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Abstract: The application of polyploidy in sustainable agriculture has already brought much appreci-
ation among researchers. Polyploidy may occur naturally or can be induced in the laboratory using
chemical or gaseous agents and results in complete chromosome nondisjunction. This comprehensive
review described the potential of polyploidization on plants, especially its role in crop improve-
ment for enhanced production and host-plant resistance development against pests and diseases.
An in-depth investigation on techniques used in the induction of polyploidy, cytogenetic evaluation
methods of different ploidy levels, application, and current research trends is also presented. On-
going research has mainly aimed to bring the recurrence in polyploidy, which is usually detected
by flow cytometry, chromosome counting, and cytogenetic techniques such as fluorescent in situ
hybridization (FISH) and genomic in situ hybridization (GISH). Polyploidy can bring about positive
consequences in the growth and yield attributes of crops, making them more tolerant to abiotic
and biotic stresses. However, the unexpected change in chromosome set and lack of knowledge
on the mechanism of stress alleviation is hindering the application of polyploidy on a large scale.
Moreover, a lack of cost–benefit analysis and knowledge gaps on the socio-economic implication
are predominant. Further research on polyploidy coupling with modern genomic technologies will
help to bring real-world market prospects in the era of changing climate. This review on polyploidy
provides a solid foundation to do next-generation research on crop improvement.

Keywords: cytogenetics; stress; polyploidy; fluorescent in situ hybridization; genomic in situ hybridization

1. Introduction

The duplication of single or combined differentiated genomes is known as polyploidy.
Autopolyploid arises from the doubling of structurally similar, homologous (AAAA)
genomes within a single species, while allopolyploids arise through interspecific hybridiza-
tion and subsequent doubling of nonhomologous (AABB) genomes [1–3]. Aneuploid
genomes have incomplete chromosome sets, which occur naturally in plant populations
and are induced by chemical and physical agents [4–6]. Differences in the number of
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chromosomes [7–9] and phenotypic differences [10–12] have been verified using molecular
cytogenetic methods. These differences increase allergic diversity [13] and heterozygos-
ity [14] by genome buffering, resulting in novel dose effects. For instance, wheat, canola,
cotton, peanut, soybean, and tobacco [1,6,15,16] have been identified as domesticated crops.

Several chemical and gaseous agents are currently used to induce polyploidy. The
most widely used agents are colchicine and oryzalin, though colchicine has been suggested
to be avoided due to its carcinogenic properties [17]. The common consequences of induced
polyploids are increased cell size as well as whole plant size, reduced fertility, and hetero-
sis [18]. In modern breeding, cytoplasmic male sterility often occurs in F1 progenies, where
N2O gas treatment (~6 bar, 48 h) plays a significant role in restoring fertility [19]. Similarly,
pre- and post-fertilization barriers can be minimized through embryo rescue, particularly
in flowering ornamentals, such as Lilium and Hibiscus [20–23]. Currently, polyploidization
is vital in creating crop diversity and producing fruits, vegetables, and flowers most sought
after by consumers.

Due to climate change and global warming, plants experience multiple abiotic stresses
such as salinity [24–27], drought [28–30], temperature [31–34], and biotic stresses such as
insect pests [35–37] and diseases. These stresses threaten crop production by disrupting
plants’ physiological and biochemical processes. Polyploidy offers several advantages
amid stress situations, which are described in previous studies. However, the underlying
mechanism and holistic understanding are still missing.

Several studies assessed polyploidy, but cytogenetic evaluations of polyploids and
their effects on crop physiology remain uncertain. Therefore, polyploidy’s roles in plant
development, mechanisms and assessment processes, plant physiology changes, biotic-
abiotic stresses, challenges, and prospects are outlined here. This study aims to help to
recognize possible interactions between polyploids and to establish a consistent assessment.

2. Role of Polyploidy in Modern Plant Breeding

Plant breeders modify crop traits using multiple tools, including polyploidization, to
satisfy market demand. This technique creates intense phenotypes and high vigor, making
it one of the most potent crop enhancement methods [38]. In addition, some plants have a
specific demand for their specific traits, such as seedless fruits in grapevine and banana,
which can be achieved through polyploidization [39,40]. Polyploidy results in higher
heterozygosity and genome redundancy that are considered advantageous for improving
crop plants over conventional plant breeding tools [41,42].

Interspecific hybridization helps to increase the diversity of crops and helps them
adapt to new environments [43]. For example, Allopolyploid Triticale is a manufactured
crop developed by crossing hexaploid bread wheat and rye to achieve specific goals
(e.g., high yield, grain quality, less disease, and stress tolerance) [44,45]. In addition, bridge
hybridization is done to transfer genes from one ploidy stage to another if a direct crossover
is not feasible. Creation of diversity is one of the most important tasks to develop a crop
variety where polyploidy has the efficacy to enhance crop diversity [46,47].

Polyploidy is common in newly domesticated crops [48]. In many cultivated crops,
polyploidy has been observed in the speciation process and is now commonly used to
create new species selected for features [3]. Unreduced gametes result in plant polyploidy
and are used in crop breeding. Polyploidy increases the chromosome number, which
helps plants tolerate the mutation by allelic modifications [49,50]. Chromosome deletion-
related polyploidy breeding and substitution can produce targeted traits. We have seen
many examples of successful cultivation influenced by polyploidy breeding. For example,
seedless triploid watermelons, tetraploid red clovers, ryegrass, rye, and many ornamental
plants have been developed or improved using polyploid breeding [17,51].

In summary, the main benefits of polyploidy are related to improving the use of
heterozygosity. It buffers the effect of gene redundancy in mutations and, in some cases,
facilitates reproduction by self-fertilization or asexual means [52]. It has a significant
influence on farmers and food security issues.
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3. Induction of Polyploids

The recurrence and frequency of polyploidization in plant species make polyploidization
an influential research area [53] in which a major step is to select traits in plants [54]. The
occurrence of polyploidy in plants was discovered about a century ago. Because of the
widespread occurrence of polyploids in wild and cultivated plants, it is important for plant
breeders and evolutionary biologists. In the past, antimitotic reagents-induced polyploids
have not directly contributed to crop improvement. On the other hand, sexual polyploids
(unreduced 2n gametes) are more relevant for crop improvement in many cases. Two pathways
cause polyploids: mitotic polyploidization and meiotic polyploidization [55].

Mitotic polyploidization depends on doubling somatic tissue where homoeologous
chromosome recombination occurs [56]. The first mitotic polyploidization was introduced
in 1930 [57]. This activation polyploidization was tested on plants in vitro [55]. Colchicine,
oryzalin, trifluralin, amiprophos-methyl, N2O gas treatment, and caffeine have recently
been used as antimitotic reagents [17]. Colchicine is an alkaloid from wild meadow saffron
and was the most used as an antimitotic reagent. Oryzalin is a potent herbicide from the
Dow AgroScience, USA toluidine chemical band [17,58]. Wetting roots or auxiliary buds
or shoots with a colchicine solution of a specific concentration and duration resulted in the
successful development of polyploids in many crop species [57,59], as shown in Figure 1.
Previous studies successfully applied in vitro chromosomes doubling of colchicine and
oryzalin for starch, fodder beet, ryegrass, oriental melon, watermelon, and red clover [17,60].
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Figure 1. Mechanism of in vivo polyploidization; (a). Seeds soaking (6–24) hours with colchicine 
(0.01–0.2) %, (b). Colchicine treatment (10–20 µL) 10 days in the young leaves, (c). Leaves binding 
with clips for maximum chemical attachment, (d). Flow cytometry analysis for ploidy level assess-
ment, (e). Ploidy level assessment by a histogram, (f). Hibiscus ploidy assessment using chromo-
some number; and 5S rDNA (green) and 18 rDNA (red) signals. 

Figure 1. Mechanism of in vivo polyploidization; (a). Seeds soaking (6–24) hours with colchicine
(0.01–0.2)%, (b). Colchicine treatment (10–20 µL) 10 days in the young leaves, (c). Leaves binding with
clips for maximum chemical attachment, (d). Flow cytometry analysis for ploidy level assessment, (e).
Ploidy level assessment by a histogram, (f). Hibiscus ploidy assessment using chromosome number;
and 5S rDNA (green) and 18 rDNA (red) signals.

In vitro polyploidization showed better performance than the success rate of in vivo
polyploidization in sugar and fodder beet, ryegrass, and red clover [55,59]. Table 1 provides
a list of crops, vegetables, and ornamental and medicinal plants treated with chromosome
antimitotic agents for chromosome duplication using different methods and protocols.
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Table 1. Commonly used methods for polyploidization in vitro.

Plants Treatment Most Successful Method References

Vegetables

Allium Callus Colchicine 2.5 mM, 1/2 days [60]

Citrullus lanatus Germinating seedlings 2,6-Dinitroaniline 65.5 µM, 24 h [61]

Manihot esculenta Axillary node cuttings Colchicine 5 mM, 48 h [62]

Smallanthus songifolius Nodal segments Oryzalin 25 µM, 8–48 h [63]

Ornamentals

Buddleja Nodal sections Oryzalin 25 µM, 3 days [64]

Dieffenbachia Shoot clumps Colchicine 1.25 mM, 24 h [65]

Dracaena deremensis Callus Oryzalin 144.5 µM, 48 h [66]

Hypericum Callus Oryzalin 30 µM, 3–9 days [67]

Lagerstroemia indica Nodal buds Colchicine 750 µM 24 h [68]

Rhododendron Micro-shoots Oryzalin 150 µM, 24 h [69]

Rosa Shoots tips, nodal sections Oryzalin 5 µM, 1 day [70]

Rosa rugosa 2 or 10mm nodes Oryzalin 2.5 µM, 48 h [71]

Syringa Nodal sections Colchicine 0.05–0.25 mM, 1–2 Days [72]

Alocasia Shoot tips Oryzalin 289 µM, 24 h [73]

Alstroemeria Plantlets Colchicine 5–15 mM, 6–24 h [74]

Cattleya PLB Colchicine 1.25 mM, 8 days [75]

Cyclamen Tuber segments Colchicine 0.25 mM, 4 days [76]

Lilium longiflorum Scale Surflan (0.1 mM oryzalin), 3 h [77]

Tulipa gesneriana Flower stem dices Oryzalin 2.88–120 µM, 2–24 h [78]

Watsonia lepida Shoots Oryzalin 120 µM, 24 h [79]

Zantedeschia Shoot cultures Colchicine 1.25 mM, 1–4 days [80]

Aromatic, medicinal plants

Astragalus membranaceus Apical buds Colchicine 5 mM, 36 h [81]

Bixa orellana Cotyledonary nodes from seedlings Oryzalin 15 µM, 15 days [82]

Colophospermum mopane Seeds Colchicine 2.5 mM, 48 h [83]

Dioscorea zingiberensis Apical buds Colchicine 3.75 mM, 24 h [53]

Humulus lupulus Apical buds Colchicine 1.25 mM, 48 h [84]

Zingiber officinale Shoot tips Colchicine 5mM, 8 days [85]

Meiotic polyploidization produces 2n gametes due to the incomplete division of chro-
mosomes [86]. Polyploids that originate through the functioning of 2n gametes are called
sexual polyploids, and their usefulness for crop improvement has been demonstrated
in potato, alfalfa, and red clover. Introgression can be accomplished by recombination
due to genetic crossing-over between alien chromosomes as well as the addition of alien
chromosomes in the case of sexual polyploidization in allopolyploids, which is exceedingly
difficult or unlikely in the case of colchicine or oryzalin induced allopolyploids. This
deviation can occur in plants with normal chromosome pairing as well as in those with
disturbed chromosome pairing such as homoeologous recombination of meiotic replication
that was seen in Alstroemeria [87], Lilium [88] and Gasteria lutzii × Aloe aristate [89]. The
process leading to the formation of 2n gamete is called meiotic nuclear restitution during
micro- or megasporogenesis. Depending on the meiotic stage at which nuclear restitu-
tion occurs, different restitution mechanisms have been recognized, such as first division
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restitution (FDR), second division restitution (SDR) [90], and novel intermediate meiosis
restitution [88]. In FDR, the non-sister chromatids are heterozygous from the centromere
to the first convergence point, while preserving heterozygosity in both parents [91]. In
SDR, the two sister chromatids are homozygous between the centromere and the first
crossover point, and the resulting gametes have lowered heterozygosity levels compared
to the parents [92]. In some cases, 2n gametes restitution cannot be classified as FDR or
SDR; the word “indeterminate meiotic restitution” (IMR) has been coined to describe it [88].
Furthermore, IMR might be a widespread occurrence in allotriploids, where both bivalents
and univalents are most produced.

4. Cytogenetic Evaluation of Induced Polyploids

Traditionally, polyploids have been assessed by morphological examination. Ad-
vanced cytogenetic methods such as flow cytometry, genomic in situ hybridization (GISH),
and fluorescence in situ hybridization (FISH) are currently used for polyploid evalua-
tion [11,20,22,93].

4.1. Flow Cytometry

Counting chromosomes in an individual cell is the most efficient and accurate way
to confirm ploidy. However, the basic number of chromosomes must be identified be-
fore counting. Furthermore, chromosomes are confusing regarding mixoploidy because
of the smaller size with a higher number of chromosomes, e.g., taxa Hibiscus [94] and
taxa Chrysanthemum.

Flow cytometry may also be the unique method incorporating strong analytical utility
to calculate the cell nucleus’s physical size and genome [95,96]. Flow cytometry is a
comparatively simple and easy method of calculating a polyploid’s nuclear DNA material.
By measuring the relative DNA content using flow cytometry [97,98], the ploidy level of
mediated polyploids can be easily verified (Figure 2). However, flow cytometry has some
limitations as it is not precise enough to estimate the exact chromosomes number and is
unable to differentiate the variation in chromosomes number compared to the ploidy level.
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Figure 2. Histograms show the flow cytometry analysis of comparative changes in ploidy levels in
watermelon. (a) Diploid (2n = 2x = 24), (b) tetraploid (2n = 4x = 48), and (c) octaploid (2n = 8x = 96).
Red arrows indicate ploidy levels of diploid, tetraploid and octaploid.

4.2. In Situ Hybridization

Molecular cytogenetic research approaches such as FISH and GISH are commonly
used and well-respected tools to investigate plant genetics. FISH and GISH have often
been used to identify information surrounding chromosomal mutations, structure, and
genomic evolution [99,100]. Oligos specific to a repetitive sequence or a particular genomic
region can be visualized using fluorescence in situ hybridization [8,101–103]. For example,
different ribosomal DNA (rDNA) signals are doubled in a tetraploid compared to those
in a diploid. A study of 5S rDNA in cotton plants revealed that most diploids have two
5S rDNA signals and all allotetraploid species have four 5S rDNA signals [104]. The same
result was found in a woody species of the genus Rubus [105]. The 45S, 18S, 25S, and
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5S rDNA are commonly used as FISH markers for cytogenetic study. This method has
been used intensely in gene duplication methods and amplification in intraspecific and
interspecific polyploids. A brief working directory of FISH and GISH is shown in Figure 3.
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Figure 3. Working steps for fluorescent and genomic in situ hybridization were used for the cyto-
genetic study of horticultural modified crops. Different methods, such as nick translation, random
primed labeling, and PCR, are used to label the probe during marker labeling. Various methods,
such as autoclaving, shearing the DNA with a tiny needle in a syringe, or sonicating, are used
to prepare to block DNA. Chromosome slide preparation is the selection of well-spread chromo-
somes prepared from a young root tip using an enzyme mixture at 37 ◦C. Slide pretreatment is
the enzymatic digestion of the chromosomes in order to unmask the DNA prior to hybridization.
Hybridization involves the attachment of blocking and probe/genomic markers with chromosomes
to identify the specific loci/origin of the genome of the respective chromosome. During detection,
attachment of the designed antibody against the target marker along with blocking buffer to detect
the specific fluorochrome.

GISH is also useful for studying cytogenetics and determining hybridity status, partic-
ularly in the case of interspecific plant hybridization [22,106–109]. Within an interspecific
polyploid, GISH distinguishes the genomic structure, chromosomal constituents, crossing
over, aneuploidy, and alien genes introgression. For example, in diploid interspecific Lilium
(L. longiflorum× Asiatic lily; 2n = 2x = 24), 12 L. longiflorum and 12 Asiatic chromosomes can
be identified using GISH (Figure 4). The number of L. longiflorum and Asiatic chromosomes
are doubled in the induced tetraploids and can be visualized through GISH. Therefore,
GISH is an advanced multicolor detection technique that plays a gratuitous role in the
chromosomal and genomic investigation of induced polyploids.
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Figure 4. In situ hybridization of diploid (2n = 2x = 24) Lilium. (a). FISH analysis of intraspecific F1
using 5S and 45S ribosomal DNA; (b). GISH analysis of interspecific (L. longiflorum× L. hansonii) F1 using
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5. Effect of Polyploidization at the Morphological and Molecular Level

Polyploidization results in morphological changes in plants due to whole genome du-
plication, changes in chromosomal structure, nuclear enlargement along with gene dosage
and epigenetic consequences, as well as an increased number of larger cells [18,110–114].
Further, due to the changes in different levels, several morphological traits such as plant
height, root length and number, leaf number, area and size, pollen size and number, stomata
number and size, and flowers and fruits number and size as summarized in Table 2.

Table 2. Effect of polyploidization on plant morphology and yield attributes.

Induced Polyploid Effect
(Increased/Decreased) References

Plant height Increase [52,54,115]

Root length and number Increase [86,116]

Number of leaves/plants Increase/decrease [117]

Leaf area Increase/decrease [17,118]

Leaf size Increase [17,112]

Stomata number/leaf Decrease [17,119,120]

Stomata size Increase [17,115,119]

Flower size, number Increase [52,112,117–125]

Pollen size Increase [123]

Fruit size, number Increase [98,116,124]

Seed size Increase [98,116]

Seeds/fruit Decrease [17,39]

With the increase of ploidy level, the plant height, width and length of flower, flower
size, and the number of internodes in dendrobium increased [17,126–128]. Polyploidization
affects the floral traits such as flowering time, flower diameter, shape, size, and color,
as well as different parts of flowers in kiwifruit and salvia [9,129–137]. These shreds of
evidence suggest that polyploidy can be applied in plant breeding by targeting the flower
size, shape, color, modifications in size, and the number of floral parts. Fruit size and
fruits number, along with other fruit characteristics such as fruit weight, fruit peel, flesh
weight and seed number are affected by the increase of ploidy number [130,138–144]. Due
to variations in cell size and chromosome size (Figure 5), polyploidy changes the characters
of the leaf [145–153]. Stomata number, density, size, and area are the important traits of
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leaves that are affected by the change of ploidy number [154,155], and this effect (Figure 5)
has been observed in citrus [120].
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Changes in fruits, leaves, flowers, and color can be considered from the application
point of view. Targeted traits can be achieved along with higher variation with the changes
of ploidy level. A change in ploidy level also affects molecular and gene expression. Chang-
ing the ploidy level due to changes in nuclear DNA, chromosome number, and structure
can manipulate genetic diversity, genome replication, gene expression, and heterosis [156].
Changes in ploidy level affect DNA content and the number of chromosomes [157–159].
During replication, polyploidization often induces epigenetic changes such as transposon
simulation and chromatin modification, as well as the extension or loss of chromosomal
fragments. The polyploidization effect at the plant morphology, physiology, and molecular
levels needs extensive research to reveal the mechanisms that will help plant breeders for
directed modification and crop improvement.

6. Effect of Polyploidization on Abiotic Stresses
6.1. Salinity Induced Stress Alleviation

H2O2 and malondialdehyde (MDA) concentrations increase in salinized tissues due
to the generation of reactive oxygen species (ROS) [160,161]. Proline plays a pivotal
role in alleviating salt-induced stress by maintaining cell turgor (i.e., as osmolyte) [162].
Polyploids reduce the H2O2 and MDA concentrations, increase proline concentration,
and tolerate salinity stress. Higher proline concentration and lower H2O2 and MDA
concentration (Table 3) in polyploid plants are reported in the studies [163,164]. Due
to MDA’s lower concentration in tetraploids-maintained cell membrane integrity, and
Na+ hardly reached the cells. Conversely, higher H+ transport through cells in tetraploid
rice cultivars may be attributed to salt tolerance. Interestingly, Tu and coworkers [163]
noticed that a defensive space between the pericycle and cortex contributes to more salt
tolerance. Further, Jinag et al. [164] reported that the mortality rate of tetraploids in saline
stress was 12.3–12.6% lower than that of diploid ones (Table 3). Meng et al. [165] reported
that tetraploids show a stable K+/Na+ ratio (16:10 and 15:10, respectively, in roots and
shoots), while K+ decreased in diploid turnips (46:100, and 48:100, respectively, in roots
and shoots). Diploid turnips also experienced a significant reduction in chlorophyll content
(40.3% versus 11.9% in tetraploids). Furthermore, seed germination, root, and shoot growth
were enhanced in polyploid during salt-induced stress (Table 3) [163,165–167]. Although
salinity has a more extreme effect on diploids than on their corresponding tetraploids, the
underlying mechanism in tetraploid plants is unclear. Besides, no study was conducted
on actual saline containing different salt solution mixtures in different concentrations.
Thus, tetraploid behavior in natural conditions is difficult to predict. Table 3 shows the
salinity-inducing methods, test crop, polyploidy adaptation, and effect on test crop.
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Table 3. Effect of polyploidy on abiotic stress management.

Stress Inducing Method/Organism Crop Adaptation Mechanism References

Salinity

NaCl induced salinity
in laboratory

Orange Better adaptation

1. NPK, proline content was higher in tetraploid
than diploid.
2. MDA and H2O2 content was lower in tetraploid than
in diploid.

[167]

Turnip Better adaptation

1. 100% increase in seed germination in tetraploid in
highest saline level 200 (m.mol L−1).
2. Shoot and roots length reduced in diploid under salt
stress condition compared to tetraploid.
3. At highest level of salinity, 74.7% diploid, and
64.4% tetraploid seedlings were injured.
4. Chlorophyll content reduced by 11.9% and 40.3% in
tetraploid and diploid, respectively.
5. K+ concentration was stable in tetraploid (16:10, 15:10
K+/Na+ but reduced in diploid (46:100, 48:100) in root and
shoot, respectively.

[165]

Rice Better adaptation
1. Proline concentration was higher in tetraploid
(23.3% higher than diploid).
2. MDA content was lower in tetraploid than in diploid.

[163]

Lemon Seedling Better adaptation

1. Malondialdehyde and hydrogen peroxide was greater in
the leaves and roots of diploid seedlings.
2. Antioxidative enzymes (peroxidase, ascorbate
peroxidase, glutathione reductase, and catalase) were
higher in tetraploid.

[167]

Rice Better adaptation 1. Mortality rates of tetraploids were lower than diploid.
2. Proline content was increased in tetraploid. [164]

Hoagland solution in green
house pot

Citrus Better adaptation Lower accumulations of chloride ions in leaves of the
tetraploid plants as compared to diploid. [166]
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Table 3. Cont.

Stress Inducing Method/Organism Crop Adaptation Mechanism References

Drought

Laboratory condition induced by
polyethylene glycol

Apple Better adaptation

1. Relative water content (RWC) was higher in tetraploid
than diploid (after 3 h of treatment 81.76% and 63.84%,
respectively, and after 6h of treatment 69.89% and 48.16%,
respectively, in tetraploid and diploid cultivar).
2. Lower level of MDA content in tetraploid indicated
membrane integrity under drought stress.
3. Less expression of aquaporin genes in drought stress was
shown in tetraploid.

[168]

Controlled environment, drought
condition by limited water

A solanaceous plant Better adaptation

1. Tetraploid plants grew normally, and leaves remained
turgid where diploid plants died in drought stress.
2. Higher chlorophyll content and lower H2O2 synthesis
were shown in tetraploid than diploid (less
oxidative damage).

[169]

Limited Water supply Arabidopsis Better adaptation

1. Tetraploid stomatal pore is 20% bigger than diploid due
to the bigger size of the guard cells.
2. Higher survival rates in tetraploid.
3. ABA induced stomatal closure happened in
tetraploid leaves.
4. ROS increased in cellular levels and affect
stomatal aperture.
5. Polyploidy induced gene, which helps in
stress adaptation.

[170]

Limited Water supply Rice Better adaptation

1. MDA content was lower in tetraploid rice.
2. Phosphoenolpyruvate carboxylase (PEPC) alleviates
photosynthesis inhibition.
3. Tetraploid showed more PEPC activities in
drought stress.
4. Higher superoxide dismutase (SOD), POD (peroxidase),
CAT (Catalase) was shown, ROS scavenging was more, and
cell membrane damage was less in tetraploid rice.

[171]
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Table 3. Cont.

Stress Inducing Method/Organism Crop Adaptation Mechanism References

Drought

Both controlled and field trial Westerwolths
rye grass

Better adaptation
1. 30–40% more phenolic content and higher antiradical
activities, better stress adaptation found in tetraploid.
2. More biomass in tetraploid.

[172]

Laboratory Honeysuckle plant Better adaptation
1. No photosynthesis in diploid, 80% reduction
in tetraploid.
2. Higher MDA in diploid.

[173]

Temperature

Heat Stress
(42 ◦C)

Dioscorea zingiberensis Better adaptation

1. Relative electrolyte leakage (%) and MDA content was
lower in tetraploid than diploid in heat stress condition.
2. ROS production rate was higher in diploid and
antioxidant enzymes such SOD, CAT, and APX were higher
in tetraploid.
3. Glutathione-ascorbate and AsA declined slowly in
tetraploid were drastically in diploid.

[123]

Drought and Heat Stress (52 ◦C),
field condition

Keystone grass Better adaptation

1. 20% heavier seeds in tetraploid under stress condition.
2. Genome duplication and reproductive flexibility jointly
contributes to stress alleviation.
3. Homeostatic maintenance of reproductive output under
increasing abiotic stress.
4. Fixed differences in seed size and morphology that
increase propagule fitness and mobility.

[174]

Laboratory condition Dendranthema nankin-
gense

Lower heat stress
adaptability

1. Higher cold stress adaptability in tetraploid but lower
heat stress adaptability.
2. Tetraploid did not show much morphological change
with diploid.

[175]

Laboratory condition
(39 ◦C day/30 ◦C night

Dioscorea zingiberensis Better adaptation

1. Activation transcriptomic response in tetraploid
(19 bands silenced and 47 bands activated) where in
diploid 32 silenced and 28 activated.
2. Activation transcriptomic responses may confer
tolerance in heat stress in tetraploid.

[176]

96 h long stress at 45 ◦C. Asparagus officinalis Better adaptation
1. During heat stress MDA decreased by 42% in tetraploid,
SOD increased by 81%, POD increased by 119%, and PRO
content increased by 63% compared to diploid.

[177]
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6.2. Drought Stress Alleviation

Previous ploidy-level research has suggested that enhancing ploidy can successfully
alleviate or help plants better adapt to drought stress, as depicted in Table 3. Due to osmotic
stress effects, cell plants usually incur damage by producing MDA and other superoxide’s
that cause cell membrane disintegration. Tetraploid plants showed lower MDA concen-
trations for drought tolerance than diploid plants [168,171,173]. Although diploids and
tetraploids experience increased ROS production due to drought stress, ROS scavenging
and ROS homeostasis increased in tetraploids [171,172]. Moreover, Yang et al. [131] found
more superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in tetraploid ones
during drought stress. Similarly, 30–40% more phenolic content and higher antiradical ac-
tivity are found in tetraploid cultivars than in diploid cultivars, indicating ROS homeostasis
and better tetraploid stress adaptation [172].

To mitigate drought stress, plants undergo stomatal leaf closure to reduce transpiration.
Enhanced ABA in plants, especially in leaves, reduces leaf turgor, resulting in decreased
stomatal pore aperture, which reduces the incidence of leaf water loss. Eventually, plants
can conserve water within themselves. Polyploid plants show more ABA synthesis than
diploids when under drought. Detailed work has been carried out by Rao et al. [169], estab-
lishing that polyploid plants show more drought stress synthesis than diploids. In addition,
some ABA expresser enzymes such as 9-cis-epoxycarotenoid dioxygenase 1 (NCED1),
NCED2, and gene expression ABRE binding factor 5-like (ABF5-like) were observed; such
phenomena in tetraploids are responsible for increasing ABA synthesis and signaling
pathways for stress adaptation. On the other hand, aquaporin genes such as MdPIP1;1
and MdTIP1;1, which are responsible for cell-to-cell water transportation, are expressed
less in polyploid plants ([168] Table 3). Overall, morphological growth and chlorophyll
content in tetraploids were higher than in diploids during drought stress [168–172] (Table 3).
Nevertheless, consideration should be given to the relative fitness of different ploidy levels
at different drought levels. In addition, to evaluate the efficacy of polyploidy in drought
tolerance, other environmental factors associated with drought stress are also important.

6.3. Temperature Stress Alleviation

Extreme temperature escape by polyploidy has certain trade-offs. Chen et al. [177]
experimented on the effects of heat stress on diploid and tetraploid Asparagus officinalis by
putting both cultivars under extended stress. They placed both cultivars at 45 ◦C for 96 h
and observed better adaptation of tetraploid plants than diploids (Table 3). The tetraploid
cultivar also had higher photosynthetic pigments and lower stomatal densities than the
diploid. Zhang et al. [53] worked on diploid and tetraploid Dioscorea zingiberensis and found
similar results from tetraploids under temperature stress. Usually, in temperature stress,
due to ROS production, plants experience decreases in the level of ascorbate (AsA) and
glutathione (GSH). Polyploid Dioscorea zingiberensis showed a gradual instead of a drastic
reduction in diploids in these antioxidant compounds [53]. This result is strong evidence of
tetraploid heat-stress alleviation. However, Godfree et al. [174] proposed that polyploidy
is not solely responsible for stress adaptation. They suggested that both polyploidy and
reproductive homeostasis contribute to heat stress alleviation. They found distinct mor-
phological differences, consistently heavier seeds, and decreased seed sizes in tetraploids
than diploid, which they considered stressful reproductive production homeostatic main-
tenance. To understand how polyploidy affects transcriptomic responses to temperature
stress, Yin et al. [178] experimented with a diploid and a tetraploid Dioscorea zingiberensis.
They found “Activation Transcriptomic Reaction” in tetraploids, in which 19 bands were
silenced and 47 bands were activated in diploids, 32 bands were silenced, and 28 bands
were activated under temperature stress. They reported that enhanced transcriptomic re-
sponses to activation could confer tolerance in tetraploids during heat stress. Alternatively,
Liu et al. [175] observed varied heat and cold stress responses from tetraploids. They calcu-
lated the LT50 (lethal time to 50% plant mortality under stress) and found that tetraploid
LT50 was 2.40 times lower than that of diploids in cold conditions. Although in heat stress,
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diploid LT50 was 1.20 times higher than tetraploid, which suggests lower tetraploid heat
stress tolerance. Such varied results and findings from various research indicate the need
for further research on temperature stress. Information regarding polyploidy-induced
abiotic stress alleviation is presented in Table 3.

7. Effect of Polyploidization on Plant Biotic Stresses
7.1. Polyploid-Insect Interaction

While plant polyploidy on insect abundance and dispersal is uncertain, two major
events are observed in insect physiology, such as i. polyploidy caused novel insect defense
(herbivores), and ii. co-opt counter-insect defense and extended host selection [178–180].
One example of a polyploidy-induced defense mechanism can be seen in Brassicales, in
which genome duplication contributes to the development of glucosinolate compounds to
establish protection against butterflies [180]. However, Edger et al. [180] also stated that,
in some cases, herbivores are drawn to polyploids through coevolutionary mechanisms.
Polyploidy shows different effects on herbivory, often divided into attraction and escape.
Concerning attraction, Arvanitis et al.’s [178] findings provide adequate evidence. In a
common garden where the corresponding tetraploid and octoploid Cardamine pratensis
were grown, bud gall midge Dasineura cardamine preferred octoploid over tetraploid where
tetraploid cardamines rarely struck. Does higher polyploidy attract insects? Herbivores
are typically fond of polyploids. Their argument is backed by Thompson et al. [181], who
recorded higher infestations of prodoxy moth Greya politella in Heuchera grossulariifolia
tetraploids compared to its diploid ones. Similarly, in tetraploid Arnica cordifolia [182],
tephritid fly Campiglossa footeorum displayed higher attack rates than triploid cultivars.

On the other hand, Nuismer and Thompson [183] recorded frequent attacks by a stem
borer moth Greya piperella in Heuchera grossulariifolia diploids rather than in tetraploids.
Likewise, diploid Gymnadenia conopsea orchids [184] were more frequently attacked by
aphids than their corresponding tetraploids. These contrasting findings indicate that
polyploidy does not inhibit the behavior of herbivores. However, it has been suggested that
insect herbivory is not a cytotype-dependent habitat selection but plays a key role in host-
seeking. In open fields and natural ecosystems, insects typically prefer the most common
host in that habitat. Alternatively, in a typical garden (Figure 6) where all cytotypes are
grown, insects forage the hosts equally [185]. Although the results show that polyploidy has
various implications concerning insect attacks, it can provide some trade-offs. Generally,
polyploids produce higher growth and reproductive ability. Therefore, polyploids can
help avoid economic injury and an herbivory-induced economic threshold, which can be
difficult in diploids.
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rather than flowers of bigger plants, i.e., irrespective of ploidy level). Contrarily, insects forage equally
in a common garden where mixed cytotypes are grown ((b); imagine there are different ploidy levels
flower in the common garden. Insects generally fail to detect different ploidy levels; thus, they forage
equally in a common garden).

7.2. Polyploidy and Pathogen Resistance

Pathogens, including fungi, bacteria, and viruses, are the most daunting factor for
crop cultivation worldwide. The grower must account for high economic losses incurred by
yield loss and the application of pesticides to combat diseases [186]. Developing pathogen-
resistant crop varieties through selective breeding is crucial to address this problem. The
induction of polyploidy may be a promising solution [149]. Naturally occurring varieties of
different crop species, including banana, strawberry, and watermelon, have been reported
to resist a broad range of pathogens [186,187]. Allotriploid cultivars of banana (AAB) and
polyploid watermelon germplasm are fusarium-resistant [187]. Many cultivars of octoploid
Fragaria × ananassa Duchesne are resistant to anthracnose, fusarium wilt, crown rot, red
core, verticillium wilt, and angular leaf spot [186]. Polyploid strawberries (US4808 and
US4809) reported resistance to four Xanthomonas fragariae groups [186].

Several studies have reported that pathogen resistance in the polyploid genotype is
higher than its diploid generation [187,188]). Autotetraploid and autotriploid watermelon
demonstrated higher fusarium resistance than diploid watermelon [187]. Diploid apple
cultivars are more susceptible to Alternaria alternata, and Colletotrichum gloeosporioides than
autotetraploid apple cultivars Hanfu and Gala [188]. Allopolyploid tobacco prevents
plant viruses better than diploid tobacco [189]. Tetraploid wheat avoids more powdery
mildew and leaf rust than diploid wheat [190,191]. Allelic diversity, gene expression (over),
and physiological state are the key factors determining a host plant’s ability to withstand
various pathogens.

Polyploidy may influence plant species’ allelic diversity, gene expression (over), and
physiological condition (Figure 7). The extra alleles at a given locus in polyploids increase
allelic diversity due to the high probability of heterozygosity and enhance resistance. Mul-
tiple polyploid chromosome sets increase gene expression [192,193]. In contrast, it has been
proposed that gene expression is downregulated (in certain loci or in the whole genome
and sometimes even silenced) with increased ploidy level [10]. Polyploid plants can adapt
to a wide range of environmental conditions by developing stress tolerance [194]. Invasive
plant species are more tolerant of diseases than individuals suffering from environmental
stressors [195]. Therefore, the polyploid with higher allelic diversity at resistance genes,
higher expression levels of immune genes should select for cultivar development. The posi-
tive relationship between the disease resistance of the plant and environmental stressors
also needs to be considered.
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means the higher ploidy level decreases the probability of effects. Pot represents the combined effect
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of the polyploidy plant. The gene-for-gene model is the general mechanism of pathogen resistance. In
the polyploidy host, high allelic diversity with dominant allele, fixed heterosis, and high expression
(desirable) of resistance gene directly influence the pathogen resistance. The validated disease resis-
tance genes and their target pathogens are given as examples [54]. The effects of ploidy-level variation
on host adaptability under diverse environmental conditions (biotic and abiotic stress) could indirectly
influence parasite resistance.

8. Challenges of Polyploidization
8.1. Changes in Cellular Architecture

Due to an increase in an organism’s genomic content, cell volume usually increases.
It has the consequent change in the relationship between the cell’s tridimensional and
bidimensional components [196,197]. Doubling the genome is expected to double the
amount of chromatin, but only causes a 1.6-fold increase in the nuclear envelope surface.
Cell size expansion can contribute to anatomical imbalances and deleterious effects, such
as gene redundancy shields polyploids from the mutations’ prejudicial effect, infertility,
brittle wood, and watery fruits [198]. Moreover, polyploidization can cause albinism [199].

8.2. Mitotic and Meiotic Abnormalities

Normal mitosis and meiosis are frequently disrupted in polyploids. Due to additional
sets of chromosomes present in an induced polyploid, faces various challenges during
mitotic chromosome segregation. As we observed that the homozygosity or heterozy-
gosity level significantly differs in polyploids. It depends on the formation pathway like
autopolyploid or allopolyploid that affect the performance of the polyploids in fertility,
growth and even yield [200,201]. Autotetraploid yeast demonstrates increased mitotic loss
of chromosomes, producing aneuploidy cells [202]. Spindle abnormalities usually cause dif-
ficulties in mitosis. Chaotic mitotic chromosomal segregation also occurs in wild yeast [203].
However, there is little knowledge regarding the mitotic stability of polyploid plant cells.
Meiosis requires three or more chromosome sets in which the frequency and manner of
development of aneuploidy depend on the type of polyploidy. Triploidy and aneuploidy,
which may arise from meiotically unpaired DNA, are more unstable states than tetraploidy.
These frequently lead to or result from the more stable polyploidy states. Both conditions
may have potentially detrimental effects on genome regulation [52]. Several experiments
resulted in 30–40% aneuploidy of autotetraploid maize [204,205]. Another problem occurs
in triploids and pentaploids; trivalent cannot be solved into balanced products in triploids,
and a spontaneous division of multiple forms of chromosomes produces mainly aneuploid
gametes. In addition, normal chromosomal segregation is another challenge in auto and
allopolyploid where the multivalent complex structure is often associated. Our study found
that the multivalent has an important role in abnormal chromosomal segregation reducing
fertility [200,206].

8.3. Epigenetic Instability

Aneuploidy can cause epigenetic and genomic instability [207,208]. In autopolyploids,
instability can directly or indirectly contribute to genome duplication. The proof was
demonstrated when diploid and tetraploid Arabidopsis thaliana compared epigenetic
effects at a transgenic locus [158,209,210]. Epigenetic changes in the gene have also been
found in allopolyploids. Theoretically, A. thaliana has also demonstrated regulatory im-
provements in autopolyploid strains in parents. Such changes involved silencing or activat-
ing genes, including activating a Spa-CACTA family DNA transposon [201,210]. Therefore,
mismatches in gene expression and gene product regulatory controls can decrease fitness.

9. Conclusions and Future Perspective

In plant breeding, polyploidization is a successful technique for developing novel
traits. Polyploidy causes significant transcriptomic and regulatory changes that bring
physiological and morphological changes. Disrupted regulatory factor stoichiometries,
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small RNAs, and other genome interactions could potentially set these in motion, cascading
through entire networks of transformed regulatory modules from single-gene expression
modification. Plants with duplicate whole chromosome sets have more distinctive fea-
tures, such as a different phytochemical profile, higher content of desired pharmaceutical
molecules, plant shape, flower color, size and style, fragrance, vase life, and extended
flowering time. However, they do not always act in the same way. Furthermore, polyploid
clones of Eucalyptus grandis, E. urophylla recently produced a fiber with higher length and
thickness, resulting in improved paper formation and strength, suggesting that polyploids
could be used in pulp and paper production. Stable C35 citrange tetraploids are becoming
popular in high-density orchards.

The latest polyploidization trend involves polyploid characterization in their protocol
regarding polyploid ultrastructure, bioactive compounds, photosynthetic capabilities, and
metabolomics studies. Despite progress, we still lack a thorough understanding of poly-
ploidization. Conflicting results have been reported for different polyploid species, and a
single hypothesis cannot be proposed to explain plant polyploid evolution. Nevertheless,
advances in sequencing technology, improved experimental analysis, multi-omics data
quality, and more efficient analytical methods are likely to enhance our understanding of
polyploidization in the near future significantly. In abiotic and biotic stress management
cases, revealing the underlying mechanism is the most important research prospect of poly-
ploidy. Polyploidy-based breeding combines the advantages of heterosis and apomixes,
which can be a viable option for crop improvement in the future. A molecular approach to
understanding the effects of polyploid plants on insects is necessary concerning polyploid-
insect interaction.
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