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Abstract: Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria
involved in the pathogenic processes leading to mastitis and metritis in animals such as dairy cattle.
LPS causes cell proliferation associated with endometrium inflammation. Former in vitro studies
have demonstrated that LPS induces an intense stimulation of the proliferation of a pure population
of bovine endometrial epithelial cells. In a follow-up transcriptomic study based on RNA-sequencing
data obtained after 24 h exposure of primary bovine endometrial epithelial cells to 0, 2, and 8 µg/mL
LPS, 752 and 727 differentially expressed genes (DEGs) were detected between the controls and LPS-
treated samples that encode proteins known to be associated with either proliferation or apoptosis,
respectively. The present bioinformatic analysis was performed to decipher the gene networks
involved to obtain a deeper understanding of the mechanisms underlying the proliferative and
apoptosis processes. Our findings have revealed 116 putative transcription factors (TFs) and the
most significant number of interactions between these TFs and DEGs belong to NFKβ1, TP53, STAT1,
and HIF1A. Moreover, our results provide novel insights into the early signaling and metabolic
pathways in bovine endometrial epithelial cells associated with the innate immune response and cell
proliferation to Escherichia coli-LPS infection. The results further indicated that LPS challenge elicited
a strong transcriptomic response, leading to potent activation of pro-inflammatory pathways that are
associated with a marked endometrial cancer, Toll-like receptor, NFKβ, AKT, apoptosis, and MAPK
signaling pathways. This effect may provide a mechanistic explanation for the relationship between
LPS and cell proliferation.

Keywords: cell proliferation; lipopolysaccharide; bovine endometrium epithelial cells; RNASeq

1. Introduction

Bacterial infections in cattle lead to diseases such as mastitis (inflammation of the
mammary gland) and endometritis (inflammation of the endometrium), which are ranked
as top diseases and major economic burdens in the dairy cattle industry [2]. Based on
financial calculations, the cost of these infections has been estimated at USD 650 million
in the USA and EUR 1.4 billion in the European Union dairy industry per annum [3]. The
cost of mastitis has varied largely in previous studies. Per-cow base mastitis cost varied
from USD 2.27 in Scotland to USD 35.1 in Ohio [4]. Previous studies have shown that
uterine infections lead to metritis in 40% of animals within a week of parturition, persisting
as endometritis in 20% of animals for several weeks [5]. Bacteria that infect mammals
are identified by the infected host’s pattern recognition receptors on the innate immune
system cells based on recognizing their pathogen-associated molecular patterns [6]. The
Gram-negative bacteria consist of a large group of which several species are considered

Genes 2022, 13, 2342. https://doi.org/10.3390/genes13122342 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13122342
https://doi.org/10.3390/genes13122342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-5463-8873
https://orcid.org/0000-0001-5131-3144
https://orcid.org/0000-0002-1947-8288
https://doi.org/10.3390/genes13122342
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13122342?type=check_update&version=1


Genes 2022, 13, 2342 2 of 14

as primary pathogens causing severe infections [7]. Lipopolysaccharide (LPS), a bacterial
endotoxin, is a major component of the outer membrane of Gram-negative bacteria such
as E. coli [8]. Its accumulation in follicular fluid in the animal is evidence of microbial
invasion and a considerable pro-inflammatory response that actives different pathways
and ultimately leads to the release of a large number of pro-inflammatory cytokines and
chemokines [8].

Numerous studies have shown that pro-inflammatory cytokines contribute to the
development of chronic mastitis, reduce circulating and intrafollicular estradiol concen-
trations, extend luteal phases, disrupt ovarian cyclic activity, and change nutritional
metabolism, cell proliferation, and apoptosis. These inflammatory responses negatively
affect fertility and have a further negative effect on milk yield, fat content, and milk energy
efficiency [9–12]. The epithelial cells are the first cellular barrier to infection and play a key
role in alerting the immune system to infection and respond by secreting pro-inflammatory
cytokines and chemokines [13]. Increased cell proliferation is part of the inflammatory
process and has been reported in human epithelial and immune cells [14–16] and in bovine
endometrial epithelial cells [17]. There are several reports concerning the effect of LPS
on different tissues in various animal species [17–24]. Most of these studies performed
in different species have shown inconsistent actions of LPS, including either stimulation
or inhibition of proliferation. However, few studies have described the possible effect of
factors related to the host on cell proliferation and their role as a source of variation in this
response. In addition, according to our knowledge, the specific mechanisms by which LPS
affects proliferation have not been well-documented for bovine endometrial epithelial cells.
Moreover, previous studies have proposed that the presence of cell proliferation in tissues
or organs with low mitotic activity could be a significant factor for cancer development in
human [25].

Taking the above information into account, cell proliferation plays an important and
even critical role in many steps in cancer development, such as initiation, promotion or
selection, and progression during further invasion in several organs and tissues. Previous
studies have noted the stimulation of proliferation despite 50% of genes related to the
proliferation process being either under- or overexpressed regulated genes in bovine
endometrial epithelial cells (bEECs) after being exposed to different doses of LPS [1,17,26].
The present study aimed to decipher the corresponding mechanisms considering these
observations and assess the gene network and inter-cellular signaling pathways leading
to cell proliferation to obtain a deeper understanding of the mechanisms underlying the
proliferative and apoptosis processes.

2. Materials and Methods
2.1. Experiment Design

The endometrial epithelial cells were purified from uterine horns of three Swedish Red
Breed cows according to procedures previously described [1]. Briefly, tissue pieces were
incubated with collagenase IV (C5138, Sigma, Saint Louis, MO, USA) and hyaluronidase
(250 U/mL) (H3506, Sigma) in PBS containing 2% bovine serum albumin (BSA) (Sigma).
Epithelial cells were collected from the filtration through a 250 µm gauze (to remove mucus
and undigested tissue) and a 40 µm nylon sieve (which allowed the fibroblasts and blood
cells to pass through while epithelial cells were retained). The purity of bEEC culture was
estimated by morphological observation following three to five passages. The purity of
the epithelial cell culture was then checked by flow-cytometry (Figure S1). From passage
two and thereafter, more than 98% of cells expressed cytokeratin, confirming the very high
purity of the cell culture system (Figure S1). bEECs were challenged on passage five, with
0, 2, and 8 µg/mL LPS from E. coli (O111:B4; Sigma). Therefore, the bEECs were classified
into four groups, including Control 0 h, Control 24 h, LPS-2 µg/mL 24 h, and LPS-8 µg/mL
24 h as previously described [1]. The change in the cellular biology and physiology of
bEECs following LPS were shown in our previous work [17].
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Then, RNA was prepared from these samples to be used for RNASeq analysis. Se-
quencing libraries from 12 samples (for each cow, on Time 0, and with 0, 2, and 8 µg/mL
LPS at 24 h) (Table S1) were prepared by a sequencing platform (Science for Life Laboratory,
Uppsala University; https://www.scilifelab.se/ accessed on 12 March 2016) using the
Illumina HiSeq2500 system (Illumina Inc. San Diego, CA, USA). The RNASeq raw data
were uploaded to the European Nucleotide Archive (ENA) with the accession number
PRJEB34011. In a follow-up transcriptomic study from RNA sequencing [1] among nearly
26,000 genes annotated in the bovine genome, by taking comparisons between control 24 h
vs. 2 µg/mL of LPS, 2035 differentially expressed genes (DEGs) were identified based
on the Benjamini–Hochberg (BH) correction and adjusted p-values < 0.05 and log 2-fold
change ≥ 0 for over- or underexpression as the criteria for defining differentially expressed
genes. In the following, these DEGs were evaluated based on different fold-change for
detecting the most effective DEGs.

2.2. Bioinformatics Analysis (Classification of DEGs Involved in Cell Proliferation)

To determine the possible cellular function involved in the LPS-induced proliferation of
bEECs, a gene classification analysis of DEGs was performed using two databases including
Mitocheck (https://www.mitocheck.org/ accessed on 30 May 2018) and GeneCards (https:
//www.genecards.org/ accessed on 28 May 2017). The obtained gene sets (common genes
between 2035 DEGs and databases) associated with biological pathways were considered
for literature analysis.

2.3. Transcription Factor Analysis

The OPOSSUM (https://bio.tools/opossum/ accessed on 12 July 2018) and Geno-
matix databases (https://www.genomatix.de/ accessed on 13 July 2017) for identification
of transcription factor (TFs) target genes were applied. The genes from the datasets as-
sociated with canonical pathways in these databases were considered for the identified
TF-predicted target genes analysis. After uploading the datasets, TFs identifiers were
mapped to corresponding gene objects.

2.4. Functional Annotation and Pathways Analysis

Gene ontology and KEGG pathway enrichment were determined using DAVID
6.7 using all Ensembl genes as background and also the Genebrowser platform (http:
//bioinformatics.ua.pt/genebrowser2/ accessed on 20 July 2018). For functional anno-
tation of the significant genes the Database for Annotation, Visualization and Integrated
Discovery (DAVID; http://david.abcc.ncifcrf.gov/ accessed on 22 July 2018) was applied
based on a modified Fisher’s exact p-value to demonstrate gene ontology (GO) or molecular
pathway enrichment. p-values less than 0.05 were considered to be significantly enriched
in the annotation category.

3. Results
3.1. RNASeq Analysis

Our previous RNASeq study generated approximately 27 million reads (paired-end
125 bp reads) per sample following quality control [1]. Ninety-seven percent of these reads
mapped to the UMD v3.1.1 bovine reference genome (Supplementary Materials). There
are a few DEGs (with low fold change) between the Control 0h and Control 24 h groups
(Figure 1). Compared to Control 24 h, exposure to the LPS revealed the differential gene
expression of 2035 transcripts at 2 µg/mL LPS-induced (248 increased and 40 decreased in
expression > 1 log2_fold-change) and 2073 transcripts at 8 µg/mL LPS-induced. In addition,
no differential gene expression was identified between the two mentioned LPS-induced
groups (p > 0.05), indicating that in almost all cases, gene expression levels for these genes
show similar variation in response to LPS for both treatment groups. This was further
confirmed by the correlation coefficient between fold changes observed with 2 and 8 µg/mL

https://www.scilifelab.se/
https://www.mitocheck.org/
https://www.genecards.org/
https://www.genecards.org/
https://bio.tools/opossum/
https://www.genomatix.de/
http://bioinformatics.ua.pt/genebrowser2/
http://bioinformatics.ua.pt/genebrowser2/
http://david.abcc.ncifcrf.gov/
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LPS is r2 = 0.99. Therefore, the 2035 DEGs between control 24 h and LPS-2 µg/mL were
further analyzed.
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Figure 1. Comparison between different groups following LPS challenge including Control 0 h, Con-
trol 24 h, LPS-2 µg/mL 24 h, and LPS-8 µg/mL 24 h. Dots in red show DEGs (adjusted p value < 0.05
from Benjamini-Hochberg correction). Significant means positive log2 fold changes correspond to
increased expression, whereas negative values correspond to decreased expression.

3.2. Results of the Comparison between Control 24 h and LPS-2 µg/mL 24 h

These 2035 DEGs between control 24 h and LPS-2 µg/mL 24 h were searched and clas-
sified for in the proliferation databases Mitocheck and GeneCards. Based on this database
search, we obtained a dataset consisting of 752 genes classified to be involved in cell prolif-
eration. Out of these genes, 400 were overexpressed, and 352 genes were underexpressed.
Table 1 illustrates the intensity of differential expression of these genes according to over-
or under-expression. The proportion of genes with differential expression > 1 log2_fold-
change was higher for overexpressed genes than for under-expressed genes (138/400 vs.
13/352; p < 0.00001).

Table 1. Distribution of detected DEGs involved in cell proliferation based on different log2-fold-
change.

Function State Fold-Change Number Ratio
(Up/Down)

Proliferation
(752)

Over-expressed
>2 log2_fold-change 28

1.14
>1 log2_fold-change 110
>0 log2_fold-change 400

Under-
expressed

>1 log2_fold-change 13
>0 log2_fold-change 352
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Among the genes displaying the most dramatic changes in levels due to LPS exposure
were those involved in the inflammatory response and immune response: cytokines or
chemokines, interferon-related genes, interleukin-related genes, TNF-related genes, growth
factors, and prostaglandin-related genes. Additionally, differential gene expression was
observed for some classical markers of cell proliferation, including IL-8, IL-6, CCL2, TNF,
CXCL6, P53, Ki-67, BCL-2, CCL5, AP-1, Cyclin D3, and PCNA.

The top 12 overexpressed genes (≥3-fold) after the LPS challenge associated with
cell proliferation are listed in Table 2. All genes encode proteins that play established
roles in immune response and cell proliferation during infection including genes encoding
cytokines (IL-1A, CXCL8, CXCL6, TNF, and BCL2A1) and anti-microbial defense (C3) SAA3
(an acute-phase protein), as well as those involved in the metabolism pathway (SLC5A5).

Table 2. List of top 12 overexpressed genes (≥3-fold change) in detected DEGs related to cell
proliferation and apoptosis.

Gene Symbol Gene Name Known Function Fold Change

CXCL6 Granulocyte chemotactic
protein 2

Cytokine and chemokine activity, strong
antibacterial activity 6.35

C3 Complement component 3

Activation of complement system to form mature
proteins, modulates inflammation and possesses
antimicrobial activity, activation of the PLC, MAPK, and
AKT signaling pathways

4.55

BCL2A1 BCL2-related protein A1 Anti- and pro-apoptotic regulators, lymphocyte
activation as well as cell survival 4.21

SLC5A5 Solute carrier family 5 Thyroid hormone synthesis and metabolism pathway.
Increased viability 3.79

LGALS9 Lectin, galactoside-binding,
soluble, 9

Enhancing cell migration, inhibits angiogenesis,
activates ERK1/2 phosphorylation inducing cytokines
(IL-6, IL-8, and IL-12) and chemokines (CCL2)

3.49

CXCL8 Interleukin 8 Chemotaxis; neutrophil activation; G-protein coupled
receptor protein signaling pathway; angiogenesis 3.35

CTSC Cathepsin C Activation of many serine proteinases in cells of the
immune system, protein binding. 3.32

CX3CL1 Chemokine (C-X3-C motif)
ligand 1

Receptor binding and chemokine activity; regulating
leukocyte adhesion and migration processes 3.32

CXCL3 Chemokine (C-X-C motif)
ligand 3

Inflammation, chemokine activity, and CXCR
chemokine receptor binding 3.23

CCL5 Chemokine (C-C motif) ligand 5 Immune-regulatory and inflammatory processes,
activation of the PI3, Akt, and MAP kinases 3.16

TNF Tumor necrosis factor

Acute phase response, pro-inflammatory
immune response,
regulation of cytokine secretion, insulin signaling, and
glucose metabolism

3.06

IL1A Interleukin 1 α

Immune responses, inflammatory processes, and cell
proliferation. Stimulates the release of prostaglandin
and collagenase.

2.86

The gene ontology analysis showed that the majority of under-expressed genes encode
proteins that are mainly involved in cell structure and cell adhesion while the overex-
pressed genes encode proteins that are involved in immune response and cell proliferation
or apoptosis.

The GO molecular function analysis uncovered an increase in genes encoding proteins
with known critical functions in regulating the cell proliferation such as BCL2, BCL3, LIF,
CD14, CyclinD3, and RAS.

3.3. Classification of DEGs Based on Their Functions in Cell Cycle

Based on the importance of cell proliferation and apoptosis, more analyses were
conducted using the GeneCards and Mitocheck databases. In these comparative analyses,
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we observed the common genes between our DEGs (2035) and the genes which exist in
both databases according to their functions (Tables 3 and 4). The results show the most
significant number of genes involved in cell differentiation and cell growth (Table 3).

Table 3. Detected functions of the common genes involved in cell cycles using the
GeneCards database.

Functions Database Common Genes

Tumor suppressor genes 3472 488
Segregation problems 829 111
Metaphase delay 217 33
Cell death 5722 731
Metaphase alignment problem 25 5
Condensation followed by decondensation 43 9
Binuclear 584 66
Dynamic change 3679 524
Mitotic delay 1456 212
Migration (speed) 2877 317
Migration (distance) 300 46
Inhibition of secretion 4027 583
Enhanced secretion 3135 479
Failure in decondensation 21 1
Chemokine 1258 201
Cytokines 3324 513
Stay close together 95 20
Strange nuclear shape 98 8
Transcription Factor 10943 1141
DNA replication 4260 535
Spindle mitotic 1329 183
Cell division 1527 228
Cell growth 10029 1147
DNA damage 5377 693
Mitochondrial respiration 429 63
Electron acceptors 203 36
Endometrial cancer 1503 288
Proteasome phosphorylation 2456 374
Telomerase erosion 151 36
Chromosome duplication 3058 274
Centrosome duplication 408 56
Cell cycle 6332 751
Endothelial cell 4650 718
Cell differentiation 10738 1223
VEGF signaling 2892 492
Steroid hormone receptors 1558 238
Interphase 725 74
Prophase 378 39
Metaphase 686 82
Anaphase 754 85

Further analysis was performed to classify the gene sets based on their influence on
phenotypes using the Mitocheck database (Table 4). In this database, genes are submit-
ted based on phenotype data. The results show the most significant number of genes
involved in mild inhibition of secretion, such as A-kinase anchoring proteins (AKAP), AKT
serine/threonine kinase, and protein kinase C γ (PRKCG) (Table 4).
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Table 4. Classification of DEGs based on their phenotypic effects using the Mitocheck database.

Phenotypes Database DEGs

Enhanced secretion 223 19
Inhibition of secretion 783 75
Mild inhibition of secretion 2306 225
Strong inhibition of secretion 1524 146
Increased proliferation 96 10
Migration (distance) 144 15
Migration (speed) 277 20
Grape 153 14
Mitotic delay 443 49
Dynamic changes 741 71
Large 316 25
Polylobed 472 44
Binuclear 456 53
Condensation followed by decondensation 10 1
Failure in decondensation 8 0
Metaphase alignment problems 422 53
Cell death 782 80
Metaphase delay 275 34
Segregation problems 494 65
Strange nuclear shape 583 70
Nuclei stay close together 364 47
Altered gm130 morphology 99 16
Altered COPI morphology 108 12
Altered COPII morphology 59 6
Retention of sh4(haspb)-gfp 302 33
Retention of sh4(yes)-mcherry 126 11
Reduction in ir-induced 53bp1 3 0
Accumulation of gfp-rnf168 on 34 3

3.4. Differential Expression of Multiple Transcription Factor Families

Two databases were used to find genes encoding TFs among the 752 DEGs involved
in proliferation. Based on the results from OPOSSUM database searches, among these
752 genes, 161 genes were recognized as encoding TFs. Moreover, these genes were
classified by the TFs encyclopedia from the OPOSSUM database into seven different classes
(Figure 2). Most of the TFs identified here belonged to the zinc-coordinating class (Figure 2).
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Figure 2. Classes of 116 putative expressed TFs in bovine endometrial epithelial cells.

Additionally, genes encoding multiple TFs were identified among the differentially
expressed genes associated with cell proliferation. These transcription factors, including
TP53, STAT, E2F, MYC, AP-1, NFKB, and MYB, are essential in either proliferation or
apoptosis processes. In addition, RNASeq reads revealed that JunB, JunD, Foxp4, and
Ets2 were particularly overexpressed in the epithelial cells. We found that the expression
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changes in the majority of the observed cytokines and chemokines were directly regulated
by the identified TFs, including STAT1, NFKB, and TP53.

In addition, we evaluated the interaction between TFs and DEGs using the Genomatix
database. Here, we detected 52 TFs and their interactions with genes (Table 5). Among these
TFs, a large number of interactions belonged to NFKB1, TP53, STAT1, and HIF1A. Some of
these TFs have predicted or validated binding sites and others have interaction evidence.

Table 5. List of TFs and their interaction with genes using the Genomatics database.

Transcription Factors Interaction Transcription Factors Interaction

TRIM24 (transcription cofactor) 13 XBP1 (V$CREB) 60
LTF (V$LTFM) 40 PML (transcription cofactor) 82

BATF2 (V$AP1F) 7 HOXC4 (V$HOXF, V$HOXC) 7
PIAS1 (transcription cofactor) 29 OSR1 (V$OSRF) 3
EYA3 (transcription cofactor) 2 FOX1 (V$FKHD) 36

GZF1 (V$GZF1) 0 JARID2 (V$ARID) 5
CCNT1 (transcription cofactor) 14 CNOT8 (transcription cofactor) 5

ZNF217 (V$ZF03) 21 PPARGC1B (transcription cofactor) 22
CALR (transcription cofactor) 66 CREM (V$CREB) 26

BHLHE41 (V$HESF) 12 NFKB1 (V$NFKB) 279
ETV3 (V$ETSF) 3 RELB (V$NFKB) 71

MTA2 (transcription cofactor) 18 NFE2L1 (V$TCFF, AP1R) 6
CIITA (transcription cofactor) 50 CDCA7 0

HIF1A (V$HIFF) 155 FOSL1 (V$AP1F) 66
MED17 (transcription cofactor, mediator) 3 FOXO1 (V$FKHD) 84

IRF1 (V$IRFF) 111 NRIP1 (transcription cofactor) 28
KDM2A (transcription cofactor, demethylase) 4 PRDM1 (V$PRDF) 39

BCL3 (transcription cofactor) 55 PCBD1 (transcription cofactor) 4
MEF2D (V$MEF2) 13 TB53 (V$P53F) 254

EHF (V$ETSF) 17 NFKB2 (V$NFKB) 59
STAT1 (V$IRFF, V$STAT) 157 SMAD3 (V$SMAD) 98

SRXN1 (V$SNAI) 18 SIX5 (V$MEF3) 2
ELL3 (transcription elongation cofactor) 1 MYCL (V$EBOX) 13

ARRB1 (transcription cofactor) 37 JUNB (V$AP1F) 87
PBX4 (V$PBXC, V$HOXC) 0 NFE2L3 (V$AP1R) 9

AHR (V$AHRR) 84 LITAF 19

3.5. Biological Pathway Analysis

Within this set of DEGs, we identified 50 significantly enriched canonical path-
ways using the Genebrowser platform (Available online: https://bioinformatics.ua.pt/
genebrowser/ accessed on 30 July 2018). The majority of which were signaling pathways
(Figure S2). It was striking that signaling pathways related to immune or inflammatory
functions were the most affected in our study. Interestingly, among the signaling pathways,
our data revealed induction of specific pathways related to different carcinoma such as
endometrial, lung, renal cell, pancreatic, colorectal, and prostate cancer was coupled with
activation of certain pathways, such as ERK/MAPK and PI3K/AKT signaling related to
cell proliferation. More intriguing is the finding that among all of the biological path-
ways, endometrial cancer is more related to cell proliferation in bEECs following LPS
challenge (Figure 3). Additionally, we depicted a pathway based on our results that shows
the interaction between over- and under-expressed genes after LPS challenge in bEECs
(Figure 4).

https://bioinformatics.ua.pt/genebrowser/
https://bioinformatics.ua.pt/genebrowser/
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activation (e.g., binding, phosphorylation); orange lines signify direct protein interactions.
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4. Discussion

Previous studies have shown that LPS can affect cell proliferation through different
pathways in several different tissues [18,27–29]. Numerous studies have revealed that LPS
stimulates inflammation responses [26,30]. At the same time, complex negative feedback
regulatory networks are acting to obviate inflammation responses [31]. The present study,
based on the change in gene expression profile, shows that bEECs have been activated
by LPS challenge, which is fully consistent with previous studies [5,17,26,32]. So far,
several intercellular signaling pathways have been identified [33,34], but further research
is needed to fully understand their mechanisms. In the present study, we evaluated the
change in gene expression and the pathways involved in cell proliferation and apoptosis in
bEECs following E. coli LPS challenge. There are numerous reports about the effect of LPS
on cell proliferation in human tissues and cell types, including immune cells [35], nasal
mucosa [36], endothelial cells [23], hepatic stellate cells [37], neural cells [22], fibroblast
cell line [18,21], tumor cells [38], bronchial epithelial cells or cell lines [14,39], gastric
epithelial cells [19], intestinal cells and cell lines [27], small epithelial intestinal cells [40],
colon epithelial cells [32], cholangiocytes [41–43], corneal epithelial cells [20], pulmonary
microvascular endothelial cells [28], and alveolar type II cells [44].

Despite the abovementioned studies that have shown a significant association be-
tween LPS challenge and an increase in cell proliferation, some reports have indicated
the inhibition role of LPS in cell proliferation, such as a decrease in viability for human
epithelial cells and gingival fibroblasts [45], a reduction in the proliferation of mammary
epithelial cells [29] and also the growth inhibition and increased apoptosis of peritoneal
mesothelium cells [46]. Additionally, a previous study reported no significant effect of LPS
on cell proliferation in pig intestinal epithelial cells [47]. In contrast, a comparative analysis
of LPS effects on cell proliferation in different types of epithelial cells shows that LPS has
an inhibitory role in cell proliferation and growth, including inhibition of proliferation of
rat tracheal epithelial cells [48], and rat kidney epithelial cells [49,50], inhibition of taste
progenitor cell proliferation (mouse) [30], inhibition of proliferation in a rat tongue epithe-
lial cell line [51], and even differential expression of the genes associated with cell growth
and proliferation in tammars, macropod marsupials (Macropus eugenii) [52].

LPS was reported to inhibit the proliferation of post-primary bovine mammary ep-
ithelial cells but not in bovine mammary cell lines [53]. However, in another study, LPS
increased the number of bovine mammary epithelial cells [54]. Ultimately, these findings
have shown that there is no consistent response of cells following LPS challenge. The effect
of LPS on cell proliferation will differ depending on species, tissues, study model (in vivo
or in vitro), and, importantly, also the time and dose of administered LPS. The effect of
different doses of LPS on bovine endometrium epithelial cells has previously been carefully
evaluated by our group [17]. A significant increase in the number of cells for dosages 2, 4,
6, 8, and 12 µg/mL compared to the control group was shown. With higher dosages, the
number of live cells did not increase, but the number of dead cells increased. Decreasing
cell proliferation in high LPS doses may be due to the induction of apoptosis.

Recently, in a genome-wide DNA methylation study on the bEECs we noted a sig-
nificant overrepresentation of differentially methylated regulatory promoters of genes
encoding proteins of biological and molecular functions related to cell proliferation, and
apoptotic process [26] which is consistent with transcriptome data previously obtained by
RNASeq on the same cell samples [1].

Moreover, our results confirmed that the bEECs act as a mechanical barrier, and also
contribute to innate immunity by reacting to LPS with the secretion of pro-inflammatory
chemokines/cytokines and the induction of proliferation. This wide array of cytokines and
interferon-related genes demonstrates the ability of the epithelial cells to recognize and
react to LPS. In our findings, differential gene expression was observed in some known
markers for cell proliferation, including IL-8, IL-6, CCL2, TNF, CXCL6, Complement C3,
P53, Ki-67, BCL-2, CCL5, AP-1, Cyclin D3, and PCNA. Recently, a study demonstrated
that CXCL6 (Chemokine (C-X-C Motif) ligand 6) knockdown significantly inhibits human



Genes 2022, 13, 2342 11 of 14

brain microvascular endothelial cells proliferation by modulating Sirt3 expression through
inactivation of AKT/FOXO3a [55]. In addition, complement C3 expression was associated
with mouse T cell proliferation and IL-17A expression, which was mediated via ERK and
STAT3 signaling pathways [56].

In the present study, the GO analysis showed that under-expressed DEGs such as
PTHLH and ECM2 encode proteins that are mainly involved in cell structure and cell
adhesion. Most extracellular matrix protein 2 (ECM2) glycoproteins promote cell adhesion
and cell survival [57]. In addition, PTHLH plays a central role in the physiological regula-
tion of bone formation [58]. The GO molecular function analysis uncovered an increase
in encoding genes such as BCL2, BCL3, LIF, CD14, CyclinD3, and RAS, with the latter
being necessary in regulating cell proliferation. In the GO term, LIF protein is considered
as “negative regulation of cell proliferation”. Functionally, suppressed LIF increases the
proliferation rate and migration ability of cells [59].

Our detected TFs were classified into three groups including TF classes with 1–10 TFs
such as β-sheet, lg-fold, other α-Helix classes; TF classes with 10–20 TFs such as winged
helix–turn–helix, helix–turn-helix, zipper-type; and TF classes with more than 20 TFs such
as zinc-coordinating. Zinc finger proteins, the most abundant and structurally diverse
groups of protein in nature, act as TFs and function in different cellular processes, including
cell proliferation [60–62]. B-cell lymphoma/leukemia 11B (BCL11B) is one member of
the large family of zinc finger proteins [61]. Its inhibition results in growth retardation
and apoptosis in T-cells [63]. The most relevant TFs include c-Jun, ATF-2, PPAR-γ1 and 2,
NFKB1 and 2, and STAT3, which all are involved in regulating cell proliferation processes.
A previous study has shown that the induction of AP-1 causes cell proliferation and organ
growth [64]. A recent study also noted that the cell proliferation was regulated by direct
targeting c-Jun mRNA in gastric carcinoma [65]. Therefore, it is clear that among all the
TFs identified, only some of them will contribute to proliferation or an apoptosis signature.
This is also why in-depth analyses in different species and tissues are critical to define
expression specificities before further biological investigations are performed. Our study
has revealed 116 putative TFs being DEGs in response to LPS and the most significant
number of interactions between TFs and DEGs belonged to NFKB1, TP53, STAT1, and
HIF1A. Taken together, these findings specify that multiple TF families might be involved in
regulating the activation of bEECs in response to LPS, which helps us to deeper understand
cell proliferation/apoptosis mechanisms in bEECs following exposure to LPS.

5. Conclusions

A disturbance in the bovine endometrium-specific expression of cytokines, chemokines,
growth factors, steroid hormones and their nuclear receptors, gonadotropins and their
receptors, and heat shock proteins in response to LPS probably triggers the multiple factors
in the epithelial cells that are responsible for cell proliferation or apoptosis.

Moreover, our results provide novel insights into the early signaling and metabolic
pathways in bovine endometrial epithelial cells associated with the innate immune response
and cell proliferation to E. coli-LPS infection. The results further indicated that LPS challenge
elicited a strong transcriptomic response, leading to potent activation of pro-inflammatory
pathways that were associated with a marked endometrial cancer, Toll-like receptor, NFKβ,
AKT, apoptosis, and MAPK signaling pathways. This effect may provide a mechanistic
explanation for the relationship between LPS and cell proliferation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13122342/s1. Figure S1: Morphology and purity of bovine
fibroblast and endometrial epithelial. Table S1: Summary of RNA quality and RNA-seq reads
mapping to reference genome. Figure S2: Biological pathways analysis of all DEGs in Gene browser
platform. The graph displays the term name and the p-value (blue numbers). The length of the bars
shows the number of genes that are involved in each pathway.
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