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Carbon storage and cycling in boreal forests—the largest terrestrial carbon store—is
moderated by complex interactions between trees and soil microorganisms. However,
existing methods limit our ability to predict how changes in environmental conditions
will alter these associations and the essential ecosystem services they provide. To address
this, we developed a metatranscriptomic approach to analyze the impact of nutrient
enrichment on Norway spruce fine roots and the community structure, function, and
tree–microbe coordination of over 350 root-associated fungal species. In response to
altered nutrient status, host trees redefined their relationship with the fungal commu-
nity by reducing sugar efflux carriers and enhancing defense processes. This resulted in
a profound restructuring of the fungal community and a collapse in functional coordi-
nation between the tree and the dominant Basidiomycete species, and an increase in
functional coordination with versatile Ascomycete species. As such, there was a func-
tional shift in community dominance from Basidiomycetes species, with important
roles in enzymatically cycling recalcitrant carbon, to Ascomycete species that have mela-
nized cell walls that are highly resistant to degradation. These changes were accompa-
nied by prominent shifts in transcriptional coordination between over 60 predicted
fungal effectors, with more than 5,000 Norway spruce transcripts, providing mechanis-
tic insight into the complex molecular dialogue coordinating host trees and their fungal
partners. The host–microbe dynamics captured by this study functionally inform how
these complex and sensitive biological relationships may mediate the carbon storage
potential of boreal soils under changing nutrient conditions.
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Complex microbial communities (microbiomes) are intrinsically associated with all
higher organisms and can contribute functions spanning a continuum, from essential
mutualistic services to parasitism (1). DNA-sequencing approaches have greatly
increased our understanding of the complexity of microbiomes, from environments as
diverse as the human gut (2), to oceans (3) and soils (4). Recent sequencing approaches
to measure gene expression within microbial communities (metatranscriptomics) have
enabled researchers to complement these taxonomic surveys with real-time functional
insights in a range of clinical (5, 6) and ecological (7, 8) settings. Metatranscriptomics
can also capture the host transcriptome, providing insight into both community func-
tions and their interaction with active host processes (9, 10). To date, the technical
difficulties associated with metatranscriptomics have largely limited its application to
controlled laboratory experiments or to interactions between a host and select symbi-
otic partners. These experiments are essential to generate detailed molecular-level mech-
anistic understanding of the interaction between single microbial species and their
host, but fail to provide understanding of how those species will interact within the
complex communities present in nature.
Soil microbes, such as fungi, are primary mediators of carbon (C) and nitrogen (N)

cycling in terrestrial ecosystems, and thus have a critical influence on nutrient availabil-
ity and soil C sequestration and storage (11, 12). In addition, fungi directly interact
with over 85% of all vascular plant species via mycorrhizal symbiosis (13), a form of
mutualism that has shaped the evolution and expansion of terrestrial plant life. The
success of this symbiotic association has resulted in the frequent adoption of mycorrhi-
zal strategies throughout fungal evolution, with current estimates suggesting 40,000 to
50,000 fungal species can form mycorrhiza with plant hosts (14). In doing so, these
fungi have experienced varying degrees of diminished autonomy, as they have succes-
sively lost biological functions connected to their pathogenic or saprotrophic origins
(15). For these kingdom-spanning associations to establish, a complex molecular dia-
logue must occur to structurally and physiologically coordinate the host with its pro-
spective fungal partners. A crucial component of these interactions are microbial
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effectors: small secreted proteins deployed by microbes (both
mutualists and pathogens) that promote colonization via modu-
lation of host defense mechanisms (16), alteration of cellular
architecture (17), or appropriation of host physiology (18).
In the nutrient-limited (NL) soils of boreal forests, ectomycor-

rhizal (ECM) fungi predominate, and play vital roles in mobiliz-
ing mineral nutrients, such as N and phosphorus (P), exchanging
them with plant roots for energy-rich C compounds, such as sim-
ple sugars (19). Currently, nutrient availability is a critical limita-
tion of boreal plant productivity and C storage, and a restraining
force maintaining host-plant dependency on their ECM partners
(20). Anthropogenic N deposition and higher rates of mineraliza-
tion linked to global warming are predicted to diminish this
dependency and reduce growth limitations (21), leading to
decreases in the proportion of photosynthates allocated below-
ground and increases in aboveground vegetative C storage, rang-
ing from 5 to 30 parts of C sequestered per unit of additional N
(22–24). Until recently, aboveground plant litter was regarded as
the primary origin of soil-sequestered C. However, a recent study
using bomb-14C modeling showed that at least half of the stored
C in boreal soils is derived from plant roots and fungal mycelium
(25). As these forests comprise the largest terrestrial biome and
harbor more stored C than temperate and tropical forests com-
bined (26, 27), alterations to the diversity, composition, and
function of soil- and root-associated microbial communities
resulting from increased nutrient availability, particularly N,
could be expected to impact ecosystem productivity and stability,
with global consequences for C storage and release (28–30).
Our capacity to predict the impact of climate change and

anthropogenic influences on a range of ecosystems—and the effect
this will have on the global C budget—requires rigorous under-
standing of the complex microbial communities involved and their
interactions with host species. An essential component of this is to
understand the diverse biological processes these microbial commu-
nities contribute to the global C budget, and how these processes
might be altered by changes in symbiotic coordination. Variations
in the host–soil microbiome dynamic can be driven by environ-
mental perturbations, either via direct anthropogenic inputs, such
as fertilization, or indirect inputs, such as increased atmospheric N
deposition or enhanced mineralization rates in warming soils, and
can vary along natural nutrient or hydraulic gradients. To begin to
develop mechanistic insight into how changes in symbiotic coordi-
nation may occur in environments as complex as forest soils, we
generated high temporal resolution metatranscriptomes to profile
Norway spruce [Picea abies L. (Karst.)] fine roots and over 350
root-associated fungal species over a growing season from NL) and
long-term nutrient-enriched (NE) plots in the boreal region of
northern Sweden (Materials and Methods and SI Appendix,
Supplementary Text and Fig. S1A) and developed robust and repro-
ducible data-analysis pipelines that can be applied broadly to study
host–microbiome coordination. This resource is publicly available
as the Boreal Rhizospheric Atlas (BRA) online tool to facilitate
community utilization (https://www.boreal-atlas.info/). Our find-
ings link the mechanisms by which trees limit C flow and augment
defense processes as nutrient availability increases with the pro-
found effect this can have on fungal community structure, func-
tion, and host–microbe coordination.

Results

Alterations to Fungal Community Structure. Field-sampled fine
roots of Norway spruce contained RNA originating from the host
tree and associated fungal communities. Sequencing this RNA
(RNA-seq) revealed a significantly greater relative proportion of

fungal RNA-seq reads in samples from NL compared to NE treat-
ment (Fig. 1A) (P < 0.001; Wilcoxon signed-rank test), and sup-
porting microbial phospholipid fatty acids data collected from soils
at this site, which showed decreased fungal abundance in NE soils
(31). NE conditions had a profound effect on the fungal commu-
nity transcriptome at all time points throughout the growing sea-
son (349 up-regulated and 573 down-regulated differentially
expressed [DE] Kyoto Encyclopedia of Genes and Genomes
orthologs across the season; adjusted P < 0.01) while there was no
apparent signal of seasonality (Fig. 1B). Taxonomic profiling of
the data revealed shifts in community structure that were con-
firmed in the subsequent year using metatranscriptomics and
DNA ITS amplicon data (2012) (SI Appendix, Fig. S2).

Briefly, 150 fungal families were identified associated with NL
roots, with the most abundant belonging to the phylum Basidio-
mycota, of which the families Cortinariaceae (27.6%) and Athe-
liaceae (22.6%) predominated, followed by the Ascomycetes
Hyaloscyphaceae (3.4%), and Gloniaceae (1.6%) (Fig. 1C). The
majority of reads within each of these families were assigned to a
single reference genome: 1) Cortinarius glaucopus (Cortinariaceae),
2) Piloderma olivaceum (Atheliaceae), and 3) Cenococcum geophi-
lum (the only species of the Cenococcum genus; Gloniaceae). For
Hyaloscyphaceae, reads were primarily assigned to two reference
genomes: Meliniomyces bicolor and Meliniomyces variabilis (synon-
ymy: Hyaloscypha). These taxonomic assignments were condi-
tional to a ≥85% similarity to the available reference genomes
(SI Appendix, Supplementary Methods) and may represent a num-
ber of closely related species belonging to the same genus. For
example, amplicon data (SI Appendix, Fig. S2) identified 10
swarm operational taxonomic units assigned as Piloderma and
over 50 as Cortinarius. Despite this caveat, for the remainder of
this article the full species names of the best-matching reference
genomes are used to avoid confusion.

Fungal family diversity increased significantly in NE condi-
tions (P < 0.001; Wilcoxon rank sum test) (Fig. 1D), accompa-
nied by decreased read representation of formerly dominant Co.
glaucopus (from 27.6 to 7.0%) (Fig. 1E). Similarly, NE condi-
tions resulted in a ∼50% reduction in read abundance assigned
to P. olivaceum; however, this remained the most dominant spe-
cies with the reduction reflecting a decrease in overall fungal
abundance rather than a complete alteration in fungal abundance
hierarchy (Fig. 1 E and F). While reads assigned to these Basidio-
mycota decreased in NE conditions, read abundance and species
dominance increased for the Ascomycota Ce. geophilum (from 1.6
to 6.8%) and Meliniomyces spp. (from 3.4 to 4%) (Fig. 1E).

Remodeling of Fungal Functions. While conventional amplicon-
based approaches assayed community structure (SI Appendix,
Fig. S2A), metatranscriptomics revealed the functional impact
of community restructuring within a coexpression network.
Broadly speaking, the network divided into two hemispheres:
1) genes with higher average transcript abundance in NL condi-
tions and 2) genes with higher average transcript abundance in
NE conditions (Fig. 2A and SI Appendix, Fig. S3). Hemisphere
1 was overrepresented in reads assigned to Co. glaucopus or
P. olivaceum (P < 0.001; one-proportion z-test), with func-
tional enrichment of cell cycle processes and meiosis, amino
acid and secondary metabolite biosynthesis, and signaling path-
ways (e.g., AMPK, MAPK, TGF-β, ErbB, and calcium signal-
ing pathways; adjusted P < 0.05 in all cases; Fisher exact test)
(SI Appendix, Fig. S3). In contrast, hemisphere 2 was overrepre-
sented in reads assigned to Ce. geophilum or Meliniomyces spp.,
and enriched in functions indicative of carbohydrate starvation
in fungal symbionts (32), such as autophagy (e.g., lysosome,
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glycan degradation, protein processing in the endoplasmic retic-
ulum) and alternate energy pathways (e.g., fatty acid metabo-
lism, glyoxylate cycle, and gluconeogenesis). Functions linked
to primary energy metabolism (e.g., pyruvate metabolism, tri-
carboxylic acid cycle, and oxidative phosphorylation) were also
significantly enriched. Taken together, these changes indicate
that although exhibiting transcriptional hallmarks of starvation,
the metabolic plasticity of species within hemisphere 2 allows
them to effectively utilize alternative energy sources (e.g., lipids)
and persist in NE soils.
Taxon-specific expression profiles (Fig. 2 B and C) and associ-

ated functional modifications (SI Appendix, Fig. S4) were identi-
fied for the three species with the highest representation in the
fungal read pool (P. olivaceum, Co. glaucopus, and Ce. geophilum).
In response to NE conditions, P. olivaceum and Co. glaucopus
underwent extensive transcriptional modulation, with decreased
transcript abundance of functions linked to cell growth, nuclear
pore complexes, and proteolytic processes, reflecting a decrease of
growth in these species. In contrast, the impact of NE conditions
on the transcriptome of Ce. geophilum was comparatively subtle,
indicating that the observed increase in community dominance
did not result from a profoundly altered lifestyle strategy. Func-
tional enrichment analysis of genes that remained stable between
treatments (70% of Ce. geophilum genes) revealed a high level of
similarity with functions that were prevalent in P. olivaceum

during NL but lost in NE. These functions were associated with
metabolism and growth: for example, the degradation of polycy-
clic aromatic hydrocarbons (such as lignin), aromatic amino acid
metabolism, and cell growth. Unique to Ce. geophilum in both
conditions was the production of bioactive molecules with
structural functions, such as melanin biosynthesis (tyrosinase and
polyketide synthase); intracellular receptors of fungal innate
immunity, which play a role in the detection of nonself and
mediating symbiotic cross-talk (signal transducing ATPases
containing WD, ANK, and TPR repeat domains) (33); and anti-
microbial functions (nonribosomal peptide [NRP] synthetase
component F and NRP synthetase/α-amidoadipate reductase,
isopenicillin N synthase, and phospholipase A2). This reflects
Ce. geophilum navigating interactions with competing microbes
(34, 35) and suggests its success under NE conditions is a combi-
nation of metabolic versatility, environmental resilience, and
chemical suppression of microbial competitors.

Norway Spruce Root Transcriptome. The temporally resolved
Norway spruce root transcriptome revealed extensive seasonal
remodeling common to both NL and NE conditions (Fig. 3A)
(4,671 up-regulated and 4,999 down-regulated DE genes across
the season; Benjamini–Hochberg adjusted P < 0.01; absolute
log2 fold-change 0.5). Functional enrichment tests for sets of
coexpressed genes within the inferred coexpression network

Fig. 1. Transcriptomic overview of root-associated fungal community structure in samples from NL and NE plots from the same forest site over a growing
season. (A) Relative distribution of fungal reads observed per time point in NL and NE conditions. An asterisk (*) indicates significant difference between NL
and NE (P < 0.001; two-tailed Wilcoxon signed-rank test). (B) Vector plot of the PCA of a fungal metatranscriptome based on samples collected at 19 time
points over a growing season, in NL or NE soils. Each vector denotes the distance and orientation between the average of the NL replicates for a given time
point (dot at the origin of the arrow), and those of the NE samples (point of the arrow). Weeks with active fertilization occurring have been indicated by a
dotted vector. (C) The number of reads assigned to each fungal family were normalized to the total number of fungal reads present and the top 10 most
represented fungal families in each treatment were identified (11 families in total), accounting for 98.7% of all fungal reads. The normalized read count of
these 10 families were plotted across the sampling time course for both NL and NE conditions. The period of active fertilization has been indicated by
dotted shading. (D) Shannon diversity index of fungal families in NL and NE forest plots. An asterisk (*) indicates significant difference between NL and NE
(P < 0.001; two-tailed Wilcoxon signed-rank test). (E) PCA of fungal reads mapped to specific reference genomes (fungal species) in NL and NE conditions.
The nine fungal species with the highest read representation are indicated. PC1 was largely attributable to the number of reads assigned to a specific spe-
cies (86% variance explained) and was visualized using node size. Node color represents species identity and the colored line around each node indicates
treatment, with green = NL, gold = NE. (F) Relative hierarchy of the 11 most represented fungal species in NL and NE, representing 49.9% of all fungal reads.
An asterisk (*) indicates this species is not in the corresponding list in the opposing treatment.
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(network modules) were carried out using two complementary
ontology-driven approaches: 1) gene ontology (GO) (36), with
adjusted P < 0.05; parent–child adjusted significance test (37);
and 2) Mapman (38), with adjusted P < 0.05, Fisher exact test.
This analysis revealed seasonal transcriptomic alterations pri-
marily indicative of growth, including functions associated
with: 1) cell cycle, cell proliferation, and cytoskeleton microtu-
bular networks; and 2) cell wall biosynthesis and remodeling,
which coincided with warming soil temperatures, increases
in water availability, and a maxima in daylight hours (SI
Appendix, Figs. S1 B–D and S5) (network modules 3 and 5).
In contrast, the impact of NE had more subtle effects on the
root transcriptome than the effect of seasonality (1,689
up-regulated and 956 down-regulated DE genes; NE vs. NL).
Broadly speaking, NE conditions did not fundamentally alter

seasonal expression, impacting instead the magnitude of the
expression dynamics. For example, in both NL and NE sam-
ples, genes belonging to network modules 2 and 12 were char-
acterized by a series of transient bursts in transcript abundance
across the season, with the most extreme occurring at week 26
(June 27 to July 3). Although temporally coincident, the mag-
nitude of this induction was greater in NE samples (Fig. 3B)

(network modules 2 and 12). These modules were significantly
enriched in functions associated with signaling and mounting
defense responses, such as effector-triggered immunity signaling
(nucleotide-binding leucine-rich repeat [NLR] effector recep-
tors and protein kinases), cell wall biogenesis and thickening,
oxidative stress, and jasmonic acid biosynthesis. Dehydration-
responsive element binding (DREB)-type transcription factors
were also significantly enriched in these modules, and overex-
pression of this class of transcription factor has been linked to
enhanced biotic and abiotic stress tolerance in plants (39).
Notably, the transient burst in expression of genes encoding
defense responses at week 26 coincided with conditions that
support novel fine root production and ECM colonization,
such as the first substantial rainfall of the year and a period
of rapid soil warming (SI Appendix, Fig. S1B). In contrast to
the elevated expression of stress-associated functions, a signifi-
cant decrease in transcript abundance was observed in NE for a
suite of sugar efflux transporters, primarily the Sugars Will
Eventually be Exported Transporters (SWEET) family of trans-
porters (P < 0.001; two-tailed Wilcoxon signed-rank test) (SI
Appendix, Fig. S6B). These uniporters regulate the passage of
sucrose, glucose, and fructose across cell membranes and are

Fig. 2. Remodeling of fungal community metatranscriptome in samples from NL and NE plots from the same forest site over a growing season. (A) Visualization
of the root-associated fungal community network of samples collected from NL and NE forest plots over a growing season. Average expression profiles of the
eight largest network modules are displayed, with NL in green and NE in gold, and the SD indicated by gray shading. Significantly enriched functional categories
(adjusted P < 0.05; Fisher exact test) for each network module can be found in SI Appendix, Fig. S3. The network modules were grouped into two hemispheres,
with hemisphere 1 (indicated in green) displaying higher average expression in NL conditions, and hemisphere 2 (indicated in gold) displaying higher average
expression in NE conditions. Fungal species that are significantly enriched in each hemisphere (P < 0.0001; one-proportion z-test) are indicated. (B) Low-
dimensional visualization of all fungal genes in both NL and NE conditions. The gene nodes have been colored based on the fold-change differences between
NL and NE conditions. Where possible, the branching arms have been assigned to distinct taxonomic assignments, with species names reflecting the reference
genome to which RNA-seq reads were assigned. (C) The genes of the three fungal species with the highest assignment of RNA-seq reads (mapped to a specific
reference genome) were isolated and separated based on three criteria: 1) fold-change was <�0.5 (higher abundance in NL), indicated in green; 2) fold-change
was >0.5 (higher abundance in NE), indicated in gold; and 3) the fold-change was < 0.5 but >�0.5. The average expression profiles of the genes meeting these
three criteria have been visualized and corresponding functional enrichment analysis can be found in SI Appendix, Fig. S4.
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one of the primary exporters of C into the rhizosphere (18, 40).
Furthermore, their promoters are targets for microbial transcrip-
tion activator-like effectors, leading to the appropriation of plant
sugar transport during infection (18, 41, 42). The lowered
expression of sugar transporters coupled with enhanced defense
and effector-triggered immunity responses observed under NE
conditions (Fig. 3 and SI Appendix, Fig. S6B) (network modules
2 and 12) represent converging mechanisms by which host trees
redefine their economic relationship with the fungal community
in response to increased nutrient availability.

Changes in Symbiotic Coordination. As the extensive seasonal
dynamics observed in the tree did not appear to drive
community-level fungal processes (Fig. 1B), we carried out a
targeted analysis of the three most dominant fungal species to
uncover specific signals of symbiotic coordination masked by
global analyses. For both P. olivaceum and Co. glaucopus, all of
the fungal network modules that were strongly correlated with
Norway spruce network modules in NL conditions lost correla-
tion in NE conditions (17 and 18 module comsbinations,
respectively; Spearman’s rank correlation coefficient [Rs] > 0.7
or < �0.7) (Fig. 4A). In both genera, these fungal network
modules were enriched in functions observed in hemisphere 1,
such as signaling, cell cycle processes, and the metabolism of
amino acids and secondary metabolites. The most connected
Norway spruce module that was decoupled from Co. glaucopus
in NE conditions (Norway spruce network module 10) was
significantly enriched in plant solute transport functions:
for example, NITRATE TRANSPORTER 2 (NRT2),
PHOSPHATE TRANSPORTER 1 (PHT1), AMMONIUM
TRANSPORTER (AMT2/3-type), multiple phospholipid and
fatty acid transporters, and a range of cation transporters associ-
ated with Fe, Cu, Ca, and K transport. Notably, this Norway
spruce module became coordinated with two P. olivaceum net-
work modules in NE (P. olivaceum network modules 2.1.3 and
2.1.5), which were enriched in fungal functions linked with
glycolysis, nucleobase transport, peptidase activity, and the

glyoxylate cycle (SI Appendix, Fig. S7). The contrasting
responses observed for these two dominant ECM genera could
explain P. olivaceum’s persistence in relative community domi-
nance in NE (Fig. 1F). Alternatively, the observed fitness of
P. olivaceum in both nutrient conditions could signify the map-
ping of several closely related Piloderma spp. to the P. olivaceum
reference genome. In this scenario, differences in physiology or
exploration strategies among these species could explain the
perceived fitness of the single reference species.

Ce. geophilum displayed a fundamentally different response
from the two Basidiomycetes, with 89% of the combinations
with Norway spruce network modules that were strongly coor-
dinated in NL conditions maintaining this coordination in NE
(16 module combinations), while more than double this num-
ber became coordinated only in NE (Fig. 4A) (Ce. geophilum).
The modules that maintained or increased coordination (pri-
marily Ce. geophilum network modules 4, 14, 21, and 28) were
significantly enriched in functions associated with metabolism
(fatty acid desaturases, glycogen synthase, and pyrimidine
biosynthesis), cell wall remodeling (glucan synthase and endo-
glucanases), nutrient transport (ammonia and nucleoside per-
meases), and signal transduction (histidine kinases) (SI
Appendix, Fig. S8). Notably, many of the novel module combi-
nations formed in NE conditions included Norway spruce
modules that were significantly enriched in plant functions
associated with cell wall remodeling, and the biosynthesis and
perception of presymbiotic molecular signals: specifically, Nor-
way spruce network modules 14 and 15i, which were coordi-
nated with P. olivaceum in NL but lost coordination in NE
conditions, and Norway spruce network module 16. These
functions promote reciprocal physical and physiological
changes that facilitate symbiosis and included the biosynthesis
of terpenes, diterpenes, and strigolactone signal transduction, in
addition to a nodulation signaling pathway 1 (NSP1) compo-
nent, a GRAS transcription factor previously thought to be
exclusively linked to nodulation but more recently implicated
in mycorrhizal establishment (43, 44).

Fig. 3. Transcriptomic overview of Norway spruce fine roots sampled from NL and NE plots over a growing season. (A) Vector plot of the PCA of Norway
spruce fine roots collected at 19 time points over a growing season. Each vector denotes the distance and orientation between the average of the NL repli-
cates for a given time point (dot at the origin of the arrow), and those of the NE samples (point of the arrow). Weeks with active nutrient enrichment are
indicated by a dotted vector. (B) Visualization of Norway spruce fine root coexpression network of samples grown on NL and NE forest sites over a growing
season. The network has been clustered into distinct network modules and key modules mentioned in the text are indicated. (C) The average expression
profiles of the network modules mentioned in the text are indicated for NL (green) and NE (gold), and the SD is indicated by gray shading. A dot plot
illustrates significantly (adjusted P < 0.05) enriched GO and MapMan functional categories for these network modules. Average expression profiles and
significantly enriched functional categories for all network modules can be found in SI Appendix, Fig. S5.
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Coordination between Fungal Effectors and Norway Spruce
Genes. In light of these findings, we targeted the coordination
between Norway spruce genes and predicted effectors of the
three most dominant fungal species (Fig. 5 and SI Appendix,
Supplementary Methods, Figs. S9–S11, and Table S1). Using a
combination of predictive tools to establish protein secretion
(45, 46) and a machine-learning classifier trained on experi-
mentally supported fungal effectors (47), 33 predicted effectors
were identified in P. olivaceum (representing 0.3% of all reads
mapped to P. olivaceum), 8 in Co. glaucopus (0.5%), and 23 in
Ce. geophilum (0.8%). Putative functions were assigned to the
predicted fungal effectors based on the identification of protein
domains and transit peptides, which were primarily associated
with the modulation of gene expression (transcription factors
and subunits of the Mediator complex); redox sensing and sig-
naling; and protein folding, posttranslational modification, and
degradation (SI Appendix, Table S1). Intrinsic disorder, a
property that causes proteins to lack a fixed three-dimensional
structure while retaining biological activity (48), was the most
frequently predicted domain identified in the effectors of all
three fungal species.
A number of significantly overrepresented Norway spruce

functions were strongly coordinated with the predicted effectors
of all three fungal species, regardless of soil nutrient status.
These included transcriptional regulation, vesicle trafficking,
pattern-triggered immunity (e.g., fungal and bacterial elicitors),
and pathogen effector-triggered immunity (e.g., NLR effector
receptors, enhanced disease susceptibility 1 [EDS1], and
phytoalexin-deficient 4 [PAD4]) (Fig. 5B). In addition, many
Norway spruce functions were specifically coordinated with
predicted effectors from a single fungal species and showed
highly treatment-specific responses. For example, four predicted
Co. glaucopus effectors (including putative subunits of the
Mediator complex and trafficking protein particle complex)
were positively correlated with Norway spruce genes that
were significantly enriched in SWEET-family transporters

and response-to-symbiont processes (e.g., reduced arbuscular
mycorrhization [RAM]2 and Nodulin 26-like intrinsic protein
[NIP] transporters) during NL conditions. Notably, for all four
predicted effectors, this coordination with sugar efflux and sym-
biosis responses were lost in NE conditions. A similar loss of
coordination in NE soil was observed in a predicted effector
of P. olivaceum (Poli84736) containing a cyclin-like subunit
(Ssn8) domain of the kinase module of the Mediator complex,
which was coordinated with over 3,000 Norway spruce genes
in NL conditions—the most of any predicted effector—but
only 175 genes in NE soils.

Conversely, the putative effectors of Ce. geophilum demon-
strated the greatest level of coordination with Norway spruce
genes in NE conditions. For example, a predicted effector
(Cgeo64882), containing domains of intrinsic disorder and
orthologous to a zinc finger C2H2-type protein in Macropho-
mina phaseolina, gained 10-times the level of coordination in
NE compared to NL conditions. The Norway spruce genes
coordinated with this predicted fungal effector were signifi-
cantly enriched in a large suite of DREB-type transcription
factors with homology to specific functionally characterized
Arabidopsis thaliana orthologs, which have been linked to the
regulation of jasmonic acid biosynthesis (49), repression of dis-
ease resistance and mediated cell death (50), and reducing the
lignin content of cell walls (51). Taken together, the combina-
tion of predictive analytics and high-resolution metatranscrip-
tomics used here provides a strategic approach to identify top
candidates for experimental validation, which will dramatically
improve our understanding of both the generic and species-
specific molecular dialogue occurring between microbial com-
munities and their hosts.

Discussion

Nutrient availability is a critical factor limiting plant productiv-
ity and C storage in boreal forest soils. An evolutionary solution

Fig. 4. Analysis of the coordination between the host-tree and the three most dominant root-associated fungi. (A) Distribution of coordinated network
modules (Rs > 0.7 or < �0.7) between Norway spruce and specific fungal species in NL and NE conditions. The number of coordinated network module com-
binations between Norway spruce and a given fungi are tabulated in the top left of the figure. Those occurring in NL conditions only are shown in green,
those occurring in NE conditions only are shown in gold, and those occurring in both treatments are shown in black. (B) Visualization of coordinated Norway
spruce and fungal network modules. Edge coloring is consistent with that used in the tabulated section above. The size of each node represents the number
of undirected edges to which it is connected. The term “undirected” means the edges represent a two-way relationship between nodes. Network modules
that are mentioned in the text have been indicated. Inclusion of an ‘i’ in a network module name indicates the module has the inverse expression profile of
the named module. The difference in tree height and aboveground biomass illustrated is modified from Sigurdsson et al. (54) and Majdi and Andersson
(117). Functional enrichment analysis for network modules for these species can be found in SI Appendix, Figs. S7 and S8.
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to nutrient limitation was the establishment of mutualistic asso-
ciations, linking plant fitness with root-associated fungal activity.
Like most economies, this exchange is sensitive to market forces
that can alter the equilibrium of supply and demand (52, 53).
Increased nutrient availability, due to anthropogenic N deposi-
tion or higher rates of mineralization linked to global warming, is
predicted to destabilize this trading status (21), although the
severity and lasting consequences of this altered paradigm in
boreal symbiosis remains unknown. At the study site used here,
25 y of NE conditions led to a fourfold increase in aboveground
tree biomass compared to NL grown trees (54), which coincided
with decreases in the flux of photosynthates directed below-
ground (55), and decreases in autotrophic and heterotrophic soil
respiration (56) (SI Appendix, Fig. S1H). We deployed a high-
resolution metatranscriptomic analysis to consolidate these envi-
ronmental observations with the underlying mechanisms
impacted by this symbiotic restructuring. We observed functional
evidence of host trees redefining the economic status of their rela-
tionship with the fungal community via reduction of sugar trans-
porters that are integral to mycorrhizal establishment (57, 58) (SI
Appendix, Fig. S6B), coupled with an enhanced defense response
involving effector-triggered immunity, downstream signal propa-
gation, and stress-associated transcription factors (Fig. 3, modules
2 and 12). The consequence of these alterations on the fungal

community was profound, resulting in a reduced relative abun-
dance of sequencing reads of fungal origin (Fig. 1A), with a
notable decrease in the proportion of reads assigned to ECM
Basidiomycota in contrast to an increased proportion of mela-
notic ECM Ascomycota species (Fig. 1C). The sensitivity and
resolution of this approach revealed that these changes in com-
munity structure were accompanied by, and likely the result of,
prominent shifts in broad-scale functional coordination between
specific ECM fungi and the host tree (Fig. 4). Perhaps most strik-
ingly, we identified dramatic alterations in the coordination
between predicted effectors of the three most prevalent fungal
species and over 5,000 Norway spruce transcripts. This finding
provides a mechanistic link between the broad structural and
functional changes observed in the fungal community, with alter-
ations in the complex molecular dialogue that coordinates the
host with its prospective fungal partners.

The response of a single tree to a confluence of effectors from
competing fungal species is necessarily an emergent property
(59), as individual microbes employ a repertoire of effectors (the
“effectome”) that can function pleiotropically (60), redundantly
(61), or in concert with each other (62) to affect generic or
species-specific processes (63). Global analyses of environmental
samples, such as the one described here, can capture these tree-
level emergent properties in action, providing crucial insight into

Fig. 5. Functional analysis of Norway spruce genes displaying positive and negative coordination with predicted fungal effectors. (A) The present set
of genes assigned to Co. glaucopus, P. olivaceum, and Ce. geophilum reference genomes were assessed using the fungal effector predictive tool EffectorP
(Materials and Methods). The hierarchically clustered transcript abundance of the predicted fungal effectors is displayed for each species. (B) Spearman’s
rank correlation was carried out between the expression profiles of the predicted fungal effectors and all Norway spruce transcripts, in both the NL and NE
seasonal time courses. The number of Norway spruce genes that satisfied the given Rs (r > 0.7 or < �0.7) and adjusted P thresholds (<0.001) with a given
fungal effector are displayed. Genes positively correlated in NL conditions are displayed in light green, negatively correlated in NL are displayed in dark
green, positively correlated in NE are displayed in light gold, and negatively correlated in NE are displayed in dark gold. Significant (adjusted P < 0.05) func-
tional enrichments for these gene groups are provided (SI Appendix, Figs. S9–S11). Specific coordinated effectors discussed in Results are marked in bold.
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their complex in vivo activities and sufficient resolution to iden-
tify individual species within the ECM community driving these
emergent responses. For Co. glaucopus and P. olivaceum, we
observed the transcript abundance of a number of predicted effec-
tors decrease drastically when the resource trading conditions
were less favorable in NE conditions, particularly during the
period of active fertilization (weeks 23 to 34). In contrast,
although the number of Ce. geophilum effectors expressed in NE
conditions was the same in NL conditions, the magnitude of
their expression was greater in NE conditions (Fig. 5, Ce. geophi-
lum heatmap). Taken together, this suggests the decoupling of
P. olivaceum and Co. glaucopus from their host becomes most
pronounced following fertilizer application, while the absence of
such a response in Ce. geophilum effectors indicates this species is
particularly well adapted to N-rich environments.
To date, what little is known of fungal effector function is

the result of detailed experimental characterization of individual
effectors under controlled conditions. These approaches have
provided insights into their diverse modes of action (64), their
spatial and temporal kinetics (65), and the host processes
commonly targeted (66). Many of the candidate effectors iden-
tified in this study possessed qualities linked to interference
with protein posttranslational modification (Tyr phosphatase
dual domain, protein kinase domain, and Tyr kinase active
site), protein stability/folding (DnaJ, calreticulin/calnexin, and
peptidyl-prolyl cis-trans isomerase FKBP2/11), or protein deg-
radation (proteasome subunit-β5 and UBQ-conjugating E2).
Such mechanisms have been widely described during phyto-
pathogenic interactions (67), for example, during infection the
Phytophthora sojae effector Avr1d competitively binds with a
soybean E3 ubiquitin ligase, preventing its self-ubiquitination
and degradation, leading to increased plant susceptibility to
infection (68). Similarly, in Pseudomonas syringae, the effector
HopBF1 phosphorylates plant HSP90 to inhibit the chaper-
one’s ATPase activity, which blocks its initiation of the plant
hypersensitive response (69).
We also identified five candidate effectors putatively involved

in host transcriptional regulation [e.g., leucine zipper domain,
Zn (2)-C6 fungal-type DNA-binding domain, and subunits of
the Mediator complex and transcription initiation factor IID].
Compromised immunity arising from effector-mediated inter-
ference of host transcription has been described in several
plant–microbe interactions, including mutualistic symbioses.
For example, the interaction of the symbiosis effectors SP7 of
Rhizophagus irregularis with the pathogenesis-related transcrip-
tion factor ERF19 of Medicago truncatula, and MiSSP7 and
MiSSP7.6 of Laccaria bicolor with the jasmonic acid transcrip-
tional corepressor PtJAZ6 and the transcription factors PtTri-
helix1 of Populus trichocarpa, respectively (16, 70, 71). Notably,
we identified a number of effectors with potential targeting to
mitochondria, two of which (one from Co. glaucopus and one
from P. olivaceum) possess a domain common to translocase
complex proteins of the inner membrane (TIM), which
has been linked to mitochondrial-mediated plant immunity in
A. thaliana (72, 73). Although mitochondria play a central role
in the plant defense response, it is only recently that the effec-
tor proteins MoCDIP4 and Avr-Pita from Magnaporthe oryzae
were shown to modulate rice susceptibility by targeting a mito-
chondrial DnaJ protein (74) and a cytochrome c oxidase (75),
respectively, revealing a novel pathogen infection strategy
targeting host mitochondria. Future efforts to experimentally
validate candidate fungal effectors (such as those identified
here) (Fig. 5 and SI Appendix, Table S1) would be bolstered
by the integration of these functional predictions with the

foreknowledge of their expression dynamics, not only in regard
to treatment and colonization-checkpoints, but in relation to
the greater fungal effectome (including self and fungal competi-
tors) and their coexpression with host functions.

The reduction of total fungal reads in NE soils (consistent
across growing seasons and methodologies) (Fig. 1A and SI
Appendix, Fig. S2B) concurs with previous observations that
increasing nutrient gradients or active fertilization in boreal
soils decreases ECM mycelium and sporocarp production (76,
77). Extramatrical mycelia represent a substantial proportion of
total belowground C (78). However, beyond absolute fungal
biomass, mycelial taxonomic composition has also been shown
to influence the accumulation of C through the production of
degradative enzymes (79) and the varying recalcitrance of fun-
gal necromass (25, 80, 81). The Basidiomycota Cortinarius
underwent the most dramatic reduction in assigned fungal
reads in response to NE conditions (Fig. 1 and SI Appendix,
Fig. S2), coincident with a decoupling of broad-scale fungal
and tree functions related to growth and solute transport
(Fig. 4), as well as highly specific predicted fungal effectors and
tree functions associated with supporting mycorrhizal partners
(e.g., sugar efflux transporters and symbiont-response processes)
(Fig. 5). This genus comprises well characterized ECM fungi
with energetically demanding lifestyles that employ medium-
distance fringe exploration strategies and secrete oxidative
enzymes capable of degrading lignin (79, 82–85). Due to the
elaborate foraging strategies of Cortinarius spp., they have some
of the highest C demands of all ECM (86) and are thus highly
sensitive to reduced C flow from host roots (83, 87–89). The
capacity of members of the genus Cortinarius to degrade recal-
citrant soil organic matter is unique among ECM fungi and
they exert a disproportionate impact on soil C turnover (90). A
recent study demonstrated the presence of Cortinarius species-
complex members in the organic topsoil of boreal forests
resulted in a 33% decrease in local C storage (90). This finding
disputes the prevailing consensus that the functional redun-
dancy inherent to complex microbial communities will offset
the loss of an individual species. Thus, the collapse in symbiotic
coordination and diminished presence of Cortinarius spp. in
the fungal community observed in our study suggests that
increased atmospheric N deposition and enhanced mineraliza-
tion rates linked to warming soils will reduce the abundance
and activity of these keystone degraders of lignified plant matter
and humus in boreal soils.

Contrasting this reduction in Basidiomycete abundance, NE
resulted in increases in the Ascomycetes Ce. geophilum (Fig. 1),
accompanied by an intensification in transcriptomic coordina-
tion with the host tree, at both a broad-scale with fungal pro-
cesses linked to metabolism, cell wall remodeling, and nutrient
transport (Fig. 4 and SI Appendix, Fig. S8), and a fine-scale
involving a suite of predicted fungal effectors with putative
functions, ranging from transcriptional regulation to protein
ubiquitylation (Fig. 5 and SI Appendix, Table S1). Ce. geophi-
lum is a globally distributed and highly versatile short-range
exploratory ECM fungus with distinctive black hyphae result-
ing from heavily melanized cell walls (91, 92). This heavy mela-
nization makes these fungi resilient to adverse environmental
conditions, such as drought (93, 94), and can act as virulence
factors during root colonization (95, 96). Notably, melanized
necromass is also highly recalcitrant to decomposition (97, 98),
with the mycelia of Ce. geophilum demonstrated to persist in
soils up to 10 times longer than that of other ECM species (92,
99). This suggests that while NE resulted in reduced overall
fungal biomass (31), it triggered an absolute increase in
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recalcitrant fungal necromass that is more likely to contribute
to long-term C storage. This store of organic C would necessar-
ily benefit microorganisms with the capacity to access it. Func-
tional analysis of Ce. geophilum transcripts highly expressed in
both nutrient treatments revealed a significant enrichment of
chitinases and functions associated with polycyclic aromatic
hydrocarbon degradation (SI Appendix, Fig. S4) (Ce. geophi-
lum), a cohort of functions that have previously been impli-
cated in the degradation of environmental pollutants and,
notably, melanins (100). These enzymes play essential roles in
accessing stores of melanized fungal necromass and the self-
digestion processes (autolysis) utilized for remodeling of myce-
lial architecture (80). The expression of these functions in both
NL and NE conditions suggests that the capability to oxida-
tively degrade melanin could be a crucial function for Ce. geo-
philum, regardless of soil nutrient status, with the corollary that
access to these growing reserves of recalcitrant C in NE soil has
the potential to further reinforce this species’ position in the
rhizospheric community. However, strategic experimentation
will be needed to discriminate the overlapping roles these deg-
radative enzymes play in mycelial autolytic remodeling and
nutrient scavenging.
As boreal forests harbor globally significant amounts of C,

understanding the biogeochemistry of boreal soils is essential
for informing strategic responses to future climate scenarios.
One area where such understanding is needed was revealed by a
recent metaanalysis of over 100 elevated CO2 experiments (12)
that has challenged the consensus of existing ecosystem model-
ing. Previous models had predicted increases in terrestrial C
sequestration under elevated CO2 conditions, while this metaa-
nalysis suggests instead that the increased biomass of ECM-
associated plants will be supported by augmented nutrient
uptake and result in reduced soil organic C accumulation.
Recent field experiments have shown that trees exposed to ele-
vated CO2 increased belowground C allocation, resulting in
enhanced production of fine roots (101) and higher rates of soil
CO2 efflux (102). This alteration in belowground C allocation
represents a revealing counterpoint to the impact of soil nutri-
ent enrichment examined in the present study.
CO2-driven increases in belowground C-availability could

cause reciprocal changes in the dominance and activity of Basi-
diomycetes (such as Cortinarius and Piloderma species) at the
expense of Ascomycetes (such as Ce. geophilum and Meliniomyces
species). Potentially, this CO2-driven shift in community compo-
sition could result in a gradual increase in oxidative decomposi-
tion of soil organic matter (103) and a decrease in recalcitrant
fungal necromass, triggering a reduction in the capacity of boreal
forest soils to sequester C but an increase in tree biomass. This
conflict between observed and modeled C cycling highlights the
uncertainty of climate projections that underestimate the impor-
tance and scale of rhizospheric processes and emphasizes the need
to monitor and integrate the diverse biogeochemical processes
contributed by microbial communities and their host plants.
Metatranscriptomic approaches, such as the one described here,
can aid in functionally resolving these processes and will add to
our conceptual framework of global C sequestration and ecosys-
tem stability in future climate conditions. Notably, this approach
advances studies of complex microbial communities from being
purely taxonomic, using DNA-based methods, to identifying
causative process-driven links and alterations in the transcrip-
tional coordination of mycorrhizal associations. Additionally,
minor user adjustments to this opensource and reproducible
methodology will enable high-resolution monitoring of a range of
host–microbe systems, from pathologies arising from dysbiosis in

the human body, to applications in a diversity of threatened
ecosystems.

Materials and Methods

Samples were collected at the Flakaliden research site (64°070N, 19°270E, alti-
tude 310 to 320 m) in the boreal forests of northern Sweden [for details of the
site, please refer to Haas et al. (83)]. Treatment of designated experimental plots
within the forest stand of an optimal nutrient solution of macro- and micronu-
trients—including N, P, K, Mg, Ca, S, Fe, B, Mn, Cu, and Zn—commenced in 1987
and was updated yearly based on analysis of the foliar nutrient status at the site
(104). Five root sample replicates were harvested from a single NL plot and a sin-
gle NE plot (SI Appendix, Fig. S1A, plots 6A and 7A, respectively) at each time
point during 19 wk over the 2011 growing season (May to October). Root sam-
ples were harvested from 0- to 25-cm-deep soil, cleaned, frozen, and ground.
RNA was isolated from 75 mg of tissue using the Ambion Plant RNA Isolation
Aid and the Ambion RNAqueous kit, followed by a DNA-free kit DNase treatment.
RNA concentration was determined using a Nanodrop NL100 and RNA quality
was assessed using an Agilent 2100 Bioanalyzer. The RNA-seq raw data are pub-
licly available in the European nucleotide archive (ENA) with the accession no.
PRJEB35805 (105). In 2012, three sample replicates were harvested from each
of three replicate NL plots and three replicate NE plots (SI Appendix, Fig. S1A,
plots 4A, 6A, and 14A; and 1A, 7A, 13A, respectively), at four time points over
the 2012 growing season. For these samples, DNA and RNA was isolated. The
ITS1 amplicon sequencing data generated from these samples were published
previously (83) and reanalyzed by Schneider et al. (106). RNA extracted from
these Norway spruce root samples was sequenced as described above. This low
temporal resolution collection was used to validate the high temporal resolution
samples collected in 2011, in reference to 1) year-to-year variation, 2) interplot
variation, and 3) a complimentary ITS amplicon sequencing approach.

Norway spruce RNA-seq data were preprocessed and aligned with SortmeRNA
(107), Trimmomatic (108), and Salmon (109). Preprocessing and analysis of
metatranscriptomic data were implemented in a reproducible snakemake work-
flow available on Bitbucket (https://bitbucket.org/scilifelab-lts/n_street_1801/). A
detailed description of software, including parameters and versions used in the
workflow, has been published in a separate article (106). Assembled fungal tran-
scripts were assigned taxonomic annotation based on sequence similarity to avail-
able reference genomes, with ≥85% similarity required for species assignment,
≥60% similarity for genus assignment, and ≥45% for phylum assignment (110,
111). If a similarity threshold to a given taxonomic level was not satisfied, the pre-
fix “Unclassified” was assigned before the next highest classification (e.g.,
“Unclassified Cortinarius” indicates similarity to the available reference genome
was >60% but <85%). Functional annotations were assigned using eggnog-
mapper (112) and the eggNOG database. For both Norway spruce and fungi,
high-dimensional data analysis was performed using principal component analy-
sis (PCA) and extended with PHATE (113). Differential expression analysis and
variance stabilization transformation were carried out with DESeq2 (114). Coex-
pression networks were constructed using Seidr (115) and clustered using Info-
map (116). Gene-enrichment tests were carried out with Gofer3, an in-house tool
at the Umeå Plant Science Centre (DOI:10.5281/zenodo.3731544). All enrich-
ment tests can be accessed on the BRA web app (https://www.boreal-atlas.info/).
All other analyses were executed using in-house tools. All scripts are available on
Github (https://github.com/loalon/flakaliden-2011).

Data Availability. All enrichment tests can be accessed on the BRA web app
(https://www.boreal-atlas.info/). The RNA-seq raw data are publicly available in
the European nucleotide archive (ENA), https://www.ebi.ac.uk/ena/browser/
(accession no. PRJEB35805) (105). All other analyses were executed using
in-house tools. All Scripts data have been deposited in GitHub. (https://github.
com/loalon/flakaliden-2011).
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