field. The treatments with minimum (0 kg N ha− 1) and maximum 
(320 kg N ha− 1) represent OFE plots in the field (zero-plot and max- 
plots). The motivation for using a two-step approach, and only use 
remote sensing data for the second step, is primarily that absolute 
models would be more sensitive to developmental stage of image 
acquisition. In a practical application, the second step can be based on 
data from either satellite or UAV platforms. In order to evaluate how 
well the models performed at new sites, leave-one-entire-trial-out cross- 
validation was used instead of conventional leave-one-observation-out 
cross-validation. A final model was then parameterised, using all data 

Fig. 1. Location of the 12 field trial sites in the main agricultural districts (green areas) in southern Sweden. All unmanned aerial vehicle (UAV) flights were carried 
out at Zadoks growth stage DC37. Flight date (yyyy-mm-dd), approximate take-off time (local time hh:mm) and weather are shown in the upper right panel. The 
lower right panel shows an example of trial design, where the numbers indicate the treatment (total N fertilisation rate in kg ha− 1). 
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for parameterisation (no trial left out). The terms used in following 
sections are summarized in Table 1. 

2.6. Nitrogen-response modelling 

Yield (kg grain ha− 1; 15% water content) was modelled as a function 
of total N fertilisation rate (kg N ha− 1) over the season (Eq. (2)). Models 
were parameterised for each trial and cultivar. A sigmoidal function, 
asymptotically approaching a maximum, was chosen over the 
commonly used second-grade or third-grade polynomials, as a mono-
tone increasing function was considered a better representation of the 

crop yield response to the supply of plant-available N. Initial tests of 
various univariate functions (not reported) showed that this function 
fitted the collected data well. 

y = a −
a − b

1 + cx2 (2) 

In Eq. (2), y is Ytreat, x is NRtot_treat and a, b and c are the model pa-
rameters. The parameters were estimated by the least square method 
(nls function in the stats package of the R software environment; R Core 
Team, 2021). 

2.7. Determination of total target N rate 

The optimal N rate (i.e the target total N rate; NRtarget_trial) is often 
determined as the N rate where the yield increase in response to 
increasing N rate gives a net economic return of zero (e.g. Piikki and 
Stenberg, 2017). The target N rate is then the N rate at which the price of 
the extra harvested grain is equal to the cost of the extra N fertiliser, i.e. 
when the derivative of the dose-response function (Eq. (2)) equals the 
price ratio of the grain and the fertiliser N. In the present study, NRtar-

get_trial was instead determined as the N rate for which the yield increase 
was 10 kg per kg N, i.e. where the derivative of y in Eq. (2) (y’; Eq. (3)) 
equals 10 kg grain per kg N. 

y′ =
2c(b − a)x

c2(x4) + 2cx2 + 1
(3) 

There were two reasons for choosing a price-independent approach: 
i) the price ratio lacks biological relevance, and ii) prices change over 
time. In addition, Delin and Stenberg (2012) showed that loss of N to the 
environment is very low as long as the effect of adding 1 kg N results in 
at least 10 kg grain. Boundary conditions were applied as follows: 
computed NRtarget_trial values < 0 were set to zero and values > 320 kg N 
ha− 1 were set to 320 kg N ha− 1. A graph showing how NRtarget_trial was 
computed is presented in Fig. 2. 

2.8. Determination of supplemental N rate 

The supplemental N rate (NRsup_treat) was determined as the differ-
ence between the target N rate for the trial and cultivar in question, and 
the amount of N applied in the N treatment before DC37 (NRearly_treat). 

Table 1 
Nomenclature used in the modelling. VI = vegetation index.  

Term Abbreviation Explanation 

N uptake in a zero-plot Nupzero In the modelling, it is the N uptake in 
the trial treatment without N 
fertilisation. In a practical 
application, it is the N uptake in an 
on-farm trial plot without N 
fertilisation. 

N uptake in a max-plot Nupmax In the modelling, it is the N uptake in 
the highest N treatment of a trial. In a 
practical application, it is the N 
uptake in an on-farm trial plot 
without N limitation. 

Yield potential Ypot In the modelling, it is the yield in the 
highest N treatment of a trial. In a 
practical application, it is the 
potential yield, if there is no N 
limitation. Note that this is not 
necessarily the same as the yield at 
target N rate. 

Yield in a trial treatment Ytreat The yield in an N treatment in a trial. 
Total N rate in a trial 

treatment 
NRtot_treat The total N rate applied during a 

season in an N treatment in a trial. 
Target total N rate NRtarget_trial The optimal total N rate to apply 

during the season. It is determined 
from the production function (yield as 
a function of total N rate over the 
season). It is modelled as a function of 
combinations of cultivar, region, 
Nupzero, Nupmax and Y. 

Early N rate in a trial 
treatment 

NRearly_treat The N rate in a trial treatment or a 
pixel in a map of a field or a zone 
(practical application) applied before 
supplemental fertilisation in DC 37. 

Supplemental mean N rate NRsup_treat In the modelling, it is the 
supplemental N rate in an N treatment 
of a trial. In a practical application, it 
is a pixel in a map of a field or a zone. 
It is modelled from ancillary data (e.g. 
region, cultivar, Ypot, Nupzero and 
Nupmax 

Supplemental relative N 
rate 

NRsup_treat_rel In the modelling, it is the 
supplemental N rate in a treatment 
relative to the mean supplemental N 
rate of the trial. In a practical 
application, it is the supplemental N 
rate in a pixel relative to the mean 
supplemental N rate of the field or the 
management zone. This is the N rate 
(positive or negative) to add to the 
supplemental mean N rate. It is 
modelled from vegetation indices. 

VI at the time for 
supplemental 
fertilisation 

VIsup_treat In the modelling, it is the VI in an N 
treatment of a trial. In a practical 
application, it is the Vi in a pixel in a 
map of a field or a zone. 

Relative VI at the time for 
supplemental 
fertilisation 

VIsup_treat_rel In the modelling, it is the VI in a 
treatment relative to the mean VI of 
the trial. In a practical application, it 
is the VI in a pixel relative to the mean 
VI of the field or the management 
zone.  

Fig. 2. Example of an N response curve. A monotone increasing function (Eq. 
(2)) was fitted between yield and N rate for each trial and cultivar. Target total 
N rate was computed as the N rate where the slope of the curve equalled 10 kg 
grain per kg N (Eq. (3)). Data in this diagram are from the trial in Brantevik 
2020, cultivar Hallfreda. 
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Any negative remaining supplemental N rates were set to zero. This was 
computed only for realistic N treatments (80, 140, 200 and 260 kg N 
ha− 1), i.e. within the range used in practice by Scandinavian farmers. 
The N rates given before DC37 were 60, 105, 150 and 195 kg N ha− 1 (in 
treatments with total rates of 80, 140, 200 and 260 kg N ha− 1). 

NRsup treat = NRtarget trial − NRearly treat (4)  

2.9. Determination of relative supplemental N rate 

Relative supplemental N rate was computed for each treatment by 
subtracting the mean supplemental N rate of the realistic treatments for 
the trial and cultivar (Eq. (5)). 

NRsup treat rel = NRsup treat − NRsup treat (5)  

2.10. Computation of vegetation indices 

For each trial plot, we computed sixteen multispectral vegetation 
indices, four red-green-blue (RGB) vegetation indices, and N uptake 
modelled from one of the multispectral indices expected to be poten-
tially useful predictors of remaining NRsup_treat_rel (i.e. indices sensitive 
to crop canopy biomass and chlorophyll content). The equations are 
presented in Table 2. In most cases, commonly used indices were 
included, but also combinations of bands chosen based on the reflec-
tance spectra used in the study (d74r6, d75r6 and d74r56). In addition, an 
in-season N uptake (Nup) model for winter wheat developed by Wolters 
et al. (2021) was computed for zero- and maxplots (Nupzero and Nupmax). 

2.11. Determination of relative vegetation index 

Relative values of each vegetation index was computed for the 
realistic N treatments in the same way as NRsup_treat_rel was computed; 
the mean VI for the realistic N treatments in the trial and cultivar in 
question was subtracted from the VI in the N treatment (Eq. (6)): 

VIsup treat rel = VIsup treat − VIsip treat (6)  

2.12. Modelling total target N rate 

Total target N rate was modelled based on 31 different predictor sets 
(combinations of the five predictor variables: region, cultivar, Nupzero, 
Nupmax and Ypot, where region is a categorical variable for the 
geographical districts (East: Linkoping and Vreta Kloster, South: Bran-
tevik, St. Markie and Lund, and West: L. Böslid, Salstad and Flo; see 
Fig. 1). Models implemented in a DSS need to be robust and perform well 
in other locations and under other conditions than those for which they 
were parameterised. Wolters et al. (2022) demonstrated that simple 
regression models with fewer predictor variables worked better than a 
more complex model type using more predictor variables for robust 
crude protein prediction, using data from the same trials as in the pre-
sent study. Guided by this, and in order to reduce the risk of overfitting 
and poor performance at new sites, we chose to parameterise univariate 
or multivariate linear regression models (Eq. (7)), where a and b are 
parameters and x1, x2, …, xn are predictors. 

NRsup treat = a+ b1x1 + b2x2 +…+ bnxn (7)  

2.13. Modelling relative supplemental N rate 

The relative supplemental N rate (NRsup_treat_rel) was modelled from 
each of the relative vegetation indices. The model type was second- 
grade polynomial (Eq. (8)). In Eq. (8), a, b and c are model parameters. 

NRsup treat rel = a+ b × VIsup treat rel + c × VIsup treat rel
2 (8)  

2.14. Computing total supplemental N rate 

The total supplemental N rate, NRsup_treat, for each plot was computed 
by Eq. (9), which was obtained by solving Eq. (5) for NRsup_treat. Negative 
NRsup_treat values were set to zero. 

Table 2 
Vegetation indices (VIs) used as predictor variables for remaining N requirement in DC37. In the band columns, 1 indicates use of the band to compute the index. In the 
equations, ρ3 denotes reflectance in band 3 (b3) etc. Numbers 450, 556 etc. denote midpoint wavelength (λ2, λ3,., λ8A) (in nm) in the multispectral camera bands. 
B= blue; G = green; R = red; RE = red edge; NIR = near infrared. Normalised difference index (NDImn)= (ρm-ρn)/(ρm+ρn).  

Index Wavelength bands Formula Reference / comment  

B G R RE NIR    

490 560 665 705 740 783 843 865    
b2 b3 b4 b5 b6 b7 b8 b8A   

Multispectral VIs           
NDVI   1    1  NDI; m= 8 and n = 4 Rouse et al. (1973) 
NDRE86     1  1  NDI; m= 8 and n = 6 Barnes et al. (2000) 
NDRE76     1 1   NDI; m= 7 and n = 6 - “ - 
NDRE75    1  1   NDI; m= 7 and n = 5 - “ - 
ChlI     1 1   (ρ7/ρ6)− 1 Gitelson et al. (2003) 
MSAVI2   1    1  0.5(2ρ8 +1-sqrt((2ρ8 +1)^2–8(ρ8-ρ4))) Qi et al. (1994) 
OSAVI   1    1  (1 +0.16)(ρ8-ρ4)/(ρ8 +ρ4 +0.16) Huete (1988);Rondeaux et al. (1996) 
REIP   1    1  700 + 40((ρ4-ρ7)/2-ρ5)/(ρ6-ρ5) Guyot et al. (1988) 
TCARI  1 1 1     3((ρ5-ρ4)− 0.2(ρ5-ρ3)(ρ5/ρ4)) Kim et al. (1994);Haboudane et al. (2002) 
d74r6   1  1 1   (ρ7-ρ4)/ρ6  

d75r6    1 1 1   (ρ7-ρ5)/ρ6  

d74r56   1 1 1 1   2(ρ7-ρ4)/(ρ5+ρ6)  
ChlINDRE75    1 1 1   ChlI/NDRE75  

ChlIr8     1 1 1  ChlI/ρ8  

ChlIr9     1 1  1 ChlI/ρ8A  

TCOS  1 1 1   1  TCARI/OSAVI Haboudane et al. (2002) 
RGB indices           
TGI 1 1 1      -0.5((λ4- λ2)(ρ4-ρ3)-( λ4- λ3)(ρ4-ρ2)) Hunt et al. (2013) 
NGRDI  1 1      NDI; m= 4 and n = 3 Bannari et al. (1995) 
GLI 1 1 1      (2ρ3-ρ4-ρ2)/(2ρ3 +ρ4 +ρ2) Louhaichi et al. (2001) 
VARI 1 1 1      (ρ3-ρ4)/(ρ3 +ρ4-ρ2) Gitelson et al. (2002) 
Canopy property           
Nup (N uptake; kg ha− 1)     1 1   12.44 + 199.86((ρ7/ρ6)− 1) Wolters et al. (2021)  
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NRsup treat = NRsup treat rel +NRsup treat (9)  

2.15. Computing evaluation metrics 

Two evaluation metrics were computed based on the leave-one- 
entire-trial-out cross-validation of models: the mean absolute error 
(MAE) and Nash-Sutcliffe modelling efficiency (E) (Nash and Sutcliffe, 
1970). These are sensitive to both random and systematic errors (see e.g. 
Piikki et al., 2021 for a visualisation). The Nash-Sutcliffe modelling ef-
ficiency can take on values between negative infinity and one, where a 
value of 1 indicates a perfect fit whereas negative values indicate that 
the model is less accurate than a simple mean of the observed values. 
The metrics were computed for each predictor set in the NRtarget_trial 
modelling, for each VI in the NRsup_treat_rel modelling, as well as for the 
subsequently determined NRsup_treat values. The latter was done for all 
NRtarget_trial predictor sets in combination with the best performing 
multispectral index and the best performing RGB index. The reason was 
that it can be of interest to apply models on multispectral satellite or 
UAV-borne cameras, and on data from simpler UAV-borne RGB cameras. 

2.16. Comparing predictor importance for target N rate modelling 

The reduction in MAE (ΔMAE) when a predictor was added to each 
of the 15 combinations of the other four predictors was used to assess its 
importance (Eq. (10)). Set i is any predictor set without the evaluated 
predictor variable. 

ΔMAE = MAEset i − MAEset i + evaluated predictor (10)  

2.17. Analysis of reflectance spectra 

Mean reflectance values were derived for different N rates and cul-
tivars, and two-way analysis of variance (ANOVA) was conducted with 
N rate and cultivar as factors. The N rate included the four N treatments 
considered most representative of practice (80, 140, 200 and 260 kg N 
ha− 1). The ANOVA was conducted on treatment medians, with the 10 
trials as replicates. 

Correlation analysis between reflectance and N rate applied earlier in 
the season or supplemental N rate was carried out for eight bands of the 
UAV sensor (band 1 excluded since the corresponding band of the 
Sentinel-2 satellite is merely used for cloud detection and is not appli-
cable for precision agricultural practices). The coefficients of determi-
nation (r2) were plotted against the midpoint wavelengths of the bands. 
Note that N rate can be treated as both a categorical variable (as in 
ANOVA) and a continuous variable (as in correlation analysis), while 
NRsup_treat can only be treated as a continuous variable. 

3. Results 

3.1. Descriptive statistics on field trial data 

Mean NRtarget_trial for the trials ranged from 112 to 222 kg N ha− 1 

(Table 3). The standard deviation of the trial mean values was 39 kg N 
ha− 1, while the standard deviation for cultivars ranged between 5 and 
22 kg N ha− 1. Thus, the variation in NRtarget_trial seemed to be larger 
between sites and years than between cultivars for the same site and 
year. However, the yield in zero-plots was relatively high in most trials, 
as was the yield in max-plots, which indicates that the field trials were 
carried out under relatively favourable conditions and cannot be 
considered representative for fields with poor soils. 

3.2. Crop canopy spectra 

Average reflectance spectra from multispectral measurements of the 
crop canopy in different N treatments and in different cultivars are 
presented in Fig. 3a-b. The spectral differences between crops that 

received different amounts of N followed the expected pattern, i.e. crops 
with higher N fertilisation rates had higher reflectance values in the NIR 
bands (7, 8 and 8a), lower reflectance values in the visible bands (2, 3 
and 4) and a steeper reflectance slope between the two red edge (RE) 
bands (5 and 6). Coefficient of determination (R2) between reflectance 
and the N rate applied before the spectral measurements (DC37) was 
highest for the NIR bands, followed by band 5 and band 3 (Fig. 3c), and 
the difference in reflectance between N rates was statistically significant 
(p < 0.05) for these bands (Table 4). There was a stronger correlation 
between reflectance and remaining N requirement by the crop (the 
supplemental N rate) than between reflectance and N rate applied 
earlier in the season. The difference was larger in both the visible and 
NIR wavelength regions. The correlation coefficient between N rate and 
reflectance was negative for bands 2–5, while the correlation coefficient 
between NRsup_treat and reflectance was negative for bands 6–8 and 8a 
(not shown). 

Inspection of the crop canopy in the field trials showed that the 
winter wheat cultivars differed in colour, leaf surface structure and 
canopy architecture. The difference in reflectance between cultivars was 
statistically significant for bands in the upper RE and NIR wavelength 
region (bands 6–8 and 8a). There were no statistically significant 
interactive effects on crop canopy reflectance between cultivar and N 
rate. 

Fig. 3 was used as the basis for choice of VIs to be used for modelling, 
and to create the new proposed indices d74r6, d75r6 and d74r56 (Table 2). 
The lack of a strong correlation between supplemental N rate and 
reflectance in band 6 (close to the RE inflexion point) made this band 
suitable for standardising indices between trials, and it was therefore 
used in the denominator in these VIs. 

3.3. Model performance at new sites and years 

3.3.1. Optimal N rate modelling 
Results from the test of different predictor sets for NRtarget_trial 

modelling are presented in Table 5. The best predictions of NRtarget_trial 
were based on information on region and cultivar, together with Nupzero 
and Ypot (E = 0.77, MAE = 14.4 kg N ha− 1). The same set but with 
Nupmax (which can be measured during the season) instead of Ypot 
(which has to be manually assessed) performed much worse (E = 0.29, 
MAE = 27.3 kg N ha− 1), indicating that Nupmax is not a useful proxy for 
Ypot. A scatter plot of predicted versus observed target total N rate values 
for the best-performing model is shown in Fig. 4. Model equations for 
four well-performing predictor sets are presented in Table S1 in Sup-
plementary Material. Overall, adding Ypot to the predictor set improved 
the predictions considerably (Fig. 5). However, in practical applications 
Ypot would have to be provided by the user, from experience or possibly 
from some yield prediction model. In any case, it can be assumed that 
yield assessment early in the season is relatively uncertain. Nitrogen 
uptake in zero-plots (Nupzero) was a useful predictor, while adding 

Table 3 
Descriptive statistics on the field trial data. Mean for all cultivars ± standard 
deviation between cultivars. NRtarget_trial = target total nitrogen rate.  

Site Region Year Yield in 
zeroplot 
(kg ha¡1) 

Yield in 
maxplot 
(kg ha¡1) 

NRtarget_trial 

(kg ha¡1) 

Linkoping East 2019 6422 ± 482 9861 ± 488 126 ± 9 
St. Markie South 2019 4421 ± 278 8443 ± 366 112 ± 9 
Linkoping East 2020 6949 ± 401 10,637 ± 349 202 ± 19 
Brantevik South 2020 4838 ± 171 12,594 ± 437 222 ± 12 
Lund South 2020 4485 ± 362 9889 ± 253 162 ± 7 
Flo West 2020 2319 ± 91 9647 ± 348 206 ± 5 
Vreta 

Kloster 
East 2021 6468 ± 360 9108 ± 504 121 ± 7 

Brantevik South 2021 6020 ± 180 10,043 ± 583 137 ± 15 
L. Böslid West 2021 4150 ± 268 9771 ± 427 167 ± 22 
Salstad West 2021 4658 ± 216 9556 ± 530 141 ± 18  
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region as a predictor for NRtarget_trial generally reduced the accuracy of 
model predictions. Cultivar often had a very small effect on model 
performance, despite the evident difference in reflectance between 
cultivars especially in the upper RE and NIR wavelength region (Fig. 3c). 
The effect of Nupmax varied, i.e. it improved predictions when added to 

Fig. 3. Mean reflectance spectra for a) different N rates before DC37 and b) 
different cultivars, and c) coefficient of determination (R2) between reflectance 
and N rate before DC37 (NRearly_treat) or crop N status represented by optimal 
supplemental N rate (NRsup_treat). Symbols represent midpoint wavelength (λ) of 
the MAIA-S2 multispectral camera bands and labels (in a) denote corresponding 
band of the Sentinel-2 satellite. 

Table 4 
Probability (p)-values and level of statistical significance (ns p ≥ 0.05; 
*p < 0.05; **p < 0.01; ***p < 0.001) in two-way analysis of variance (ANOVA) 
with N rate and cultivar as factors. The 10 trials were considered replicates. 
Zero-plots and max-plots were excluded from all analyses.  

Band N rate  Cultivar  

2 3.5E-01 (ns) 9.6E-01 (ns) 
3 3.7E-03 (**) 4.7E-01 (ns) 
4 9.1E-02 (ns) 7.7E-01 (ns) 
5 5.8E-04 (***) 3.9E-01 (ns) 
6 1.4E-02 (*) 2.1E-14 (***) 
7 1.8E-07 (***) 5.6E-08 (***) 
8 4.8E-07 (***) 2.6E-07 (***) 
8a 3.0E-07 (***) 1.7E-07 (***)  

Table 5 
Evaluation metrics for the leave-one-entire-trial-out cross-validation of target 
total N rate models for 31 predictor sets (combination of region, cultivar, N 
uptake in zero-plots (Nupzero), N uptake in max-plots (Nupmax), and yield po-
tential (Ypot)). The number 1 indicates inclusion in the predictor set. E = Nash- 
Sutcliffe modelling efficiency; MAE = mean absolute error.  

Set Region Cultivar Nupzero Nupmax Ypot E MAE 
(kg N ha¡1) 

1 1     < 0  44.9 
2  1    < 0  36.9 
3 1 1    < 0  44.4 
4   1   0.35  25.6 
5 1  1   < 0  34.6 
6  1 1   0.36  25.8 
7 1 1 1   < 0  34.7 
8    1  < 0  38.3 
9 1   1  < 0  38.9 
10  1  1  < 0  37.9 
11 1 1  1  < 0  39.1 
12   1 1  0.28  27.2 
13 1  1 1  < 0  36.8 
14  1 1 1  0.29  27.3 
15 1 1 1 1  < 0  36.8 
16     1 0.41  23.9 
17 1    1 0.28  27.0 
18  1   1 0.40  24.4 
19 1 1   1 0.29  27.9 
20   1  1 0.74  16.9 
21 1  1  1 0.76  15.4 
22  1 1  1 0.72  17.6 
23 1 1 1  1 0.77  14.4 
24    1 1 0.30  26.7 
25 1   1 1 0.41  24.7 
26  1  1 1 0.29  27.3 
27 1 1  1 1 0.39  25.5 
28   1 1 1 0.75  15.8 
29 1  1 1 1 0.75  15.2 
30  1 1 1 1 0.73  16.1 
31 1 1 1 1 1 0.76  14.8  

Fig. 4. Results from leave-one-entire-trial-out cross-validation of total target N 
rate predictions based on the best predictor set (region, cultivar, Nupzero and 
yield potential). 
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some predictor sets, but not to others. 

3.4. Relative N requirement modelling 

Results from the modelling NRsup_treat_rel from relative VIs are pre-
sented in Fig. 6. In general, multispectral indices performed better than 
RGB indices. Among the latter, triangular greenness index (TGI) was 
best-performing (E = 0.58, MAE = 26 kg N ha− 1), far better than the 
three other RGB indices (E ≤ 0.18, MAE ≥ 41 kg N ha− 1). Among the 
multispectral indices, several performed well, with E values just above 
0.8 and MAEs < 20 kg N ha− 1. These indices all describe differences in 
the RE-NIR region, so the best choice for a practical application may 
depend on considerations other than index performance, such as sensor 
availability. Scatter plots between predicted and observed values are 
presented in Fig. 7 for the best-performing RGB index (TGI) and one of 
the best-performing multispectral indices (d75r6). Model equations for 
the five best multispectral indices plus the one best RGB index are pre-
sented in Table S2 in Supplementary Material. 

3.4.1. Absolute remaining N requirement computation 
Evaluation metrics for the total supplemental N rate (i.e. the average 

supplement N rate plus the relative supplement N rate) are presented in  
Table 6. Scatter plots of predicted versus observed values for NRsup_treat 
computed from the best NRtarget_trial model and the models based on 
these two indices are presented in Fig. 8. 

4. Discussion 

4.1. Performance of predictors for total target N rate 

The best predictor set for the total target N rate modelling comprised 
region, cultivar, Nupzero and Ypot. This supports current best practices in 
Sweden, where the Swedish Board of Agriculture and advisory organi-
sations recommend adjusting N rates to geographical region, yield po-
tential and N mineralisation level (Swedish Board of Agriculture, 2021). 
Most agencies also recommend zero-plots as a tool for monitoring 
current-year N mineralisation (e.g. Rural Economy and Agricultural 
Societies, 2022). The fertiliser company Yara AB and the Swedish Board 
of Agriculture have a monitoring programme where N uptake in 
zero-plots is reported weekly for a number of control plots across Swe-
den (e.g. through the Focus-on-Nutrients programme; https://greppa. 
nu/om-greppa-naringen/in-english). 

4.2. Performance of vegetation indices 

In accordance with earlier studies (e.g. Reusch, 2005), indices based 
on RE and NIR bands were more efficient in describing the N status of 
crops than indices based on visible light (Fig. 3). In the present study it 
was evident the there is also a marked difference in performance be-
tween different RGB indices; the validation statistics showed that TGI 
(E = 0.58; MAE = 26 kg N ha− 1) was far better than other indices based 
on visible light (Fig. 6). According to Hunt et al. (2013), TGI is relatively 
sensitive to chlorophyll content in the canopy, while being relatively 
insensitive to leaf area index, which is suitable since predictions of the 
last supplemental N dose is done late in the season. Several of the 
RE-NIR indices performed equally well in prediction models for relative 
NRsup_treat (E: 0.80–0.82; MAE: 16–17 kg N ha− 1). These indices were 
NDRE86, NDRE76, d75r6, d74r6 and d74r56. Band 6 was used for stand-
ardisation in all cases. This indicates that band 6 is useful for this pur-
pose, and that band 8 or 7, or the difference between band 7 and band 4, 
or band 7 and band 5, is useful in combination with band 6. Note that the 
commonly used normalised difference vegetation index (NDVI) did not 
perform very well (E = 0.51; MAE = 29 kg N ha− 1). The index MSAVI2, 
which uses the same bands as NDVI, performed better (E = 0.76; MAE =
23 kg N ha− 1). If a sensor with only NIR and red bands is available, 
MSAVI2 would be a better alternative than NDVI for prediction of 
optimal supplemental N rate in winter wheat at crop development stage 
DC37. 

4.3. Manual, semi-automated or fully automatic DSS 

Decision support systems for VRA in N fertilisation can be designed 
in many ways (e.g. Blondlot et al., 2005; Gutiérrez et al., 2019). A DSS 
can be fully automatic or require user input in the form of local 
knowledge and data from handheld sensor measurements in OFE plots. 
In general, strategies can be considered safer (in terms of N rate accu-
racy) if some local information is used (Söderström et al., 2017). This 
can take the form of handheld sensor measurements in the growing crop, 
or user expert knowledge, e.g. on yield potential of a field or major 
yield-limiting factors other than N in a field. There is always a risk of a 
fully automatic system producing severely erroneous N requirement 
maps if local conditions are not taken into account by the model. A fully 
manual decision can also generate incorrect recommendations and can 
be difficult to use (Lundström and Lindblom, 2018). A semi-automated 
system, using both general relationships between remote-sensing data 
and crop requirements (built into empirical models), as well as users’ 
tacit knowledge on local conditions that can never be entirely captured 
by models, is likely a good solution. 

4.4. Flexible implementation of the two-step approach 

A two-step approach was developed for predicting average optimal 

Fig. 5. Importance of the five predictor variables in models for target total N 
rate. Symbols show the reduction in mean absolute error from adding the 
predictor to all 15 combinations of the other four predictors. Cv = cultivar; 
Nupzero = N uptake in zero-plots; Nupmax = N uptake in max-plots; Ypot 
= yield potential. 

Fig. 6. Evaluation metrics from leave-one-entire-trial-out cross-validation of 
modelling relative supplemental N rate from relative vegetation index. 
E = Nash-Sutcliffe modelling efficiency; MAE = mean absolute error. 
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supplemental N rate in a field or a management zone and then further 
adapting the N rate at finer spatial scale in relation to the current N 
status of the crop in a DSS. The approach is flexible, as the two predic-
tion models can be used individually or in combination (Fig. 9). For 
example, an alternative to using the NRtarget_trial model, an expert 
assessment of optimal total supplemental N rate can be made or, 
regional recommendations from advisory services can be used. The N 
rate could then be varied within the field or the zone according to the VI- 
based model for relative supplemental N rate. This is how tractor-borne 
sensors for VRA of N often work. The NRtarget_trial prediction model could 
also be used separately to determine NRtarget_trial per field or manage-
ment zone, and then apply a uniform N rate within that field or the zone 
or vary the N rate based on a tractor-borne sensor. 

4.5. Remaining challenges in streamlining a functional DSS for VRA of N 

Implementation of remote sensing-based prediction models of 
optimal supplemental N rate in a DSS, can enable wider adoption of 
precision N management, and consequently better N fertilizer use effi-
ciency. We have identified ten aspects that must be considered to 
streamline a functional DSS with continuous model updating. Some of 
the challenges are further discussed in the following sections. 

1. Designing national field trial series to produce data for model cali-
bration. National field trials are usually carried out in locations 
with favourable conditions for crop growth and cannot be 
considered representative for areas with poorer cropping condi-
tions. There is an urgent need for new field trial designs that 
produce calibration data for models predicting within-field 
variation in crop nutrient requirements.  

2. Designing on-farm experiments to produce data for model application. 
Experiments (number, size and locations of plots) must be 
representative for an entire farm, field or subfield zone, and suit 
the mode of data collection (proximal or remote sensor). These 
trials may or may not be the same as the ones in the previous 
point (see further discussion in Section 4.6).  

3. Handling yield-limiting factors other than nitrogen. One strategy 
could be to, like in the intended application of the present study, 
work with homogeneous zones (i.e zones that are homogeneous 
in all other yield limiting factors than the level of plant available 
N). A lot of research has been conducted on how to split fields into 
management zones but to make the present modelling framework 
applicable in practice, functionality for this also needs to be 
implemented in a DSS and that requires the zoning-algorithm to 
be based on spatial data suitable for this purpose. An alternative 
option could be to work with spatially continuous data on yield 
potential.  

4. Handling model sensitivity to crop developmental stage. If one would 
choose to directly predict absolute optimal supplemental N rate 
based on reflectance data from remote sensing (instead of relative 
supplemental N rate as done in the present study), one would 
need to apply the model on data from the specific crop devel-
opmental stage for which they were calibrated. However, satellite 
data may not always be available for all developmental stages 
and it may be difficult for the user to know the exact develop-
mental stage of the crop. In a DSS, however, the user can be 
assisted with predictions of crop developmental stage. Crop 
phenology can be forecasted using mechanistic (Ceglar et al., 
2019; Nutini et al., 2021) or empirical (McMaster and Smika, 
1988; Wolters, 2022) models. 

Fig. 7. Results from the leave-one-entire-trial-out cross-validation of the modelling relative remaining N requirement from relative vegetation index for two different 
vegetation indices: a) TGI and b) d75r6. 

Table 6 
Results of the leave-one-entire-trial-out cross-validations of the absolute sup-
plemental N rate N requirement (NRsup_treat) modelling. Validation metrics are 
presented for the best RGB index (TGI) and the best multispectral index (d75r6) 
for 31 predictor sets. The predictor set numbers are the same as in Table 5. 
Evaluation metrics for the leave-one-entire-trial-out cross-validation of target 
total N rate models for 31 predictor sets (combination of region, cultivar, N 
uptake in zero-plots (Nupzero), N uptake in max-plots (Nupmax), and yield 
potential (Ypot)). The number 1 indicates inclusion in the predictor set. 
E = Nash-Sutcliffe modelling efficiency; MAE = mean absolute error.  

Predictor set E (TGI) MAE (TGI) 
(kg N ha¡1) 

E (d75r6) MAE (d75r6) 
(kg N ha¡1) 

4  0.54  23.0  0.62  20.6 
6  0.54  23.0  0.62  20.7 
12  0.51  23.7  0.59  21.6 
13  0.33  28.9  0.40  27.3 
14  0.51  23.7  0.59  21.7 
16  0.64  21.0  0.70  18.2 
17  0.56  23.1  0.64  20.4 
18  0.62  22.0  0.68  19.1 
19  0.54  24.1  0.62  21.2 
20  0.72  17.6  0.80  14.5 
21  0.74  16.6  0.82  13.4 
22  0.70  18.4  0.78  15.4 
23  0.74  16.7  0.82  13.5 
24  0.62  21.6  0.68  19.0 
25  0.60  21.6  0.71  18.5 
26  0.60  22.5  0.65  19.8 
27  0.58  22.5  0.69  19.4 
28  0.72  17.7  0.80  14.3 
29  0.74  17.1  0.81  13.9 
30  0.70  18.5  0.78  15.1 
31  0.74  17.2  0.81  14.1  
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5. Optimising N rate with respect to multiple goals. A procedure that 
simultaneously optimises N rate with respect to profit, grain 
protein goals, nutrient use efficiency and risk for lodging remains 
(to our knowledge) to be developed (see further discussion in 
Section 4.7).  

6. Growth conditions in the remainder of the season are unknown at the 
time of supplemental fertilisation. This is a (perhaps forever- 
unavoidable) source of uncertainty in supplemental N rate 
decision.  

7. Ensuring robust model. Development of models that perform well 
at sites and years other than those used for model parameter-
isation requires extensive datasets for calibration, plus a valida-
tion approach that assesses model performance for new sites and 
years.  

8. Ensuring up-to-date models. Modelling frameworks can be general, 
but models are specific. It should be possible to develop func-
tional principles for modelling that can be widely adopted and 
used for a long time, but the model will always be specific and 
would need to be updated for new cultivars, sensors and 
geographical areas.  

9. Handling measurement sensitivity to ambient light conditions and soil 
reflectance. Crop canopy reflectance measurements are sensitive 
to ambient light conditions and soil reflectance. Some current 
remedies are: use of reflectance panels and/or incoming light 
sensors for data corrections, use of vegetation indices rather than 
reflectance values and modelling relative rather than absolute 

values of crop properties (e.g. relative remaining N requirement 
within a field) (see further discussion in Section 4.8).  

10. Handling model sensitivity to optical sensor and platform. The error 
introduced when applying a model parameterised with data from 
one system (e.g. a UAV-borne camera) to data from another 
system (e.g. a satellite mission) is unknown. Further in-
vestigations, possibly on the potential to use platform-transfer 
functions for co-calibration of different sensors, are needed (see 
further discussion in Section 4.9). 

4.6. Design of miniature on-farm experiments 

Conventional replicated full-factorial small-plot trials (as used here) 
are commonly used for agronomic research, and for development of 
recommendations to farmers. To overcome some of the limitations in 
transferring results to farmers’ fields, on-farm experimentation (OFE) is 
suggested to provide information that better supports on-farm decisions 
(Lacoste et al., 2022). On-farm experiments in the form of zero-plots 
and/or max-plots (or strips) can provide excellent local and current in-
formation on soil N supply and yield potential (e.g. Johnson and Raun, 
2003), and the present study confirms their usefulness in modelling of 
optimal supplemental N rate in winter wheat. There are a number of 
interlinked considerations when designing small OFEs, including where 
to place the plots, how many plots are needed, how big does the plot 
have to be, and how to collect data. It is labour-intensive to make 
handheld measurements at several locations in (often) several fields. For 
handheld (or potentially UAV-borne) sensor measurements, relatively 

Fig. 8. Results from the leave-one-entire-trial-out cross-validation of total supplemental N rate, computed from the best total target N rate model (predictors: region, 
cultivar, N uptake in zero-plots and yield potential) and two models for relative supplemental N rate based on: a) TGI (best RGB index), and b) d75r6 (best multi-
spectral index). 

Fig. 9. Suggested implementation of the models in a decision support system (DSS) with indications of required input. VI = vegetation index; VRA = variable rate 
application. 

K. Piikki et al.                                                                                                                                                                                                                                   



Field Crops Research 289 (2022) 108742

11

small plots (~10 m2) are sufficient in principle. Alternatively, satellite 
data can be used, but with current satellites much larger plots would be 
required. Farmers using boom spreaders can easily generate both 
zero-plots and max-plots, whereas users of the more common disc 
spreader must protect areas with tarpaulin to generate a small zero-plot. 
Using max-plots may be easier and also cheaper, since there is no yield 
loss, only an extra cost for the super-optimal N fertiliser, but they were 
demonstrated less useful for sole use than zero-plots in the present study. 
It can be mentioned in this context that even simpler local information 
sources than OFEs have been proposed. For example, Holland and 
Schepers (2013) suggested to use “virtual reference” areas in a field with 
statistically confirmed adequate supply of N, instead of established 
max-plots. 

4.7. Optimising N rate with respect to multiple goals 

There are many aspects to consider when determining supplemen-
tary N rate, but it is commonly optimised with respect to profit. If the 
aim is to achieve a target grain protein concentration, it may be neces-
sary to increase the N rate. On the other hand, to decrease the risk of 
lodging and N losses to the environment by nitrate leaching and nitrous 
oxide emissions, it may be necessary to lower the N rate. In this study, 
mean protein content at target total N rate was 10.4% and, on average, 
an additional 18 kg N ha− 1 was needed to reach a grain protein con-
centration of 11.5% (not shown), although there was a large variation 
between cultivars (Etana 7 kg N ha− 1, Hallfreda 44 kg N ha− 1, Informer 
27 kg N ha− 1, Julius 8 kg N ha− 1, RGT Reform 13 kg N ha− 1). N use 
efficiency (here calculated as harvested N in grain/N applied) was 87% 
at NRtarget_trial, with a standard deviation of 19 percentage points. The 

amount of non-harvested N increased relatively rapidly when total N 
rate exceeded 130 kg N per ha (Fig. 10). 

4.8. Data collection challenges 

Data from remote reflectance measurements of field crops will be 
affected by the ambient light conditions, such as photon flux density, 
spectral distribution of the incoming light and solar elevation angle, but 
also by soil reflectance if the canopy is not closed. In this study, data 
collection was done under somewhat varying weather conditions and at 
different times of the day (see Fig. 1). It is difficult to avoid this type of 
variation when data collection must be made at a specific crop devel-
opment stage, and when the data collection method (UAV flights) itself 
has restrictions in terms of weather (days with rain and hard winds are 
excluded). An additional challenge was that some sites were located 
close to airports, which ban UAV flights except in certain narrow time 
slots. The effects of these factors are somewhat different in different 
wavelength bands, with RE-NIR indices reported to be less sensitive to 
solar elevation angle differences (de Souza et al., 2021). 

4.9. Model sensitivity to optical sensor and platform 

In the present study, it is assumed that models calibrated with 
spectral measurements from UAV-borne remote sensing can be directly 
applied on Sentinel-2 data, since the spectral specifications of the sen-
sors are similar. Previous comparisons of indices derived from UAV- 
borne sensors and Sentinel-2 data, e.g. by Peng et al. (2021), Buko-
wiecki et al. (2021), Rasmussen et al. (2020) and Söderström et al. 
(2021), have shown that the results depend on the approach used and 

Fig. 10. Average curves for profit, nitrogen use efficiency (NUE), and amount of non-harvested N and grain protein concentration in relation to N rate (fitted to all 
data in the study). Target total N rate = optimal nitrogen rate as determined in this study (i.e. optimal with respect to profit when the price ratio is 10 kg grain per 
kg N). 
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the index. Relative variation seems to be easier to reproduce than exact 
index values (Söderström et al., 2021), indicating that models based on 
relative variation may be more robust than models based on absolute VI 
values. In addition to the unknown accuracy issues with transfer be-
tween platforms, there are also difficulties in managing data from UAVs 
(Maes and Steppe, 2019; this study), and data quality may differ over 
time because of manual calibration procedures etc. On the other hand, 
satellite data are not entirely consistent and subtle shifts in georefer-
encing and atmospheric conditions may have considerable effects on 
outputs, especially for precision agricultural applications that use such 
data at more or less pixel level. In addition, cloud-free images for the 
crop developmental stage of interest may not be available. Continued 
streamlining of the process to collect and prepare UAV data may be the 
best way forward, or it might be better to adapt the designs and geom-
etries of field trials to match satellite data. Again, this calls for new field 
trial designs, an integral component in the ongoing development of OFE 
(Lacoste et al., 2021). 

5. Conclusions 

In the present study:  

• It proved possible to predict optimal total N rate for new sites and 
years with an MAE of 14 kg N ha− 1 (model based on region, cultivar, 
Nupzero and Ypot). Relative remaining N requirement could be pre-
dicted with an MAE of 17 kg N ha− 1 (model based on the VI d75r6). 
The supplemental N rate to apply, computed from predictions by 
these two models, plus the N rate earlier in the season, had an MAE of 
14 kg N ha− 1. The most important predictors for optimal total N rate 
were Ypot and Nupzero. Multispectral indices worked better than RGB 
indices.  

• The correlation between optimal supplemental N rate (which is also 
a measure of crop N status) and crop canopy reflectance was stron-
gest for bands 3, 5, 7, 8 and 8A (negative for bands 3 and 5, positive 
in the NIR wavelength region) and weakest for band 6.  

• Semi-automatic DSS have the great advantages of i) utilising farmers’ 
tacit knowledge on local conditions better than fully automatic DSS 
and ii) making use of information from field trials (captured by 
models) and remote-sensing data better than fully manual decisions. 
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tract: 2019–02280), and Västra Götalandsregionen together with the 

Swedish University of Agricultural Sciences (contracts: RUN 
2018–00141 and RUN 2021–00020). We also thank SLF for funding the 
trial series, the Rural Economy and Agricultural Societies for carrying 
out the experiments, and the farmers who kindly made their fields 
available. This study is an example of the benefits of open data. 

Competing interests statement 

The authors have no competing interests to declare. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.fcr.2022.108742. 

References 

Ali, M.M., Al-Ani, A., Eamus, D., Tan, D.K., 2017. Leaf nitrogen determination using non- 
destructive techniques–A review. J. Plant Nutr. 40 (7), 928–953. https://doi.org/ 
10.1080/01904167.2016.1143954. 
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Wolters, S., Söderström, M., Piikki, K., Börjesson, T., Pettersson, C.G., 2022. Predicting 
grain protein concentration in winter wheat (Triticum aestivum L.) based on 
unpiloted aerial vehicle multispectral optical remote sensing. Acta Agric. Scand., 
Sect. B — Soil Plant Sci. 72 (1), 788–802. https://doi.org/10.1080/ 
09064710.2022.2085165. 

Zadoks, J.C., Chang, T.T., Konzak, C.F., 1974. A decimal code for the growth stages of 
cereals. Weed Res. 14 (6), 415–421. https://doi.org/10.1111/j.1365-3180.1974. 
tb01084.x. 

K. Piikki et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.jag.2012.07.020
https://doi.org/10.1016/j.jag.2012.07.020
https://doi.org/10.1081/PLN-120017134
https://doi.org/10.1081/PLN-120017134
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1038/s43016-021-00424-4
https://doi.org/10.1038/s43016-021-00424-4
https://doi.org/10.1080/10106040108542184
https://doi.org/10.1016/j.agsy.2017.10.004
https://doi.org/10.1016/j.tplants.2018.11.007
https://doi.org/10.1016/j.tplants.2018.11.007
https://doi.org/10.1016/0168-1923(88)90002-0
https://doi.org/10.1016/0168-1923(88)90002-0
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.5194/isprs-archives-XLII-3-W3-149-2017
https://doi.org/10.5194/isprs-archives-XLII-3-W3-149-2017
https://linkinghub.elsevier.com/retrieve/pii/S0168
https://linkinghub.elsevier.com/retrieve/pii/S0168
https://doi.org/10.1007/s11119-021-09784-0
https://doi.org/10.1007/s11119-021-09784-0
https://doi.org/10.1016/j.fcr.2021.108158
https://doi.org/10.1016/j.geoderma.2017.10.049
https://doi.org/10.23986/afsci.63668
https://doi.org/10.23986/afsci.63668
https://doi.org/10.1093/aob/mcu205
https://doi.org/10.1016/0034-4257(94)90134-1
https://doi.org/10.1016/0034-4257(94)90134-1
https://doi.org/10.1007/s11119-020-09759-7
https://doi.org/10.1007/s11119-020-09759-7
https://doi.org/10.2134/agronj1999.00021962009100030001x
https://doi.org/10.2134/agronj1999.00021962009100030001x
https://doi.org/10.2134/agronj2001.931131x
https://doi.org/10.2134/agronj2001.931131x
http://refhub.elsevier.com/S0378-4290(22)00313-6/sbref37
http://refhub.elsevier.com/S0378-4290(22)00313-6/sbref37
http://refhub.elsevier.com/S0378-4290(22)00313-6/sbref37
https://doi.org/10.1016/0034-4257(95)00186-7
https://doi.org/10.1016/0034-4257(95)00186-7
https://doi.org/10.1080/09064710.2017.1324044
https://doi.org/10.1080/09064710.2017.1324044
https://doi.org/10.3920/978-90-8686-916-9_109
https://doi.org/10.3390/rs13091691
https://doi.org/10.3390/agronomy9060278
https://doi.org/10.1007/s11119-020-09783-7
https://doi.org/10.1080/09064710.2022.2085165
https://doi.org/10.1080/09064710.2022.2085165
https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

	Remote sensing and on-farm experiments for determining in-season nitrogen rates in winter wheat – Options for implementatio ...
	1 Introduction
	1.1 Current methods to adapt N fertilisation in winter wheat
	1.2 Remote sensing-based DSS
	1.3 A new way of developing the necessary recommendations
	1.4 Aim and scope

	2 Materials and methods
	2.1 Field trials
	2.2 UAV-based multispectral data collection
	2.3 Reflectance data preparation
	2.3.1 Geometric correction by test image
	2.3.2 Mosaicking
	2.3.3 Spectral correction by reflectance plates

	2.4 Data cleaning
	2.5 Modelling setup and nomenclature
	2.6 Nitrogen-response modelling
	2.7 Determination of total target N rate
	2.8 Determination of supplemental N rate
	2.9 Determination of relative supplemental N rate
	2.10 Computation of vegetation indices
	2.11 Determination of relative vegetation index
	2.12 Modelling total target N rate
	2.13 Modelling relative supplemental N rate
	2.14 Computing total supplemental N rate
	2.15 Computing evaluation metrics
	2.16 Comparing predictor importance for target N rate modelling
	2.17 Analysis of reflectance spectra

	3 Results
	3.1 Descriptive statistics on field trial data
	3.2 Crop canopy spectra
	3.3 Model performance at new sites and years
	3.3.1 Optimal N rate modelling

	3.4 Relative N requirement modelling
	3.4.1 Absolute remaining N requirement computation


	4 Discussion
	4.1 Performance of predictors for total target N rate
	4.2 Performance of vegetation indices
	4.3 Manual, semi-automated or fully automatic DSS
	4.4 Flexible implementation of the two-step approach
	4.5 Remaining challenges in streamlining a functional DSS for VRA of N
	4.6 Design of miniature on-farm experiments
	4.7 Optimising N rate with respect to multiple goals
	4.8 Data collection challenges
	4.9 Model sensitivity to optical sensor and platform

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Competing interests statement
	Appendix A Supporting information
	References


