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Abstract

Background: Salinity tolerance in wheat is imperative for improving crop genetic capacity in response to the
expanding phenomenon of soil salinization. However, little is known about the genetic foundation underlying salinity
tolerance at the seedling growth stage of wheat. Herein, a GWAS analysis was carried out by the random-SNP-effect
mixed linear model (mrMLM) multi-locus model to uncover candidate genes responsible for salt tolerance at the
seedling stage in 298 Iranian bread wheat accessions, including 208 landraces and 90 cultivars.

Results: A total of 29 functional marker-trait associations (MTAs) were detected under salinity, 100 mM NaCl (sodium
chloride). Of these, seven single nucleotide polymorphisms (SNPs) including rs54146, rs257, rs37983, rs 18682, rs55629,
rs15183, and rs63185 with R? > 10% were found to be linked with relative water content, root fresh weight, root dry
weight, root volume, shoot high, proline, and shoot potassium (K1), respectively. Further, a total of 27 candidate
genes were functionally annotated to be involved in response to the saline environment. Most of these genes have
key roles in photosynthesis, response to abscisic acid, cell redox homeostasis, sucrose and carbohydrate metabolism,
ubiquitination, transmembrane transport, chromatin silencing, and some genes harbored unknown functions that
all together may respond to salinity as a complex network. For genomic prediction (GP), the genomic best linear
unbiased prediction (GBLUP) model reflected genetic effects better than both bayesian ridge regression (BRR) and
ridge regression-best linear unbiased prediction (RRBLUP), suggesting GBLUP as a favorable tool for wheat genomic
selection.

Conclusion: The SNPs and candidate genes identified in the current work can be used potentially for developing
salt-tolerant varieties at the seedling growth stage by marker-assisted selection.

Keywords: Association mapping, Abiotic stress, Genomic selection, Genotyping-by-sequencing; Salinity stress,
Seedling, Wheat accessions

Background

Common wheat (Triticum aestivum L.) provides nearly
20% of the global supply of calories and carbohydrates
for human consumption [1, 2]. The productivity of this
crop is challenged by several threats like human activi-
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worldwide is salinity/salt stress, which damages numer-
ous physiological, biochemical, and molecular pro-
cesses [5, 6]. Salinity is one of the important abiotic
stresses that can seriously disrupt wheat production
[7]. Generally speaking, when neutral soluble salts
(chlorine, calcium, sodium, etc.) excessively accumulate
in the rhizosphere, they can disrupt nutrient uptake [8].
Therefore, excess salts in the soil can lead to nutrient
imbalance and ionic toxicity/deficiency, which nega-
tively affect wheat yield [8-10]. Previous studies have
demonstrated yield loss of up to 50% in wheat when
exposed to a high salt concentration [11]. Thus, there is
a demand to uncover salinity-responsive genes and use
them to develop new salt-tolerant varieties [12].

Salt tolerance is a complex trait that includes a vari-
ety of genes, regulation networks, signal transductions,
and metabolic pathways [13-16]. On the other, wheat
response to saline environments depends on the dura-
tion and intensity of the stress and differs between geno-
types as well as growth stages [17, 18]. For these reasons,
assessing a genetic panel for salt tolerance at the seed-
ling growth stage is a difficult task for wheat breeders.
To make further progress in the development of salin-
ity-tolerant wheat varieties it is crucial to get a better
understanding of the molecular basis of salinity toler-
ance-related traits by using genetic tools, like quantita-
tive trait loci (QTL) mapping [19].

QTL mapping has been used for detecting genes/
genomic regions linked to salt tolerance traits, such as
bio-physiological (e.g., Na™/K" ratio) and agronomical
traits (e.g., grain yield) in the salt-stressed wheat fields
[7, 15, 19]. Importantly, these endeavors have relied on
mapping populations of small size and a low number of
SSRs markers, reflecting a limited resolution of QTLs,
which cannot be reliably adopted in the marker-assisted
selection. In contrast, genome-wide association study
(GWAS) provides an alternative to QTL mapping for
identifying genes linked to the phenotype of interest [20].
Association mapping can be performed by single-locus
(GLM and MLM) or multi-locus (mrMLM) models [21].
GLM and MLM models adopt a genome scan by testing
SNP markers at a time and need strict multiple test cor-
rection (e.g., Bonferroni) for managing false positives.
However, this process is often too conservative and may
lead to the loss of statistical power, failing to detect true
associations that may be important. Moreover, single-
locus models cannot simultaneously estimate all marker
effects, and thereby cannot present a proper model for
complex traits, which are controlled by the cumulative
effect of several genes. To overcome these challenges,
multi-locus approaches have started to be widely adopted
as an alternative approach for dissecting the molecular
basis of quantitative traits in plants and crops [22-49].
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Previous studies presented experimental evidence
regarding the QTLs/ candidate genes related to the salt
tolerance at the seedling stage (i.e., seedling salt toler-
ance) in various plants/crops. In a research attempt,
Luo et al. [30] elucidated the genetic basis of seed-
ling salt tolerance by 557,894 polymorphic SNPs on
348 maize inbred lines. They identified 13 candidate
genes associated with seedling salt tolerance by GWAS,
among which, ZmPMP3 and ZmCLCg were confirmed
as genes involved in seedling salt tolerance. Interest-
ingly, ZmCLCg was found as a chloride transport in
maize. By using 18,430 polymorphic SNPs on 149 cotton
genotypes, Zheng et al. [7] found six seedling salt toler-
ance genes, including Gh_D08G1309, Gh_D08G1308,
Gh_A01G0908, Gh_A01G0906, Gh_D01G0945, and
Gh_D01G0943, which were found to be responsible for
cell amplification, auxin response, N-glycosylation, trans-
membrane transport, osmotic pressure balance, sucrose
synthesis, and intracellular transport, respectively. Tha-
bet et al. [28] evaluated 121 barley accessions for seed-
ling salt tolerance by using 9K SNPs and revealed around
1500 candidate genes, which encode potassium channels
mapped on Ch.1H. The squamosa promoter-binding-like
protein 6 at Ch.5H was detected to be linked with seed-
ling salt tolerance. Screening a total of 203 rice accessions
led to uncovering of 26 QTLs for seedling salt tolerance.
Candidate genes for promising QTLs included glycosyl
hydrolase, sucrose transporter, leucine zipper TF, ammo-
nium transporter, and MYB TF [48].

As auxiliary tools for GWAS, genomic predic-
tion boosts the speed and effectiveness of breeding by
decreasing the time required for breeding cycles and
by increasing selection accuracy [23]. The marker set,
genomic selection method, population structure, and
trait genetic architecture are the main factors that impact
genomic accuracy. Several projects have demonstrated
moderate to high genomic accuracy for complex traits in
barley [24], maize [25], oat [26], rice [27], and wheat [23].
However, genomic prediction of the salt tolerance at the
seedling stage has not been reported in wheat.

To the best of our knowledge, little is known about
genomic regions associated with salt tolerance at the
seedling stage in wheat. Therefore, we uncovered puta-
tive candidate genes and evaluated the genomic predic-
tion accuracy of salt tolerance at the seedling stage using
three methods for building a genomic selection model,
namely GBLUP, RRBLUP, and BRR.

Results

Traits phenotyping

The phenotypic evaluation showed that most seedling-
related traits have lower performance under salinity
than normal conditions, highlighting salt stress limits
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seedling growth (Table 1). In the salt-stressed wheat, the
K*/Na* ratio in root and shoot exhibited nearly 53 and
33% decrease, respectively, reflecting these traits are
highly sensitive to salinity. In contrast, salt stress led to
an increase in some traits like ELI (6-fold), proline (7.8-
fold), MDA (8.2-fold), and root volume (0.85-fold), sug-
gesting that these traits are also strongly regulated by
signals from salt stress (Table 2). From the perspective of
the data desirability for GWAS analysis, a favorable range
of variation coefficient (CV > 10%) was observed for the
seedling traits, except for root volume and MDA, under
salt stress (Table 2). The highest CV was recorded for
root Kt followed by total chlorophyll, root Na™, RWC,
and SPAD, showing the potential of these traits to be
used in selection-assisted breeding. The frequency distri-
butions of seedling traits are displayed in Fig. 1S.

Pearson correlation coefficient analysis was used to
assess the correlated responses to salt stress among dif-
ferent phenotypic traits. For example, root K*/Na™ ratio
and root dry weight displayed a highly significant positive
association (0.52) (P<0.01) (Table 3).

Marker distribution

Genotyping by sequencing a total of 298 Iranian bread
wheat accessions yielded 566,439,207 unique reads. After
alignment and de-duplication, 133,039 SNPs were called
of which 10,938 had a MAF >1%, heterozygosity<10%,
and missing data<10%. These 10,938 SNPs were retained
and used for the imputation process. The final data set
included 46,203 imputed SNPs, which were used for sub-
sequent association analyses.

Linkage disequilibrium (LD)

In the panel of cultivars, LD calculation using 46,203
SNPs led to the detecting of 1,830,925 markers pairs
(MPs), of which 60% of them displayed significant link-
age. LD between marker pairs was recorded across the
21 chromosomes ranging from 0.14 (Ch.6D) to 0.37
(Ch.4A). The highest number of MPs were discovered
in the B genome (949,425, 51.85%), followed by the A
genome (675,325, 37%) and D genome (206,175, 11.26%)
(Table 4).

Implementing a similar test on wheat landraces led to
uncovering 1,828,675 MPs with a mean r* of 0.18, which
is lower than that in wheat cultivars. Of course, a big-
ger part of marker pairs was found significant (836,400,
45.74%) in landraces. LD was strongest between marker
pairs in Ch.4A (0.32), followed by Ch.2A (0.25) (Table 4).

Population kinship and structure matrix

Based on the AK formula, the optimum number of sub-
populations (K) in the association panel was estimated
at K=3 (Fig. 2S). From the PCA, first two PCs explained
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17.0 and 6.4% of the genotypic variance, respectively
(Fig. 1). Clear subpopulations were observed from the
first two PCs, which indicated three subpopulations with
admix accessions falling between clusters. As the panel
of wheat cultivars and landrace have subpopulations, the
PCA and kinship matrix were performed as variance-
covariance. The cluster analysis based on the kinship
matrix exhibited that the SBP-I subpopulation harbors
110 accessions (105 landraces and 5 cultivars), the SBP-
II harbors 38 accessions (28 landraces and 10 cultivars),
and the SBP-III harbors 144 accessions (69 landraces and
75 cultivars) (Fig. 2). A neighbor-joining tree of all acces-
sions also clearly exhibited the clustering into three sub-
groups (Fig. 3).

MTAs for seedling-related traits

Using mrMLM model, 817 and 1006 significant MTAs
were identified under normal and stress conditions,
respectively, for morphological, physiological, and bio-
chemical traits at -log;, (P) >3 (Fig. 4). Among these, 40
and 29 highly significant, functional MTAs were regarded
as “reliable” MTAs under normal and stress conditions,
respectively. The reliable MTAs were selected based on
the fact that they passed a high significance threshold and
also have a cellular function. From the reliable MTAs,
we selected “major” MTAs, which explained >10% of
the phenotypic diversity for the traits. A total of 15 and
8 major MTAs were detected for control and salt stress,
respectively (Tables 5 and 6). QQ and Manhattan plots of
top SNPs for the traits of interest are presented in Fig. 5.

Putative candidate genes for salt tolerance

The analysis of gene ontology on 29 reliable MTAs indi-
cated that the candidate genes harboring these SNPs
encode proteins involved in several biological processes,
including photosynthesis, response to abscisic acid, cell
redox homeostasis, sucrose and carbohydrate metabo-
lism, ubiquitination, transmembrane transport, and
chromatin silencing under salt stress. From the homologs
in rice (Tables 7 and 8), 25 putative candidate genes were
detected for response to salt stress.

Genomic prediction (GP)

Under stress, the highest genomic prediction accuracy
was achieved for RWC, ELI, chlorophyll, carotenoid,
protein, and CAT traits by the GBLUP method. By the
RR-BLUP method, the highest prediction accuracy was
observed for GPX, root volume, and K* content traits.
The BRR method showed the highest prediction accuracy
for SPAD and proline traits (Fig. 6). Overall, the GBLUP
model exhibited better performance than BRR and RR-
BLUP, suggesting that GBLUP is the preferable tool to
use for genomic selection in the wheat panel.
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Table 1 The t-test for seedling-related traits of Iranian bread wheat accessions between normal and salinity conditions

Variables Treatment Mean Std. Deviation Std. Error Mean Difference t-test

ELI Normal 6.5052 4.7037 02617 —14.588 —28.84**
Stress 21.093 77813 04330

SPAD Normal 35.967 32659 0.1817 —7.607 —2217*
Stress 43574 52312 0.2911

SFW Normal 14.520 1.6066 0.0894 4.8797 43.25%*
Stress 9.6406 1.2369 0.0688

Sow Normal 2.1574 0.3229 0.0180 0.7012 30.68**
Stress 14562 0.2539 00141

RWC Normal 89434 4.8421 0.2694 11.018 22.86**
Stress 78416 7.1816 0.3996

RFW Normal 89190 25019 0.1392 4.5329 2861*
Stress 4.3861 1.3587 0.0756

RDW Normal 14441 0.5354 0.0298 0.9829 31.45%
Stress 04612 0.1701 0.0095

RV Normal 14.968 4.6072 0.2564 53483 16.36**
Stress 9.6200 3.6486 0.2030

SH Normal 59.684 6.7591 03761 41262 8.289**
Stress 55558 5.8604 0.3261

RH Normal 39415 54726 0.3045 7.0728 18.40**
Stress 32342 42177 0.2347

Chla Normal 0.0236 0.0014 0.0001 0.0013 10.77**
Stress 00223 0.0016 0.0001

Chlb Normal 0.0047 0.0006 0.0001 0.0004 7.368**
Stress 0.0043 0.0007 0.0001

Total Chl Normal 0.0283 0.0012 0.0001 0.0017 16.08**
Stress 0.0266 0.0014 0.0001

Car Normal 0.0648 0.0047 0.0003 0.0015 3.829**
Stress 0.0633 0.0052 0.0003

protein Normal 13.055 1.0731 0.0597 1.8077 21.66"*
Stress 11.247 1.0476 0.0583

proline Normal 2.2568 0.3149 00175 —8.0829 —1054**
Stress 10.340 1.3412 0.0746

CAT Normal 0.0094 0.0010 0.0001 —0.0044 —40.72%*
Stress 00138 0.0017 0.0001

GPX Normal 0.1759 0.0391 0.0022 —0.0672 —17.14*
Stress 0.2431 0.0586 0.0033

MDA Normal 34735 24921 0.1387 —8.6083 —39.58**
Stress 12.082 30116 0.1676

Na-s Normal 1202.5 397.97 22.144 — 23985 —41.54**
Stress 3600.9 95840 53.327

Na-r Normal 1366.6 159.57 8.8787 —3437.8 —133.3*
Stress 4804.3 435.16 24213

K-s Normal 78425 889.07 49469 23935 3.259*
Stress 7603.2 975.54 54.280

K-r Normal 64237 1029.1 57.262 —337.52 —5.856**
Stress 6761.3 117.58 6.5423

K/Na-s Normal 7.5608 3.3085 0.1841 53262 28.57%
Stress 2.2346 0.5302 0.0295

K/Na-r Normal 4.7981 0.8874 0.0494 36246 71.60%*
Stress 1.1734 0.2003 00111

Abbreviations: ELI Electrolyte leakage, SFW SPAD; Shoot fresh weight, SDW Shoot dry weight, RWC Relative water content, RFW Root fresh weight, RDW Root dry
weight, RV Root volume, SH Shoot height, RH Root height, Ch/ a Chlorophyll a, Chl b Chlorophyll b, total Chl Total chlorophyll, Car Carotenoid, CAT Protein; proline;
catalase, GPX Guaiacol peroxidase, MDA Malondialdehyde, Na-s Shoot Na, Na-r Root Na, K-s Shoot K, K-r Root K, K/Na-s Shoot K/Na, K/Na-r root K/Na, Std. Dev. Standard
deviation
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Table 2 Descriptive statistics for seedling-related traits of Iranian bread wheat accessions under normal and salinity conditions
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Normal Sat stress

Trait Minimum Maximum Mean Std. Dev. CV (%) Minimum Maximum Mean Std. Dev. CV (%)
ELI 1.66 38.72 6.51 4.70 72.19 21.09 7.78 46.25 6.74 14.57
SPAD 27.30 4820 35.96 3.26 9.06 43.57 523 60.50 30.65 50.66
SFW 10.28 2142 14.52 1.60 11.02 9.64 1.23 12.90 6.06 46.97
SDW 135 345 2.15 032 14.88 145 0.25 242 0.75 30.99
RWC 50.65 98.61 8943 4.84 541 7841 7.18 90.69 48.74 5374
RFW 3.15 16.44 8.92 250 28.03 4.38 1.36 777 1.78 2291
RDW 046 345 144 0.53 36.81 0.46 0.17 0.97 0.1 11.34
RV 530 32.20 14.96 4.61 30.82 9.62 3.65 27.55 20 7.25
SH 3525 81.0 59.68 6.76 11.33 5555 5.86 74.0 40.0 54.05
RH 26.0 58.50 3941 547 13.88 3234 4.22 46.0 22.5 4891
Chla 0.019 0.03 0.023 0.001 435 0.022 0.002 0.031 0.016 5161
Chlb 0.002 0.007 0.004 0.0006 15 0.004 0.0006 0.0069 0.002 28.99
Total Chl 0.023 0.03 0.028 0.0012 4.28 0.026 0.0013 0.033 0.022 66.67
Car 0.048 0.097 0.064 0.0046 7.8 0.06 0.0052 0.094 0.045 47.87
protein 797 16.04 13.05 1.073 8.22 11.25 1.047 14.51 6.37 43.90
proline 093 3.16 2.25 0314 13.95 10.34 1.34 19.93 744 3733
CAT 0.007 0.014 0.009 0.0009 10 0.014 0.0016 0.024 0.009 37.50
GPX 0.095 049 0.17 0.03 17.65 0.24 0.058 049 0.124 2531
MDA 1.119 24,57 347 249 71.76 12.08 3.01 31.94 312 9.77
Na-s 400.0 2900 1202 397.96 331 3601 95840 8100 1500 18.52
Na-r 800.0 2000 1367 159.56 11.67 4804 435.15 6500 3500 53.85
K-s 5060 11,900 7843 889.06 11.34 7603 975.54 10,830 5060 46.72
K-r 2140 9910 6424 1029 16.02 6761 117.57 6770 4860 71.79
K/Na-s 293 29.50 7.56 331 43.78 2.23 0.53 507 0.77 15.19
K/Na-r 1.67 8.69 4.79 0.88 18.37 117 0.20 227 0.65 2863

Abbreviations: ELI Electrolyte leakage, SFW SPAD; shoot fresh weight, SDW Shoot dry weight, RWC Relative water content, RFW Root fresh weight, RDW Root dry
weight, RV Root volume, SH Shoot height, RH Root height, Ch/ a Chlorophyll a, Chl b Chlorophyll b, total Chl Total chlorophyll, Car Carotenoid, CAT Protein; proline;
catalase, GPX Guaiacol peroxidase, MDA Malondialdehyde, Na-s Shoot Na, Na-r Root Na, K-s Shoot K, K-r Root K, K/Na-s Shoot K/Na, K/Na-r root K/Na, Std. Dev. Standard

deviation

Discussion

Breeding for salt tolerance in wheat is a challenging task due
to the polygenic nature of this trait and the polyploid nature
of the wheat genome. This task is further complicated by the
fact that various mechanisms are adopted for salinity toler-
ance at the seedling and adult growth stages [24]. To the best
of our knowledge, little is known about genomic regions
associated with salt tolerance at the seedling stage in wheat.
With such a situation in mind, we developed a GWAS panel
consisting of 298 Iranian bread wheat accessions and used
this panel to identify candidate genes involved in controlling
salinity tolerance at the seedling stage.

The impact of salinity on wheat seedling traits

In-depth phenotyping is a key part of a GWAS procedure
[29]. Herein, a total of 25 seedling-linked traits were eval-
uated that have been previously employed for QTL map-
ping of salinity tolerance at the seedling stage in cotton,

rice, and maize [7, 9, 10]. Similar to our observations,
previous reports have also shown that salinity negatively
affects seedling-related traits [29-32]. In a conclusion,
salt stress remarkably limits wheat seedling growth, as
previously reported by Liang et al. [9].

From our findings, a negative correlation was found
between Na™ levels and root volume, showing the det-
rimental effect of sodium ions on the root system. The
inherent capability of accessions to maintain low Na™
levels is thus one of the critical parameters inducing salt
tolerance. Other mechanisms for salt tolerance include
tissue tolerance and Na' compartmentalization which
may be also involved in salinity tolerance at the seedling
stage in wheat accessions [33].

Population structure of the wheat panel
Structure analysis disclosed three subpopulations among
298 Iranian bread wheat accessions. The results from
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Fig. 1 Principal component analysis for 298 Iranian bread wheat accessions (each red dot in the figure represents a genotype). PCA analysis, the
estimated PCs showed that PCs 1 and 2 explained 17.0 and 6.4% of the genotypic variation, respectively

the PCA also support this observation. Interestingly, the
clustered pattern of wheat accessions was not consistent
with their geographical distribution or origins (Table S1,
Table S2, and Fig. 3). This can be likely attributed to the
migration of farmers to different regions and germplasm
exchange across institutes and researchers across the
world [32].

Linkage disequilibrium in wheat sub-genomes

In line with previous reports, most markers were located
in the B and A genomes [34], and the same trend was
recorded for MPs in LD. The higher variation observed
in the A and B genomes is likely a consequence of two
factors [35], the older evolutionary history of these
genomes and gene flow from the species T. turgidum
(but not Ae. tauschii) to common wheat. From our
observations, LD and marker distance across the A and
B genomes were much lower than in the D genome. The
fact that cultivars exhibit higher LD in contrast to lan-
draces is likely a result of selection events during crop
breeding [23]. In addition to selective breeding, other
factors such as recombination, population relatedness,
genetic drift, mutation, and mating systems affect link-
age disequilibrium in wheat and other plants [36].

Candidate genes for salt tolerance at the seedling stage

To date, many genes and QTLs connected with salin-
ity tolerance at the seedling stage have been reported
by association and linkage mapping in various crops
and plants. However, little is known about the link
between genomic regions associated with seedling salt
tolerance with corresponding mechanisms in bread
wheat. We successfully identified 27 putative candi-
date genes for salinity response that encode proteins/
enzymes involved in antiporter, electron transfer,
kinase, hydrolase, endoribonuclease, ATPase, gluta-
mate receptor, metalloaminopeptidase, glycosyltrans-
ferase, oxidoreductase, acyltransferase, calcium ion
binding, ubiquitin transferase, sucrose synthase,
etc. From mapping wheat SNPs on the rice genome,
25 putative candidate genes, including OsPAPId,
OsPAPIc, OsIDI4, OsGPCR, OsENODL6, OsGELPS3,
OsWD40, OsRFPH2, and OsRLCK202 were shown
to be responsive to salinity. We must remind that the
genomic regions associated with seedling salt toler-
ance, it is a problematic comparison across various
studies because of the difference in the mapping popu-
lation and marker platforms, as well as the absence of a
consensus map for comparing genomic locations.
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and the SBP-IIl harbors 144 accessions (69 landraces and 75 cultivars)
.

Fig. 2 Kinship matrix-based cluster analysis for 298 Iranian bread wheat accessions reflecting three population substructures, Sub.1, Sub.2, and
Sub.3. SBP-I subpopulation harbors 110 accessions (105 landraces and 5 cultivars), the SBP-Il harbors 38 accessions (28 landraces and 10 cultivars),

Candidate genes for root/shoot height and weight

Root and shoot height and weight are key traits that spec-
ify plant architecture and affect grain yield in salt environ-
ments. The genetic basis of these traits is complex, and
controlled by many genes and the environment [32]. To
date, several genes have been found to be responsible for
controlling root/shoot height and weight at the seedling
stage of various plants [10, 28—32]. In this study, the mark-
ers rs53540, rs35884, rs257, rs37983, rs18682, rs55629,
and rs44076 were linked to shoot fresh weight, shoot dry
weight, root fresh weight, root dry weight, root volume,
root length, and shoot height traits, respectively, allowing
the identification of reliable salt-responsive genes. Among
these, TraesCS1D02G156100, TraesCS3B02G182700,

TraesCS7B02G339500, TraesCS3B02G227800, TraesC-
S4A02G415700, and TraesCS1B02G480700 explained
a large fraction of the phenotypic variance (> 10%) and
classified as “major” candidate genes. Which can be tar-
geted in future research. From mapping, the wheat SNPs
on the rice genome, the root volume-connected SNP on
the rice Ch.9 led to the detecting the IDI4 gene of 1-ami-
nocyclopropane-1-carboxylate synthases family, which
have a critical function in response to hypoxic stress in
crops [37].

Candidate genes for RWC and proline content
Two major candidate genes TraesCSID02G156100
and TraesCS4A02G415700 were identified that control
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RWC and proline and are located on Ch.1D and Ch.4A,
respectively. From mapping the wheat SNPs on the rice
genome, one proline-related SNP on the rice Ch.7 led
to discover of a member of the WD40 protein family,
WD40-145, which response to salt stress likely through

interaction with MADS-box, MYB, and bHLH TFs [38].
Interestingly, the SPAD-connected SNP on the rice
Ch.11 revealed a 2,3-oxidosqualene cyclase (OSC7),
which constructs the skeleton of cyclic triterpenoids
[39]. Terpenoids produced by oxidosqualene cyclases,
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Fig. 4 The number of marker-trait associations (MTAs) for seedling-related traits in Iranian bread wheat accessions under normal and salinity

such as a- or B-amyrin, play an essential role to cope
plant roots with salinity [40].

Candidate genes for CAT and GPX activities

In the salt-stressed seedlings, the rs10254 and rs61179
markers were detected to be associated with CAT
and GPX activities, highlighting the effect of the reli-
able responsive genes TraesCS3B02G556500 and
TraesCS1B02G048300, respectively. From mapping the
wheat SNPs on the rice genome, the homolog genes
0s05g0121900 and Os07g0105600 were uncovered for
affecting CAT and GPX activities on the rice Ch.5 and
Ch.7, respectively. The former codes a phosphate/phos-
phoenolpyruvate translocator (PPT) protein-like, which
is responsible for the development of phenylpropanoid
metabolism-derived signal molecules triggering leaf
intervene regions [41], and the latter codes a photo-
system II oxygen-evolving complex protein, which is
involved in transferring electrons within the cyclic elec-
tron transport pathway of photosynthesis.

Candidate genes for pigment contents

Salt stress can inhibit PSII activity and destroy chloro-
phyll molecules, ultimately influencing a plant’s abil-
ity to photosynthesize [38]. To date, several QTLs for
chlorophyll content has been identified during early
growth stages under salinity. In our experiment, markers
rs34693, rs18445, rs34693, and rs59624 were associated
with to chlorophyll a, chlorophyll b, total chlorophyll,
and carotenoid traits, highlighting the reliable responsive
genes TraesCS7B02G289500, TraesCS6A02G347900,
TraesCS7B02G289500, and  TraesCS6B02G343300,
respectively. Interestingly, the homolog gene CYP97A4
was earlier identified as it influenced chlorophyll b

content. Similarly, Chaurasia et al. [33] identified a
gene encoding cytochrome 450, CYP709B2, which was
involved in regulating leaf chlorophyll levels. CYPs are
known to play a key role in response to salt stress by
hormone signaling and/or through accelerating ROSs
scavenging. Kushiro et al. [25] also uncovered an Arabi-
dopsis CYP gene, CYP709B3, which is responsible for
ABA signaling and salt response. Overall, our obser-
vation suggests that the CYP gene identified from the
chlorophyll-related SNP may have a vital function in
specifying wheat response to saline soils. Le et al. [43]
found two SNPs for chlorophyll content located in the
genes OsRLCK253 (Ch. 8) and OsCYL4 (Ch. 9) in salt-
stressed rice. The first gene encodes a receptor-like
kinase, which is known to be involved in salinity toler-
ance, while the second code a cyclase-containing protein,
which negatively regulates stress tolerance linked to ROS
levels. Le et al. [43] also detected several genes associ-
ated with chlorophyll b content, including OsNUCI
(Nucleolin-like protein), OsHox33 (HDZIP III TF),
OsARF25 (Auxin response factor), OsWAK128 (OsWAK
receptor-like kinase), OsCHX15 (ATCHX protein), and
OsZFP213 (C2H2 TF). Moreover, we discovered one
MTA for total chlorophyll content that was linked to
OsENODL6 homolog, which encodes an early nodulin-
like protein in rice (located on Ch.2). Early nodulin-like
proteins have been shown to display >3-fold changes
in salt-stressed Cajanus cajan plants, thus, Awana et al.
[42] suggested their involvement in the salt response.
From mapping the wheat SNPs on the rice genome,
the carotenoid-linked SNP on the rice Ch.6 uncovered
GELP83, as a member of the GDSL esterase/lipase fam-
ily, which regulates defense response, biosynthesis of
secondary metabolites, and morphogenesis [44].
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Fig. 5 The mrMLM-based Manhattan (bottom) and QQ-plots (above) of major haplotypes for seedling-related traits under salinity conditions. X
axis represents chromosome number [1)1A, 2)1B, 3)1D, 4)2A, 5)28, 6)2D, 7)3A, 8)3B, 9)3D, 10)4A, 11)4B, 12)4D, 13)5A, 14)58, 15)5D, 16)6A, 17)68B,
18)6D, 19)7A, 20)7B, and 21)7D] and Y axis represents —log;(p). The —log10 (P-value) > 3.0 (P <0.001) was regarded as the significance threshold.
Electrolyte leakage (ELI); SPAD; shoot fresh weight (SFW); shoot dry weight (SDW); relative water content (RWC); root fresh weight (RFW); root
dry weight (RDW); root volume (RV); shoot height (SH); root height (RH); chlorophyll a (Chl a); chlorophyll b (Chl b); total chlorophyll (total Chl);
carotenoid (Car); protein; proline; catalase (CAT); guaiacol peroxidase (GPX); malondialdehyde (MDA); Shoot Na (Na-s); Root Na (Na-r); Shoot K (K-s);
Root K (K-r); Shoot K/Na (K/Na-s); root K/Na (K/Na-r)
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Table 7 Annotation of genes harbouring the homolog trait-associated SNPs across all chromosomes in rice under normal conditions

Marker Sequence Trait Ch. Position (bp) p-value FDR R? (%) Homolog gene ID Description
inrice

rs23576  TGCAGCCCCCTC ELI 4 3,555,377-3,562,902 0.000102795 0.934867761 542 OsAGO4b Argonaute and Dicer
AAAGTCCAACAA 050490151800 protein, PAZ domain
AGGAAGCCTGTG containing protein
TTCAAACATATCATC
AGTCTTCACCCGAA

rs57411 TGCAGTATCTTC SPAD 1 26,923,017 0.00017542 0997601354 10.88  Os_F0640 Protein of unknown
GAGGGCTATGTA 26,924,486 050190660700 function DUF295
CCTCAAGGTATC family protein
ATGCAGATGGTG
TCCTCTTGGAGC
ATCT

rs38145 TGCAGCTCTTCA SFW 3 11,449370- 0.000138462 0934754317 886  0s03g0317900 Similar to Eukaryotic
GTACTACGCACG 11,450,605 aspartyl protease
AAGACATCTGGA family protein
AGGTGCTTTTCA
AGTCCAACGAGA
CGTG

1512892 TGCAGCAATCATATT SDW 1 2,713,300-2,717,425 0.000144389 0991476107 10.81  0Os01g0150100 Similar to Geranylge-
ATCCAAAGGGCT ranyltransferase type |
CGAAAAGTGACC beta subunit
CGATGGTGTTGG
CACATATTGCGGC

119020 TGCAGCATATGTTAC RWC 3 31,048,351~ 0.000167852 0.897008387 8.89 PAP2 050390753100  MADS-box transcrip-
GACTTACGACTA 31,055,017 tion factor, Inflores-
CAGCTATGGCGG cence and spikelet
CTTCTCAGCCTC developmen
CACCTCGCGCGAC

152460  TGCAGAATACAA RFW 8 9,921,522-9,923,218 0.000174577 0.999283649 19.32  OsCYP96BS8 Cytochrome P450
GAAAACTTGGGT 050890262500 family protein
TGGACAGAATGC
CCTTCCAACACC
TCCAGGTCGAAG
TTCC

rs43005 TGCAGGAATGCT RDW 2 5,131,380-5,132,629 0.000323829 0.999773413 1293 050290192300 Zinc finger, RING/
TAGGAGTCCTGG FYVE/PHD-type
ATTACGGGGTTC domain containing
TCGGGGAGCTGC protein
CCTATGTGTCAT
GGGC

114133  TGCAGCACCAGG RV 2 25,329,183 0.000155995 0.660997839 10.17 050290632500 Arf GTPase activating
TTTAGTAATGGC 25,341,924 protein family protein
GCGTGAAGCGCC
GATTAAGCACTG
CCGAGATCGGAA
GAGC

520420 TGCAGCATTTTG SH 4 18,458,075~ 0.000100427 0.5998512 22.73  0s04g0377932 Similar to Gonidia
CCACCGCGAGGG 18,458,875 forming protein GIsA
TCATAAAAGGAC
GATATGCCCAGA
AAGAGGTGATGC
ACCG

15991  TGCAGAGCCCAC RH 1 3,924,401-3,926,323 0.000118389 0.410072448 8.12 0s01g0176200 UDP-glucuronosyl/
CGCTGTGGAGGC UDP-glucosyltrans-
GCAACCCGAAGG ferase family protein
CACTAGCTTGTT
TGACGAGAGTGC
CCGA

1527832 TGCAGCGAAACC Chla 3 3,260,107-3,270,386 0.00012644  0.922732948 6.15 0s03g0161100 Similar to Viral A-type
ATACGATGGATG inclusion protein
AAAATAGTACATGAT repeat containing
GTATCAAATGGA protein, expressed

AACTATGCCACGA
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Table 7 (continued)

Marker Sequence Trait Ch. Position (bp) p-value FDR R? (%) Homolog gene ID  Description

inrice

rs24738

rs7710

rs53598

rs59088

rs14676

rs3861

rs9866

rs9047

rs63113

rs58688

TGCAGCCGACCG
ATAGAATTGATC
CAGCCATCACTC
TAGGCAGCAAGG
TTCTACATCTGT
GTGC

TGCAGATAGAAC
CTTGTATTTTGCTCA
CAAAAAAGAAGA
AGATAGAACCTG
GATTCTCCTTCTT

TGCAGGTCTGGT
GAGTTTGTGCTG
GTCATCAGTCAT
CGCTCGTGCAGA
CGATACGAGGCT
CCTA

TGCAGTCGGAGC
ATCCGATGAAAA
TCAAATAAATTTGTT
TTAGCTTCATACATA
CTCCAAGCAA

TGCAGCACCTTC
CGCCCAATCGCC
ACCGACTGCTCC
TTCCGCCGCCGA
TTCCGCCGAGAT
CGGA

TGCAGACCCCTT
TCCAGAACAGCC
TCCGCGAGGTGC
TGGAGGATGAGG
AGGGGGTGCCGA
GATC

TGCAGATTACAT
CAAGGAGGACAC
CCCCGCCGACGG
GCTCGGTGATCT
GCCCGCCCAGCC
ACCG

TGCAGATGAGGC

GGTGGACGATGC
GGTCGATGCAGT

CCTGGGCGTCGT

GCACCAGGCCAA
GCAT

TGCAGTTCCAAA
TTGCCCATAACA
ACGCATACACTC
CTACACGAATAT
GTCTAGCTGTAT
CGGA

TGCAGTCCGTTT
TTAATTTCTGGCCTG
GATCAGTTTCTTCCT
CTGGATGGCCAC
GCTTATTTGT

Chl'b

Total Chl

Car

protein

proline

CAT

GPX

MDA

Na-s

Na-r

1

w

35,091,247-
35,099,291

2,226,409-2,229,526

30,011,066~
30,015,609

23,989,148~
23,997,520

11,613,231~
11,614,737

23,648,009-
23,651,073

94,937-97,746

27,441,786~
27,445,901

16,400,699-
16,432,426

21,230,590~
21,232,506

0.000103314

0.000111059

0.000127541

0.000168358

0.000173086

0.000369888

0.000141706

0.000315678

0.000170855

0.000146445

0.945323776

0.969036099

0.863340516

0.999760957

0.999106429

0.995744042

0.999955014

0.999277164

0.999948041

0.999834851

6.03

6.32

7.23

5.22

3256

6.33

5.85

6.37

5.37

10.13

CYP97A4
050290817900

050190141300

050290722700

050390628800

OsFbox137
0s03g0321300

CycD4
050890479300

Os10g0101000

050590551900

0sOSCé
050690483200

DHQDT/SDH
051290534000

Cytochrome P450
family protein

Similar to vacuolar
sorting protein 4b

Similar to Nucleic
acid binding protein

Similar to H1flk (Frag-
ment)

Cyclin-like F-box
domain containing
protein

Cyclin, A/B/D/E
domain containing
protein

Serine/threonine pro-
tein kinase domain
containing protein

Similar to EMB1865
(embryo defective
1865); RNA binding

Similar to cycloarte-
nol synthase

Similar to Dehydro-
quinate dehydratase/
shikimate:NADP
oxidoreductase
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Marker Sequence Trait Ch. Position (bp)

p-value

FDR R? (%) Homolog gene ID  Description
inrice

rs46450 TGCAGGCAGTCA K-s 6
TGTACCAGTACT
ACAACTCTCGCG
GCCGTGGCATCT
GAGCATTGGATC
ACGT

1546450 TGCAGGCAGTCA K-r 6
TGTACCAGTACT
ACAACTCTCGCG
GCCGTGGCATCT
GAGCATTGGATC
ACGT

TGCAGCTCGGCC
AGCTCCGCGAGC
AGCGCCGCGTCG
GCCGACGACTTG
GACATGTCGCCG

AGAT

TGCAGAAATAAATAT K/Na-r 3
CTTTGCCGCCCC
GCATCATTGGAA

CCTAGTCTCAAC
CCGAGATCGGAAG

28,699,601~
28,706,417

28,699,601~
28,706,417

1537461 K/Na-s 10 22,294,896-

22,297,645

15774 34,257,858~

34,263,571

0.000270262

0.000270262

0.000142161

0.000149427

0.999928028 7.98  0s06g0688100 Hypothetical con-

served gene

0.999928028 7.98  0s06g0688100 Hypothetical con-

served gene

0.566933932 5.62 SAPK3

051090564500

Serine/threonine
protein kinase,
Hyperosmotic stress
respons

0.999795877 7.93  OsSCAR3

050390816900

Conserved hypotheti-
cal protein

Candidate genes for pigment contents

From earlier studies, genotypes tolerant to saline envi-
ronments can decrease osmotic stress, absorb more K™,
and prevent Na* accumulation in order to maintain a
low Na*/K* ratio [33]. Thus, Nat and K*-related genes
were explored in our experiment to figure out K" and
Na't-dependent wheat responses to salt stress at the
seeding stage.

In a high salt environment, Na™ toxicity and osmotic
imbalance are two limiting factors for crop growth [12,
33]; so researchers have linked Na™ exclusion capabil-
ity to grain yield under salinity stress [11]. Therefore,
genes related to low Na™ content are key candidates for
improving salt tolerance in wheat. Earlier studies have
detected genomic regions associated with Na™ exclusion
on Ch. 1A, 2A, 2B, 5B, and 6B in salt-stressed wheat
[16]. Interestingly, we uncovered TraesCS1B02G472200
and TraesCS4B02G330600 as genes associated with
Na™ accumulation in the shoot and root, respectively,
suggesting these genes may play significant roles in
sodium homeostasis at the wheat seedling stage. Chau-
rasia et al. [33] found three major QTNs for Na' con-
tent in wheat (Q.Na-6DL, Q.Na-6AL, and Q.Na-2AS),
among them, Q.Na-6DL had a remarkable contribution
to Na' accumulation. From mapping the wheat SNPs on
the rice genome, the root Na' content-related SNP on
the rice Ch.4 led to the detecting of a member of RFPH
protein family, OsRFPH2-14, which operates as RING-
H2 Finger E3 ubiquitin ligase. Similarly, Liu et al. [45]

reported that the OsRFPH2-10 gene reduces the level
of P2 protein and incorporates antiviral defense at the
early infection stage.

In addition to Nat, K* homeostasis is important for
crop tolerance to salinity, since this ion is responsible
for many key physiological processes like stomata move-
ment, protein synthesis, respiration, photosynthesis,
and growth metabolic functions [46]. In fact, higher K*
content may enable wheat to tolerate salt stress by devel-
oping a root system. We successfully identified TraesC-
SU02G075800 and TraesCS5A02G109600 as genes linked
with K™ concentration in the shoot and root, respectively,
suggesting these genes are important for K™ homeostasis
at the wheat seedling stage. From the mapping of wheat
SNPs on the rice genome, the root K™ content-related
SNP on the rice Ch.6 revealed the receptor-like cyto-
plasmic kinase 202, OsRLCK202. Differential expression
patterns of OsRLCKSs at various development stages and
stress suggest its involvement in diverse functions. Lin
et al. [47] found a genomic region on Ch.1 associated
with shoot K content (OsHKTI) that explained 40% of
the phenotypic variation. Map-based cloning showed
that this gene encodes a Na* transporter, HTK1, which is
responsible for K and Na* homeostasis.

The K*/Na™ ratio is a well-known index that reflects
a whole-plant response to salt stress. Generally speak-
ing, salinity-tolerant accessions hold a low ratio of Na*/
K" in aerial parts [48]. Genomic regions related to this
trait have been detected in different plants and crops and
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Table 8 Annotation of genes harbouring the homolog trait-associated SNPs across all chromosomes in rice under salinity stress

Marker Sequence Trait Ch. Position (bp) p-value FDR R? (%) Homolog gene ID Description
inrice

rs15925 TGCAGCAGAGAG ELI 1 38,144,793~ 0.000144354 0.999599159 7.27 0s01g0878900 Similar to 4,5-
GCGCGGAAACAC 38,146,141 DOPA dioxygenase
GCGATCTCCGCA extradiol-like protein
CGCTGGGCCGLC
CCAGTGGGCGGC
GGTC

548518 TGCAGGCGGTTG SPAD 11 4,522,342-4557911 0.00012878  0.567532444 8.44 0sOSC7 2,3-oxidosqualene
GACATGGGCATG Os11g0189600 cyclase, Triterpene
CCCATCGACGAT synthase, Parkeol
TCAGACGAATAC synthas
GAGATCAACAAG
ATAT

1525433 TGCAGAGTTATA SFW 1 9,954,154-9,955,696 0.000150218 0.915267063 7.04 0s01g0280200 |Q motif, EF-hand
GGGAAGAAGAAG binding site domain
AAGGCGTACGTG containing protein
GAAAAAACGATT
CGAGGAGCGCTC
CCGT

158636  TGCAGATCGGGC SDW 12 23,805,152~ 0.000177924 0.986473673 9.28 OsPAP1d Metallophospho-
TTCCCCCACTGG 23,808,859 051290576600 esterase domain
CTTTGCGTGCGG containing protein
GCAGTTTTGGGT
GGTGCTTGCTGG
TGGC

1554146 TGCAGGTGGAAA RWC 2 15,310,546- 0.000103142 0.998787304 1033 050290458900 Conserved hypotheti-
ATGGAATCGCTA 15,324,161 cal protein
GGCCGCCGCCGA
GATCGGAAGAGC
GGGATCACCGAC
TGCC

rs257  TGCAGAAAAGTA RFW 12 23810618- 0.000259648 0.972631462 1748  OsPAPIc Similar to Diphos-
AGAAATTTGAAG 23,814,363 051290576700 phonucleotide phos-
GAGTTTTGTTCA phatase 1 precursor
ATCACCATTTTATTA
CGTGTCCTCCCGA

537983 TGCAGCTCTGAC RDW 1 36,936,986~ 0.000119634 0.879468434 16.57 050190855400 SANT domain, DNA
CGACTCCGCCTG 36,939,375 binding domain
AAGCCGCCATCG containing protein
TTGCCACACAGG
AGGACGACCTAT
TATT

1518682 TGCAGCAGTGGT RV 9 17,024,575~ 0.000185224 0961706611 10.14  OsIDI4 1-aminocyclopro-
GGTGTGCCCTTG 17,028,546 050990453800 pane-1-carboxylate
GTCCATGCCATGTTT synthase family
GTGTGCTCACCC protein
TGTGGTTGTGGTG

1555629 TGCAGTAAACCA SH 6  5060664-5064,952 0000155318 0.863370079 22.64 OsGPCR cAMP-type GPCR
ATCAAAATGCAT 050690199800 family protein
GGAACTCGCAGC
GCTGCTCCCGCT
TGTTCCCTTCGCCG

152368  TGCAGAAGTGGA RH 1 689,788-693,923 0.000287879 0.948801211 5.86 0s01g0112800 Disease resistance
GCTAGTGCAGCA protein domain con-
CGTCCTAGGTGG taining protein
GTCGGCCGACTT
GTCGTGCTGCTG

TCCG
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Table 8 (continued)

Marker Sequence Trait Ch. Position (bp) p-value FDR R? (%) Homolog gene ID Description

inrice

1534693 TGCAGCTACGGC Chla 2 3,353,590-3,358,320 0.000242824 0.999635105 7.06  OsENODL6 Similar to Early salt
GACGGCGGATGG 050290162200 stress and cold
GGCCTTGTTGGT acclimation-induced
CACCCCACTGCG protein 2-3
CGTCGCAGCGCC
TAGG

rs53998 TGCAGGTGCCTT Chlb 10 22,124,277- 0.000115546 0.96757668 642 0Os10g0561300 Similar to Monosac-
GTTGCGTGATAG 22,127,759 charid transporter
GCCGCCCCATCG
GCTCCATGGGCA
GCCAGCGATCCC
TCCA

rs34693 TGCAGCTACGGC Total Chl 2 3,353,590-3,358,320 0.000109509 0.997017439 7.48  OsENODL6 Similar to Early salt
GACGGCGGATGG 050290162200 stress and cold
GGCCTTGTTGGT acclimation-induced
CACCCCACTGCG protein 2-3
CGTCGCAGCGCC
TAGG

rs59624 TGCAGTCTGGCT Car 6 14,281,547~ 0.000121166 0.93879979  6.07 OsGELP83 Lipase, GDSL domain
GCGATGGTTTCC 14,290,711 0s06g0351500 containing protein
TCGCTTCCTCCA
CCTTCTTTAGAA
AATAGAGACGGA
GGCA

rs18946 TGCAGCATAGGA protein 4 7,136,795-7,140421 0.000114795 095311657 6.2 050490206200 DNA helicase domain
AACAGAGAACAA containing protein
GTTAAGGCTGGT
TTTAATGGTGAGTAT
CATATACTATTAT

rs15183 TGCAGCACGGCT proline 7 23,965,804~ 0.000152893 0.92929063 2321  OsWD40-145 WDA40 repeat-like
CAATCTCCTCCT 23,970,059 050790588500 domain containing
GGGACAAGATGC protein
GCGACCGTGTTG
TCGCCAACTTCT
AGGG

1527492 TGCAGCCTGTTC CAT 5 1,199,358-1,201,038 0.000103556 0.989061867 5.49 0s05g0121900 Similar to Phosphate/
CTCAATCAGTGA phosphoenolpyru-
AGGCGCGCTGCA vate translocator
CTCCGAGATGAT protein-like
CTTCAATCTTCA
AGAG

1561179 TGCAGTGGAAGC GPX 7 306,054-306,968 0.00017113  0.906304397 6.23 050790105600 Photosystem Il
GGATGGTTGAGG oxygen evolving
ACCTGCTGGCGC complex protein
TGGGCAAACTCA PsbQ family protein
ACAACTGCCTCG
CCGT

1510192 TGCAGATTGAAC MDA 2 34,853,787- 0.000141883 0.854263863 7.88 050290813600 Thiolase-like,
CCATCCTATTCTTCT 34,855,494 subgroup domain
GATTGAATTCAT containing protein
CAGTTAATTAGA
AGAAGGGAAATGG

rs61025 TGCAGTGCTAGC Na-s 3 8,679,164-8,682,334 0.000122977 0.68045149 858 050390263900 EF-HAND 2 domain
TGCATGCACGGG containing protein
GGAGGCGATGCC
ATGGCATGGCGC
GGCACGGGCACG

GGCA
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Marker Sequence Trait Ch. Position (bp)

p-value

FDR R? (%) Homolog gene ID Description
inrice

153228  TGCAGACACAAA Na-r 4
CGTCTCGTACCA

GTGGAATGTGTA
AAGAATAGTTGTTAT

ATATCTTGCCATC

TGCAGTTCCATATAG  K-s 1
CCCAAAGTAATG

CGCAAATTCCTA
TCTGAATATGTTCGG
CAATAGCTGG

rs28569 TGCAGCGACTCC Ker 6
AGCGTGTCCGAC
TTGTCGCCGTCC
GTGGCCGCCGTG
GCCGCGCGCACC
ACCA

TGCAGATTTTTTGAT
TTCAGAAGGCAC
TCGACAGCGGCA
CCGTGGAAGTCC
ATCAAACTGCCGA

TGCAGCCTCGGC
ATCTCCCGTACT
CGCTGCTCCCGA
GATCGGAAGAGC
GGGATCACCGAC
TGCC

28,744,397~
28,747,841

rs63185 41,251,235-

41,272,093

rs10633 K/Na-s 8 19,382,952~

19,386,574

1526891 K/Na-r 2 15,310,546~

15,324,161

0.000128791

0.000116307

5,018,088-5,020,389 0.000136869

0.000152288

0.000100334

0980216786 7.26  OsRFPH2-14

050490571200

Similar to OSIG-
Ba0111L12.9 protein

Similar to Esterase D
(EC3.1.1.0)

0.562674471 11.67  0s01g0939700

046984536  9.92 OsRLCK202

050690198900

Tyrosine protein
kinase domain con-
taining protein

0.959659751 867  0s08g0405700 Similar to Copper
chaperone homolog

CCH

040666194 874 050290458900 Conserved hypotheti-

cal protein

attempts are currently being made to use them in the
development of high-yield cultivars tolerant to saline soils
[16]. Earlier studies have reported the genomic regions
on 2AL, 4AS, and 7DL associated with Na*/K™ ratio in
saline fields [33, 47]. We successfully identified the genes
TraesCSU02G082000 and TraesCS6D02G403800 for
K*/Na™ ratio in shoot and root, respectively, indicating
potential targets for salt tolerance breeding. Chaurasia
et al. [33] reported a novel QTN (Q.NaK-1BS) for Kt/
Na ratio on 1BS in wheat that explain 4—-38% of the phe-
notypic variation. Annotation of this locus demonstrated
that Q.NaK-1BS is located inside the Rab-like-GTPase
gene, which plays a vital function in salt tolerance by
regulating Na' transportation [49]. Batayeva et al. [48]
found one genomic region associated with the Nat/K*
ratio on rice Ch.3 that harbored a sucrose transporter
gene. Finally, Li et al. [50] discovered one novel QTL
(gSNK3-1) located on rice Ch.3 that explains 14% of phe-
notypic variation. This QTL coincided with OsIRO3 gene,
which encodes a bHLH-type TF and acts as an inhibitor
of Fe-deficiency response in rice.

Genomic selection in wheat panel

The GP accuracy depends on the genomic selection
method, level of LD, genetic diversity in the studied
population, and genetic architecture of the studied trait

[23]. In this study, we observed that the GBLUP method
had better performance than the RR-BLUP and BRR
methods, suggesting that GBLUP is a powerful tool for
implementing genomic selection in wheat. Previous stud-
ies have suggested that high prediction accuracy can be
achieved by GBLUP if markers are closely linked to the
trait of interest. RR-BLUP works well for traits where the
genetic architecture consists of numerous loci with small
effects while the BRR approach is similar to RR-BLUP,
except marker effect shrinkage depends on population
size in BRR [23]. The better performance of GBLUP
in our study could depend on the fact that SNPs in this
study were closely associated with salt tolerance traits at
the seedling stage in wheat.

Conclusion

Our work provides new insights into the molecular
mechanisms underlying salt tolerance traits at the seed-
ling stage in wheat. Putative candidate genes control-
ling these traits, i.e. K*/Na® ratio, can be targeted for
developing salt-tolerant wheat cultivars at the seed-
ing stage using marker-assisted selection. Moreover,
genomic selection by using our putative genetic markers
along with GBLUP-based genomic prediction will help
to achieve the above-mentioned goal. Identification of
varieties with high salt tolerance at the seedling stage, as
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accuracies for the trait of interest. Electrolyte leakage (ELI); SPAD;
shoot fresh weight (SFW); shoot dry weight (SDW); relative water
content (RWQ); root fresh weight (RFW); root dry weight (RDW);
root volume (RV); shoot height (SH); root height (RH); chlorophyll a
(Chla); chlorophyll b (Chl b); total chlorophyll (total Chl); carotenoid
(Car); protein; proline; catalase (CAT); guaiacol peroxidase (GPX);
malondialdehyde (MDA); Shoot Na (Na-s); Root Na (Na-r); Shoot K
(K-s); Root K (K-r); Shoot K/Na (K/Na-s); root K/Na (K/Na-r)

well as knowledge of the associated SNPs and haplotype,
could be useful for wheat production and for improve-
ment of direct-seeding varieties.

Material and method

Plant material

A total of 298 Iranian bread wheat genotypes were evalu-
ated in this study. The wheat panel contained 90 cultivars
released during 1942-2014 and 208 landraces gathered
from the Persian plateau during 1931-1968. All the mate-
rials were provided by the Seed and Plant Improvement
Institute and the Tehran University, Karaj, Iran. More
details on these bread wheat accessions can be found in
Tables S1 and S2.

Experimental design and phenotyping

The wheat cultivars and landraces were assessed for salt
tolerance at the seedling stage using two salinity levels:
0 (control) and 100 (stress) mM NaCl (the selection of
100 mM NacCl stress was based on previous studies and
the tolerance threshold of wheat to salinity). The study
was carried out in a factorial experiment-completely
randomized design (CRD) with two repeats and two
factors: the first factor accounting for 298 Iranian bread
wheat accessions and the second factor for two salinity
concentrations. For each treatment, eight healthy and
surface-sterilized seeds from each accession were planted
in plastic pots (2kg, 14cm diameter, and 14cm height).
The soil composition of each pot was made up of a 3:2:1
ratio of decomposed litter, soil, and sand, respectively.
The average temperature in the greenhouse was set to
25°C during the day and 20°C during the night, with a
6h light/8h dark photoperiod and 60% relative humidity.
A thinning step was carried out at the two-leaf stage and
four seedlings remained in each pot. Salt stress was grad-
ually applied 15days after germination by adding NaCl
(25 mM) every other day together with irrigation water to
reach the final concentration of NaCl, i.e., 100 mM. Crops
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were harvested three weeks after stress to measure the
following morpho-physiological characteristics with two
repeats: root volume (RV), root length (RL), shoot height
(SH), root dry weight (RDW), shoot dry weight (SDW),
root fresh weight (RFW), shoot fresh weight (SFW),
malondialdehyde (MDA), electrolyte leakage (EL), rela-
tive water content (RWC), proline (P), soluble protein
(PC), catalase (CAT), guaiacol peroxidase (GPX), photo-
synthetic pigments, SPAD, Na™' content, K' content, and
K*/Na™ ratio.

Physiological trait measurements

Electrolyte leakage (EL)

Identical circular pieces were prepared from fully-devel-
oped leaves and placed separately in plastic-capped tubes
containing distilled water for 24h at room temperature
after which the solution’s electrical conductivity (EC,)
was measured. The tubes were put in a Ben Marie appa-
ratus at 95°C for 90 min, and after cooling to 25°C, elec-
trical conductivity (EC,) was measured. The EL% was
calculated as (EC, / EC,) x 100.

Leaf greenness

This trait was evaluated by using a SPAD-502 plus chlo-
rophyll meter. Greenness levels were recorded based on
the mean of three sections from the youngest fully-devel-
oped leaves.

Relative water content (RWC)

The highest leaves were harvested and their fresh weights
(FW) were measured immediately. To determine the turgid
weights (T'W), the leaves were put down in distilled water
overnight at low light intensity (to limit weight loss due to
respiratory activity) and then weighted again. Eventually,
leaves were placed at 70°C for 48h and their dry weights
(DW) were recorded. Relative water content (%3RWC) was
estimated as: [(FW-DW)/(TW-DW)] x 100.

Proline content
Proline level was measured using the method devel-
oped by Bates et al. [51]. Briefly, 0.5g of the fresh leaf
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4 mL of toluene were vortexed for 20s and the proline
content of the supernatant was estimated by a spectro-
photometer at 520 nm.

Total protein

Leaf protein content was estimated based on Bradford
[52]. Briefly, 500 mg of fresh tissue was homogenized in
5mL of potassium phosphate buffer (10 mM, pH 7) with
5% (w/v) PVD, followed by centrifuging for 25min at
15,000 rpm, 4°C. Bradford reagent (990 pL) was mixed
with 25 pL of supernatant and absorbance was read at
595nm.

Malondialdehyde (MDA)

To detect MDA levels, as an output of lipid peroxida-
tion, the plant extract was prepared using 1.0g of tissue
as explained by Cakmak and Horst [53]. After record-
ing absorbance at 600 and 532nm, the 155mM ™~ 'cm™!
extinction coefficient was used in the following formula to
estimate the MDA level: nM MDA = A3,-A ¢,/1.55*10°.

Antioxidant enzyme activities

To prepare the enzymatic extract, 0.1g of fresh tissue
was crushed in liquid nitrogen, followed by adding
1 mL of sodium phosphate buffer (50 mM, pH=7). The
homogenate was centrifuged for 20 min at 10,000 rpm
and 5°C after which the CAT and GPX activities were
measured from the resulting supernatant [53]. The
enzyme activities were expressed as changes in absorp-
tion/min/g of fresh weight.

Photosynthetic pigments

Carotenoid and chlorophyll (a, b, and total) levels were
measured based on the procedure described in Arnon
[54]. Light absorption was read at 645 and 663 nm by a
spectrophotometer and the chlorophyll levels were deter-
mined as follows:

Chla (mg/g fresh weight) = [12.7 (Ages) — 269 (A645)] X V/W

Chlb (mg/g fresh weight) = [22.9(Agy5) — 4.68 (A3 )] X V/W

Chl.total (mg/g fresh weight) = [20.2 (Agas) + 8.02 (Agg3)] X V/W

was mixed with 10mL of 3% sulfosalicylic acid and
completely homogenized in a mortar. To remove excess
materials from the solution, the tubes were centrifuged
for 15min at 15,000rpm, 4°C. The solution (2ml) was
mixed with 2mL of ninhydrin and 2mL of acetic acid.
The tubes were kept in a hot water bath for 1 h and then
cooled down in an ice bath for 1 h. Tubes containing

Where A is the optical absorption of samples, V is the
ultimate acetone volume, and W is the leaf fresh weight.
The total carotenoid was calculated as follows:

A xV x 10°
A% %100 x W

lcm

Carotenoids (ng/g) =
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K*/Na* ratio, Na* content, and K* content

Three leaves of individual accessions were gathered and
dried for 3 days at 55°C and 0.5g of dried leaves were cut
into pieces and put in a digestion tube (100 ml). A total
volume of 10 mL of HCIO, and HNO; (at a 1:3 ratio) was
added to the tubes. The tube was then put in a digestion
block for heating for 2 days. After cooling the transpar-
ent extract, the flasks were calibrated to a final volume of
25mL by adding distilled water. By using a Flame Pho-
tometer, the K™ and Na' contents were estimated from
the filtered solution [55].

Phenotypic data analysis

The variance analysis (ANOVA) of data collected in the
normal and salinity environments was implemented by
SAS 9.4 (SAS Institute, USA). The analysis was followed
by calculating Pearson’s correlation coefficient to disclose
significant relationships (P<0.01) between traits. The
descriptive statistics of phenotypic datasets were calcu-
lated by SPSS Statistics 21.0 (IBM Inc., USA).

Genotyping and SNP imputation

The genomic DNA was extracted from wheat seedlings
by the CTAB method [56] and RNA contamination was
removed using RNase. DNA concentration was checked
via a Thermo Scientific NanoDrop and DNA integrity
was assessed on a 0.8% agarose gel. Genotyping-by-
sequencing (GBS) was done following the published pro-
tocols [57]. After constructing GBS libraries as described
by Alipour et al. [58], sequencing reads were trimmed to
64bp and grouped into sequence tags, and SNP markers
were called after alignment, which permits mismatches
up to 3bp. Markers were called in TASSEL software
using the UNEAK pipeline. For avoiding false positive
SNPs arising from sequencing errors, SNPs were filtered
out if they had a missing rate>10%, a MAF < 1%, and het-
erozygosity >10%. The remaining missing was imputed
using LD KNNi in TASSEL [58]. In the SNP calling pipe-
line, the wheat W7984 genome assembly was regarded as
the reference genome [59].

Population structure and kinship matrix

The putative number of subpopulations (K) was deter-
mined by STRUCTURE v2.2 using 10,000 burn-in itera-
tions, followed by 10,000 proper MCMC sample steps for
K-values ranging from K=1 to K=10 [60]. The best-fit-
ting K value was determined using the AK method [61].
The matrix of population structure (Q) was calculated for
the entire sample collection using a principal component
analysis (PCA) implemented with the package Tidyverse
in R. The kinship matrix (K) was obtained using the pack-
age GAPIT in R [62]. For cluster analysis, the elements
of the kinship matrix were regarded as similarities and
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the outputs were visualized using UPGMA in GAPIT
[63]. A neighbor-joining tree was constructed based on
a pairwise distance matrix [63] and visualized by Archae-
opteryx to determine the relationship between landraces
and cultivars.

GWAS analysis

GWAS was carried out to detect marker-trait associa-
tions (MTAs) using the package mrMLM in R [21]. We
considered —log;, (P-value)>3.0 (P <0.001) as the sig-
nificance threshold based on the previous reports [58,
59]. All SNPs which met the above cut-off value were
identified as significant MTAs. The GWAS results were
visualized using Manhattan plots by the GAPIT package
[64]. In the Manhattan plot, the x-axis and y-axis repre-
sent the chromosomal positions of SNPs and the —log;,
(P-value) is derived from the F-test, respectively. Q-Q
plots were also obtained to further assess the results
obtained from the Manhattan plots [23].

Candidate gene identification

To detect candidate genes affecting salinity tolerance
during the seeding stage, regions surrounding traits-
associated SNPs were blasted against the rice and wheat
genomes in the Ensemble genome database using the
BLASTn. The IWGSC RefSeq v2.0 and IRGSP 1.0 were
selected as genome references for wheat and rice, respec-
tively [59, 65]. After alignment, genes exhibiting the high-
est blast score and identity percentage were selected for
gene ontology analyses.

Genomic prediction (GP)

The genomic prediction was performed using three dif-
ferent models: Bayesian ridge regression (BRR) [66],
ridge regression-best linear unbiased prediction (RR-
BLUP) [67], and genomic best linear unbiased prediction
(GBLUP) [68]. All GP analyses were performed using the
iPat software [69]. For three subpopulations, 10, 20, and
30% of genotypes were randomly assigned to a validation
set with the remaining individuals used as the training
set. For all of the GP procedures, the whole prediction
process was repeated 100 times for each method. The
accuracy of GP was presented as Pearson’s correlation (7)
between BLUPs and GEBVs over the training as well as
validation sets.
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