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A B S T R A C T   

This review systematically documents the major different strategies of generating high-amylose (HAS) starch 
mutants aiming at providing high resistant starch, by engineering the starch biosynthesis metabolic pathways. 
We identify three main strategies based on a new representation of the starch structure: ‘the building block 
backbone model’: i) suppression of starch synthases for reduction of amylopectin (AP) side-chains; ii) suppres-
sion of starch branching enzymes (SBEs) for production of AM-like materials; and iii) suppression of debranching 
enzymes to restrain the transformation from over-branched pre-AP to more ordered AP. From a biosynthetic 
perspective, AM generated through the second strategy can be classified into two types: i) normal AM synthesized 
mainly by regular expression of granule-bound starch synthases, and ii) modified linear AP chains (AM-like 
material) synthesized by starch synthases due to the suppression of starch branching enzymes. The application of 
new breeding technologies, especially CRISPR, in the breeding of HAS crops is also reviewed.   

1. Introduction 

Starch is one of the most important primary food commodities and 
industrial feedstocks on the globe. It consists of two main macromo-
lecular entities: the mainly linear α-1,4 linked amylose (AM) and the 
more branched α-1,4–α-1,6 branch-linked amylopectin (AP). The typical 
AM content of starch in our main starch crops, such as wheat, rice, rye, 
potato, maize, and cassava, ranges between 20% and 30%. (Moorthy, 
Andersson, Eliasson, Santacruz, & Ruales, 2006) Genotypes including 
the so-called waxy starch (high AP) and high AM starch (HAS) provide 
an array of different important functionalities. 

HAS has two important assets which are related to its relative 
robustness toward thermal and enzymatic treatments: its usefulness for 
bio-based materials and high nutritional value based on its high resistant 

starch (RS) content. RS is the fraction of the starch that resists the upper 
human digestive system and is fermented in the large bowel, thereby 
reducing the glycemic response and providing protection against colo-
rectal cancers and high plasma cholesterol and triglyceride levels 
(Zhong et al., 2019). The industrial use of HAS includes films, coating, 
textiles, paper, medical devices, and future biodegradable flexible 
packaging (Li, Dhital, Flanagan, et al., 2020; Li, Gidley, & Dhital, 2019). 
The steadily increasing number of diverse HASs provides a unique po-
tential for different applications to solve escalating health and 
sustainability-associated problems. 

A number of reviews on HAS deal with its fundamental nutritional 
value as RS, especially methods of preparation, quantification, and 
health-promoting effects (Perera, Meda, & Tyler, 2010; Sajilata, Singhal, 
& Kulkarni, 2006). Specifically, the analytical methods for determining 
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RS and the effect of starch composition and processing methods on 
variations in RS contents of pulses and cereal starches have been eval-
uated (Perera et al., 2010; Sajilata et al., 2006). Starch, particularly the 
AM fraction, is an exceptional resource for novel materials and, as such, 
these uses have been reviewed, such as starch-based plastics (Ammala 
et al., 2011; Chen & Yan, 2020; Shah, Hasan, Hameed, & Ahmed, 2008). 
The specific effect of AM on the mechanical properties of normal starch- 
based plastics (Follain, Joly, Dole, & Bliard, 2005), and properties of 
HAS-based films have been reviewed as well (Dureja, Khatak, Khatak, & 
Kalra, 2011). A recent review describes HAS in respect to its structure- 
nutritional functionality relationship with RS (Li, Gidley, & Dhital, 
2019). This review is mainly devoted to the application of HAS in 
functional foods and bioplastics, and how structural features contribute 
to digestive enzyme resistance of native HAS and food processed HAS. 

As AM and HAS are gaining increasing attention, this review ad-
dresses relationships between the collected relational data of biosyn-
thesis, structure, new breeding techniques and functionality of HAS to 
provide a comprehensive report to assist its further development and 
application. Hence, this review seeks to synthesize new HAS breeding 
technologies resulting in alterations of the HAS molecular structure, 
translating into diverse multistructural and nutritional effects, and 
associate the derived informations based on the new ‘building block 
backbone model’. An understanding of the updated breeding techniques 
and strategies on generating HAS crops based on the new type of starch 
structure model is expected to be beneficial for developing new breeding 
strategies of HAS crops. 

2. Structure of HAS 

2.1. Overview of starch structure 

Native starch granules are multi-scale structured from nanometer to 
micrometer scales, i.e., AM and AP molecular chains (0.1 nm), crystal-
line and amorphous lamellar structure (8–11 nm), alternating amor-
phous and semi-crystalline growth rings (0.1 μm), and starch granules 
(1–100 μm) (Bertoft, 2017). These granules are semi-crystalline, 
showing a hierarchical structural periodicity that is apparent at the 
micro-scale as different concentric layers, with alternating amorphous 
and semi-crystalline radial growth rings arising from the inner hilum 
(Blazek & Gilbert, 2011; Kozlov, Blennow, Krivandin, & Yuryev, 2007; 
Waigh, Perry, Riekel, Gidley, & Donald, 1998). 

2.2. Cluster model and building block backbone model 

There are two main models describing how AP chains are organized 
in the branched polymer, namely the “cluster model” and the “building 
block backbone model” (Bertoft, 2017). The primary difference between 
the two AP models is, that long AP chains inevitably penetrate the 
crystalline and amorphous lamellae (cluster model), or the chains are 
mainly oriented within amorphous lamellae but can also partly trans-
verse the crystalline and amorphous lamellae (building block backbone 
model) (Fig. 1). The cluster model mainly emphasizes that the short 
chains in AP are attached together by densely clustered branch points 
located in the amorphous lamella. Long AP parallel chains interconnect 
these clusters in a radial manner in the starch granule (Fig. 1) (Nikuni, 
1978). This representation has been widely accepted for decades and is 
based mainly on the clearly polymodal distribution of the AP side 
chains, intuitively an effect of the supposed clustered chains. However, 
the accuracy of this model has also been challenged, as new data of the 
chain structures has become available. Hence to test the validity of the 
cluster model, the structure of the multiple branched dextrins hydro-
lyzed by α-amylase was analyzed and partly found to not be consistent 
with the expected structure of clusters (Bertoft, Koch, & Åman, 2012; 
Laohaphatanaleart, Piyachomkwan, Sriroth, & Bertoft, 2010). Their 
main arguments are, that clusters have actually never been identified or 
isolated and that the cluster model requires a much higher proportion of 
the very short AP chains, constituting the branched clusters. The revised 
model termed the “building block backbone model” (Bertoft, 2017) is 
characterized by three different points: i) The long AP chains are linked 
to each other and form collectively concentric, not radial, amorphous 
backbone chain sheets. ii) Branched building blocks formed by 1,6- 
branch points are attached to the backbone chains and outspread 
along the amorphous backbone. iii) Short AP chains extend from these 
branched building block structures and form double helices, which align 
to form concentric crystalline lamellae (Fig. 1) (Bertoft, 2017). How-
ever, the ‘cluster model’ is also supported by data, e.g., the amylodextrin 
structure (Kainuma & French, 1971, 1972), the deduction of the left- 
handed double helix structure from X-ray diffraction pattern data 
(French, 1972), and transmission electron microscopy images (Yama-
guchi, Kainuma, & French, 1979), and the radial orientation of fibrous 
structure in crushed and fractured potato starch granules (Sterling, 
1974). Hence, the rationality of the two models is still under debate. 

The general assumptions for the contribution of AM to the lamellar 
structure are: i) AM co-crystallizes with AP side-chains within crystalline 
lamellae; ii) AM orients within the amorphous lamellae; and iii) AM tie- 
chains pass through both the crystalline and amorphous lamellae 
(Blazek & Gilbert, 2011; Kozlov, Krivandin, Shatalova, Olga, & Bertoft, 
2006). This model was recently substantiated by further dividing AM 
chains into different fractions with different chain lengths, followed by 
correlation analysis with crystallographic data (Zhong, Liu, Qu, Blen-
now, et al., 2020). Specifically, the data suggests that i) short AM chains 
co-crystallize with AP side-chains within the crystalline lamellae; ii) 
intermediate AM chains penetrate the crystalline and amorphous 
lamellae as tie-chains; and iii) long AM chains orient within amorphous 
lamellae (Wu & Gilbert, 2010; Zhong, Liu, Qu, Blennow, et al., 2020). 
With the limited data available so far, it can only be supposed that the 
same function of AM is valid for both models, i.e., by forming single and 
double helices with AM, penetrating the crystalline and amorphous 
lamellae, oriented within the amorphous lamellae, co-crystallizing with 
AP side-chains. (Zhong, Liu, Qu, Blennow, et al., 2020). However, it is 
important to emphasize that the effect of AM on the lamellar structure is 
also highly dependent on genetic background. Hence, for the wheat 
starch system with AM content of 1.5%–39.5% (Yuryev et al., 2004), and 
potato system with AM contents between 2% to 36% (Kozlov et al., 
2007), the crystalline lamellar structures were found to be constant 
irrespective of the AM content. However, positive (Kozhevnikov et al., 
2001; Matveev et al., 2001) and negative (Zhong, Liu, Qu, Blennow, 
et al., 2020) correlations between the thickness of the crystalline 

Fig. 1. The classical ‘cluster model’ and the ‘building block backbone model’ of 
AP in a starch granule lamellar segment. Cylinders denote double- 
helical segments. 
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lamellae and the AM content were found for legume and maize systems, 
respectively. When the AM was further increased to 99%, no lamellar 
peak was detected (Goldstein et al., 2016), showing that AM cannot 
form a regular nanostructure in the granule without the presence of AP. 
Plausible locations of AM in the chain grid of the cluster model has been 
suggested (Koroteeva, Kiseleva, Krivandin, et al., 2007; Koroteeva, 
Kiseleva, Sriroth, et al., 2007; Yuryev et al., 2004). However, AM has not 
been modelled within the building block backbone model and effects on 
the AP chain structure is still lacking. Plausible effects of AM based on 
the latter model is given in Fig. 2. However, it must be emphasized that 
the function of different AM fractions fits the cluster model as well. 

3. Biosynthesis of HAS 

3.1. Overview of normal starch biosynthesis 

Starch granules are accumulated in chloroplasts as transient carbo-
hydrate in autotrophic photosynthetic tissue, and as long-term storage 
carbohydrate in amyloplasts in heterotrophic tissue. Starch biosynthesis 
is a highly regulated process coordinately catalyzed by multiple en-
zymes (Pfister & Zeeman, 2016; Skryhan, Gurrieri, Sparla, Trost, & 
Blennow, 2018). The first step in starch biosynthesis is the conversion of 
glucose-1 phosphate (Glc1P) to the activated glucosyl donor ADP- 
glucose using ATP and catalyzed by the ADP-glucose pyrophosphor-
ylase (AGPase). Subsequently, granule-bound starch synthases (GBSSs) 
and, to some extent, starch branching enzymes (SBEs) are responsible 

Fig. 2. Different AM fractions with different chain lengths contribute differ-
ently to the lamellar structure of normal starch and HAS granules. Cylinders 
denote double-helical segments, black lines are AP chain segments, red lines are 
AP backbone segments, blue lines are AM chain segments. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 3. The AM and AP biosynthesis pathways of normal starch. AM is synthesized primarily by the elongation of α-1,4-linked glucan chains and α-1,6-glucosidic 
transfer is scarce. AP is synthesized from glucans generating pre-AP with disordered branching. Subsequently these are trimmed into mature but non-helical AP, 
which is finally assembled to form packed double helical lamellae. Chain color codes are similar to those in Fig. 2. 
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for AM biosynthesis, while soluble starch synthases (SSs), SBEs, starch 
debranching enzymes (DBEs), and glucan water dikinase (GWDs) plays 
different roles in AP biosynthesis. 

To some extent GBSS, the main enzyme of AM biosynthesis, also 
interacts catalytically with SBEs introducing few branches in the AM 
molecules (Fig. 3). SSs are mainly involved in the synthesis of AP, and 
SSI, SSII, and SSIII are generally associated with the elongation of short, 
medium, and long AP chains, respectively (Fujita et al., 2007; Tetlow & 
Bertoft, 2020; Zhang et al., 2008). However, the annotations and sub-
strate specificities of SSs for different chain lengths vary across species. 
For example, SSI has optimal catalytic activity for AP chains with DP 
6–15 and DP 6–7 in maize (PL, 1998) and rice (Fujita et al., 2006), 
respectively. The SSI and SSII isoforms can be regarded as constituting 
the building blocks and short external segments according to the 
building block backbone representation, which form the clusters ac-
cording to the cluster model (Tetlow & Bertoft, 2020). Generally SBEI 
has a preference for catalyzing the transfer of relatively long-chain 
segments (DP < 30, with the majority being DP 10–13), and the SBEII 
homologue has a preference for branched chains as a substrate and 
transfers shorter chains (DP 6–14) (Tetlow & Bertoft, 2020; Tetlow & 
Emes, 2014). The isoamylase-type debranching enzymes (ISAs) (ISA1/ 
ISA2) are mainly responsible for pre-AP “trimming” or “scavenging” 
processes where, according to the cluster model, misplaced α-1,6 branch 
points are selectively removed to promote the formation of parallel 
double-helices and crystallization in the starch granule. This removes 
closely positioned chains on the backbone to provide flexibility for 
double helical segments to form (Bertoft, 2017; Hussain et al., 2003; Sim 
et al., 2014). DBE deficiency is suggested to result in continued action of 
the SSs and BEs on a population of polysaccharides that fail to crystal-
lize, thereby causing formation of both pre-AP (also known as phyto-
glycogen) and AP as end-products of a diverging pathway (Myers, 

Morell, James, & Ball, 2000). In rice and kidney bean, the pullulanase- 
type debranching enzyme (PUL) has partially overlapping functions 
with ISA (Fujita et al., 2009; Takashima et al., 2007). Glucan water 
dikinases (GWDs) are associated with the phosphorylation of storage 
starch in tubers and roots, like potato and sweet potato, by a dikinase- 
type reaction mechanism in which the β-phosphate of ATP is trans-
ferred to either the C-6 or the C-3 position of the glucosyl residue of 
starch (Mikkelsen, Mutenda, Mant, Schürmann, & Blennow, 2005). 

Recent investigations suggest that starch biosynthesis is a highly 
regulated process coordinately catalyzed by multiple enzymes involving 
phosphorylation-dependent multi-enzyme complexes (Crofts, Naka-
mura, & Fujita, 2017). The direct evidence for this is the presence of a 
SSI-SBEIIa-SBEIIb complex in wheat (Tetlow et al., 2008) and a SSI- 
SSIIa-SBEIIb complex in maize (Liu et al., 2012). However, these com-
plexes are rather dynamic in their activities and constitutions (e.g. the 
Tetlow & Bertoft, 2020 paper). The different starch structures found for 
mutants in identical genes are likely related to its specific composition of 
the starch biosynthesis protein complexes. For example, SSI-SSIIa- 
SBEIIb complexes and SSI-SSIIa-SBEI-SBEIIa complexes have been 
identified in the biosynthesis of normal starch maize and SBEIIb- 
deficient maize mutants (Liu et al., 2009). Moreover, loss of the SSIIIa 
homologue in rice is suggested to disrupt the SSIIIa-AGPase-SSIIa- 
SBEIIa-SBEIIb complexes during starch biosynthesis, thereby 
decreasing the AGPase activities affecting the starch structure and AM 
content (Zhou et al., 2016). Hence, complete knock-out of a polypeptide 
in such complexes can have severe disruptive effects on the biosynthetic 
machinery. Also, a non-functional enzyme within the complexes might 
have a very different effect compared to complete removal of that 
polypeptide. So far, most complexes consist of SSs, SBEs, and starch 
phosphorylase (Hennen-Bierwagen et al., 2008; Liu et al., 2011), and 
there is no evidence indicating that DBEs are part of protein complexes. 

Fig. 4. The AM and AP biosynthesis pathways of GBSS overexpressor lines. Higher GBSS expression results in the generation of more AM molecules by boosting the 
AM biosynthesis metabolic branch. Chain color codes as in Fig. 2. AM molecules labelled brown denote superfluous AM generated due to the overexpression of GBSS. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Y. Zhong et al.                                                                                                                                                                                                                                   



Carbohydrate Polymers 287 (2022) 119327

5

On the other hand, biosynthesis mathematical models based on AP 
chain-length distribution profiles (Wu & Gilbert, 2010) strongly suggest 
that the final chain length distributions of AP molecules are driven by 
the ratios of activities of SSs, SBEs, and DBEs. 

In DBE-deficient mutants, the accumulation of phytoglycogen oc-
curs, and the contents of starch and AP significantly decreased (Ball 
et al., 1996; Shannon, Garwood, & Boyer, 2009). This suggests that DBE 
is required for pre-amylopectin to attain a crystallization-competent 
structure (Myers et al., 2000). DBEs may trim highly branched poly-
saccharides (so-called pre-AP) generated by SSs-SBEs complexes until 
the lowest order structure suitable for crystallization is achieved. Hence, 
from those data there is circumstantial evidence that, in AP biosynthesis, 
SSs and SBEs generate pre-AP which is highly branched but disordered, 
and DBEs tailor the unnecessary branches in such pre-AP and generate a 
more ordered structure for following crystallization (Fig. 3). 

3.2. The strategies to increase AM content by engineering starch 
biosynthesis pathways 

According to the current knowledge of the starch biosynthesis 
pathway, three strategies can increase the AM content in starch: i) 
Increased content of ‘native’ AM by overexpression of GBSSs (Fig. 4) 
(Itoh et al., 2003; Sestili et al., 2012); ii) Production of ‘AM-like’ ma-
terial in AP biosynthesis by suppressing SBEs (Fig. 6) (Carciofi et al., 
2012; Zhong, Liu, Qu, Li, et al., 2020); and iii) Increased relative AM 
content by decreasing the AP content through suppressing SSs (Fig. 6), 
DBEs (Fig. 7), and GWDs (Fig. 7) (Blennow et al., 2020; Hogg et al., 
2013; Kozlov et al., 2007; Li, Manghwar, et al., 2019). 

Provided that GBSS is a limiting activity in the starch granule, 
overexpression of GBSSs is expected to increase the amounts of AM 
(Fig. 4). However, AM content is not always positively correlated with 
the GBSS activity (Flipse, Keetels, Jacobsen, & Visser, 1996). In some 
examples AM content was unchanged or only slightly increased (AM 
content <40%) in GBSS overexpressors of potato, wheat, and rice 
(Fig. 5) (Flipse et al., 1996; Itoh et al., 2003; Sestili et al., 2012). 

Suppressing SBEs is the most common strategy to generate HASs in 
different species, including barley (Carciofi et al., 2012), wheat (Li, 
Dhital, Gilbert, & Gidley, 2020), maize (Jiang et al., 2015) and other 
starch crops (Fig. 6). Using this strategy, AM content increased to nearly 
100% in the barley (Carciofi et al., 2012) and the potato (Zhao et al., 
2021a, 2021b) systems, and typically increased to 70%–80% in maize 
(Jiang et al., 2015; Zhong, Liu, Qu, Blennow, et al., 2020) and wheat (Li, 
Dhital, Gilbert, & Gidley, 2020) (Fig. 5). Suppressing SBEs, especially 
the SBEIIb homologue, produces an α-glucan with only few branches 
attached to partial backbone chains, providing efficient substrates for 
the SSIII homologue for successive elongation. Possibly GBSS is also 
active on those linear segments. Such activities can produce material 
that we term ‘AM-like’ material in AP biosynthesis (Fig. 6) (Zhong, Liu, 
Qu, Li, et al., 2020). Such ‘AM-like’ material from AP biosynthesis and 
normal AM from AM biosynthesis, therefore together contributes to the 
overall AM content in these plants. In comparison with normal AM, ‘AM- 
like’ α-glucans are suggested to have more branches due to low 
expression of SBEs in plant unless SBEs are completely knocked out. We 
suggest that there are two possible ways to verify the existence of such 
‘AM-like’ material: i), Engineering crops by simultaneously suppressing 
SBEs and GBSSs produce starch with ‘AM-like’ material and without 
normal AM. Isolated pure ‘AM-like’ material from these mutants can 
then be structurally compare this with those of normal AM; and ii) Due 
to the proposed relatively high content of ‘AM-like’ material in 
extremely high AM starches (e.g., AM-only barley starch), all AM from 
such starches could be isolated and compared with the AM from normal 
starch. We adopted the second approach by testing the iodine binding 
capacity of AMs isolated from AM-only and normal barley starch, and 
potato starch, and found that AM isolated from AM-only barley starch 
showed lower iodine binding capacity than AM isolated from normal 
barley and potato starch (Fig. S1), which supports the existence of such 
‘AM-like’ material. There may also be another component in HASs: so- 
called intermediate material, with a similar molecular size to that of 
AM but with a highly branched structure like AP. It may be that ‘AM- 
like’ material with few branches results in its greater capacity to form 

Fig. 5. The classification of different types of HAS by five types of different AM generation strategies and the corresponding AM range in different crops. The 
variations of AM content and ‘AM-like’ materials in these mutants indicate the different effects of various breeding techniques, e.g., TILLING and CRISPR, on 
enhancing AM content of starch from different botanical sources. 
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complexes with iodine which is similar to AM generated from GBSSs. 
Highly branched structures of intermediate material may then 
contribute to its higher hydrodynamic radius compared with that of 
‘AM-like’ material as detected by gel permeation chromatography or 
size exclusion chromatography. 

Suppressing SSs induces the reduction of premature, highly branched 
AP, (i.e., pre-AP) to AP, thereby decreasing the relative content of AP 
and increasing the relative content of AM (Fig. 6). Through this strategy, 
the AM content was increased to 71% in barley starch (Li, Manghwar, 
et al., 2019; Morell et al., 2003), 38% in maize (Zhang et al., 2004), and 

44% in wheat (Konik-Rose et al., 2007). Suppressing DBEs promotes the 
deposition of phytoglycogen (an intermediate material termed pre-AP) 
in AP biosynthesis (Fig. 7) (Blennow et al., 2020; Boyer & Preiss, 
1981; Wong et al., 2003). This decreases the relative content of AP in 
starch. To our knowledge, the AM content can reach 38% by suppressing 
DBEs in potato (Blennow et al., 2020) and 30% in cassava (Ceballos 
et al., 2008). Therefore we estimate that the increased phytoglycogen 
content is equal to the increase of AM content (Fig. 5), although the 
accumulation of phytoglycogen in the DBE-deficit mutant can be much 
higher (Wong et al., 2003). Although GWD1 is mainly responsible for 

Fig. 6. The AM and AP biosynthesis pathways of SBE and SS suppressed mutants. Lower SBE expression results in the reduction of branch amounts in AP thereby 
generating ‘AM-like’ material in AP biosynthesis pathway. Lower SS expression results in the decrease of the amounts of AP molecules thereby increasing the relative 
AM content. Chain color codes as in Fig. 2. 

Fig. 7. The AM and AP biosynthesis pathways of DBE and GWD suppressed mutants. Lower DBE expression prevented the transformation from pre-AP with 
disordered branching points to AP with ordered branching points thereby generating more phytoglycogen and reducing the amounts of AP molecules in AP 
biosynthesis pathway. Lower GWD expression results in a decrease of the amounts of AP molecule thereby increasing the relative AM content. However, the 
mechanism behind this is still unclear. Chain color codes are similar to those in Fig. 2. 
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the attachment of phosphate monoesters on C6 position of starch mol-
ecules (Mikkelsen et al., 2005), the phosphorylation of starch is sug-
gested to promote the AP biosynthesis (Xu et al., 2017). Hence, similar 
to SSs, suppression of GWD can also suppress the AP biosynthesis, 
thereby decreasing AP content (Fig. 7). However, the suppression of 
GWD only causes a slight increase in AM content from 31% to 37% in 
potato (Fig. 5) (Kozlov et al., 2007). The underlying mechanism of how 
GWD specifically affects AP biosynthesis is still unknown. 

4. Techniques for HAS engineering 

4.1. Two main techniques for the generation of HAS cultivars 

HAS cultivars may be generated by tweaking AM and AP biosyn-
thesis by two techniques: conventional breeding and new breeding 
technologies (NBTs). 

Many HAS crops, including the commercially available maize and 
rice HAS, have been generated by conventional breeding, often using 
random mutagenesis to produce a high-AM mutant using, e.g., ethyl 
methanesulfonate (EMS), sodium azide (NaN3) or high-energy X-ray 
radiation, followed by phenotypic selection of the desired HAS trait and 
extensive crossing and backcrossing to further increase the AM content 
and improve the agronomic traits. Efficient high-throughput molecular 
screenings for identifying such mutations have been developed, 
including so-called Targeted Induced Local Lesions in Genomes (TILL-
ING), a non-GM technique (Chen, Hao, Parry, Phillips, & Hu, 2014). For 
instance, high AM wheat lines were generated by such a TILLING system 
(Slade et al., 2012). 

4.2. Precision breeding as a tool for engineering starch composition 
including HAS 

Based on direct regulation of key biosynthetic enzymes in the crop 
storage organs, efficient molecular strategies are currently evolving 
(Blennow et al., 2013; Hebelstrup, Sagnelli, & Blennow, 2015), which 
include gene overexpression, gene silencing or specific point mutations 
using genome editing approaches like zinc-finger domain nucleases, 
TALEN factors or CRISPR/Cas (Hebelstrup et al., 2015). 

Precise CRISPR/Cas-based breeding techniques are excellent strate-
gies for HAS production to enable efficient introduction or elimination 
of desired or unwanted traits. The use of CRISPR/Cas-based breeding 
strategies is currently limited to a number of plant species and crops, 
which, however is growing (Hebelstrup et al., 2015). A number of re-
quirements or challenges in terms of biological barriers need to be 
overcome, and further development of the technology as well as 

regulatory demands and public accept must be addressed for precise 
crop breeding at a broader scale. Many starch crop plants have high 
ploidy and complex genomes, e.g., the tetraploid (starch) potato, with a 
high frequency of Single Nucleotide Polymorphisms (SNPs) that com-
plicates application of CRISPR/Cas and the assessment/screening for 
edited cells and regenerated edited plants, since editing of all four alleles 
in a tetraploid species is normally required for obtaining a full loss of 
function phenotype (Hebelstrup et al., 2015). All of these challenges 
have been solved in the case of generating a potato line synthesizing 
pure AP (Johansen et al., 2019), and different HAS lines in starch crops, 
including rice (Guo et al., 2020; Sun et al., 2017), wheat (Li et al., 2021), 
sweet potato (Wang et al., 2019), and potato (Zhao et al., 2021a, 
2021b). Generally, in HAS lines, CRISPR/Cas editing is employed to 
generate a full allelic loss-of-function of the targeted SBE genes in the 
plants (Guo et al., 2020; Li et al., 2021; Wang et al., 2019; Zhao et al., 
2021a). Among these lines, the highest apparent AM content (100%) is 
reported for potato by editing both SBEI and SBEII (Zhao et al., 2021b). 

A schematic protocol for generating HAS in potato from single cells 
using the CRISPR/Cas approach is shown in Fig. 8 (Bennett et al., 2020; 
Zhao et al., 2021a, 2021b). This requires the following steps: i) Single 
cell (protoplast) isolation and polyethylene glycol (PEG) mediated 
transformation of the CRISPR/Cas components, ii) Establishing plant 
regeneration protocols (which often varies between species and culti-
vars) and iii) reliable means of screening for editing protoplasts and 
regenerated plants (e.g. by the use of the InDel Detection Amplicon 
Analysis (IDAA) to detect small insertions or deletions) (Bennett et al., 
2020; Johansen et al., 2019; Petersen et al., 2019). 

Most often, breeding requires editing of several genes, which, if the 
traditional single-gene targeting strategy is applied, requires one round 
of plant regeneration for each gene that is edited (Hebelstrup et al., 
2015). However, somaclonal mutations resulting from hormone usage in 
the regeneration from a single edited protoplast cell to edited plant is 
considerably higher than mutations derived from potential CRISPR off- 
target events and is sometimes visible at the phenotypic level (‘distorted 
looking’ plants or plant organs) (Li, Gidley, & Dhital, 2019). Therefore, 
previous single-gene targeting strategies must be replaced with multi- 
gene targeting strategies, so-called multiplexing where all or most of 
the desired genes are targeted in the same transformation event. How-
ever, this gives an increased screening load in the single plant regener-
ation step in which all copies of the desired genes must be edited. 

To meet consumer demands for non-transgenic products, the use of 
DNA-free CRISPR/Cas, in the form of (RiboNucleoProteins (RNPs), al-
leviates risks of introducing transgenic DNA into the chromosomes. 

Many challenges in relation to the introduction of precise breeding 
technologies on a broader scale for HAS breeding with high ploidy and 

Fig. 8. Scheme for HAS potato generated by CRISPR/Cas (Bennett et al., 2020; Zhao et al., 2021a, 2021b).  
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complex genomes (Gao, 2018), have been met with efficient solutions, 
such as high throughput editing and screening techniques (Bennett 
et al., 2020; Johansen et al., 2019; Petersen et al., 2019). Because sexual 
propagation or backcrossing of some HAS crops (e.g., potato) leads to 
loss of existing qualities/traits, clonal amplification and propagation of 
edited off-spring is required. Protocols for regeneration of edited HAS 
plants are therefore important (Bennett et al., 2020; Johansen et al., 
2019; Petersen et al., 2019). 

4.3. Effect of genetic backgrounds on HAS breeding 

A number of HAS varieties from different botanical sources, e.g., 
wheat, barley, maize, potato, pea, and rice, have been developed and 
characterized (Li, Manghwar, et al., 2019). Genetic backgrounds, such 
as inbred and hybrid background genotypes, are important for HAS and 
the structure and properties of the starch (Capek, Drábik, & Turjan, 
2010; Liang, Wang, & Lu, 1996; Tongquan, 1998; Yuan, Zhu, Wang, & 
Zhang, 1994). HASs from hybrid genotypes with the same HAS mutant 
locus display very different structure and properties compared with 
HASs from their inbred line parents (Fig. 9) (Lin, Guo, Huang, et al., 
2016; Lin, Guo, Zhao, et al., 2016). A recent study showed that two HAS 
genotypes mutated in the same locus, and having similar AM contents, 
displayed notable differences in molecular structure, lamellar structure, 
and digestibility (Zhong, Liu, Qu, Blennow, et al., 2020). Hence, 
different HAS varieties affected by the same genes can be very different 
with respect to their starch molecular structure and properties. Such 
effects remain to be characterized at the different structural levels of the 
starch granule. 

In addition to genotypic characteristics, the environmental condition 
during growth is also an important factor affecting the biosynthesis of 
starch, thereby influencing the structure and function of starch. For 
example, the starch content in the normal wheat grain is affected by soil 
nitrogen and meteorological conditions during growth (Nhan & Cope-
land, 2014). Moreover, the growing season and location has been shown 
to affect the AM content, the proportion of short chains of AP and 
swelling power of wheat starch (Nhan & Copeland, 2014). It has been 
reported that water-deficiency significantly enhanced the abscisic acid 
(ABA) content in the grains, and that this was positively correlated with 
the activities of SSs and SBEs (Yang, Zhang, Wang, Xu, & Zhu, 2004). 
This showed that drought has an effect on starch molecular structure. 
However, little information is documented about the environmental 

effects on the AM content, structure, or functionality of HAS-producing 
crops. Such information is essential for the large operations and indus-
trial applications of HAS crops. 

5. Future perspectives 

This review covers biosynthesis, genetic engineering, breeding, and 
structure of HAS. Prospects are identified as follows: i) More data must 
be made available on the genetic backgrounds and environmental fac-
tors in relation to the structures and function of HAS; ii) How AM con-
tributes to the crystalline and lamellar structure should be further 
clarified based on advanced techniques for analyzing AM fine structure 
and its crystalline and lamellar structure; iii) SBE-deficient HAS mutants 
produce AM-like material having functionality close to AM generated 
from the common AM biosynthesis pathway. However, this material 
must be isolated to permit a full structural and functional comparison to 
AM generated from the common AM biosynthesis pathway. Moreover, 
the biosynthetic route for AM-like material must be delineated; and iv) A 
comprehensive and systematic data repository of HAS from different 
cultivars should be established. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.carbpol.2022.119327. 
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Fig. 9. The structural differences, including morphology by SEM (top panel), molecular structure (GPC), crystalline structure (XRD), and lamellar structure (SAXS) of 
inbred lines (Zae49 ♂ and Zae50 ♀) and their F1 hybrid (Zae49 × Zae50) of high AM maize (Lin, Guo, Zhao, et al., 2016). 
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