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Abstract 

Background: The NORMAN Association (https:// www. norman‑ netwo rk. com/) initiated the NORMAN Suspect List 
Exchange (NORMAN‑SLE; https:// www. norman‑ netwo rk. com/ nds/ SLE/) in 2015, following the NORMAN collabora‑
tive trial on non‑target screening of environmental water samples by mass spectrometry. Since then, this exchange 

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Open Access

*Correspondence:  emma.schymanski@uni.lu

1 Luxembourg Centre for Systems Biomedicine (LCSB), University 
of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
Full list of author information is available at the end of the article

https://orcid.org/0000-0001-7820-4335
https://orcid.org/0000-0001-9167-9060
https://orcid.org/0000-0002-5727-4999
https://orcid.org/0000-0001-9512-9314
https://orcid.org/0000-0002-0747-8838
https://orcid.org/0000-0003-2724-9183
https://orcid.org/0000-0002-8351-9435
https://orcid.org/0000-0001-7147-384X
https://orcid.org/0000-0001-7005-8775
https://orcid.org/0000-0002-5959-6190
https://orcid.org/0000-0001-9269-6524
https://orcid.org/0000-0001-9763-8737
https://orcid.org/0000-0001-5143-0543
https://orcid.org/0000-0002-4486-3356
https://orcid.org/0000-0002-9932-8609
https://orcid.org/0000-0001-9351-6855
https://orcid.org/0000-0002-9734-324X
https://orcid.org/0000-0001-7850-184X
https://orcid.org/0000-0002-9436-9954
https://orcid.org/0000-0002-5987-0399
https://orcid.org/0000-0003-1112-6867
https://orcid.org/0000-0002-0749-3982
https://orcid.org/0000-0002-1740-9422
https://orcid.org/0000-0003-1997-2750
https://orcid.org/0000-0002-3778-4721
https://orcid.org/0000-0003-2293-7913
https://orcid.org/0000-0002-8295-9738
https://orcid.org/0000-0002-7743-9199
https://orcid.org/0000-0003-1268-3083
https://orcid.org/0000-0002-5475-6730
https://orcid.org/0000-0002-6415-6173
https://orcid.org/0000-0002-6917-3431
https://orcid.org/0000-0002-1043-3278
https://orcid.org/0000-0002-0362-4244
https://orcid.org/0000-0001-6986-5545
https://orcid.org/0000-0002-7373-7738
https://orcid.org/0000-0003-1008-8790
https://orcid.org/0000-0002-6453-236X
https://orcid.org/0000-0001-7893-9876
https://orcid.org/0000-0002-4439-9194
https://orcid.org/0000-0001-6265-4294
https://orcid.org/0000-0003-1423-330X
https://orcid.org/0000-0001-8918-6419
https://orcid.org/0000-0003-3126-5186
https://orcid.org/0000-0002-4551-6823
https://orcid.org/0000-0002-1808-8835
https://orcid.org/0000-0002-8793-5516
https://orcid.org/0000-0002-6942-0594
https://orcid.org/0000-0001-6672-8414
https://orcid.org/0000-0002-2558-4431
https://orcid.org/0000-0002-8501-7789
https://orcid.org/0000-0003-2396-2993
https://orcid.org/0000-0002-0963-8268
https://orcid.org/0000-0001-9336-9656
https://orcid.org/0000-0003-3088-9771
https://orcid.org/0000-0002-1948-9243
https://orcid.org/0000-0002-7344-7044
https://orcid.org/0000-0002-9251-0790
https://orcid.org/0000-0003-1606-0764
https://orcid.org/0000-0001-6974-0224
https://orcid.org/0000-0001-9778-4283
https://orcid.org/0000-0002-4175-4787
https://orcid.org/0000-0001-8604-1732
https://orcid.org/0000-0001-8270-6979
https://orcid.org/0000-0002-0809-7826
https://orcid.org/0000-0002-1553-3868
http://orcid.org/0000-0002-9744-8914
https://orcid.org/0000-0002-1356-285X
https://orcid.org/0000-0001-6273-4083
https://orcid.org/0000-0002-8542-3699
https://orcid.org/0000-0003-4500-3400
https://orcid.org/0000-0003-0977-1656
https://orcid.org/0000-0002-1992-2086
https://orcid.org/0000-0002-2155-100X
https://orcid.org/0000-0001-8881-0793
https://orcid.org/0000-0001-6067-8321
https://orcid.org/0000-0002-6875-957X
https://orcid.org/0000-0003-4082-8163
https://orcid.org/0000-0001-7350-8962
https://orcid.org/0000-0001-9914-7659
https://orcid.org/0000-0002-2668-4821
https://orcid.org/0000-0001-7542-0286
https://orcid.org/0000-0002-3207-2434
https://orcid.org/0000-0002-6192-4632
https://orcid.org/0000-0002-4624-4735
https://orcid.org/0000-0002-4660-274X
https://orcid.org/0000-0003-2622-6318
https://orcid.org/0000-0001-6868-8145
https://www.norman-network.com/
https://www.norman-network.com/nds/SLE/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12302-022-00680-6&domain=pdf


Page 2 of 26Mohammed Taha et al. Environmental Sciences Europe          (2022) 34:104 

Background
In environmental analytical chemistry, suspect screen-
ing typically involves the use of high resolution mass 
spectrometry (HRMS) to search for the presence of 
chemicals in environmental samples based on suspect 
lists, using the exact mass as a first step in the anno-
tation of detected features [1, 2]. Suspect screening 
has grown in popularity over the last few years as an 
efficient way to complement traditional target analy-
sis approaches, where a reference standard is required, 
without performing a time-intensive non-target 
screening of the tens of thousands of unknown fea-
tures typical in environmental samples using extensive 
compound databases. Several publications describe 
these approaches in greater detail [1–4]. The NOR-
MAN Association (a network of reference laboratories 
for monitoring of contaminants of emerging concern 
(CECs) in the environment—hereafter “NORMAN”) 
[5] ran the first non-target screening (NTS) collabora-
tive trial on river water in 2013/2014 [4]. The results 
showed that participants tentatively identified roughly 
as many chemicals via both suspect and target screen-
ing methods, but very few via NTS [4]. This early effort 
demonstrated that suspect screening approaches were 

more efficient and popular across the 19 participat-
ing institutes, offering a much higher annotation rate 
than non-target identification. Since then, NORMAN 
has run further collaborative trials involving suspect 
screening, including dust [6], passive samplers [7] and 
biota [8]. Suspect screening has also gained popularity 
beyond environmental studies and matrices, expanding 
recently to biomonitoring (e.g., [9, 10]).

One major outcome of the 2013/2014 NORMAN 
NTS collaborative trial was the clear need for a bet-
ter exchange of chemical information both among and 
beyond NORMAN members [4], since the 2013/2014 
collaborative trial participants used an incredibly wide 
variety of data sources during the trial (shown in Table 3 
of [4]). This need had already been identified earlier, for 
example in the MODELKEY project [11] that included 
several NORMAN members, but the right implementa-
tion strategy remained elusive. A second NTS collabora-
tive trial outcome, discussed in subsequent workshops, 
was a debate between “screen smart”, versus “screen 
big”. At the time, the “screen smart” strategy had been 
employed, for example, to study pesticides [12], pharma-
ceuticals [13] and surfactants [14] using relatively small 
lists (185, 980 and 394 entries, respectively), to support 

of information on chemicals that are expected to occur in the environment, along with the accompanying expert 
knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN‑SLE 
now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.

Results: The NORMAN‑SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors 
around the world, totalling over 100,000 unique substances. The substance classes include per‑ and polyfluoroalkyl 
substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the 
European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists 
from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the 
environment with various levels of provenance and structural information. Each list is available for separate down‑
load. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both 
the NORMAN‑SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual 
NORMAN‑SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https:// 
zenodo. org/ commu nities/ norman‑ sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 
citations (May 2022). NORMAN‑SLE content is progressively integrated into large open chemical databases such as 
PubChem (https:// pubch em. ncbi. nlm. nih. gov/) and the US EPA’s CompTox Chemicals Dashboard (https:// compt ox. 
epa. gov/ dashb oard/), enabling further access to these lists, along with the additional functionality and calculated 
properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN‑SLE, 
including a classification browser (https:// pubch em. ncbi. nlm. nih. gov/ class ifica tion/# hid= 101).

Conclusions: The NORMAN‑SLE offers a specialized service for hosting suspect screening lists of relevance for the 
environmental community in an open, FAIR manner that allows integration with other major chemical resources. 
These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift 
to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the 
NORMAN‑SLE website (https:// www. norman‑ netwo rk. com/ nds/ SLE/).

Keywords: Suspect screening, High resolution mass spectrometry, Non‑target screening, Open science, FAIR 
(Findable Accessible Interoperable Reusable) data, Data exchange, Cheminformatics, Exposomics, Environmental 
contaminants, Chemicals of emerging concern
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focussed research questions. In contrast, the “screen big” 
strategy used very large lists containing thousands of 
chemicals (e.g., lists of high production volume chemicals 
registered under the European Registration, Evaluation, 
Authorisation and Restriction of Chemicals (REACH) 
regulation (EC No 1272/2008)) to find more hits—with 
the accompanying risk of many more false positives (see 
e.g., [15, 16]). Naturally, the boundary between these two 
strategies blurred over time, as some “smart” suspect 
lists also became quite “big”. For instance, the STOFF-
IDENT (https:// water. for- ident. org/# !home) compilation 
of water-relevant contaminants such as pesticides, phar-
maceuticals and industrial chemicals [17] includes over 
10,500 substances. This list is “smart” with respect to the 
relevance to the water compartment, but with many pol-
lutant classes and a large proportion of REACH chemi-
cals, the overall number of chemicals is large enough to 
increase the probability of generating many false-positive 
results. In the extreme, “screen big” could be extended to 
candidates from even larger compound databases with 
millions of entries, which are commonly used in NTS 
approaches—with the lower success rates (i.e., more false 
positives) as mentioned above. Since suspect screening 
approaches typically start with only an exact mass of the 
expected adduct(s) of the suspects, there is a large bur-
den of proof to confirm that the “suspect hit” is actually 
present, as discussed elsewhere [2–4].

The exchange of and access to chemical information in 
an open (i.e., free to access, publicly available) manner 
[18] has not always been as easy as it appears today. A 
key breakthrough was achieved in 2004 with the launch 
of PubChem (https:// pubch em. ncbi. nlm. nih. gov/) [19], 
currently one of the largest open chemical knowledge 
bases with extensive information on over 111 million 
chemicals (July 2022). The ChemSpider collection was 
released a few years later (http:// www. chems pider. com/) 
[20] and now contains 114 million chemicals (July 2022). 
The United States Environmental Protection Agency 
(US EPA) released the CompTox Chemicals Dashboard 
(https:// compt ox. epa. gov/ dashb oard/) [21] (hereafter 
“CompTox”) in 2016 as a smaller collection, currently of 
906,511 chemicals (July 2022) related to environmen-
tal and toxicology questions. Likewise, in 2016 the term 
“FAIR” was coined, describing how to make research 
more Findable, Accessible, Interoperable and Reus-
able [22, 23]. Together, ensuring that data is both Open 
and FAIR is a powerful combination [24]. The European 
Union (EU) is also embracing Open and FAIR princi-
ples. The European Chemicals Agency (ECHA) [25] and 
the European Food and Safety Authority (EFSA) [26] are 
transitioning their information to be more Open and 
FAIR, while Joint Research Centre (JRC) has released the 
Information Portal for Chemical Monitoring (IPCHEM) 

for the exchange of monitoring data in Europe [27]. 
Recent initiatives such as the European Partnership for 
Chemicals Risk Assessment (PARC) [28, 29] and the 
Environmental Exposure Assessment Research Infra-
structure (EIRENE) [30] will strengthen this into the 
future.

In response to the NORMAN NTS collaborative trial 
outcomes, NORMAN initiated the NORMAN Suspect 
List Exchange (NORMAN-SLE, https:// www. norman- 
netwo rk. com/ nds/ SLE/) in 2015 as part of the NORMAN 
Database System (NDS, https:// www. norman- netwo rk. 
com/ nds/) [29, 31] to facilitate the open access exchange 
of various suspect lists within and beyond Europe. This 
FAIR, open access, whole community initiative is not 
limited to NORMAN members. The primary aim of 
the NORMAN-SLE is to provide a location where sus-
pect lists are publicly accessible, together with appro-
priate reference information, for interested parties to 
browse and select as desired (facilitating the “screen 
smart” approach). The NORMAN-SLE forms the basis 
for the NORMAN Substance Database (NORMAN Sus-
Dat, https:// www. norman- netwo rk. com/ nds/ susdat/), 
a merged and curated data table with additional param-
eters for use in NORMAN activities (to facilitate the 
“screen big” approach), which will be described in more 
detail in a separate article. The present article covers the 
creation and implementation of the NORMAN-SLE as an 
Open and FAIR data resource, along with its integration 
with major open chemistry resources (PubChem, Comp-
Tox) as described below in the methods section, followed 
by an overview of the current state, implications and out-
look in the results and discussion sections.

Methods
NORMAN Suspect List Exchange (NORMAN‑SLE) website
The principle behind the NORMAN-SLE is simple: facili-
tating the exchange of chemical information to support 
the suspect screening of primarily organic contaminants 
amenable to liquid or gas chromatography (LC or GC) 
coupled to mass spectrometry. The website itself (https:// 
www. norman- netwo rk. com/ nds/ SLE/) contains a simple 
overview of the background behind the NORMAN-SLE 
and a table containing the suspect lists themselves (with 
the fields “Number”, “Abbreviation”, “Description”, “Link 
to full list”, “Link to InChIKey list” and “References”), as 
shown in Fig. 1 and explained further below. Each list has 
a number (starting with S0 for SUSDAT, the merged col-
lection), increasing sequentially with every contribution, 
along with an abbreviation for easier integration, access, 
and recognition.

The idea behind the simplicity of this website is to 
enable public access to various suspect lists as close as 

https://water.for-ident.org/#!home
https://pubchem.ncbi.nlm.nih.gov/
http://www.chemspider.com/
https://comptox.epa.gov/dashboard/
https://www.norman-network.com/nds/SLE/
https://www.norman-network.com/nds/SLE/
https://www.norman-network.com/nds/
https://www.norman-network.com/nds/
https://www.norman-network.com/nds/susdat/
https://www.norman-network.com/nds/SLE/
https://www.norman-network.com/nds/SLE/
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possible to the lists used in original publications, but with 
a reasonable degree of standardization and, where pos-
sible, added value to enhance and FAIRify these lists for 
future use (see below). If major adjustments were made 
to a submitted list, the original list is provided along with 
modified versions, so that both sets of information are 
available.

Information content and preparation of suspect lists 
hosted on the NORMAN‑SLE
The minimum information available in most lists is a 
name and at least one additional identifier, although in 
most lists, far more information is available. At least one 
chemical name (plus other synonyms if available) should 
be included. The preferred formats for structural infor-
mation are the simplified molecular-input line-entry 
system (SMILES) [33] plus the International Chemi-
cal Identifier (InChI) in the form of standard InChI 
and InChIKey [34]. Common database identifiers pro-
vided typically include one (or more) of either Chemi-
cal Abstract Service (CAS) number(s) [35], EC number 
[36], PubChem Compound Identifier (CID) [19], Chem-
Spider identifier (CSID) [20] and/or the Distributed 
Structure-Searchable Toxicity (DSSTox) substance iden-
tifier (DTXSID) used in CompTox [21]. To support sus-
pect screening, the (neutral) monoisotopic masses and 
molecular formulae are included in many of the lists. This 
information, along with several other predicted values, is 
also included in the merged NORMAN SusDat. Several 
other fields may be present, depending on the context of 
the suspect list, and are included where available. More 

details on the chemical structure identifiers and recom-
mended chemical structural data templates are provided 
elsewhere [24, 37].

The suspect lists (commonly submitted via email to 
NORMAN contact points, see Fig.  2, top left) are pro-
cessed upon submission, with the subsequent processing 
steps highly dependent on both the type of submission 
and the size of the list. While the suspect list number 
is assigned sequentially, the abbreviation, name and 
description are assigned following pre-defined conven-
tions, and in discussion with authors. Where necessary, 
curation is performed on these lists to fill in missing 
values where at least a chemical identifier and/or struc-
tural information and/or (correct) name was provided. 
For some lists, the missing values are filled using auto-
mated workflows covering a variety of web services 
(depending on the list and contributor) from PubChem 
[19], ChemSpider [20] and CACTUS (https:// cactus. nci. 
nih. gov/), typically via RMassBank [38], RChemMass 
[39] and other related packages in the R programming 
language. Other lists are processed with batch services 
offered through PubChem [19, 40] and CompTox [21, 
41]. Additional chemical structure interconversions 
(e.g., SMILES to InChI) are performed with OpenBabel 
(http:// openb abel. org/) [42] or the Chemistry Develop-
ment Kit (CDK) (usually via R) [43] where necessary. 
Note that the curation performed on the individual sus-
pect lists is independent of the curation and merging to 
form the NORMAN SusDat collection (see Fig. 2, bottom 
left), which will be detailed in a separate publication. The 
processes evolve over time as new technical possibilities 

Fig. 1 Screenshot of the NORMAN Suspect List Exchange (https:// www. norman‑ netwo rk. com/ nds/ SLE/) [32]

https://cactus.nci.nih.gov/
https://cactus.nci.nih.gov/
http://openbabel.org/
https://www.norman-network.com/nds/SLE/
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arise (e.g., batch searching). The resulting suspect lists are 
generally provided as Excel (XLSX) and comma separated 
values (CSV) formats, as standardized as reasonably pos-
sible, on the website. The CSV format provides greater 
interoperability, including allowing import into various 
libraries, vendor and open software, as well as PubChem 
(described below). A separate InChIKey file is also pro-
vided, as this allows fast screening of suspects within the 
in silico fragmenter MetFrag [44] and other approaches. 
For some of the lists, additional files are provided, to dis-
seminate all the relevant details. Finally, references and 
additional information are given, to acknowledge con-
tributors, but also to provide users quick access to the 
rationale behind each individual suspect list. Further 
details on the NORMAN-SLE contents, including refer-
ences, are given in the Results section.

Several suspect lists contain partial, incomplete, or 
even no structural information, such as the per- and 
polyfluoroalkyl substances (PFAS) lists S9 PFASTRIER 
[45] (e.g., elemental compositions retrieved from patents 
where no structural or isomer information was available) 
and S46 PFASNTREV19 [46, 47] (a compilation of PFAS 
identification efforts in non-target screening studies), as 

well as the surfactant isomer list S18 TSCASURF [48]. 
Nevertheless, these lists still provide vital information 
for identification by mass and/or molecular formula (see 
e.g., [14, 49], where whole surfactant classes can be iden-
tified via the general formula of a homologous series of 
several structural isomers). For those lists with partial 
information, missing values were filled in, where possible, 
as described above, and were saved in separate files or 
as multiple sheets in one file. Associated InChIKey lists 
were only generated for known structures. Dealing with 
partially characterized molecular features or chemical 
substances of Unknown or Variable Composition, Com-
plex Reaction Products or Biological Materials (UVCB 
substances, UVCBs) is a subject of future collaborations 
beyond the scope of the current article (see e.g., [50, 51]), 
as discussed further below.

NORMAN‑SLE on Zenodo
The development of the Zenodo repository [52] enabled 
public archiving, versioning and generation of a Digi-
tal Object Identifier (DOI) for each NORMAN-SLE list. 
Thus, since 2019, the NORMAN-SLE content has been 
uploaded to and archived on the Zenodo repository [52], 

Fig. 2 Schematic showing the relationships between submitted suspect lists, the NORMAN‑SLE and downstream resources. Top (orange shading): 
suspect lists submitted in various formats are curated, then added to the NORMAN‑SLE website (centre) and archived on the NORMAN‑SLE Zenodo 
community (top right), yielding a DOI and use statistics. Bottom left (green shading): the NORMAN‑SLE serves as an information source for NORMAN 
SusDat and the NORMAN Database System (NDS). Bottom middle (pink shading): NORMAN‑SLE lists are integrated in CompTox manually. Bottom 
right (blue shading): NORMAN‑SLE content is harvested from Zenodo via mapping files and integrated into PubChem in an automated workflow
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gathered under the NORMAN-SLE community (https:// 
zenodo. org/ commu nities/ norman- sle/) [53]. Each indi-
vidual NORMAN-SLE collection has its own Zenodo 
record and thus a dataset DOI, allowing users to cite the 
individual lists directly, including specific versions, or all 
versions. Updates to lists can thus be tracked under the 
Zenodo version control system, with the master DOI 
always redirecting to the latest version. The lists are 
tracked under a versioning system following the pattern 
NORMAN-SLE-SXX-0.Y.Z, where SXX refers to the 
list number (as on the NORMAN-SLE website and as 
described below) and the 0.Y.Z pattern records whether 
it was a major update (Y is increased incrementally by 1) 
or minor update (Z is increased incrementally by 1). The 
leading “0” is currently a buffer. Major updates consti-
tute new entries (e.g., new chemicals, rows, information, 
updates) to the lists, while minor updates are corrections 
or adjustments to the current contents without adding 
major new content (e.g., correcting names, identifiers, 
typographical errors). The presence on Zenodo has ena-
bled better citation, the tracking of use statistics at an 
individual list level and additional possibilities for the 
integration with external resources such as PubChem, 
as shown in Fig.  2 (right) and discussed further below. 
Figure  3 shows the presence of the NORMAN-SLE on 
Zenodo, including versioning in the inset.

NORMAN‑SLE and CompTox Chemicals Dashboard 
integration
Since CompTox [21] is a highly relevant resource for 
environmental and toxicological information, integration 
of NORMAN-SLE content is of interest to both parties 
and is achieved via the “Chemical Lists” functionality 
(https:// compt ox. epa. gov/ dashb oard/ chemi cal- lists/). 
The integration started in 2017 and is performed through 
the upload of the DTXSIDs associated with the indi-
vidual NORMAN-SLE lists to the DSSTox database [55] 
that underlies CompTox. Most lists have the NORMAN 
keyword associated with it, such that they are accessible 
through the URL https:// compt ox. epa. gov/ dashb oard/ 
chemi cal- lists? search= NORMAN, or through a direct 
URL composed of the list code (e.g., https:// compt ox. 
epa. gov/ dashb oard/ chemi cal- lists/ BISPH ENOLS for the 
S20 BISPHENOLS list). Several lists on the NORMAN-
SLE were produced in a collaborative curation effort (e.g., 
S24 HUMANNEUROTOX [56], S37 LITMINEDNEURO 
[57] and S43 NEUROTOXINS [58], as part of [59]), or 
were curated and registered by the DSSTox curation 
team before uploading to the SLE (e.g., S25 OECDPFAS 
[60–62]). Some other lists on the NORMAN-SLE were 
sourced directly from CompTox as they contained entries 
highly relevant for the NORMAN Database System (e.g., 
S45 SYNTHCANNAB [63] and S58 PSYCHOCANNAB 

Fig. 3 The NORMAN Suspect List Exchange Zenodo community (https:// zenodo. org/ commu nities/ norman‑ sle) with inset showing the versioning 
history of S36 UBAPMT (https:// doi. org/ 10. 5281/ zenodo. 26532 12) [53, 54]

https://zenodo.org/communities/norman-sle/
https://zenodo.org/communities/norman-sle/
https://comptox.epa.gov/dashboard/chemical-lists/
https://comptox.epa.gov/dashboard/chemical-lists?search=NORMAN
https://comptox.epa.gov/dashboard/chemical-lists?search=NORMAN
https://comptox.epa.gov/dashboard/chemical-lists/BISPHENOLS
https://comptox.epa.gov/dashboard/chemical-lists/BISPHENOLS
https://zenodo.org/communities/norman-sle
https://doi.org/10.5281/zenodo.2653212
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[64]). For recent lists, generally the CompTox batch 
search (https:// compt ox. epa. gov/ dashb oard/ batch- 
search) [65] is used to retrieve DTXSIDs on the basis of 
the user-provided information, which are then provided 
directly to CompTox along with the list code, name and 
description for upload. The presence of compounds in 
NORMAN-SLE lists appear on the individual chemi-
cal records in CompTox (see pink entries in the inset in 
Fig.  2) and can also be identified by prefiltering in the 
CompTox batch search interface and including flags in 
the export files.

Due to the infrequent release of updates to CompTox, 
it may be many weeks or months before new NORMAN-
SLE lists are available publicly on CompTox. Currently, 
88 of the 99 NORMAN-SLE lists are on CompTox (see 
Additional file 1), with 74 listed under the “NORMAN” 
URL above. Since not all substances in the NORMAN-
SLE are currently present in CompTox, the mapping of 
NORMAN-SLE lists in CompTox is often incomplete, 
i.e., the lists on CompTox contain only entries for which 
DTXSIDs currently exist (further details are provided in 
Additional file 1).

NORMAN‑SLE and PubChem integration
As one of the largest open chemical databases with mil-
lions of monthly users, integration of NORMAN-SLE 
content in PubChem has great potential to increase the 
visibility of this community effort. The NORMAN-SLE 
integration with PubChem [19] (https:// pubch em. ncbi. 
nlm. nih. gov/) commenced in 2019. The first substance 
deposition was processed on November 22, 2019. The 
deposition file is compiled from all lists by the PubChem 
team, via a mapping file hosted on the Environmental 
Cheminformatics (ECI) group (University of Luxem-
bourg) GitLab pages [66]. This mapping file contains 
a link to the latest version of each suspect list (CSV 
file) on Zenodo, the list details and version, the dataset 
DOI, extra DOIs (to include related publications), map-
pings to the columns containing the chemical identifiers 
(SMILES, InChIKey, InChI, Synonym), the NORMAN-
SLE URL and a comment field. The compiled deposi-
tion file is mapped to PubChem Substance Identifiers 
(SIDs) and PubChem Compound Identifiers (CIDs) via 
the PubChem deposition system. While SIDs are avail-
able for all substances deposited to PubChem (including 
those with undefined structures), CIDs are only available 
for all unique chemical structures (i.e., defined chemical 
structures) extracted from substance depositions via the 
PubChem standardization process [67]. As a result, the 
number of compounds (CIDs) will generally be less than 
the number of substances (SIDs). Any SMILES errors 
found during deposition are debugged in collaboration 
with the PubChem team and any dataset-specific causes 

are fixed in the corresponding NORMAN-SLE datasets 
by releasing new minor versions on Zenodo (see e.g., 
descriptions in [68, 69]). Synonyms are currently pro-
vided as a small, manually curated file containing the 
columns CID, InChIKey, Synonym, Reference DOI and 
Dataset information (114 entries on 30 April 2022, see 
[70]) to specifically add missing synonyms to PubChem 
[70]. These are primarily newly deposited structures 
(i.e., structures not yet in PubChem) associated with 
S74 REFTPS [71] and S96 ECIPFAS [72]. The PubChem/
NORMAN-SLE deposition is re-run once updates are 
available and takes minutes to run. The updated data are 
live on the public PubChem website within hours to days 
(newly added structures can take longer to index fully). 
The latest deposition and number of live substances (i.e., 
the number of substances currently available on the pub-
lic website) can be retrieved from the NORMAN-SLE 
data source page in PubChem [73].

The contents of individual NORMAN-SLE lists are avail-
able interactively in PubChem via the NORMAN Suspect 
List Exchange Tree (https:// pubch em. ncbi. nlm. nih. gov/ 
class ifica tion/# hid= 101, hereafter “PubChem NORMAN-
SLE Tree”) on the PubChem Classification Browser [74]. 
This is compiled by PubChem from a second mapping file, 
also hosted on the ECI GitLab pages [75]. For each data-
set, this mapping file contains a link to the latest InChIKey 
file on Zenodo, the list title as it should appear in the tree 
(e.g., “S00 | SUSDAT | Merged NORMAN Sus-
pect List: SusDat”) and a tool tip, i.e., further 
details about the list that displays when users click the “?” 
icon on the Classification Browser (see figure in Results 
section). The mapping file also contains additional fields 
defining the content of interest (keywords, annotations) 
and other information for internal housekeeping. All lists 
(except S18 TSCASURF, for which no InChIKeys exist) 
are listed in numerical order in the PubChem NORMAN-
SLE Tree. In addition, certain lists with detailed classifica-
tion content appear again at the top of the browser. These 
are mapped via structural information in the CSVs (not 
the InChIKey files) to profit from the detailed additional 
information available in these lists. The PubChem Clas-
sification Browser can also be accessed programmatically 
(i.e., in an automated manner), with documentation avail-
able on PubChem [67] and the ECI GitLab pages [76]. 
The PubChem NORMAN-SLE Tree also enables users to 
download individual lists (or even various combinations 
thereof via advanced queries) in the variety of formats 
offered by PubChem, including the structure data format 
(SDF) not currently offered on the NORMAN-SLE website, 
see documentation available in e.g., [77].

PubChem has also integrated several categories of anno-
tation content, i.e., detailed information about individual 
chemicals, into the compound records in PubChem. As of 

https://comptox.epa.gov/dashboard/batch-search
https://comptox.epa.gov/dashboard/batch-search
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101
https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101
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30 April 2022, a total of 17 annotation categories, which 
equate to headers in the Table of Contents entries in 
PubChem [78], were integrated. Many relate to the chemi-
cal role or use (e.g., the Anatomical Therapeutic Chemical 
(ATC) Code for pharmaceuticals, Agrochemical Category, 
Chemical Classes, Use Classifications and Uses) and trans-
formation information (e.g., included in the Transforma-
tions, Metabolism/Metabolites, Drug Transformations 
and Agrochemical Transformations headers). Others relate 
to chemical information (e.g., molecular formula) and 
measurement data, such as nuclear magnetic resonance 
(NMR—13C, 19F, 1H, and 31P), tandem MS (MS/MS) data 
and collision cross section (CCS) data from ion mobility 
experiments. Finally, taxonomy information (functionality 
recently added to PubChem [79] for organisms) has been 
included for some lists. All files necessary for the integra-
tion of the annotation content within PubChem are present 
in the Zenodo repository for the respective list, supported 
by additional mapping or annotation files either added in 
Zenodo, or hosted on the ECI GitLab pages in the “annota-
tions” subfolder [80] where necessary. The latest overview 
and the entire content integrated in PubChem (in JSON, 
XML and ASNT formats, accessible programmatically or 
for download) is available from the NORMAN-SLE data 
source page in PubChem [73].

Results

Overview of NORMAN‑SLE
The NORMAN-SLE includes 99 contributions (starting 
at S0 SUSDAT, the compilation of all NORMAN-SLE 
lists, to S98 TIRECHEM) from over 70 contributors as of 
May 2022, summarized in Fig. 4 and Table 1. Full details 
on all lists are available in Additional file 1 [81], including 
list details and chemical numbers across the resources in 
CSV format, and Additional file 2 [82], a May 2022 copy 
of the NORMAN-SLE website contents.

Figure  4 and Table  1 show the number of entries in 
each NORMAN-SLE list as present on the NORMAN-
SLE website and in the latest versions on the NORMAN-
SLE Zenodo collection as of May 2022. The number of 
InChIKeys associated with these lists (as of May 2022) 
is available in Additional file 1 [81]. Additional file 1 also 
includes the number of entries included in PubChem 
(obtained via the PubChem NORMAN-SLE Tree [74]) 
and CompTox (via both the CompTox Chemical Lists 
[232] website as well as via the PubChem EPA DSSTox 
Tree [233], since the latter can be automated). These sta-
tistics were compiled on 4 May 2022. The corresponding 
files and code are available at the ECI NORMAN-SLE 
GitLab repository [234] in the “stats” subfolder. Note that 
the addition of new content to the NORMAN-SLE was 
put on hold during compilation of this manuscript (May 

and June 2022), to ensure that the results included here 
are internally consistent. All statistics presented here 
reflect the data in this state. Updates resumed 28 June 
2022 and will be described in later efforts (see “Future 
updates” below).

Summary statistics of the NORMAN‑SLE
A selection of summary statistics and facts for the NOR-
MAN-SLE is given in Table 2. Both the list and citation 
information were summarized on 4 May 2022 and the 
NORMAN-SLE PubChem numbers on 12 May 2022. 
The (cumulative) numbers of unique views and down-
loads collected from the NORMAN-SLE Zenodo com-
munity on 28 April 2022 are summarized in Table  3, 
along with the citation numbers for all lists and for the 
5 most popular lists according to unique views. The 
“total unique compounds” number indicates how many 
entries have a defined chemical structure in PubChem, 
i.e., a PubChem CID. The “total live substances” num-
ber indicates how many entries are deposited, i.e., with 
a PubChem SID. The total number of unique compounds 
in PubChem is currently larger than S0 SUSDAT due to 
the different timing associated with the release cycle of 
NORMAN SusDat (the basis for S0 SUSDAT), as well 
as differences in the mappings of structures to unique 
identifiers. Future efforts will aim to close this time gap 
between NORMAN-SLE and NORMAN SusDat (see 
“Future updates” below). The data files supporting these 
statistics, including a breakdown of the DOIs of the cit-
ing articles, are archived on the ECI NORMAN-SLE Git-
Lab pages [234] (“stats” subfolder) and are available as 
Additional file  3 [235] (views, downloads, citations per 
list) and Additional file  4 [236] (more detailed citation 
breakdown).

In total, 24 of the SLE lists have citations listed in 
Zenodo, with 40 citations from 19 articles. A full break-
down is given in Additional file 4 [236]. Of these 19 arti-
cles, 12 can be considered “internal”, i.e., articles written 
by authors involved with the NORMAN-SLE, including 
5 articles describing SLE datasets [59, 118, 149, 154, 174] 
and 7 others citing SLE lists [24, 142, 237–241], while 
7 articles are external [242–248]. Of the 24 lists cited, 
6 lists are cited by external authors: S0 SUSDAT, S13 
EUCOSMETICS, S14 KEMIPFAS, S25 OECDPFAS, S46 
NTPFASREV19 and S75 CyanoMetDB.

NORMAN‑SLE PubChem integration
As described above, the NORMAN-SLE content has been 
integrated into PubChem in a variety of ways. The basis 
of all further integration is the substance depositions, 
formed from the compilation of all lists as described in 
the Methods section. As of 12 May 2022, the substance 
deposition in PubChem included 117,071 substances 
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Fig. 4 Starburst plots of the 99 suspect lists forming the NORMAN‑SLE contents. Lists with: (A) > 8000 entries; (B) 1700–8000 entries; (C) 800–1700 
entries; (D) 300–800 entries; (E) 95–300 entries and (F) < 95 entries (ranges chosen to optimize plotting). The list codes, numbers of chemical entries 
and references are summarized in Table 1 according to the same groups, with full details in Additional file 1
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(i.e., with PubChem SIDs), mapping to 115,248 unique 
PubChem CIDs according to the compiled CIDs at the 
top of the PubChem NORMAN-SLE Tree [74] (see also 
Table  2). All lists except S18 TSCASURF (for which no 
InChIKeys are available) are included in the numerically 
ordered set of lists on the PubChem NORMAN-SLE 
Tree. As of 30 April 2022, additional detailed classifica-
tion breakdowns were available for S13 EUCOSMET-
ICS [108], S25 OECDPFAS [60], S36 UBAPMT [54], 
S47 ECHAPLASTICS [170], S50 CCSCOMPEND [121], 
S60 SWISSPEST19 [129], S61 UJICCSLIB [150], S66 
EAWAGTPS [163], S68 HSDBTPS [205], S69 LUXPEST 
[175], S72 NTUPHTW [147], S75 CYANOMETDB 

[119], S79 UACCSCEC [187] and S80 PFASGLUEGE 
[124]. Detailed classification content for S77 FCCDB [89] 
is already drafted on the test site. A screenshot of the top 
portion of the PubChem NORMAN-SLE Tree is shown 
on the left in Fig. 5. The collision cross section (CCS) con-
tent (S50 CCSCOMPEND [121], S61 UJICCSLIB [150] 
and S79 UACCSCEC [187]) has also been merged and 
extended in the “Aggregated CCS Classification” tree on 
PubChem to combine this with the data from CCSbase 
[249, 250] and to allow browsing by adduct categories 
across all datasets [251]. All datasets mentioned here can 
be accessed via hyperlinks available at the NORMAN-
SLE Data Source page on PubChem [73]. Documentation 

Table 1 Summary of the NORMAN‑SLE datasets, split by the groups shown in Fig. 4, with suspect list number (S), code, number of 
entries (lines in the file, in italics) and the accompanying references

Full details given in Additional file 1 and Additional file 2 [81, 82]

Group List number, Code, Entries (total lines) and References

(A)
 > 8000

S0 SUSDAT 109,631 [69, 83]; S71 CECSCREEN 70,397 [84, 85]; S32 REACH2017 68,679 [86]; S17 KEMIMARKET 50,308 [68]; S77 FCCDB 12,285 
[87–89]; S2 STOFFIDENT 11,289 [17, 90]; S19 MZCLOUD 8742 [91]; S55 ZINC15PHARMA 8646 [92–94]

(B)
1700–8000

S33 SOLUTIONSMLOS 6463 [95–97]; S27 KWRSJERPS2 5702 [98, 99]; S89 PRORISKPFAS 4777 [100, 101]; S25 OECDPFAS 4725 [60–62]; S38 
SOLNSLMCTPS 4465 [96, 97, 102]; S49 CPPDBLISTB 3353 [103–105]; S13 EUCOSMETICS 3333 [106–108]; S70 EISUSGCEIMS 3266 [109]; S73 
METXBIODB 3148 [110, 111]; S14 KEMIPFAS 2602 [112, 113]; S21 UATHTARGETS 2466 [114, 115]; S1 MASSBANK 2305 [38, 116, 117]; S75 
CYANOMETDB 2124 [118, 119]; S35 INDOORCT16 2056 [6, 120]; S50 CCSCOMPEND 1983 [121–123]; S80 PFASGLUEGE 1926 [124, 125]; S22 
EPACONS 1705 [126, 127]

(C)
800–1700

S60 SWISSPEST19 1664 [128, 129]; S3 NORMANCT15 1662 [4, 130]; S29 PHYTOTOXINS 1586 [131, 132]; S87 CHLORINETPS 1470 [133, 134]; 
S31 WRTMSD 1429 [135, 136]; S84 UFZHSFPMT 1310 [137–139]; S16 FRENCHLIST 1256 [140]; S37 LITMINEDNEURO 1243 [57, 59]; S53 
UFZWANATARG 1235 [141]; S82 EAWAGPMT 1162 [142, 143]; S23 EIUBASURF 1154 [144]; S39 KEMIWWSUS 1123 [145]; S72 NTUPHTW 1068 
[146, 147]; S46 PFASNTREV19 1030 [46, 47]; S10 SWISSPHARMA 1020 [13, 148]; S18 TSCASURF 985 [48]; S61 UJICCSLIB 970 [149, 150]; S15 
NORMANPRI 967 [151]; S48 CPPDBLISTA 902 [103, 105, 152]; S51 WRIGCHRMS 892 [153]; S76 LUXPHARMA 816 [154, 155]

(D)
300–800

S42 HDXNOEX 765 [156, 157]; S9 PFASTRIER 746 [45]; S6 ITNANTIBIOTIC 676 [158, 159]; S4 UJIBADE 544 [160, 161]; S58 PSYCHOCANNAB 531 
[64]; S43 NEUROTOXINS 511 [58, 59]; S66 EAWAGTPS 486 [162, 163]; S34 EXPOSOMEXPL 440 [164–166]; S94 FLUOROPEST 423 [167, 168]; S47 
ECHAPLASTICS 418 [169, 170]; S7 EAWAGSURF 410 [14, 171]; S78 SLUPESTTPS 400 [172, 173]; S69 LUXPEST 386 [174, 175]; S36 UBAPMT 341 
[54, 176, 177]; S8 ATHENSSUS 340 [49, 178]; S92 FLUOROPHARMA 340 [179, 180]; S65 UATHTARGETSGC 334 [181, 182]; S62 NORMANEWS2 
321 [183, 184]; S85 MICROCYSTINS 321 [118, 185]; S79 UACCSCEC 311 [186, 187]

(E)
95–300

S57 GREEKPHARMA 263 [188]; S96 ECIPFAS 258 [72]; S11 SWISSPEST 218 [12, 189]; S54 EFSAPRI 212 [190, 191]; S30 PHENANTIOX 209 [192]; 
S24 HUMANNEUROTOX 190 [56, 59]; S56 UOATARGPHARMA 185 [193–195]; S28 EUBIOCIDES 160 [196]; S5 KWRSJERPS 159 [99, 197]; S12 
NORMANEWS 156 [198, 199]; S26 MYCOTOXINS 149 [200]; S74 REFTPS 146 [71]; S64 NATOXAQ 130 [201, 202]; S91 CECTOYS 126 [203, 204]; 
S68 HSDBTPS 101 [174, 205]; S86 TATTOOINK 98 [206–208]; S41 CCL4 96 [209, 210]; S83 CCL5 96 [211, 212]; S52 THSMOKE 95 [213]

(F)
 < 95

S95 PFASANEXCH 94 [214, 215]; S63 UBADWGW 84 [176, 216]; S59 NPINSECT 83 [217]; S67 TBUTYLPHENOLS 77 [218]; S97 UBABPAALT 71 
[219, 220]; S88 UBABIOCIDES 62 [221–223]; S93 CECMOUTHING 60 [203, 204]; S40 ALGALTOX 54 [224]; S20 BISPHENOLS 52 [225, 226]; S81 
THSTPS 52 [227]; S45 SYNTHCANNAB 39 [63]; S90 ZEROPMBOX1 38 [228, 229]; S44 STATINS 18 [230]; S98 TIRECHEM 16 [231]

Table 2 Selected overall summary statistics for the NORMAN‑SLE, compiled in May 2022

Further details are given in the “stats” subfolder of the ECI NORMAN-SLE GitLab repository [234]. Total unique compounds = CID count; total live substances = SID 
count, # entries = number of entries (i.e., rows) in the SLE lists

Category Number Comment

Total number of lists 99 S0 to S98

Total unique compounds 115,248 From PubChem NORMAN‑SLE Tree [74]

Total live substances 117,071 From PubChem NORMAN‑SLE Data Source Page [73]

Total live annotations 21,114 From PubChem NORMAN‑SLE Data Source Page [73]

Largest list (# entries) 109,631 S0 SUSDAT

Smallest list (# entries) 16 S98 TIRECHEM

Total list citations 40 From NORMAN‑SLE Zenodo Community [53]
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on how to access the data integrated within PubChem is 
provided on the ECI GitLab pages, including how to find 
MS [252] and CCS [253] data for NORMAN-SLE lists via 
PubChem. This also includes code to retrieve the CCS 
data [254], along with a compiled archive of all CCS val-
ues in PubChem (7 June 2022) on Zenodo [255].

In addition to the deposition and classification, exten-
sive annotation content (i.e., expert knowledge) provided 
within the NORMAN-SLE lists has been integrated 
within PubChem. Various pieces of information from 

NORMAN-SLE lists now appear on the individual com-
pound records for 21,114 compounds (12 May 2022), 
with several examples shown as insets in Fig. 5. While the 
presence of this annotation information in text form in 
individual PubChem records is useful for readers of the 
individual chemical records, it also helps in search engine 
optimization (SEO), i.e., the discovery of this information 
in generalized search engines, beyond the original data-
base. Some categories (PubChem headings indicated in 
italics) relate to the chemical role, e.g., the “ATC Code” 

Table 3 Unique views, downloads and citations for all NORMAN‑SLE lists and the Top 5 lists (by unique views), according to the 
NORMAN‑SLE Zenodo Community [53]

Statistics compiled on 28 April (views/downloads) and 5 May (citations) 2022. The corresponding raw data are given in Additional file 3: Table S3 [235] and on the ECI 
NORMAN-SLE GitLab pages [234]

List Code Unique views Unique downloads Citations

Top 5 Lists (sorted by unique views)

 S13 EUCOSMETICS [108]: Cosmetics 10,429 9088 2

 S60 SWISSPEST19 [129]: Pesticides 2440 2316 3

 S72 NTUPHTW [147]: Pharmaceuticals 2278 2083 0

 S73 METXBIODB [110]: BioTransformer data 2043 503 2

 S0 SUSDAT [69]: Merged database 1625 1858 6

Total values

 All Totals over all lists 42,358 53,651 40

Fig. 5 A collage of NORMAN‑SLE content in PubChem. Left/back: the PubChem NORMAN‑SLE Tree, with entries containing detailed classifications 
at the top, indicated by the blue arrows. Insets: selected annotation content (Use Classification, Transformations, Taxonomy and Collision Cross 
Section), linked to the corresponding source list via the green boxes and arrows. Screenshots taken 30 May 2022 (taxonomy on 16 June 2022)
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for pharmaceuticals (from S66 EAWAGTPS [163] and 
S76 LUXPHARMA [155]), “Agrochemical Category” 
(S66 EAWAGTPS [163] and S69 LUXPEST [175]), or 
“Chemical Classes” (S75 CyanoMetDB [119]). Informa-
tion in the “Use Classifications” and “Uses” categories 
come from S13 EUCOSMETICS [108], S25 OECDPFAS 
[60], S47 ECHAPLASTICS [170], S60 SWISSPEST19 
[129], S66 EAWAGTPS [163], S69 LUXPEST [175], S72 
NTUPHTW [147], S79 UACCSCEC [187] and S80 PFAS-
GLUEGE [124]. The composite “Molecular Formula” 
representation in S80 PFASGLUEGE [124] is also inte-
grated. Taxonomy information (for organisms) has been 
included under the “Taxonomy” heading for compounds 
present in S75 CyanoMetDB [118, 119] and S29 PHYTO-
TOXINS [132] from the Toxic Plants-Phytotoxins data-
base [131], and also appears on the individual taxa pages.

Transformations for 5135 CIDs have been added from 
the datasets S60 SWISSPEST19 [129], S66 EAWAGTPS 
[163], S68 HSDBTPS [205], S73 METXBIODB [110], S74 
REFTPS [71], S78 SLUPESTTPS [173] and S79 UAC-
CSCEC [187], as described in some of the articles men-
tioned above [24, 174, 241]. As a part of this, SEO text 
snippets describing these relationships have been added 
to the following headings: Metabolism/Metabolites 
(S73 METXBIODB [110] and S82 THSTPS [227]), Drug 
Transformations (S66 EAWAGTPS [163]) and Agro-
chemical Transformations (S60 SWISSPEST19 [129], 
S66 EAWAGTPS [163] and S78 SLUPESTTPS [173]). An 
example Transformations entry is provided in the middle 
right inset in Fig. 5. The Transformations data are com-
piled and archived on GitLab [80] and Zenodo [256], and 
is integrated in patRoon 2.0 [257], an open source soft-
ware for mass spectrometry based non-target analysis 
that includes suspect and transformation product screen-
ing workflows.

Finally, a significant amount of experimental data has 
also been included in PubChem from NORMAN-SLE 
contributors. MS/MS and NMR data have been included 
from several transformation products (TPs) and/or par-
ent compounds of contaminants of emerging concern, 
including: 13C NMR, 19F NMR, 1H NMR, 31P NMR, MS/
MS (all from S74 REFTPS [71] containing MS/MS data 
extracted from 4 articles [258–262] and NMR data from 
1 article [258]). Many of these CIDs were not available 
in PubChem previously. Measured CCS values (often 
for multiple adducts) associated with 1579 CIDs are 
included in PubChem, from the datasets S50 CCSCOM-
PEND [121], S61 UJICCSLIB [150] and S79 UACCSCEC 
[187] (see also inset at the bottom left in Fig. 5). As men-
tioned above, this data can be retrieved from PubChem, 
with documentation provided on the ECI GitLab pages 
[252–254], along with an archive of the CCS data on 
Zenodo [255].

Discussion
NORMAN‑SLE coverage
The NORMAN-SLE (https:// www. norman- netwo rk. 
com/ nds/ SLE/) provides users with simple access to 
suspect lists. These lists are then integrated into the 
merged NORMAN SusDat collection (https:// www. nor-
man- netwo rk. com/ nds/ susdat) in the so-called “MS-
ready” [263] form (ready for mass spectral screening, i.e., 
desalted, neutralized, etc.) with a searchable summary 
table containing NORMAN-relevant additional proper-
ties such as fragmentation information, retention time 
indices [238] and predicted toxicity values [264]. Over 
the seven years since the launch of the NORMAN-SLE, 
the website has grown from hosting a handful of lists to 
now hosting 99 formal referenced collections, amount-
ing to information on 117,071 substances and 115,248 
unique compounds (see Table  2). While these total 
numbers represent only 0.1% of PubChem contents, it 
is approximately 12% the size of CompTox, i.e., a signifi-
cant portion of openly available data on environmentally 
relevant chemicals. Approximately 43,300 CIDs asso-
ciated with the NORMAN-SLE lists are not yet avail-
able in CompTox lists (calculated by overlapping the 
PubChem NORMAN-SLE and US EPA DSSTox trees 
on 31 May 2022; documented here [265]). A large pro-
portion of these CIDs missing in CompTox come from 
the European market lists S32 REACH2017 [86] from 
the REACH regulation and S17 KEMIMARKET from 
the Swedish Chemicals Agency (KEMI) [68], as well as 
from S71 CECSCREEN [85]. It is important to note the 
discrepancy between the NORMAN-SLE and CompTox 
versions of NORMAN-SLE lists, especially if the Euro-
pean-relevant chemicals are the focus of suspect screen-
ing efforts. This discrepancy results, in part, from the fact 
that it has been challenging to verify the identities of a 
large number of the REACH chemicals; many of these 
are also missing from the PubChemLite collection due 
to a lack of additional annotation content [241]. Of the 
115,248 CIDs integrated in PubChem, 6275 CIDs come 
exclusively from the NORMAN-SLE (31 May 2022). 
This highlights that several NORMAN-SLE lists provide 
valuable data that is not otherwise available in the open 
domain, including, e.g., mycotoxins that are not commer-
cially available, but have been isolated via fungal fermen-
tation and purification (S26 MYCOTOXINS [200]), as 
well as newly published PFAS and TPs added via the S46 
PFASNTREV19 [46], S74 REFTPS [71] and S96 ECIPFAS 
[72] lists (among others).

An overview of the number of regulatory lists and 
major topics is given in Table 4. Key topics include phar-
maceuticals, toxins, pesticides, PFAS, TPs, plastics, pri-
ority lists, surfactants, and suspect lists for water, with 

https://www.norman-network.com/nds/SLE/
https://www.norman-network.com/nds/SLE/
https://www.norman-network.com/nds/susdat
https://www.norman-network.com/nds/susdat
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16 lists coming from European regulatory authorities. 
Future topics are discussed below.

Recognition, role and use of the NORMAN‑SLE
The collection of download and view statistics on 
Zenodo, along with citation tracking, has helped track 
the impact of the NORMAN-SLE on the community, 
as shown in Tables  2 and 3. Since the Zenodo integra-
tion only commenced in 2019, these statistics only cover 
a fraction of the real-world use of the NORMAN-SLE. 
Several efforts known to the authors that build on NOR-
MAN-SLE information are not captured within these sta-
tistics, including for instance CECSCREEN [84], which 
retrieved much of the NORMAN-SLE data that was inte-
grated into CECSCREEN via CompTox. While a PubMed 
query on the NORMAN-SLE and the sub-collections 
was attempted to discover more citing articles, this did 
not return sufficiently reliable results for further inter-
pretation (various text queries generated large numbers 
of false positives without finding true positives); it seems 
that environmental literature is not sufficiently covered in 
PubMed. Guidance is now provided on the NORMAN-
SLE website to help users correctly cite the works; it is 
hoped that this publication will also help to raise aware-
ness of the resource for the wider scientific community—
and will highlight the necessity to cite contributions, so 
that the level of community adoption becomes more vis-
ible over time.

The unique views, downloads, and citations available 
on Zenodo revealed some surprising results. While in 
NORMAN much focus was given to pesticides, phar-
maceuticals, REACH registered chemicals and TP lists 
due to popular demand, the most popular list by far (see 
Table 3) proved to be S13 EUCOSMETICS [108], a col-
lection of chemicals employed in cosmetics from EU 
regulations [106, 107]. The second most viewed list was 

a Swiss pesticide and metabolite list, S60 SWISSPEST19 
[129], a quite recent collection by Kiefer et al. [128] from 
Eawag, which was expected to gain significant attention. 
This was an updated version of S11 SWISSPEST [189] 
from Moschet et al. [12]. While the NORMAN-SLE has 
several pharmaceuticals lists, the third most viewed list—
a pharmaceuticals list, S72 NTUPHTW—was in fact a 
2021 contribution from the National Taiwan University 
(Chen et al. [146]), which was received following a peer-
review recommendation for submission to the NOR-
MAN-SLE during manuscript revisions. This was the 
first such external contribution and marks a milestone 
in the NORMAN-SLE development. While S0 SUSDAT 
only appeared in 5th place according to views/down-
loads, these numbers are only a small fraction of the real 
statistics, since NORMAN SusDat is also available on a 
dedicated interactive website. This is also reflected in the 
relatively high citation count for SusDat compared with 
other lists. The NORMAN SusDat website (https:// www. 
norman- netwo rk. com/ nds/ susdat/) was visited 120,221 
times (20,258 times counting unique IP addresses per 
day) between 27 Feb. 2020 and 13 July 2022, compared 
with 26,318 visits to the NORMAN-SLE website (https:// 
www. norman- netwo rk. com/ nds/ SLE/). The original 
versions of two highly popular lists, the Food Contact 
Chemicals database (FCCdb) and the database of Chemi-
cals associated with Plastic Packaging (CPPdb) are also 
available on Zenodo. These have much higher views and 
(for FCCdb only) download statistics associated with 
their original depositions compared with the NORMAN-
SLE version (which directs viewers back to the original 
resource with a request to cite the original dataset). The 
numbers (10 July 2022) are (unique views/downloads): 
CPPdb [103] (2,082/659), S48/S49 CPPDBLISTA/B [104, 
152] (594/1041), FCCdb [88] (8,612/3,703), S77 FCCDB 
[89] (410/398). Neither of these original depositions have 

Table 4 NORMAN‑SLE lists (given by suspect list “S” number only for readability) associated with various topics and sources

PMT: persistent, mobile, toxic substances. Nat. products: natural products. Other abbreviations: see abbreviation listing

Topic Total Lists Notes

Regulatory 16 S14, S17, S20, S23, S28, S30, S32, S36, S39, S47, S54, S63, S67, S86, S88, S97 Includes data from ECHA, EFSA, KEMI, REACH, UBA

Pharmaceuticals 11 S6, S10, S44, S45, S55, S56, S57, S58, S72, S76, S92 Excludes personal care products (S13)

Toxins 11 S24^, S26*, S29*, S37^, S40*, S43^, S52, S58, S64*, S75*, S85* Includes *natural toxins, ^neurotoxins and others

PFAS 10 S9, S14, S25, S46, S80, S89, S92, S94, S95, S96

TPs 10 S8, S11, S38, S66, S68, S73, S74, S78, S79, S81

Water 9 S2, S5, S36*, S39, S41, S63, S64, S82*, S84* Includes *PMT lists

Pesticides 7 S11, S28, S59, S60, S69, S88, S94

Nat. products 7 S26, S29, S40, S59, S64, S75, S85

Plastics 6 S20, S47, S48, S49, S67, S97 Plastics/chemicals associated with plastics

Priority 5 S15, S16, S36, S54, S63 Priority monitoring lists

Surfactants 4 S7, S8, S18, S23

https://www.norman-network.com/nds/susdat/
https://www.norman-network.com/nds/susdat/
https://www.norman-network.com/nds/SLE/
https://www.norman-network.com/nds/SLE/
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any citations. The reason for the parallel integration of 
these lists (i.e., an original version plus NORMAN-SLE 
version) is to ensure the maintenance of the full integra-
tion with the NORMAN-SLE website, PubChem and 
CompTox (as these require the preparation and archive 
of additional files, as well as the ability to edit the deposi-
tions and make any necessary adjustments).

All NORMAN-SLE lists feed into the merged collec-
tion NORMAN SusDat, which forms the basis of the 
NORMAN Database System (NDS) [29, 31] and integra-
tion into other NORMAN initiatives such as the Digital 
Sample Freezing Platform (DSFP) [266] and prioritiza-
tion efforts (see Fig. 2). Several NORMAN-SLE lists are 
associated with NORMAN activities such as collabora-
tive trials [4, 6] and NormaNEWS [184, 199]. NORMAN 
SusDat and the DSFP are used extensively in many stud-
ies in Europe (e.g., [142, 237, 240],), many of which are 
still in the process of being published. Beyond NORMAN 
activities and the statistics presented above, gauging the 
impact of the NORMAN-SLE remains rather intangi-
ble at present, since much of it also relates to the use of 
NORMAN SusDat. Anecdotally, the efforts behind the 
S11 SWISSPEST and S60 SWISSPEST19 lists have led to 
the inclusion of more compounds in the (Swiss) national 
monitoring program [267, 268], while the efforts related 
to S2 STOFFIDENT have resulted in the discovery of 
new P-containing compounds (unpublished results).

FAIR data and chemical curation
The decision to deposit the NORMAN-SLE collections 
on Zenodo helped “FAIRify” [22, 23, 269] the NOR-
MAN-SLE via the provision of DOIs and versioning con-
trol. This helps trace updates and provide static URLs to 
data files, enabling powerful automatic integration such 
as that currently performed with PubChem (see Fig.  2), 
as well as providing the citation possibilities and statis-
tics presented above. These are all features that are not 
currently possible via the infrastructure supporting the 
NORMAN-SLE website. Version control is important 
to track changes to the lists; not only in terms of fixing 
errors (i.e., curation), but also to keep historical records 
of lists as they change, since some chemicals that have, 
e.g., been phased out in the EU or changed in relevance 
may still occur in imported products and the environ-
ment. Overall, the data in the NORMAN-SLE is currently 
reasonably FAIR: Findable via the DOI and InChIKey for 
deep indexing; Accessible via the download options of 
Zenodo; Interoperable via the use of SMILES and InChI; 
and Reusable via the open license (CC-BY 4.0) and the 
use of community standards where feasible, exemplified 
by the PubChem integration. A transition to the stand-
ardized templates proposed recently [24, 37, 270] will 
help FAIRify the NORMAN-SLE further; these templates 

could also form the basis to help propose a set of chemi-
cal identifiers needed to establish unique (chemical) 
identifiers for the future European Open Data Platform.

While best efforts are made to map NORMAN-SLE 
contributions to identifiers correctly, the resources are 
not available for extensive curation efforts such as those 
performed by CompTox. This is coupled with the cur-
rent “as is” philosophy, where lists are processed to best 
represent the data as provided. The versioning offered by 
Zenodo opens options for quality control and updating of 
lists, however this is still a very manual process and cur-
rently decoupled from updates to NORMAN SusDat—
workflow and infrastructure upgrades to resolve this are 
underway. Since NORMAN-SLE lists are both sourced 
from and deposited to third party systems, and due to 
the different release cycles (PubChem updates daily, 
CompTox approximately annually), different versions of 
the data result—which can cause confusion. A coherent 
collaborative and timely process to update and circulate 
updated lists across the various systems would be benefi-
cial; while this currently works well with the automated 
updates between PubChem and the NORMAN-SLE, it is 
not yet possible with CompTox.

As mentioned above, the NORMAN-SLE hosts 99 
suspect lists, which are then integrated into the merged 
NORMAN SusDat collection in the so-called “MS-ready” 
[263] form (ready for mass spectral screening). Access 
to “MS-ready” suspect lists [263] is urgently needed to 
reduce the number of trivial mistakes in suspect screen-
ing (such as searching for the exact masses of salts or pol-
ymers). However, the fact that many NORMAN-SLE lists 
contained both the original substances and their MS-
ready form caused several problems with the PubChem 
integration and the subsequent mapping of structures 
to the expert knowledge contained within the lists (e.g., 
it is unclear to an automated method which structure is 
associated with the metadata: the original SMILES, or 
the MS-ready SMILES form). The integration of NOR-
MAN-SLE content in PubChem and CompTox, along 
with discussions with developers, contributors and users 
is helping to develop better solutions to some of the chal-
lenges associated with the mapping of various chemical 
forms over time.

Basic cheminformatics limitations still prevent the 
complete integration of suspect information, such as 
dealing with undefined structures for which no InChI or 
InChIKey exists (e.g., isomeric mixes such as surfactants, 
where several structures are hidden behind one detected 
“mass”). Taking examples from biocides, UVCBs of inter-
est include: creosote; reaction products of 5,5-dimethyl-
hydantoin, 5-ethyl-5-methylhydantoin with bromine and 
chlorine (DCDMH); reaction products of paraformalde-
hyde and 2-hydroxypropylamine (ratio 1:1); or reaction 
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products of: glutamic acid and N-(C12-C14-alkyl)pro-
pylenediamine (Glucoprotamin). For those examples, 
mixture indicators or marker compounds associated with 
the UVCB may help evaluate these compounds. Bioc-
idal polymers include “polyhexamethylene biguanide 
hydrochloride with a mean number-average molecular 
weight (Mn) of 1415 and a mean polydispersity (PDI) of 
4.7 (PHMB(1415;4.7))” or “Polymer of formaldehyde and 
acrolein” or “Polymer of NMethylmethanamine (EINECS 
204-697-4 with (chloromethyl) oxirane (EINECS 203-
439-8)/Polymeric quaternary ammonium chloride (PQ 
Polymer)”, where pyrolysis GC–MS may assist analysis 
(not yet an explicit focus of the NORMAN-SLE lists). The 
CompTox team has made some efforts to address cases 
such as these through the definition of “related struc-
tures” and PubChem have released “concepts” to group 
several compounds related to substances under a given 
concept name, a topic that will be explored further at the 
upcoming BioHackathon [271]. The definition of chemi-
cal identifiers such as an InChI(Key) describing UVCB 
substances is highly desirable to ensure that these efforts 
can be automated. While initial efforts such as the mix-
ture InChI (MInChI) show promise (see e.g., Fig.  3 in 
[51]), there is room for further developments. Organo-
metallic compounds (e.g., methylmercury compounds, 
organolead/organotin compounds, cyclic volatile methyl-
siloxanes, gadolinium compounds used as contrast 
agents) are cases that can be handled to an extent with 
the current approaches (although not in an “MS-ready” 
form). Upcoming InChI developments will hopefully 
improve the handling of organometallic species in data-
bases in the near future [272]. Further examples related 
to biocides that are currently beyond the scope of the 
NORMAN-SLE (but are in part covered by the NDS) 
include microbial preparations or strains used as biocidal 
products, where metabarcoding or proteomics (peptide 
biomarkers) could be used for characterization, along 
with nanomaterials/nanoplastics.

Future updates: new submissions
As described above, submissions and updates to the 
NORMAN-SLE were frozen during preparation of this 
manuscript. In the meantime, both new submissions 
and expressions of interest to update existing lists have 
been registered, partially stimulated by reaching out to 
all contributors during the writing of this work. Updates 
have been suggested for S17 KEMIMARKET [68], S28 
EUBIOCIDES [196] with information from ECHA 
[273], S34 EXPOSOMEXPL [165, 166] with new data 
from [274] plus new microbial metabolites [275, 276] 
and S75 CyanoMetDB [118, 119] (next release due early 
2023). Suggestions for new contributions include a list 

of endocrine disruptors within the activities of PARC, 
the Proposition 65 (Prop-65) list of chemicals from the 
California EPA [277], Phenol-Explorer [278–280], the 
Database on Migrating and Extractable Food Contact 
Chemicals (FCCmigex) [281], and finally a shale gas 
suspect list [282] that has been applied in other studies: 
[283, 284] and will fill a long-identified gap with respect 
to fracking-related content.

Beyond these new suggested submissions, future devel-
opments involve improving the current submission sys-
tem to the NORMAN-SLE. The current submissions 
generally rely on personal contacts, with only one sub-
mission recommended externally so far (S72 NTUPHTW 
[147]). Manual work for the NORMAN-SLE team would 
be reduced if contributors would consider using a tem-
plate, as described recently [24, 37, 270]. While the 
evolution of openly available batch services offered by 
PubChem [40] and CompTox [41] have greatly eased 
the mapping of contributed lists to include the required 
information for upload, a further semi-automation of 
this workflow would ease matters further and is already 
in planning. However, extensive curation based on CAS 
as performed by CompTox is currently out of scope of 
the NORMAN-SLE, which is based on fully open access 
resources. While a feedback loop between CompTox 
and the NORMAN-SLE would help the NORMAN-SLE 
benefit from the CompTox curation, this is not currently 
possible. A submission system such as that offered by 
PubChem could be considered in the future, but is cur-
rently beyond reach of the resources available for the 
NORMAN-SLE. While these enhancements would be 
desirable, overall the current system has held up well 
for 99 lists so far and more contributions are welcomed 
by emailing the NORMAN-SLE team as detailed on the 
website: https:// www. norman- netwo rk. com/ nds/ SLE/.

Future updates: potential new features
Beyond the new submissions and processing updates 
mentioned in the previous section, several new features 
have been suggested (and are being considered) for the 
NORMAN-SLE and/or the broader NORMAN Data-
base System. These can be grouped into four major areas 
reflected in the following paragraphs: experimental, TPs, 
categorization/use and regulatory.

On the experimental side, additional functionality to 
account for physical chemical properties such as mass, 
polarity, likely ionization mode and amenability to either 
GC or LC would be beneficial, along with the link to 
available MS/MS data and/or reference standards for 
further confirmation. This information is included to a 
large extent in NORMAN SusDat, which provides a cen-
tralized access point for this information, along with pre-
dicted toxicity values [264] and retention indices [238], 

https://www.norman-network.com/nds/SLE/
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but will be streamlined and automated further, also to 
account for possibilities arising from the PubChem inte-
gration. Documentation on how to obtain some of this 
information via PubChem is also available, e.g., for MS/
MS [252] and CCS values [253–255]. Advanced Entrez 
queries (via PubChem) can be used to limit this to cer-
tain measurement modes. Another suggested enhance-
ment related to UVCBs would be to include important 
substructures such as the head group of surfactants or 
repeating unit of polymers, which could be linked to MS/
MS fragments.

A large focus has been placed on TPs over the recent 
years. A continuation of ongoing efforts will include add-
ing more TPs, including the extraction of data from liter-
ature to fill data gaps [71, 174, 205] and the integration of 
workflows in patRoon [257] in a manner compatible with 
other NTS workflows. Over the years, there has been 
increasing interest to add lists of predicted TPs to the 
NORMAN-SLE, with submissions including predicted 
TPs for S6 ITNANTIBIOTICS [159], S71 CECSCREEN 
[85] (both generated with BioTransformer [111]) and 
S38 SOLNSLMCTPS [102]. While such lists are valu-
able for researchers performing NTS, these can cause 
problems with downstream integration with the NDS, 
CompTox and PubChem as these predicted structures 
are not necessarily observed and verified, while the num-
ber of entries can be an order of magnitude higher (or 
more) than the source list. These datasets are generally 
decoupled from the cross-integration at present. A future 
discussion for NORMAN will be how best to integrate 
predicted TP data, with the possibility of a “Transforma-
tions” module to be added—potentially to represent both 
documented transformations (e.g., similarly as shown in 
the insets in Figs. 2 and 5) and predicted transformations.

As the NORMAN-SLE list numbers climb, and 
with several contributions covering related topics (see 
Table 4), further refinements will be needed to group lists 
together and allow the selection of certain subsets for dif-
ferent use cases, or the sorting of lists by categories. The 
extensive integration with PubChem and the resulting 
need for organization of NORMAN-SLE content in both 
CompTox and PubChem has given rise to categorization 
and classification efforts, and preliminary functionality 
allowing this is already integrated into NORMAN Sus-
Dat. Since there is great interest in the gathering of “Use” 
information and categorization in general, NORMAN 
has already initiated activities within the Prioritization 
working group [285] to define and collect relevant use 
information and categories from members. These activi-
ties will feed into subsequent future developments within 
NORMAN, PARC [28, 29], EU projects such as ZeroPM 
[229] and beyond.

The NORMAN-SLE is a community resource built on 
an incredible amount of volunteer effort and rather lim-
ited financial resources. The entire NDS is supported 
through the NORMAN Association and project fund-
ing obtained by individual contributors. The integration 
with external resources such as PubChem, CompTox 
and Zenodo provides significant added value beyond 
the capabilities available to NORMAN. This approach 
is key to foster cooperation among existing regulatory 
frameworks, helping to share data and improve chemi-
cal risk assessment in the shift towards a “one substance, 
one assessment” paradigm [286]. With the EU strongly 
supporting Open and FAIR data, including large initia-
tives such as PARC [28, 29] and EIRENE [30], along with 
Green Deal projects such as ZeroPM [229], opportunities 
for further developments, consolidation and harmoniza-
tion with broader EU efforts, including the future Open 
Data Platform appear promising. While the idea behind 
the NORMAN-SLE has broad support, the current infra-
structure and personnel could not currently support, for 
instance, a requirement to host and thus make all Euro-
pean environmental research data Open and FAIR. If, 
however, the experiences in building the NORMAN-SLE 
could help contribute towards establishing such a plat-
form (to which the NORMAN-SLE could contribute), 
this would be a huge benefit for research and researchers.

Conclusions
The NORMAN Suspect List Exchange (NORMAN-SLE) 
was created to provide a service to NORMAN members 
and the greater scientific community, in response to a 
clear need identified in the NORMAN Non-target Col-
laborative Screening Trial [4]. Through the provision of 
a centralized website to collect various suspect lists and 
references, information exchange is ensured to apply the 
“screen smart” strategy on specific scientific questions. 
This FAIRified resource is archived on Zenodo to give 
DOIs for each set, allowing the cross-integration with 
other resources and formal citation of datasets, raising 
the profile of the research of various contributors. The 
combined list formed from all NORMAN-SLE contribu-
tions, NORMAN SusDat, serves as a basis for chemical 
management for the entire NORMAN Database System 
(NDS), including the NORMAN Digital Sample Freezing 
Platform (DSFP) [266].

The NORMAN-SLE is not intended to replace 
major open compound databases such as ChemSpider, 
PubChem or CompTox, but rather offers a specialized, 
complementary service targeted to the environmental 
science community, particularly in relation to suspect 
screening, for integration within these larger resources, 
as done with CompTox and PubChem. Raising the 
awareness about relevant suspect screening lists and the 
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quality issues surrounding suspect screening is vital for 
improving the identification of contaminants of emerging 
concern in the environment, biota, and products, thereby 
helping to reduce the number of molecular unknowns in 
mass spectrometry analyses and to facilitate more com-
prehensive chemicals assessments. The NORMAN-SLE 
welcomes new submissions of suspect lists within the 
scope, along with other ideas and feedback, as described 
on the NORMAN-SLE website (https:// www. norman- 
netwo rk. com/ nds/ SLE/).
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