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Among mammals, the order Primates is exceptional in having a high taxonomic richness
in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestrial-
ity is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely
absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and
lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and
species-specific factors are suggested to set the conditions for an evolutionary shift from
arboreality to terrestriality, and current environmental conditions may provide analogous
scenarios to those transitional periods. Therefore, we investigated predominantly arbo-
real, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial
taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maxi-
mum temperature, precipitation, primate species richness, human population density,
and distance to roads) or species-specific traits (body mass, group size, and degree of fru-
givory) associate with increased terrestriality. We collated 150,961 observation hours
across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Amer-
icas. Multiple factors were associated with ground use in these otherwise arboreal species,
including increased temperature, a decrease in canopy cover, a dietary shift away from
frugivory, and larger group size. These factors mostly explain intraspecific differences in
terrestriality. As humanity modifies habitats and causes climate change, our results sug-
gest that species already inhabiting hot, sparsely canopied sites, and exhibiting more gen-
eralized diets, are more likely to shift toward greater ground use.

primate communities j primate evolution j evolutionary transitions j niche shift j climate change

Eutherian mammal radiations are characterized by multiple evolutionary transitions
between terrestrial, arboreal, fossorial, and aquatic lifestyles (1, 2). In primates, arboreality
is hypothesized to be the ancestral condition (2–5). The evolutionary shift in some pri-
mate lineages to terrestrial niches is associated with various morphological/skeletal adapta-
tions (6–10). Terrestriality is the prevalent strategy among some lineages of Catarrhini
primates (i.e., African and Asian monkeys and great apes) (9, 11). Conversely, adaptations
for predominantly terrestrial lifestyles are notably absent among living Platyrrhini of the
Americas and Strepsirrhini of Africa (including Madagascar) and Asia (7, 12–14). How-
ever, some of these arboreal, diurnal primates periodically use the ground (15–21).
The evolutionary transition from arboreality to terrestriality is complex and carries

debated costs and benefits (22, 23), of which three main areas are discussed. First,
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descending to the ground may come at the cost of greater pre-
dation risk (24, 25). Yet, it is unclear whether arboreal or ter-
restrial lifestyles are characterized by greater predation risks (22,
23, 26–28). Regardless, ground use by arboreal primates
exposes them to novel predators and predation patterns. Recent
natural and anthropogenically driven ecological changes, how-
ever, negatively impact native carnivore occupancy (29, 30),
and may reduce terrestrial predation risk, thus facilitating
ground use in primates (17, 20, 31–33). It should be noted,
however, that native carnivores are often supplanted by nonnative
carnivores, including dogs, which can have a negative impact on
primate populations (29, 34, 35). Second, species occurring in
naturally open canopy habitats have been shown to use the
ground frequently (36). To such a degree, environmental changes
and increasing anthropogenic encroachment on tropical forests
may act as catalysts for species to adopt terrestrial habits as can-
opy cover becomes patchy and forest fragments provide fewer or
lower quality resources. As a result, species may descend to the
ground to cross open areas more frequently to fulfill their ener-
getic requirements, access reproductive opportunities, or to dis-
perse (17, 32, 37, 38). Therefore, plasticity in use of additional
ecological niches (e.g., terrestrial stratum) may enhance resilience
to disturbance and persistence in some fragmented landscapes
(39–41). Third, extreme temperatures limit species’ biological
functions (42, 43). As the understory and terrestrial environments
are cooler than the upper canopy (43, 44), intense seasonal heat
in previously dense tropical forest environments may drive arbo-
real species to seek thermoregulatory relief on the ground (45,
46). Arboreal primates during hot periods regularly descend to
the ground to access terrestrial water sources for drinking or
immersive cooling (18, 38, 47–51), and this behavior may
become increasingly common given the cascading impacts of cli-
mate change (e.g., extreme heatwaves and droughts) (52, 53).
Primate community structure may also play an important role

leading to terrestriality. Typically, sympatric species maintain
separate niches to reduce ecological competition (54, 55). There-
fore, in sites with high primate species richness (i.e., number of
species) and greater potential for interspecific competition, spe-
cies that can expand into terrestrial niches may experience
reduced competition. As sympatric competitors, including other
primate species, are potentially crowded into smaller ranges due
to habitat losses, interspecific competition may increase until a
new state is reached (56).
Species-specific factors have also been suggested to facilitate

niche transition. Limited resource availability in the canopy may
lead to shifts in foraging strategies (57), including increased ter-
restriality (11, 16, 38). For example, arboreal species reliant on
seasonal resources may be more inclined to expand their dietary
niche to include ground-based resources during periods of food
scarcity (33). Furthermore, fully or semiterrestrial primates tend
to be larger than strictly arboreal primates and tend to live in
larger groups (22, 58, 59). Both characteristics are likely adapta-
tions to high predation pressure and resource availability (28,
59–62) and may have facilitated the shift to terrestriality. Addi-
tionally, quadrupedal locomotion along the forest canopy, which
mainly includes largely horizontal substrates, may have selected
for hind- and forelimbs of similar length (7). This is in contrast
to species using vertical clinging and leaping (VCL) locomotion
from vertical substrates, which is associated with much longer
hindlimbs (7). Species in the former category are predicted from
a biomechanical perspective to have more effective cursorial quad-
rupedalism in a terrestrial environment (8, 63). Such species-
specific factors may have facilitated the evolutionary transition of
some primates to terrestrial lifestyles (9, 11, 64).

We focus on diurnal primates of the Americas and Madagas-
car to explore anthropogenic and ecological factors, and
species-specific traits that are associated with greater use of the
ground in two independent radiations. We did not include
monkeys and apes from Africa and Asia as many of these spe-
cies regularly exhibit semiterrestrial and terrestrial lifestyles
(9, 11), and thus they experienced their niche transition pre-
sumably millions of years ago. Specifically, we are not interested
in testing adaptations to terrestriality, but rather in the ecologi-
cal, anatomical, and behavioral traits that make terrestriality a
possible option for an arboreal primate. Regarding ecological
and anthropogenic factors, we predict that terrestriality will be
greater in species at sites: 1) where fewer native terrestrial pred-
ators pose a risk; 2) with more open, degraded, or fragmented
forest areas, (i.e., less canopy cover); 3) with higher maximum
temperatures favoring behavioral thermoregulation; 4) with
high primate species richness; and 5) in greater distance from
both roads and areas of higher human population densities
(Fig. 1). Considering species-specific traits that may promote
ground use, we predict that terrestriality will be greater in spe-
cies: 1) that rely less on a diet of fruit as folivores tend to have
gut adaptations more suitable for terrestrial resources; 2) with
larger bodies; 3) that form larger groups; and 4) that exhibit
anatomical adaptations for arboreal quadrupedalism (Fig. 1).

Results

The 47 arboreal diurnal primate species we studied spent little
time on the ground (2.5 ± 0.1% of the activity budget, monthly
mean ± SE; n = 2,227 mo), and for over half of the species
(61.7%) terrestrial behavior comprised less than 1% of their total
monthly activity. Lemurs spent 4.8 ± 0.3% (monthly mean ±
SE; n = 1,002 mo) of their time on the ground, whereas platyr-
rhine monkeys spent 2.4 ± 0.2% (monthly mean ± SE; n =
1,225 mo) of their time on the ground. Lemurs were on aver-
age more terrestrial than platyrrhine monkeys (Table 1 and
SI Appendix, Table S2).

In the complete model, which accounts for both intra- and
interspecific variability, the most important ecological pressure
positively associated with terrestriality was maximum tempera-
ture, while habitat canopy cover was negatively associated with
time spent on the ground (SI Appendix, Fig. S8 and Table S2).
Considering anthropogenic factors, distance to roads was posi-
tively associated with ground use (SI Appendix, Fig. S8 and Table
S2). For species-specific factors, a species’ degree of frugivory was
negatively associated with terrestriality, whereas larger group size
was positively associated with terrestriality (SI Appendix, Fig. S8
and Table S2). Furthermore, posthabituation time was negatively
associated with ground use, meaning that species studied across a
greater number of months were less likely to exhibit terrestriality
(SI Appendix, Fig. S8 and Table S2).

For the within-species model, which evaluates the variability
among conspecific populations (Table 1 and SI Appendix, Fig.
S9), multiple ecological pressures influenced primate ground
use. Similar to the complete model, maximum temperature and
distance to roads were positively associated with terrestriality,
while habitat canopy cover was negatively associated with ter-
restriality. Unlike the complete model, however, terrestriality
decreased with increasing terrestrial predation risk, and
increased with primate species richness. We also found a posi-
tive interaction between primate-rich habitats and habitat can-
opy cover, indicating an amplified effect of canopy cover on
terrestriality in areas with higher primate species richness. Like
the complete model, the three species-specific factors related
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to terrestriality were degree of frugivory (negative), group size
(positive), and posthabituation (negative).
In the between-species model, which measures variability

across species (Table 1 and SI Appendix, Fig. S10), none of the
factors were strongly related to terrestriality. The only ecological
factor that exhibited a clear association was primate species rich-
ness (negative). Species in habitats with denser canopy cover and
with fewer sympatric primate species spent a greater proportion
of time on the ground. Terrestriality was positively related with
body mass and negatively with group size, indicating smaller spe-
cies and larger groups, respectively, spending more time on the
ground.

Discussion

We found more terrestrial activity in hotter environments with
more mammalian predators, larger groups, and taxa with less
frugivorous diets. However, the degree of terrestriality varies
both within and between species, and when this variation is
analyzed separately it reveals a more complex picture. Our
within-species comparison shows that groups living in more
open habitats, with more potential predators, and richer pri-
mate communities exhibit greater degrees of terrestriality. Spe-
cies at more remote sites (i.e., greater distances from roads) also
spent more time on the ground. By comparison, our between-
species analysis reveals that species that descend more often to
the ground tend to be smaller and live in larger groups. Con-
trary to previous single-species studies that showed an observer

effect (15, 39, 65; but see ref. 33), shorter study duration (the
number of posthabituation months) was strongly associated
with ground use.

Ecological Correlates to Terrestriality. Maximum temperature
showed a positive relationship with the time spent on the
ground in both the complete and intraspecific models, while
our proxy for seasonality (i.e., monthly precipitation) was not
influential within any of the models. Gradual and rapid tem-
perature increases correlate with behavioral shifts (compare refs.
66 and 67). A possible explanation is that lemurs and platyr-
rhine monkeys increase their use of the ground as an adaptive
thermoregulation strategy (68, 69). For example, we found that
primate species like Eulemur fulvus and Eulemur rufifrons spent
considerably more time on the ground in relatively hotter tropi-
cal deciduous forest habitats of Madagascar compared to their
conspecifics inhabiting the cooler humid forest habitats, likely
to access terrestrial water sources (50). This finding supports
the idea that shifting between arboreality and terrestriality is an
effective thermoregulatory response, with important implica-
tions considering current global warming trends (52, 70, 71).

Canopy cover has long been considered a factor in many
evolutionary shifts (72). However, the degree to which this
may result in a more terrestrial primate lifestyle is unclear (11).
Denser canopy cover was associated with spending less time on
the ground within species, but was not associated with ground
use in the between-species model. The former is in line with
our expectation that terrestrial activity tends to be higher in
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Fig. 1. Hypothesized relationships between species-specific traits, and ecological and anthropogenic factors and ground use by monkeys in the Americas and
lemurs in Madagascar, and not any specific transition in one species or another. For species-specific traits, taxa exhibiting quadrupedal locomotion (inferred
from their intermembral index (IMI)), have a larger group size, and have greater body mass are hypothesized to use the ground more. Taxa with diets consist-
ing of more fruit, and exhibiting vertical clinging and leaping (VCL) and brachiator locomotion (inferred from their IMI) are hypothesized to spend less time on
the ground. Regarding ecological factors, taxa inhabiting sites with higher maximum temperatures and greater primate species richness are hypothesized to
use the ground more. Taxa inhabiting sites with a greater number of terrestrial predators and greater continuous canopy coverage are hypothesized to spend
less time on the ground. Regarding anthropogenic factors, taxa inhabiting sites that are greater distances from roads are hypothesized to use the ground
more, whereas taxa inhabiting sites that are closer to denser human populations are hypothesized to spend less time on the ground.
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habitats with sparser canopies, such as those disturbed by
anthropogenic activities (19, 38). Arboreal species in more
open habitats (i.e., sparser canopies) may need to descend to
the ground to forage and drink (19, 34, 38, 73, 74), although
their ability to do so may be guided by species-specific charac-
teristics acting as a predisposition (i.e., behavioral and anatomi-
cal exaptations) (75, 76).
Primate species richness had contrasting results, with a negative

effect on terrestriality in the interspecific model and positive effect
in the intraspecific model. As all primates within the communi-
ties examined are arboreal, greater numbers of species at a site
may lead to higher competition for canopy resources, including
both food and space. Under specific circumstances, descending to
a rarely exploited niche (the forest floor) may be critical for cop-
ing with periods of limited resources (77). The positive interac-
tion effect between canopy cover and primate species richness in
the intraspecific model supports our hypothesis. Essentially, the
negative effect of canopy cover on terrestriality was weaker as
sympatric taxa richness increased. In other words, when canopy
cover increases, the decrease in terrestriality is less pronounced in
habitats with high primate diversity where we would expect
higher competition. However, it is possible that at sites where a
species may have recently become locally extirpated, this loss may
result in competitive release, allowing one or more of the remain-
ing species to partially, or fully, exploit newly available resources
(78–80). Compared to many mammal taxa, primates tend to

exhibit a high degree of behavioral flexibility (81, 82), and inter-
individual variation may be the mechanism underlying niche
expansion (83).

Predation pressure is difficult to quantify and evaluate. The
number of potential predator species provides a proxy with which
to measure this risk (84, 85), and some site-/species-focused stud-
ies have noted that relaxation of predation pressure led to more
ground-based activity (20, 32, 39). Interestingly, terrestrial preda-
tor species richness was associated with more terrestrial activity in
our within-species model. Although we were unable to account
for predator population abundance or the potential ecological
and co-occurrence factors affecting these taxa (86), it appears that
anthropogenic factors may play a role. Human population den-
sity and distance to roads may be considered as general proxies
for various aspects of human encroachment, including feral dogs
(Canis familiaris), which are known to prey upon wildlife (34,
35, 73). Of the two anthropogenic factors, conspecifics were
more terrestrial at sites farther from roads.

Species-Specific Factors as Potential Facilitators of Terrestriality.
Frugivory was associated with decreased ground use in both the
complete and intraspecific models, supporting previous assertions
that diet is a driving force of terrestriality (38, 87). This link
may be associated with folivores or species with a broad dietary
spectrum using the ground more often to forage on different
preferred foods (17, 88), or because they have gastrointestinal

Table 1. Summary results of the within-species model (variability within species) and the between-species model
(variability between species) testing the influence of potential ecological drivers and species-specific factors on
monthly terrestrial activity by arboreal primates from the Americas and Madagascar

Model Estimate Error CI PD

Within-species model
Intercept 24.33 1.35 26.94 to 21.46 100%
Predation risk 0.29 0.14 0.01 to 0.57 98%
Habitat (canopy cover) 20.35 0.12 20.57 to 20.11 100%
Temperature maximum 0.16 0.04 0.08 to 0.24 100%
Precipitation 0.01 0.03 �0.06 to 0.07 58%
Primate species richness 0.28 0.15 20.01 to 0.56 97%
Habitat × Primate species richness 0.17 0.08 0.01 to 0.33 98%
Diet (frugivory) 20.17 0.04 20.25 to 20.10 100%
Group size 0.10 0.05 0.00 to 0.19 98%
Posthabituation 20.07 0.04 20.15 to 0.00 97%
Human population density �0.04 0.15 �0.33 to 0.25 60%
Distance to road 0.23 0.12 0.00 to 0.46 97%

Between-species model
Intercept 23.84 2.39 28.74 to 0.79 95%
Region (Americas) �1.29 2.74 �6.73 to 4.25 70%
Predation risk �0.02 0.46 �0.94 to 0.84 52%
Habitat (canopy cover) 0.26 0.38 �0.48 to 1.00 76%
Temperature maximum 0.17 0.35 �0.55 to 0.82 69%
Precipitation 0.45 0.40 �0.34 to 1.22 87%
Primate species richness 20.25 0.18 20.60 to 0.11 92%
Habitat × Primate species richness �0.04 0.10 �0.24 to 0.15 67%
Diet (frugivory) �0.22 0.25 �0.71 to 0.28 82%
Body mass 20.43 0.34 21.08 to 0.25 90%
Group size 0.41 0.27 20.10 to 0.94 94%
IMI (quadrupedal) 0.24 1.30 �2.43 to 2.70 58%
IMI (VCL) 1.58 1.77 �1.99 to 5.02 82%
Human population density �0.12 0.37 �0.84 to 0.61 62%
Distance to road 0.33 0.41 �0.48 to 1.12 79%

Estimate, mean of the posterior distribution; Error, SD of the posterior distribution; CI, 95% credible intervals; PD, probability of direction indicating the probability of a coefficient being
different from zero. Coefficients with PD > 90% are considered strong evidence of directional effects and are highlighted in bold. IMI intercept is a categorical variable and corresponds
to brachiator, whereas VCL and quadrupedalism are the estimated differences from the intercept.
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and dental adaptations allowing them to use terrestrial resources
more efficiently (89). Despite the general reduced ground use by
frugivores, periods of reduced fruit availability may lead faculta-
tive frugivores to search the ground for novel food resources to
meet their seasonal nutritional needs (21, 90, 91). Many pri-
mates with broad dietary niches come to the ground to engage
in geophagy and to access mineral licks (92, 93) and potentially
fermented foods (94). However, given the supplementary nature
of this feeding habit (95) that often involves short terrestrial
travel, it has not been considered a key causative factor in any
major shift in strata use. Primates may also descend to the
ground to forage for arthropod prey (19, 21).
Group size had an effect in both the complete and within-

species models. Large groups can facilitate terrestriality as they
can potentially reduce predation risk. Folivores are in principle
less constrained by group size compared to frugivores due to the
less clumped spatiotemporal availability of preferred resources,
although this is not always the case (96, 97). However, although
it is conceivable that large groups foster terrestrial activity, it is
also possible that groups that use the ground more often tend to
form larger groups to reduce predation risk, leaving the causal
relationship unclear. In both Brachyteles hypoxanthus in Cara-
tinga (Brazil) and Hapalemur meridionalis in Mandena (Mada-
gascar), it was the case that the largest group was considerably
more terrestrial than smaller groups (17, 39).
Biomechanical (e.g., size-related and anatomical) challenges

may impose various biological, ecological, and physiological con-
straints within both the arboreal and terrestrial strata (8). Such
morphological factors could be species-specific consequences that
evolve after, or in parallel with, the initial niche expansion into
terrestrial activity. However, contrary to our hypothesis, we
found a negative effect of body mass between species (i.e.,
smaller species showed increased terrestriality). Original hypothe-
ses about the relationship between body size and terrestriality
were proposed by Fleagle (7, 59) to explain the range of niche
use in the entire Primate order, including the larger-bodied
catarrhines. The primates included in this study, platyrrhines
and lemuriformes, represent a more restricted range of body
mass variation, and therefore it is possible that a different rela-
tionship between terrestriality and body mass is present for the
entire order. We cannot evaluate the role that the relatively
recent extinction of the larger and more terrestrial lemur species
(98) may have had in releasing the competition for terrestrial
resources with the extant smaller lemur species.
Although posthabituation months were used to control for a

possible positive observer effect, our complete and within-
species model showed that primates studied for shorter periods
more strongly associated with ground use. Though this con-
trasts from some single-species studies (15, 39, 65), we believe
our negative effect is more likely the result of the nonrandom
distribution of study periods with respect to seasons, or the
nonrandom distribution of species with respect to their average
level of arboreality within our dataset.

Conclusions

We have shown that there are multiple factors that may lead
arboreal primates to use the ground and that this transition is
influenced by site-specific ecological pressures. Specifically, hab-
itats with sparser canopies may be responsible for the evolution-
ary transition of nonhuman primates to terrestrial lifestyles (11,
19), whereas the more proximate causes of strata shift appear to
be hotter environmental conditions (71) and dietary shifts away

from frugivory. Considering species-specific traits, larger groups
and smaller body mass facilitated ground use.

Although significant climate changes in both the Americas
(99) and Madagascar (100) likely facilitated faunal turnover and
speciation, it is not clear why terrestriality did not evolve there
to the same extent as it is seen in catarrhines. Fossil records are
sparse and the real extent of niche diversification that occurred
in lemurs and platyrrhines over their evolutionary history is far
from being understood (7). Examining primate behavioral and
ecological flexibility alongside current environmental conditions,
however, provides insight into evolutionary transitional periods
that resulted in shifts to novel ecological niches. As human activ-
ity drives climate change, degrades primate habitats, and shifts
plant phenological patterns, primate populations are facing
unprecedented challenges that threaten their persistence (52, 70,
101–104). We expect that an increased use of the ground strata
by species inhabiting hot, sparsely canopied sites and that exhibit
a more generalized diet can buffer species against extinction. Pro-
ductive future lines of research that will further clarify factors driv-
ing the evolution of terrestriality include comparing behavioral
repertoires in terrestrial versus arboreal environments, evaluating
potential ecological and life history drivers of annual variation in
terrestrial behaviors, and if habitat structure explains variation in
population-level terrestriality. All nonhuman primates, however,
will be faced with challenges created by anthropogenic changes
and for species less inclined to terrestrial activity, fast and effective
conservation strategies will need to be implemented to ensure
their survival.

Materials and Methods

Coauthors contributed raw monthly behavioral ecology data from 47 primate
taxa, specifically 15 lemur species representing two families (Lemuridae and
Indriidae), and 32 platyrrhine species representing 4 families (Atelidae, Callitri-
chidae, Cebidae, and Pitheciidae) (Dataset S1). This collated dataset includes
150,961 observation hours across 2,227 months from species at 68 research
sites, specifically 20 sites in Madagascar and 48 sites throughout the Americas
(Fig. 2 and SI Appendix, Table S1). Our dataset includes 16 primate species
(specifically 10 lemur and 6 platyrrhine monkey species) for which we have
data from multiple sites.

For each species, we provide monthly proportional data to account for differ-
ent data-collection methods used in each study. Since nocturnal species are
exposed to different ecological pressures compared to diurnal primates, we only
focused on diurnal primates. Datasets included had a minimum of 12 h/mo to
increase the chances that rare events, in our case terrestriality by arboreal spe-
cies, would be recorded (105). We considered the monthly proportion of time
spent terrestrially as our dependent variable.

Ecological Drivers. We extracted site- and time-specific climate and habitat val-
ues in Google Earth Engine (earthengine.google.com) using the spatial coordi-
nates and the year and month of the observations (106). We extracted monthly
maximum temperatures and monthly total precipitation from the ERA5 Monthly
Aggregates dataset (107). The latter is used as a conservative proxy for seasonal-
ity (108), incorporating the rainfall variation at research sites for the months
included in our dataset. We obtained the relative canopy cover using a circular
buffer around the coordinates of each study site from the Landsat Tree Cover
Continuous Fields dataset (109) (SI Appendix, Fig. S1). Specifically, the buffer
area was equal to twice the size of each study species’ reported mean home
range area.

We estimated the number of potential terrestrial mammalian predators per
species per site from the number of carnivore species per location using Interna-
tional Union for the Conservation of Nature (IUCN) range maps (110). For each
species per location, we only considered predators with a mean body mass
greater than or equal to one-quarter of the mean body mass of the focal primate.
This ratio was based on the minimum predator-prey ratio observed in terres-
trial mammals (appendix S1 in ref. 111). The body mass threshold is very
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conservative and may lead to the inclusion of species that do not typically prey
on adult primates; however, considering primates’ slow life histories and the
additive risks to juveniles/infants, smaller predators can potentially trigger a fear
reaction (112, 113). This approach is also limited by the nature of IUCN range
maps and the consideration of predator–prey body mass ratios, which likely over-
estimates the presence of predators as large predators may have been extirpated
by local hunting and habitat loss. However, this approach allowed us to estimate
the spatial gradients of predator species richness at this scale of analysis for all
sites and species, thereby avoiding potential author or publication reporting
biases (compare with ref. 114). Although primates may also be preyed upon by
birds of prey, snakes, and other primates, carnivores are considered their main
terrestrial predators (115, 116).

Using IUCN range maps (110), we also estimated the number of sympatric
primate species per site: that is, species richness (SI Appendix, Figs. S2 and S3).
Given the potential increased effect of interspecific competition in sites with less
canopy cover (potentially more fragmented), we examined the interaction
between these two factors.

Finally, we considered two proxies of anthropogenic disturbance: human
population density and distance to roads. The former accounts for the presence
of humans, whereas the latter is a proxy of inverse of remoteness (i.e., inverse
of accessibility to humans). We obtained the human population density data
from the Socioeconomic Data and Applications Center (https://sedac.ciesin.
columbia.edu/). We used the Gridded Population of the World dataset, v4
(117) for 2000, 2005, 2010, 2015, and 2020 at 30 arc-second resolution
(∼1 km) (SI Appendix, Figs. S4 and S5). We matched the terrestriality data
with the values of human population density using the closest layer in time.
Road data for the countries of interest were extracted from the OpenStreetMap
database (openstreetmap.org). From the vector files we only retained primary,
secondary, and tertiary roads, motorways, trunks, all related “links,” and resi-
dential roads. Instead, we excluded all unclassified roads, paths, footways, and
similar. We then rasterized the vector layer at 1-km resolution and calculated
the distance from the nearest road for the entire study area (SI Appendix, Figs.
S6 and S7). All raster data processing was conducted in R v3.6.3 (118) using
the “raster” package (119).

Species-Specific Factors. For each species’ specific site, coauthors contributed
the monthly proportion of time spent feeding on fruit, the mean body mass,
and the mean group size measured in the field. In the absence of mean body
mass, we used data from the All the World’s Primates database (120). We
inferred locomotion type via the Intermembral Index (IMI) (63), which is calcu-
lated as (length of humerus + length of radius)/(length of femur + length of
tibia) × 100. Quadrupedal primates typically have an IMI between 67 and 104;
of the arboreal quadrupeds, those falling below the lower threshold typically
exhibit VCL, and those above the upper threshold are typically categorized as
exhibiting brachiation, but also suspensory locomotion (7, 8, 63). Given poten-
tial for error when collecting field measurements, and the relative stability of the
IMI within genera, we assigned each species to a category based on the IMI aver-
aged at the genus level.

Statistical Analyses. We tested our hypotheses by fitting a zero-inflated model
with a β-family and logit link-function and using Bayesian inference. The use of
a zero-inflation and β-family allowed accommodating for the highly skewed and
zero-inflated distribution of terrestriality values bounded between 0 and 1. We
added a group level to study site and one to species to control for multiple esti-
mates in the same locations and multiple estimates per species, respectively.
Considering climatic variation and its effect on resource phenology (108), we
controlled for seasonality using monthly temperature and total precipitation at
each site. We used study duration (i.e., the number of months posthabituation)
to control for observer effect within the models. We controlled for phylogenetic
effects by using a variance–covariance matrix derived from the phylogeny in
Upham et al. (121). An additional observation level random effect was added to
control for overdispersion. All fixed factors were scaled to a mean of 0 and SD of
1 to ensure comparability of the effect sizes, as well as improving numerical
stability in their estimation. We used weakly informative priors using a normal
distribution with an SD of 10 for the intercept, and an SD of 1.5 for all slope
coefficients, thereby limiting the range to a plausible gradient of variation con-
sidering the logit link-function and scaled coefficients (122). All predictors were
tested for multicollinearity prior to the modeling but none showed a correlation
coefficient >0.7, so all variables were retained in the final model (123).

Eulemur
Hapalemur
Lemur
Prolemur
Propithecus
Varecia

Alouatta
Ateles
Brachyteles
Cacajao
Callicebus
Callimico
Callithrix
Cebus
Chiropotes
Lagothrix
Leontocebus
Leontopithecus
Pithecia
Plecturocebus
Saguinus
Saimiri
Sapajus

Genus

Genus

Madagascar 

Americas

0 1000500

Kilometers

0 200100

Kilometers

Fig. 2. Spatial distribution of primate genera included in our behavioral ecology dataset.
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The complete model accounted for both intra- and interspecific variability in
terrestriality; thus, we ran two additional models to disentangle the variability
within- and between-species. To assess whether the detected effects could also
explain the different degrees of terrestriality among conspecific populations
(within-species model), we included only anthropogenic and ecological drivers,
as well as site-specific species’ factors for which we had data (percent frugivory
and group size). Prior to fitting this second model, we first subtracted the spe-
cies’ mean from each observation value (species mean deviation) (124). Then,
we fitted a model including both ecological drivers and species-specific traits to
estimate the variability across species (between-species model), from which we
subtracted the species mean deviation from each observation value. For both the
within- and between-species model, we rescaled the variable to a mean of 0 and
SD of 1 prior to model fitting and used the same weakly informative priors used
for the complete model.

We ran 6,000 iterations over 10 Markov chain Monte Carlo chains for each
model, with a “burn in” period of 2,000 iterations per chain leading to a total of
40,000 usable posteriors. We also checked models for chain convergence and
parameter identifiability. We summarized the posterior distributions of coeffi-
cient estimates using 95% credible intervals. We considered credible intervals
that did not overlap with zero as strong evidence of directionality. We also
reported the probability of direction, a threshold-independent measure of evi-
dence that varies from 50 to 100% and that indicates the probability of a coeffi-
cient being different from zero (125). We fitted the models in R v3.6.3 (118)
using the ‘brms’ package (126), for model fitting, ‘bayestestR’ (125) for Bayesian
summary statistics, and ‘ape’ (127) and ‘phytools’ (128) for handling the phylo-
genetic data.

Data, Materials, and Software Availability. All statistical codes and data
used in the analyses have been deposited in Figshare (https://doi.org/10.6084/
m9.figshare.19344992.v1) (129). All other study data are included in the main
text and supporting information.
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