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Abstract

In this study, we extend research on genomic prediction (GP) to polysomic polyploid plant species with the main objective to investigate 
single-trait (ST) and multitrait (MT) multienvironment (ME) models using field trial data from 3 locations in Sweden [Helgegården (HEL), 
Mosslunda (MOS), Umeå (UM)] over 2 years (2020, 2021) of 253 potato cultivars and breeding clones for 5 tuber weight traits and 2 tuber 
flesh quality characteristics. This research investigated the GP of 4 genome-based prediction models with genotype × environment in-
teractions (GEs): (1) ST reaction norm model (M1), (2) ST model considering covariances between environments (M2), (3) ST M2 extended 
to include a random vector that utilizes the environmental covariances (M3), and (4) MT model with GE (M4). Several prediction problems 
were analyzed for each of the GP accuracy of the 4 models. Results of the prediction of traits in HEL, the high yield potential testing site in 
2021, show that the best-predicted traits were tuber flesh starch (%), weight of tuber above 60 or below 40 mm in size, and the total tuber 
weight. In terms of GP, accuracy model M4 gave the best prediction accuracy in 3 traits, namely tuber weight of 40–50 or above 60 mm in 
size, and total tuber weight, and very similar in the starch trait. For MOS in 2021, the best predictive traits were starch, weight of tubers 
above 60, 50–60, or below 40 mm in size, and the total tuber weight. MT model M4 was the best GP model based on its accuracy when 
some cultivars are observed in some traits. For the GP accuracy of traits in UM in 2021, the best predictive traits were the weight of tubers 
above 60, 50–60, or below 40 mm in size, and the best model was MT M4, followed by models ST M3 and M2.

Keywords: Solanum tuberosum, genomic prediction in potato, genomic × environment interaction, multienvironment modeling, multiple 
trait modeling, single-environment modeling, single-trait modeling 

Introduction
Genomic prediction (GP) and selection (GS) have changed the 
paradigm of plant and animal breeding (Meuwissen et al. 2001; 
de los Campos et al. 2009; Crossa et al. 2010, 2011; Desta and 
Ortiz 2014). Practical evidence has shown that GS provides import-
ant increases in prediction accuracy for genomic-aided breeding 
(Pérez-Rodríguez et al. 2012; Crossa et al. 2014, 2017). Additive gen-
etic effects (breeding values) can be predicted directly from para-
metric and semi-parametric statistical models using marker 
effects like the ridge regression best linear unbiased prediction 
(Endelman 2011), or by developing the genomic relationship 
inear kernel matrix (G) to fit the genomic best linear unbiased 
prediction (GBLUP; VanRaden 2008). Departures from linearity 
can be assessed by semi-parametric approaches, such as 
Reproducing Kernel Hilbert Space regression using the Gaussian 
kernel (GK) or different types of neural networks (Gianola et al. 
2006; Gianola and Van Kaam 2008; de los Campos et al. 2010; 
González-Camacho et al. 2012; Pérez-Rodríguez et al. 2012; 
Gianola et al. 2014; Sousa et al. 2017).

Standard GP models were extended to multienvironment 
(ME) data by assessing genomic × environment interaction (GE; 

Burgueño et al. 2012). Jarquín et al. (2014) proposed an extension 

of the GBLUP or random effects model, where the main effects of 

markers and environmental covariates could be introduced 

using covariance structures that are functions of marker geno-
types and environments. Consistently, GP accuracy substantial-

ly increased when incorporating GE and marker × environment 

interaction (Crossa et al. 2017). Cuevas et al. (2016) and Sousa 

et al. (2017) applied the marker × environment interaction GS 
model of Lopez-Cruz et al. (2015), but modeled not only through 

the standard GBLUP but also through a nonlinear GK like 

that used by de los Campos et al. (2010) and a GK with the band-

width estimated through an empirical Bayesian method 

(Pérez-Elizalde et al. 2015). Cuevas et al. (2016) concluded that 
the higher prediction accuracy of GK models with the GE model 

is due to more flexible kernels that allow accounting for small, 

more complex marker main effects and marker-specific inter-

action effects.
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In GP, the training set usually includes a sufficient overlap of 
lines across environments, so that estimating the phenotypic co-
variance among environments for modeling GE is sufficient to 
specify it on the linear mixed model used. When modeling GE, 
some researchers used the mathematical operation defined by 
the Kronecker products or direct product (Cuevas et al. 2016) 
that allows operations of 2 matrices of different dimensions. 
Other authors model GE using the matrix operation named 
Hadamard products (also known as element-wise products), 
which is a binary operation between 2 matrices of the same di-
mensions as the operands (Jarquín et al. 2014; Lopez-Cruz et al. 
2015; Acosta-Pech et al. 2017; Perez-Rodriguez et al. 2017; 
Sukumaran et al. 2017; Basnet et al. 2019). When modeling epista-
sis, Hadamard products of the additive genomic relationship have 
mainly been used (e.g. Jiang and Reif 2015; Martini et al. 2016; 
Vitezica et al. 2017; Varona et al. 2018; Martini et al. 2020). 
However, Burgueño et al. (2007) have used Kronecker products 
for modeling and the estimation of additive, additive × environ-
ment interaction, additive × additive epistasis, and additive × 
additive × environment interactions by means of the coefficient 
of parentage. In a recent study, Martini et al. (2020) gave theoretic-
al proof that both methods lead to the same covariance model 
when used with some specific design matrices and illustrated 
how to explicitly model the interaction between markers, tem-
perature, and precipitation.

Traditionally, GP models have evolved from the single- 
trait (ST) and single-environment prediction (ST-SE) models 
to ST-ME models including GE. Furthermore, standard 
GS-assisted plant breeding models are concerned with the as-
sessment of the GP accuracy of a multitrait (MT) measured in 
a single environment (MT-SE) or MT-MEs. In general, MT GP 
models have evolved from MT-SE to MT-ME. The MT models 
are keys for improving prediction accuracy in GS because they 
offer benefits regarding the ST models when the traits under 
study are correlated. Most existing models for GP are the ST 
models although the MT models have several advantages over 
the ST (Montesinos-López et al. 2019). Compared with ST, MT 
can simultaneously exploit the correlation between cultivar 
and traits and thus improve the accuracy of GP as they are com-
putationally more efficient than ST (Montesinos-López et al. 
2019). When the traits are correlated, MT models improve par-
ameter estimates and prediction accuracy as compared to ST 
models (Schulthess et al. 2018; Calus and Veerkamp 2011; 
Jiang and Jannink 2012; Montesinos-López et al. 2016, 2019; He 
et al. 2016). With the continuous growth of computational 
power, MT models play an increasingly important role in data 
analysis in plant and animal genomic−aided breeding for se-
lecting the best candidate genotypes.

The use of MT models is not as widespread as the use of ST 
models because of several factors such as, among others, lack of 
efficient and friendly software, and not enough computational re-
sources. Likewise, MT models have more complex GEs that make 
it difficult to assess and achieve MT model assumptions. 
Furthermore, MT models have more problems of convergence 
than ST models. Some models have been proposed for MT GP, 
e.g. MT mixed models and their Bayesian version. Bayesian MT 
genomic best linear unbiased predictor and MT models under arti-
ficial deep neural networks were applied to maize and wheat data 
sets (Montesinos-López et al. 2018, 2019). However, most research-
ers use MT models to improve prediction accuracy for traits to be 
predicted (i.e. the prediction set)—which are tedious and time- 
consuming to measure and have low heritability—by using a 
few traits (i.e. the training set) with high heritability that are 

highly correlated with the former prediction set (Jiang and 
Jannink 2012; Semagn et al. 2022).

It is widely recognized that from the statistical and quantitative 
genetics perspectives, when data on MTs are available, the pre-
ferred models are the MT as they can account for correlations be-
tween phenotypic traits in the training set because borrowing 
information from correlated traits increases GP accuracy. 
Montesinos-López et al. (2022) investigated Bayesian MT kernel 
methods for GP and illustrated the power of linear, Gaussian, 
polynomial, and sigmoid kernels. The authors compared these 
kernels with the conventional ridge regression and GBLUP MT 
models. Montesinos-López et al. (2022) showed that, in general, 
but not always, the GK method outperformed conventional 
Bayesian ridge and GBLUP MT in terms of GP prediction perform-
ance. These authors concluded that the improvement in terms of 
prediction performance of the Bayesian MT kernel method can be 
attributed to the proposed model being able to capture nonlinear 
patterns more efficiently than linear MT models.

Semagn et al. (2022) were interested in comparing prediction 
accuracy estimates of a subset of lines that have been tested for 
an ST, with a subset of lines that have not been tested for certain 
proportion traits (MT1, certain cultivars were not tested for any of 
the traits), and a subset of lines that have been tested for some 
traits but not for other traits (MT2) across different bread wheat 
genetic backgrounds for agronomic traits of varying genetic archi-
tecture evaluated under conventional and organic management 
systems, and several host plant resistance traits evaluated in 
adult plants under standard field management. Their results 
show that the predictive ability of the MT2 model was significantly 
greater than that of the ST and MT1 models for most of the traits 
and populations, except common bunt, with the MT1 model being 
intermediate between them, thus demonstrating the high poten-
tial of the MT models in improving prediction accuracy.

Although most GP research for ST and MT for SE or ME has been 
applied to diploid species, a recent study by Ortiz et al. (2022) de-
monstrated the increase in prediction accuracy of ST-ME over 
the ST-SE genomic-estimated breeding values for several tetraso-
mic potato (Solanum tuberosum L.) breeding clones and released 
cultivars for various traits evaluated in several sites for 1 year. 
Ortiz et al. (2022) considered 4 dosages of marker alleles (A) 
pseudo-diploid; (B) additive tetrasomic polyploidy, and (C) 
additive-nonadditive tetrasomic polyploidy, and B + C dosages to-
gether in the genome-based prediction models using the conven-
tional linear GBLUP (GB) and the nonlinear GK for ST-SE and 
ST-ME together. Results show that GK did not show any clear ad-
vantage over GB, and ST-ME had prediction accuracy estimates 
higher than those obtained from ST-SE. The model with GB was 
the best method in combination with the marker structures C or 
B + C for predicting most of the tuber traits. Most of the traits 
gave relatively high prediction accuracy under this combination 
of marker structure C or (B + C) and methods GB and GK combined 
with ST-ME including the GE model.

Based on the above considerations, and the need to extend re-
search on GP to polysomic polyploid plant species, the main objec-
tives of this research were to investigate ST vs MT for ME (GE) 
models using trial data from 3 locations [namely Helgegården 
(HEL), Mosslunda (MOS), and Umeå (UM)] over 2 years (2020, 
2021) of 253 potato cultivars and breeding clones, which were 
also included by Ortiz et al. (2022). In this study, we will use only 
the genomic relationship matrix obtained from the additive- 
nonadditive tetrasomic polyploidy (C), because using this genomic 
relations matrix in terms of GP accuracy was found to be one with 
the best GP accuracy (Ortiz et al. 2022). This research investigated 
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the GP of 4 genome-based prediction models including either 
Hadamard or Kronecker product matrices for assessing GE: (1) 
the conventional reaction norm model incorporating GE with 
Hadamard product (Jarquín et al. 2014) (M1); (2) GE model consid-
ering covariances between environments, similar to the model 
employed by Burgueño et al. (2012) or the GE with Kronecker prod-
uct (M2); (3) GE model 2 including a random vector that attempts 
to more efficiently utilize the environmental covariances as in 
Cuevas et al. (2017) or a GE with Kronecker product (M3); and (4) 
an MT model with GE as in Montesinos-López et al. (2022), but in-
cluding a GE model that joins Hadamard and Kronecker products 
(M4). Several prediction problems were analyzed for the GP accur-
acy of each of the 4 models. We investigated the prediction set of 
locations in the year 2021 from locations in the year 2020 using the 
4 GP models combined with 2 of the prediction sets (100 and 70%) 
and predicting ST and MT.

Materials and methods
Phenotypic data
The MT experiments included 256 potato breeding clones and cul-
tivars in trials at HEL, MOS, and UM. Their list is provided by Ortiz 
et al. (2022) Supplementary Table 1 (https://hdl.handle.net/11529/ 
10548617). The breeding clones are in at least the fourth gener-
ation (T4) of selection by Svensk potatisförädling of the Swedish 
University of Agricultural Sciences (Ortiz et al., 2020), while the 
cultivars are a sample of those released and grown in Europe dur-
ing the last 200 years. HEL and MOS are near Kristianstad (56°01′ 
46″N 14°09′24″E, Skåne, southern Sweden), while UM (63°49′30″N 
20°15′50″E) is in the north of Sweden.

An incomplete block design (simple lattice) with 2 replications 
of 10 plants each was the field layout for the field trials across test-
ing sites. Fungicides were only used in HEL to avoid late blight 
caused by the oomycete Phytophthora infestans throughout the 
growing season, thus allowing tuber yield potential to be esti-
mated at this site. Crop husbandry was used for potato farming 
at each site.

Total tuber yield per plot (kg), tuber weight by size (<40, 40–50, 
50–60, >60 mm; kg), while tuber flesh starch was measured as a 
percentage based on specific gravity after harvest. Reducing su-
gars in the tuber flesh after harvest was determined using potato 
glucose strip tests (Mann et al. 1991). Host plant resistance to late 
blight was evaluated using the area under the disease progress 
curve in MOS.

Genotypic data
After sampling using 4 leaf punches for each of the 256 breeding 
clones and cultivars included in the experiments, the materials 
were sent by AgriTech—Intertek ScanBi Diagnostics (Alnarp, 
Sweden) to Diversity Array Technology Pty Ltd (ACT, Australia) 
for targeted genotyping following a genotype-by-sequencing 
approach (https://www.diversityarrays.com/technology-and- 
resources/targeted-genotyping/). More than 2,000 single- 
nucleotide polymorphisms (SNP) were used for genotyping. They 
derived mostly from SolCAP SNPs based on chromosome positions 
and MAF > 0.05 in germplasm from the Centro Internacional de la 
Papa (CIP, Lima, Perú) and the United States of America. According 
to Selga et al. (2021), such a number of SNPs seems to be enough for 
researching GEBVs without losing information. Although there 
were very few missing genotyping data (0.1%), one breeding clone 
(97) and 2 cultivars (“Leyla” and “Red Lady”) were not included fur-
ther in the analysis because they were lacking enough SNP data.

Computing the genomic relationship matrix
We briefly described the method used for codifying the molecular 
X matrix proposed by Slater et al. (2016) and used one of the op-
tions used by Ortiz et al. (2022) in the genomic-enabled prediction 
models.

Full tetrasomic including additive and 
nonadditive effects
For coding matrix X, according to Slater et al. (2016), we considered 
additive and nonadditive effects in a full tetrasomic polyploid as-
suming each genotype, has its own effect. In this case, there were 
5 possible (AAAA, AAAB, AABB, ABBB, BBBB) effects per SNP mark-
er, coding 0, and 1, for the absence or presence of the genotype, re-
spectively, in each of the 5 cases. For each SNP marker, exists 5 
columns on X coding the presence or absence of the genotype. 
Then the genomic relationship between individuals j, k was com-
puted as

Kjk =

1
M

M

i=1
(x ji − pi)(xki − pi)

pi(1 − pi) 

where M was the number of markers × 5, xji represents the code of 
the absence or presence of the genotype from column ith of indi-
vidual jth, and pi is the frequency of each genotype, i.e. the fre-
quency in each column. To compute the diagonal of this matrix, 
we used:

K jj = 1 +
1
M

M
i=1 (x2

ji − 2pix ji + p2
i )

pi(1 − pi) 

Statistical models
ST conventional reaction norm model including GE  
(model 1, M1)
The standard reaction norm model incorporating GE (Jarquín et al. 
2014), as shown below, explains the variation of the observations 
of a ST in each of the m environments (ME) represented by the vec-
tor y = (y′1, . . . , y′ i, . . . y′m)′ by estimating each mean of the envir-
onment observations μE, plus the prediction of the main genetic 
effects g and the prediction of the interaction random effects G 
× E represented by vector ge, the unexplained variation or random 
errors are represented by vector ɛ.

y = ZEμE + g + ge + ε (1) 

where y is a column vector of size nT × 1, Considering nT as the sum 
of the number of observations in each environment. The inci-
dence matrix ZE relates the observations to the mean of the envir-
onments. The random genetic vector of main effects g follows a 

multivariate normal distribution N(0, σ2
g ZgKZ′g) where σ2

g is the 

variance component of g, Zg is an incidence matrix that relates 
the observations with the K matrix of genomic relations between 
the clones. In our study, K was computed as previously indicated 
for the case of a full tetrasomic genomic relationship matrix. The 
random vector of interaction effects ge follows a multivariate nor-

mal distribution N(0, σ2
ge ZgKZ′g# ZEEZ′E), where σ2

ge is the variance 

component, # denotes the Hadamard product, and E is a matrix of 
relationship between environments (in our case, an identity ma-
trix is considered) such that ZEEZ′E is a block diagonal matrix 
with 1 s for all pairs of observations in the same environment 
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and 0 s otherwise. This implies that the estimation of the effects ge 
is independent in each environment. Random errors ε are consid-

ered with homogeneous variance, that is, ε ∼ N(0, σ2
ε I). This model 

is flexible because it allows predicting different numbers of clones 
in different environments or even predicting the entire environ-
ment. However, when the correlations between the environments 
are not positive, the GE model with the Hadamard product does 
not explain the phenotype variation well enough (Lopez-Cruz 
et al. 2015), because the model does not incorporate genomic cov-
ariances between environments.

ST GE (ST-ME) model considering covariances between 
environments (model 2, M2)
Based on Burgueño et al. (2012), the GP model including GE consid-
ered the genomic covariances between environments to attempt 
improving the GP accuracy of unobserved environments. In M2, 
we considered only one trait (ST) and MEs, but the main effect 
of genomic and the GE interaction effects are modeled jointly by 
using a single vector u assuming a multivariate normal distribu-
tion that considers the genomic covariances between environ-
ments. One form of this model is

y = ZEμE + u + ε (2) 

where the genetic random effects can be modeled as a normal dis-
tribution u ∼ N(0, UE ⊗ K), where UE is a matrix of genomic covar-
iances between the environments of size m × m to be estimated, 
and ⊗ indicates the Kronecker product. The random errors are 
modeled as ε ∼ N(0, Σ ⊗ I), where matrix Σ is a diagonal matrix 
of size m × m, that has on its diagonal the variances of the errors 
between environments to be estimated, and I is the identity ma-
trix of order nL × nL (Cuevas et al. 2017), where nL denotes the num-
ber of lines or clones in each environment (for balance data). 
Although model M2 is powerful when considering the genetic cov-
ariances between environments, it cannot predict full environ-
ments because it does not have a way of estimating the 
corresponding genomic covariances of those environments in 
the training sites with those in the testing sites where no data 
have been collected.

ST GE model (ST-ME) with an extra random vector to better 
account for variance across environments (model 3, M3)
Cuevas et al. (2017) showed that adding a random vector to M2 to 
account for the cultivar variation across environments that was 
accounted for by vector u, could increase the prediction accuracy. 
Here, we considered a ST measured in different environments 
(ME) to construct and add a random vector f to M2, that is

y = ZEμE + u + f + ε (3) 

Then a random vector f is added that is independent from u, and ε, 
and that has a normal distribution f ∼ N(0, FE ⊗ I), where FE is a 
matrix of environmental covariances of size m × m to be esti-
mated, ⊗ indicates the Kronecker product, and matrix I repre-
sents the identity matrix. Note that the vector f allows 
predicting the nonadditive effects (or a proportion) for possible 
covariances that were not modeled in K. Model M3, like M2, allows 
improving the prediction accuracy of model M1, when the covar-
iances (or correlations) of the observations between environments 
are negative or close to zero. Like M2, M3 could not be used to pre-
dict complete environments because, technically, it could not 
estimate covariances between related environments with the 

environments to be predicted because of the lack of data on the 
environments to be predicted.

MT model with GE (model 4, M4) of MT-ME type
Note that M2 could be adopted to be a single environment MT 
(MT-SE) as

y = ZTμT + u + ε 

where the vectors ZTμT are similar to those of M2, that is, the μT  is a 
vector that represents the means of the t traits, and the incidence 
matrix ZT relates the observations with the mean of the traits, but 
now the number of cultivars is the same for each trait so that if we 
order the phenotypic observations of the first trait, then the se-

cond trait and so forth, y = (y′1, . . . , y′ i, . . . y′t)
′

=

y1

..

.

yt

⎡

⎢
⎣

⎤

⎥
⎦; then 

the genetic random effects can be modeled as a normal distribu-
tion u ∼ N(0, UT ⊗ K), where UT is a matrix of genomic covar-
iances between the traits of size t × t to be estimated, and ⊗ 
indicates the Kronecker product. The matrix K represents the re-
lationships between the genotypes built with molecular markers. 
The random errors are modeled as ε ∼ N(0, Σ ⊗ I), where the diag-
onal matrix Σ is a matrix of size t × t, expressing the covariances 
of the errors to be estimated; and I is the identity matrix of order 
nL × nL.

This model MT-SE can also be represented as a multiresponse 
model, that is, instead of representing the observations as a 
vector, they can be arranged in a matrix so that M2 can be re- 
written as

Y = 1nμ′ + u + ε (2a) 

where Y is a matrix of order nL × t that represents the phenotypic 
values ordered in such a way that the columns contain the data 
for each trait and the rows contain the data for each line or geno-
type. The intercepts or means of each trait are represented by a 
vector μ of size t × 1. The matrix of genetic random effects assumes 
that they follow a multivariate multiresponse normal distribution 
u ∼ MNnL×t(0, K, UT). The random errors assume a multivariate 
multiresponse normal distribution ε ∼ MNnLxt(0, I, Σ).

As already mentioned, when MT data are available, the models 
to be used are those that account for correlations between pheno-
typic traits because when the degree of correlation is moderate or 
large, this could increase the GP accuracy. The model, based on 
the Bayesian MT kernel of Montesinos-López et al. (2022), can be 
seen as the combination of the MT model 2a and the reaction 
norm G × E M1 for ME. Then M4 is represented as

Y = 1nT μ′ + ZEμE + g + ge + ε (4) 

where the matrix Y is of size nT × t ordered in such a way that the 
columns represent the phenotypic values of each of the t traits 
and the rows are the lines or genotypes, ordered first by environ-
ments, and then by lines. The vector μ is of size t × 1 and it repre-
sents the intercept or mean of each trait. The matrix ZE is an 
incidence matrix of the environments of size nT ×  m, and μE is a 
matrix of order m × t with the means of each environment in 
each trait. The matrix g is of order nT × t and follows a normal dis-
tribution g ∼ MNnT×t(0, ZgKZ′g, Ug), where Zg is an incidence ma-

trix of the genotypes of order nT × nL, K is the relationship matrix 
of the genotypes of size nL × nL and Ug is a variance–covariance 
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matrix of main effects between the traits. The matrix ge is of 
order nT × t and follows a normal distribution ge ∼ MNnTxt 

(0, ZgKZ′g# ZEZ′E,Uge), where # is the Hadamard product and Uge 

is a variance–covariance matrix of interaction effects between 
the traits. Random errors are represented by the matrix ɛ of order 
nT × t  that follows a normal distribution ε ∼ MNnTxt(0, I, Σt), where 
the identity matrix I is of dimension nT × nT.

Studying different models and cross-validation 
schemes to assess the accuracy of the GP 
prediction models
The GP accuracy of the different models can be assessed by means 
of several different validation schemes. The first validation 
scheme (predicts 100% of the cultivars next year) uses the traits 
from each of the 3 locations in 2020 (HEL, MOS, and UM) to predict 
all the values of the traits in each of the 3 locations in 2021 (HEL, 
MOS, and UM). The second validation scheme (predicts 70% next 
year) uses all the data from 2020 plus 30% of the value of the traits 
in 3 locations in 2021 to predict 70% (prediction set) of the value of 
the traits at the 3 locations in 2022; this second case was estab-
lished with 10 groups or random samples.

The acronyms used for identifying models M1–M4, ST (S) or MT 
(M) and prediction set comprising the prediction of all cultivars in 
each location during 2021 (a), or the prediction of a percentage of 
cultivars in each location during 2021 (p) are given in Table 1. A 
graphical explanation of the different combinations of models 
(M1–M4), considering 2 prediction sets (100 and 70%), and ST or 
MT cross-validation schemes for assessing the GP prediction accur-
acy of the models is shown in Fig. 1 for 10 hypothetical cultivars 
evaluated in HEL, MOS, and UM in 2020 to predict HEL in 2021. 
The only MT model is M4, whereas ST models are M1, M2, and M3.

As shown in Fig. 1, the first cross-validations refer to 2 cases in-
cluding models M1 and M4 for predicting all the values (100%) for 
each trait in location HEL 2021 using as a training set all the values 
for each trait in each location from 2020. Model M1 is an ST (traits 
are separated by black lines), whereas M4 is an MT model (traits 
are not separated). For these 2 cases, the given acronyms join (1) 
the model (M1–M4), (2) the ST or MT (S or M) prediction, and (3) in-
clude the prediction of all (100%) the lines in HEL 2021 and denoted 
by “a,” that is, M1Sa and M4Ma. The third and fourth cross- 
validation schemes delineated by red lines included models 
M1, M2, and M3 for ST and model M4 for MT, and they predict 
70% of the values of each trait in HEL 2021, using as training 
set values of the trait in each location from 2020, but also adding 
30% of the values from HEL 2021 to the prediction set in the 
training set. As already mentioned, this prediction of 70% is per-
formed 10 times using the 10 random samples for extracting 
30% of the values of the prediction set (2021) and adding them 
to the training set (2020). The same 10 random samples were 
used for comparing the GP accuracy of the 4 models.

The names of each of these model-prediction types and sizes 
are M1Sp, M2Sp, M3Sp, and M4Mp where the letter “p” refers to 
the percentage of the prediction set (70%). Note that for these 4 
cases, 3 cultivars (out of 10) are missing in all the traits (Fig. 1). 
The fifth cross-validation scheme had MT M4 that predicts 70% 
of the cultivars in HEL in 2021 for all traits, but now, the cross- 
validations between the traits and locations for HEL 2021 are 
different from those in the previous case (M4Mp) where some cul-
tivars are observed in some traits and locations but not observed 
in other traits and locations. This cross-validation scheme is refer-
eed to M4Mp*. Note that in this case, some cultivars are missing in 
some traits but not in other traits; for example, cultivars 1, 2, and 3 

are not observed for the weight of tubers below 40 mm, but are ob-
served for the weight of 40 − 50 mm tubers (Fig. 1).

Measures of prediction accuracy
We used 2 metrics for comparing the genomic-enabled prediction 
accuracy of the different models (M1, M2, M3, and M4). One metric 
is the Pearson correlation coefficient (COR) between the observed 
and predicted values, whereas the second metric is the prediction 
mean squared error (PMSE) of the different prediction models.

Results
In this study, we used 3 genomic models (M1, M2, and M3) that pre-
dict one ST and various environments (ME). The first model M1 is 
the ST conventional reaction norm model that considers the gen-
omic main effect and interaction effects with homogeneous vari-
ance for the environmental random errors. Model M2 considers 
together the genomic effects and heterogenous environmental 
variance error. Note that model M3 adds a random vector to M2 
with the aim of capturing some nonadditive genetic effects that 
were not previously explained. Finally, model M4 includes MTs 
as multiresponse and MEs.

Two main prediction scenarios were analyzed: (1) use models 
M1 and M2 to predict all potato cultivars for each of the 3 locations 
in 2021 where the training were the locations in 2020, and (2) using 
all 4 models to predict 70% of the potato cultivars of each location 
in 2021, and incorporating 30% of the prediction set in the training 
set. Note that we used acronyms to identify the model (M1–M4), 
the ST (S) or MT (M ), and the size of the prediction set, all cultivar 
(a) or a percentage (p) (Table 1, Fig. 1).

Phenotypic correlations were computed for traits in each loca-
tion (HEL, MOS, and UM) in 2021 (prediction set, PS) with those 
traits observed in the locations of the previous year (HEL, MOS, 
and UM in 2020; Table 2). The PS contains 7 traits (5 tuber weight 
traits and 2 tuber flesh quality characteristics) in each of the 3 lo-
cations of 2021 using the locations and traits of the previous year, 
2020. The M1–M4 ST or MT prediction models for predicting all 
cultivars or a proportion of cultivars (all cultivars or 70%) are com-
bined in the following acronyms: M1Sa, M4Ma, M1Sp, M2Sp, M3Sp, 
M4Mp, and M4Mp* (Tables 3–5 and Figs. 2–4).

GP of traits in HEL 2021, MOS 2021, UM 2021
Table 2 lists the phenotypic correlations for each trait measured 
at HEL, MOS, and UM in 2021 with those of 2020. These correla-
tions are certainly related to the prediction accuracy estimates 

Table 1. Acronyms for models, traits, and scenarios for predicting 
locations in 2021.

Acronyms Model Single-trait or 
multitrait

Prediction set for 2021

M1Sa M1 Single trait (S) All cultivars (a)
M4Ma M4 Multitrait (M ) All cultivars (a)
M1Sp M1 Single trait (S) Cultivar sample (70%) (p)
M2Sp M2 Single trait (S) Cultivar sample (70%) (p)
M3Sp M3 Single trait (S) Cultivar sample (70%) (p)
M4Mp M4 Multitrait (M ) Sample (70%) of some 

cultivars that were not 
observed in any of the 
traits (p)

M4Mp* M4 Multitrait (M ) Sample (70%) of some 
cultivars that were 
observed in some traits but 
not in other traits (p*)
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shown in Tables 3–5 and displayed in Figs. 2–4; i.e. the mean pre-
diction accuracy estimates are higher for the cases when the 
phenotypic correlations between years were higher as was the 
case for starch. In these cases, where the phenotypic correlations 
between traits for the 2 years were high, the mean prediction ac-
curacy between the models did not show significant differences. 
Furthermore, when the phenotypic correlations between loca-
tions are moderate, as for example for reducing sugars, the accur-
acy of the model’s predictions did not show significant differences 

(Figs. 2–4). On the contrary, when the phenotypic correlations 
were negative or near zero, as for example, for the weight of 50– 
60 mm tubers for HEL 2021 (Fig. 2), the prediction accuracy esti-
mates were low in the models except for M3Sp and M4Mp*. 
Similar results were observed for the weight of 40–50 mm tubers 
at HEL 2021 (Fig. 2) and UM 2021 (Fig. 4), where models M3Sp 
and M4Mp* had better predictions than models M1Sa and M1Sp, 
which showed lower predictions when the phenotypic correla-
tions were close to zero or negatives.

Fig. 1. Hypothetical example with 10 cultivars for various models and sizes of prediction set (PS) for the GP of 7 potato traits at HEL in 2021 (PS) from 
training data observed at HEL, MOS, and Umeå (UM) in 2020. Models are M1–M4 and PS are 100% or 70%. The 4 genome-based prediction models are M1: 
ST conventional reaction norm model incorporating GE; M2: ST GE model considering covariances between environments; M3: ST GE M2 extended to 
include a random vector that more efficiently utilizes the environmental covariances; and M4: MT model with GE. The prediction sets contain all cultivars 
or a random cross-validation where 70% are predictive at HEL 2021. Red lines delineated the 5 random partition combinations and black lines identified 
ST GP and the absence of black lines identified MT GP.

Table 2. Phenotypic correlations of each trait at HEL in 2021 with each trait at HEL 2020, MOS 2020, and Umeå (UM) 2020.

Site-year Traits

Weight of tubers Tuber flesh

<40 mm 40–50 mm 50–60 mm > 60mm Total Starch Sugar

HEL 2021
HEL 2020 0.62 0.60 0.24 0.68 0.64 0.89 0.36
MOS 2020 0.36 0.20 −0.16 0.49 0.48 0.80 0.30
UM 2020 0.43 −0.05 −0.25 0.51 0.39 0.78 0.43
MOS 2021
HEL 2020 0.65 0.49 0.56 0.73 0.64 0.83 0.39
MOS 2020 0.64 0.50 0.61 0.74 0.74 0.89 0.36
UM 2020 0.55 0.28 0.45 0.62 0.52 0.72 0.41
UM 2021
HEL 2020 0.49 0.04 0.42 0.53 0.38 0.48 0.31
MOS 2020 0.49 0.30 0.47 0.40 0.29 0.40 0.33
UM 2020 0.57 0.51 0.67 0.57 0.46 0.46 0.46

Phenotypic correlations of each trait oat MOS 2021 with each trait at HEL 2020, MOS 2020, and UM2020. Phenotypic correlations of each trait at UM 2021 with each 
trait at HEL 2020, MOS 2020, and UM 2020.
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Overall, the model showing the best prediction accuracy was 
M4Sp* closely followed by model M3Sp. However, the differences 
were higher when the phenotypic correlations between the loca-
tions were near zero or negative.

GP of traits in HEL 2021
Genomic predictions including all cultivars in HEL 2021 were the 
best for tuber flesh starch in all the models, whose GP accuracy es-
timates were above 0.85 (Table 3 and Fig. 2). Most of the 4 models 
had a very similar GP accuracy for starch; i.e. ranging from 0.852 
(M2Sp and M4Mp) to 0.877 (M3Sp) (Table 3, Fig. 2).

The second trait with an important GP accuracy shown by most 
of the models was the weight of 60 mm tubers. The MT model pre-
dicting a proportion of cultivars (M4Mp*) had the highest predic-
tion accuracy (0.730, Table 3) and a ST conventional reaction 
norm model for predicting that all cultivars (M1Sa) had the lowest 
GP accuracy (0.627). The weight of tubers below 40 mm and the to-
tal tuber weight had a very similar GP accuracy except for the MT 
model M4Mp*, which was the worst model for the weight of tubers 
below 40 mm but the best model for total tuber weight. Excluding 
M4Mp*, the predictions ranged from 0.525 (<40 mm, M4Ma) to 
0.623 (<40 mm M3Sp) for both traits. The best predictive model 
was M3Sp for the weight of tubers below 40 mm and M1Sa for total 
tuber weight (Fig. 2). Weight with 40–50 mm tubers and 50–60 mm 
tubers had the lowest prediction accuracy for most models except 
M3Sp (Fig. 2). Comparing the models with ST and MT, M3Sp was 
the best ST model for tuber weight below 40 mm and between 
50 and 60 mm, and tuber flesh starch, whereas M4Mp* was best 

for weights of 40–50 mm and above 60 mm tubers, as well as for 
the total tuber weight.

In summary, prediction of the 7 traits at HEL in 2021 shows that 
traits with a higher phenotypic correlation between location HEL 
2021 and those at HEL, MOS, and UM in 2020 are tuber flesh starch 
and most of the tuber weights (except the weight of 50–60 mm tu-
bers). In terms of GP accuracy, the MT model predicting 70% of the 
cultivars for some traits while observing others (M4Mp*) was the 
best for weight 40–50 mm tubers or above 60 mm tubers, and total 
tuber weight, and very similar to those for tuber flesh starch. 
Model M3Sp was the best GP for the weight of tubers below 
40 mm and 50–60 mm, as well as for tuber flesh starch.

GP of traits in MOS 2021
The phenotypic correlation of traits measured in location MOS in 
2020–2021 is given in Table 2. For all the traits, phenotypic corre-
lations between traits in MOS for 2021 and 2020 were higher than 
those between MOS 2021 and the 2 other locations (HEL and UM) 
in 2020. Tuber flesh starch had the highest phenotypic correlation 
between MOS 2021and HEL, MOS, and UM 2020 (0.83, 0.89, and 
0.72, respectively) followed by the weight of tubers above 60 mm 
(0.73, 0.74, and 0.62, respectively), total tuber weight (0.64, 0.74, 
and 0.52, respectively), and the weight of tubers below 40 mm 
(0.65, 0.64, and 0.55, respectively).

Overall GP accuracy in MOS 2021 was higher than in HEL 2021. 
Tuber flesh starch was the best-predicted trait for all the models 
with GP accuracy below 0.85 (Table 4 and Fig. 3). Most of the 4 
models showed a very similar GP accuracy for tuber flesh starch 

Table 3. Predictive correlations (CORs) and PMSE for predicting 7 traits at HEL in 2021 for 4 models (M1, M2, M3, M4) combined with 100% 
or 70% cross-validation.

Model name Prediction accuracy measures Traits 2021

Tuber weight Tuber flesh

<40 mm 40–50 mm 50–60 mm >60 mm Total Starch Sugar

M1Sa COR 0.539 0.269 −0.097 0.627 0.551 0.868 0.511
PMSE 0.552 1.630 6.271 17.040 12.020 1.601 0.730

M4Ma COR 0.525 0.292 −0.111 0.628 0.533 0.867 0.493
PMSE 0.388 1.702 5.049 16.940 12.600 1.640 0.804

M1Sp COR (mean) 0.576 0.244 −0.127 0.632 0.537 0.868 0.508
COR (SD) 0.043 0.043 0.038 0.028 0.031 0.010 0.031
PMSE (mean) 0.143 0.975 4.785 16.300 11.878 1.582 0.799
PMSE (SD) 0.022 0.058 0.570 0.708 0.677 0.088 0.035

M2Sp COR (mean) 0.549 0.370 −0.065 0.637 0.533 0.852 0.466
COR (SD) 0.060 0.045 0.051 0.029 0.039 0.016 0.048
PMSE (mean) 0.226 1.433 5.615 16.732 11.948 1.620 0.799
PMSE (SD) 0.028 0.086 0.676 0.730 0.677 0.185 0.038

M3Sp COR (mean) 0.623 0.508 0.424 0.651 0.548 0.877 0.508
COR (SD) 0.046 0.041 0.042 0.039 0.039 0.012 0.040
PMSE (mean) 0.076 0.716 3.112 13.460 11.812 1.459 0.746
PMSE (SD) 0.012 0.061 0.345 1.346 1.146 0.106 0.054

M4Mp COR (mean) 0.549 0.370 −0.057 0.636 0.533 0.852 0.467
COR (SD) 0.058 0.047 0.052 0.023 0.034 0.018 0.047
PMSE (mean) 0.142 0.863 4.317 16.833 12.242 1.650 0.810
PMSE (SD) 0.020 0.060 0.614 0.701 0.644 0.103 0.036

M4Mp* COR (mean) 0.484 0.562 0.191 0.730 0.658 0.866 0.502
COR (SD) 0.044 0.050 0.077 0.029 0.021 0.016 0.037
PMSE (mean) 0.154 0.684 3.858 12.279 10.000 1.607 0.796
PMSE (SD) 0.014 0.125 0.411 1.084 0.760 0.125 0.048

M1Sa is the prediction accuracy from model M1 [ST conventional reaction norm model incorporating GE] when predicting 100% of each trait in 2021; M4Ma is the 
prediction accuracy from model M4 (MT model with GE) when predicting 100% of each trait in 2021; M1Sp is the prediction accuracy from model M1 when predicting 
70% of each trait in 2021; M2Sp is the prediction accuracy from model M2 (ST GE model considering covariances between environments) when predicting 70% of each 
trait in 2021; M3Sp is the prediction accuracy from model M3 (ST GE M2 extended to include a random vector that more efficiently utilizes the environmental 
covariances) when predicting 70% of each trait in 2021; M4Mp is the prediction accuracy from model M4 when predicting 70% of each trait in 2021, M4Mp* is the 
prediction accuracy from model M4 when predicting 70% of each trait in 2021, in which, some cultivars are observed in some traits. When predicting 70%, the mean 
and the standard deviations (SDs) from the 10-fold cross-validation are given in parentheses.
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but ST M2 and M3 predicting 70% of the cultivars (M2Sp and M3Sp) 
were the best genomic predictors, with 0.866 and 0.867, respect-
ively. Models M1 and M4 predicting all potato cultivars (M1Sa 
and M4Ma) were slightly below in terms of prediction accuracy 
(0.847 and 0.848, respectively).

The second trait with important GP accuracy shown by most of 
the models was the weight of tubers above 60 mm with M4Mp* 
with an accuracy of 0.817, followed byM1Sa having an accuracy 
of 0.791, followed by M3Sp with 0.790 (Table 4). Overall, the total 
tuber weight irrespective of size, ranked third based on GP accur-
acy, with model M4Mp* having a prediction accuracy of 0.808, fol-
lowed by M3Sp with 0.758 prediction accuracy, followed by M2Sp 
(0.750). The weight of tubers below 40 mm had relatively high 
GP accuracy, with models M2Sp and M3Sp being the best with 
0.717 and 0.714 of GP accuracy, respectively. Finally, the weight 
of 50–60 mm tubers had lower prediction accuracy than the previ-
ously mentioned traits, with the best predictor models being 
M4Mp*—whose GP accuracy was 0.711—followed by M2Sp and 
M3Sp (GP accuracy = 0.660).

The GP accuracy estimates for the 7 traits in MOS during 2021 
were slightly higher than those at HEL 2021. The traits with higher 
phenotypic correlations between MOS 2021 and those at HEL, 
MOS, and UM in 2020 were tuber flesh starch, the weight of tubers 
above 60 mm and below 40 mm, total tuber weight, and the 
weight of 50–60 mm tuber. Overall, the best models for predicting 
most of the 7 traits were the ST models M2 and M3 predicting 70% 
of the potato cultivars in each location (M3Sp and M2Sp), except 
for traits such as the weight of 50–60 mm and above 60 mm 

tubers, and the total tuber weight in which, the MT model 
M4Mp* was the best GP model.

GP of traits in location UM 2021
Table 2 lists the phenotypic correlation of traits measured at UM 
in 2020–2021. For all the traits, the phenotypic correlations 
between traits in UM for 2021 and 2020 are higher than those be-
tween UM 2021 and other locations (HEL and MOS) in 2020. The 
traits with the highest phenotypic correlation between UM 2021 
and HEL, MOS, and UM 2020 were the weight of 50–60 mm, below 
40 mm, and above 60 mm tubers, followed by tuber flesh starch.

Overall, the GP accuracy in UM 2021 was lower than those of 
HEL and MOS in 2021. The weight of 50–60 mm and below 
40 mm tubers were the best-predicted traits for all the models in 
UM 2021 (Table 5 and Fig. 4). The best GP model for all the traits, 
except reducing sugars and starch in the tuber flesh, was 
M4Mp*. ST and MT models predicting 70% of the cultivars (M3Sp 
and M4Mp) had the best GP accuracy for predicting traits of tuber 
flesh sugar and starch, respectively.

Most of the 4 models showed similar GP accuracy for these 2 
traits, but M2Sp had a GP accuracy of 0.688 for the weight of 50– 
60 mm tubers, and model M4Mp had an accuracy of 0.633 for 
the weight of tubers below 40 mm. Models M2Sp and M3Sp had a 
GP accuracy of around 0.578 for the weight of tubers above 
60 mm that ranked third on overall GP accuracy (Table 5) followed 
by tuber flesh starch, with model M3Sp being the best with (predic-
tion accuracy = 0.483), followed by M2Sp (0.481).

Table 4. Predictive correlations (CORs) and PMSE for predicting 7 traits at MOS in 2021 for 4 models (M1, M2, M3, M4) combined with 100% 
or 70% cross-validation.

Model name Prediction accuracy measures Traits 2021

Tuber weight Tuber flesh

<40 mm 40–50 mm 50–60 mm >60 mm Total Starch Sugar

M1Sa COR 0.694 0.550 0.647 0.791 0.739 0.847 0.572
PMSE 0.112 0.587 0.949 1.600 3.700 2.050 0.890

M4Ma COR 0.680 0.551 0.641 0.779 0.734 0.848 0.550
PMSE 0.256 0.595 1.420 0.940 3.756 2.100 0.840

M1Sp COR (mean) 0.693 0.564 0.648 0.786 0.749 0.851 0.578
COR (SD) 0.032 0.025 0.028 0.018 0.016 0.028 0.034
PMSE (mean) 0.113 0.583 0.949 1.599 3.400 1.991 0.877
PMSE (SD) 0.010 0.034 0.100 0.123 0.165 0.251 0.040

M2Sp COR (mean) 0.717 0.564 0.660 0.777 0.750 0.866 0.556
COR (SD) 0.029 0.038 0.029 0.026 0.018 0.024 0.026
PMSE (mean) 0.075 0.591 0.919 1.701 3.459 1.777 0.807
PMSE (SD) 0.006 0.044 0.097 0.164 0.264 0.222 0.063

M3Sp COR (mean) 0.714 0.557 0.660 0.790 0.758 0.867 0.553
COR (SD) 0.029 0.037 0.030 0.023 0.018 0.026 0.025
PMSE (mean) 0.075 0.595 0.920 1.605 3.335 1.757 0.817
PMSE (SD) 0.005 0.042 0.095 0.145 0.221 0.234 0.058

M4Mp COR (mean) 0.710 0.580 0.640 0.776 0.732 0.851 0.546
COR (SD) 0.026 0.027 0.033 0.019 0.027 0.021 0.032
PMSE (mean) 0.077 0.578 1.023 1.804 3.405 2.345 0.904
PMSE (SD) 0.004 0.066 0.048 0.131 0.232 0.166 0.037

M4Mp* COR (mean) 0.684 0.622 0.711 0.817 0.808 0.856 0.579
COR (SD) 0.029 0.036 0.014 0.016 0.020 0.017 0.028
PMSE (mean) 0.105 0.546 0.804 1.410 2.782 1.890 0.881
PMSE (SD) 0.004 0.066 0.048 0.131 0.232 0.166 0.037

M1Sa is the prediction accuracy from model M1 [ST conventional reaction norm model incorporating GE] when predicting 100% of each trait in 2021. M4Ma is the 
prediction accuracy from model M4 (MT model with GE-like) when predicting 100% of each trait in 2021. M1Sp is the prediction accuracy from model M1 when 
predicting 70% of each trait in 2021. M2Sp is the prediction accuracy from model M2 (ST GE model considering covariances between environments) when predicting 
70% of each trait in 2021. M3Sp is the prediction accuracy from model M3 (ST GE M2 extended to include a random vector that more efficiently utilizes the 
environmental covariances) when predicting 70% of each trait in 2021; M4Mp is the prediction accuracy from model M4 when predicting 70% of each trait in 2021, 
M4Mp* is the prediction accuracy from model M4 when predicting 70% of each trait in 2021, in which, some cultivars are observed in some traits. When predicting 
70%, the mean and the standard deviations (SDs) are given from the 10-fold cross-validation in parentheses.
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Fig. 2. Correlation between observed and predicted values for 7 traits at HEL (2021) using 7 methods. One standard deviation with respect to the mean of 
the correlation is denoted by the bar. Model/methods M1Sa and M4Sa do not have standard deviations. M1Sa is the prediction accuracy from model M1 (ST 
conventional reaction norm model incorporating GE) when predicting 100% of each trait in 2021). M4Ma is the prediction accuracy from model M4 (MT 
model with GE) when predicting 100% of each trait in 2021. M1Sp is the prediction accuracy from model M1 when predicting 70% of each trait in 2021. M2Sp 
is the prediction accuracy from model M2 when predicting 70% of each trait in 2021. M3Sp is the prediction accuracy from model M3 when predicting 70% 
of each trait in 2021. M4Mp is the prediction accuracy from model M4 when predicting 70% of each trait in 2021. M4Mp* is the prediction accuracy from 
model M4 when predicting 70% of each trait in 2021, in which, some percent of cultivars are observed in some traits.

Table 5. Predictive correlations (COR) and PMSE for predicting 7 traits at UM in 2021 for 4 models (M1, M2, M3, M4) combined with 100% or 
70% cross-validation.

Model name Prediction accuracy measures Traits 2021

Tuber weight Tuber flesh

<40 mm 40–50 mm 50–60 mm >60 mm Total Starch Sugar

M1Sa COR 0.626 0.425 0.625 0.527 0.411 0.479 0.529
PMSE 0.540 1.127 0.925 0.715 6.680 6.220 0.817

M4Ma COR 0.617 0.400 0.641 0.563 0.446 0.488 0.515
PMSE 0.544 1.220 0.885 0.703 5.742 5.860 0.824

M1Sp COR(mean) 0.633 0.445 0.629 0.534 0.404 0.487 0.545
COR (SD) 0.034 0.034 0.031 0.024 0.033 0.021 0.027
PMSE (mean) 0.537 1.125 0.922 0.674 6.909 6.128 0.802
PMSE (SD) 0.052 0.071 0.088 0.106 0.600 0.554 0.049

M2Sp COR (mean) 0.605 0.502 0.688 0.578 0.450 0.481 0.544
COR (SD) 0.025 0.025 0.025 0.032 0.031 0.036 0.032
PMSE (mean) 0.556 1.054 0.796 0.674 5.705 5.896 0.744
PMSE (SD) 0.080 0.078 0.067 0.054 0.352 0.459 0.054

M3Sp COR (mean) 0.605 0.512 0.682 0.581 0.463 0.483 0.550
COR (SD) 0.024 0.019 0.024 0.031 0.022 0.029 0.034
PMSE (mean) 0.557 1.042 0.809 0.671 5.581 5.879 0.741
PMSE (SD) 0.082 0.064 0.070 0.056 0.398 0.457 0.053

M4Mp COR (mean) 0.627 0.451 0.663 0.573 0.449 0.496 0.537
COR (SD) 0.035 0.043 0.028 0.029 0.035 0.025 0.020
PMSE (mean) 0.535 1.137 0.875 1.257 6.375 5.982 0.792
PMSE (SD) 0.056 0.098 0.088 0.119 0.646 0.555 0.063

M4Mp* COR (mean) 0.662 0.558 0.732 0.603 0.551 0.482 0.519
COR (SD) 0.020 0.033 0.012 0.030 0.036 0.044 0.019
PMSE (mean) 0.428 0.949 0.710 1.064 5.324 5.854 0.851
PMSE (SD) 0.027 0.065 0.035 0.084 0.533 0.371 0.077

M1Sa is the prediction accuracy from model M1 [ST conventional reaction norm model incorporating GE] when predicting 100% of each trait in 2021. M4Ma is the 
prediction accuracy from model M4 (MT model with GE) when predicting 100% of each trait in 2021. M1Sp is the prediction accuracy from model M1 when predicting 
70% of each trait in 2021. M2Sp is the prediction accuracy from model M2 (ST GE model considering covariances between environments) when predicting 70% of each 
trait in 2021. M3Sp is the prediction accuracy from model M3 (ST GE M2 extended to include a random vector that more efficiently utilizes the environmental 
covariances) when predicting 70% of each trait in 2021. M4Mp is the prediction accuracy from model M4 when predicting 70% of each trait in 2021, M4Mp* is the 
prediction accuracy from model M4 when predicting 70% of each when some cultivars are observed in some traits. When predicting 70% the mean and the standard 
deviations (SDs) from the 10-fold cross-validation are given in parentheses.
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The GP accuracy of the 7 traits at UM in 2021 showed lower ac-
curacy in 2021 than at HEL and MOS in 2021. Traits with higher 

phenotypic correlations between UM 2021 and those at HEL, 

MOS, and UM in 2020 are the weight of tubers with 50–60 mm, be-

low 40 mm, and above 60 mm. However, the best model for predict-

ing the majority of the 7 traits was the MT predicting 70% with 30% 

of the testing added to the training (M4Mp*) followed by models 

M4Mp for tuber flesh starch and M3Sp for tuber flesh sugar.

Discussion
The integration of GS and GP to develop modern cultivars faster 
than the conventional breeding method is necessary for increas-
ing genetic gains and facing the changes in climate that are cur-
rently affecting agriculture. Thus, a better and an efficient 
integration of new methods including GS with increased GP accur-
acy, rapid cycle GS, high throughput phenotyping, and the use of 
appropriate environmental covariables is an urgent area of 

Fig. 3. Correlation between observed and predicted values for 7 traits at MOS (2021) using 7 methods. One standard deviation with respect to the mean of 
the correlation is denoted by the bar. Methods M1Sa and M4Sa do not have standard deviations. M1Sa is the prediction accuracy from model M1 (ST 
conventional reaction norm model incorporating GE) when predicting 100% of each trait in 2021. M4Ma is the prediction accuracy from model M4 (MT 
model with GE) when predicting 100% of each trait in 2021. M1Sp is the prediction accuracy from model M1 when predicting 70% of each trait in 2021. M2Sp 
is the prediction accuracy from model M2 when predicting 70% of each trait in 2021. M3Sp is the prediction accuracy from model M3 when predicting 70% 
of each trait in 2021. M4Mp is the prediction accuracy from model M4 when predicting 70% of each trait in 2021. M4Mp* is the prediction accuracy from 
model M4 when predicting 70% of each trait in 2021, in which, some cultivars are observed in some traits.

Fig. 4. Correlation between observed and predicted values for 7 traits at Umeå (2021) using 7 methods. One standard deviation with respect to the mean of 
the correlation is denoted by the bar. Methods M1Sa and M4Sa do not have standard deviations). M1Sa is the prediction accuracy from model M1 (ST 
conventional reaction norm model incorporating GE) when predicting 100% of each trait in 2021. M4Ma is the prediction accuracy from model M4 (MT 
model with GE) when predicting 100% of each trait in 2021. M1Sp is the prediction accuracy from model M1 when predicting 70% of each trait in 2021. M2Sp 
is the prediction accuracy from model M2 when predicting 70% of each trait in 2021. M3Sp is the prediction accuracy from model M3 when predicting 70% 
of each trait in 2021. M4Mp is the prediction accuracy from model M4 when predicting 70% of each trait in 2021. M4Mp* is the prediction accuracy from 
model M4 when predicting 70% of each trait in 2021, in which, some cultivars are observed in some traits.

10 | G3, 2023, Vol. 13, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/13/2/jkac322/6883526 by Sveriges Iantbruksuniversitet user on 23 February 2023



research (Crossa et al. 2021). The integration and exploitation of 
several big data sets are necessary, and the use of appropriate 
statistical machine-learning models has become important for 
modern breeding.

Prediction accuracy of models for ST and MT, 
cross-validation method, and proportion of the 
prediction set
When performing research on GS and GP accuracy, several pro-
blems become important; one is the inclusion of statistical 
machine-learning methods and models that include GE inter-
action. Another problem to be assessed is the addition of several 
traits for prediction rather than only one trait, and another issue 
is the methods used for comparing the GP accuracy of several 
traits using several models and various possible cross-validation 
schemes to develop a GP accuracy metric. Several options exist 
for investigating the GS accuracy for predicting the breeding value 
of cultivars that have been genotyped with genome-wide molecu-
lar markers. One scenario is predicting the performance of a pro-
portion of cultivars (e.g. 70%) that have not yet been observed in 
any of the testing environments (usually location-year combina-
tions); another option is to predict all cultivars (i.e. 100%) observed 
in all the environments except one (leave one environment out). 
Another scenario is predicting cultivars that were observed in 
some environments but not in others.

In this study, predictions for these scenarios have been done 
using ST (M1, M2, and M3) and MT (M4) models. These ST and 
MT models combined with different prediction testing scenarios 
are described in Table 1 and graphically displayed in a small ex-
ample in Fig. 1, where several proportions of the PS have been 
combined with the 4 different models. We included the predic-
tions of all cultivars in 1 entire site-year combination or the pre-
diction of a proportion of cultivars (70%) using the other 30% as 
TS together with the previous year. We found that for the majority 
of the traits in each location-year combination to be predicted 
(HEL, MOS, UM in 2021) M4 (MT), with a proportion of potato cul-
tivars evaluated (30%) in some location-year combinations M4Mp* 
(Fig. 1) but not observed in other location-year combinations, was 
found to be the best predictive model, usually followed by ST mod-
els M3Sp and M2Sp.

Results of this study demonstrate that for predicting traits in 
HEL 2021 using all environments in 2020, the superiority of the 
MT prediction method M4Mp* over the mean GP accuracy of the 
other 6 prediction methods including ST and MT for predicting 
the entire PS (100%) or 70% for traits tuber weights 40–50 mm, 
above 60 mm and total in this location were 65, 14, and 24%, re-
spectively. However, this superiority of the MT over ST methods 
was not so when comparing M4Ma or M4Mp with other ST meth-
ods, especially for M3Sp for traits tuber weight <40 mm, 50– 
60 mm, and tuber flesh starch. Results for predicting traits at 
MOS in 2021 using all environments in 2020 show the superiority 
of the MT prediction method M4Mp* for 4 tuber weight traits and 1 
tuber flesh quality characteristic over all the other 6 methods. The 
GP accuracy of method M4Mp* overcame the mean GP accuracy of 
all the other 6 methods by 10, 9, 4, 8, and 4% for the weight of 40– 
50 mm, 50–60 mm, above 60 mm tubers, total tuber weight and 
tuber flesh sugar, respectively. Similar results were obtained for 
the prediction of location UM in 2021 using the TS comprising 
HEL, MOS, and UM from 2020; the best GP accuracy method for 
all 5 tuber weight traits was method M4Mp* over the mean GP ac-
curacy of all the other 6 methods by 7, 24, 12, 8, and 26% for tuber 
weights below 40 mm, 40–50 mm, 50–60 mm, above 60 mm and 
total tuber weight, respectively.

Previous research noticed variable prediction accuracy that de-
pends on factors such as heritability of the trait, size of TP, re-
latedness of PS and TS, statistical machine-learning models, 
marker density, linkage disequilibrium, and the incorporation of 
GE interactions in the prediction models. In a recent article, 
Semagn et al. (2022) compared the predictive abilities of wheat cul-
tivars that have not been evaluated for an ST, not evaluated for 
MTs (MT1), and evaluated for some traits but not others (MT2) 
using agronomy and disease traits. Note that the partition of 
Semagn’s MT1 is similar to the partitions of Sp (M1, M2, and M3) 
and Mp (M4) in this study, whereas the partitions of Semagn’s 
MT2 are similar to that of M4Mp*. Semagn et al. (2022) found that 
the GP accuracy of MT2 (method M4Mp* in this study) increased 
over ST and other model-partitions in all traits from 9 to 82%. 
This occurred because, under the prediction scheme MT2 of 
Semagn et al. (2022), it is possible to exchange information be-
tween traits like method M4Mp* that allows borrowing of informa-
tion between traits and also between environments, and thus, to 
efficiently use the available information in one single model com-
bined with an appropriate prediction scheme.

This demonstrated the high potential for improving prediction 
accuracies and the high potential of the MT models for improving 
prediction accuracy, thus offering researchers the opportunity to 
predict traits that were not observed, due to possible difficulties or 
because they are expensive to measure under certain environ-
mental constraints (Semagn et al. 2022).

Prediction accuracy of potato traits
Genomic prediction in potatoes is still in the early research stages 
before using it for routine breeding of this highly heterozygous tet-
rasomic polyploid tuberous crop with vegetative propagation 
(Ortiz et al. 2022, and references therein). The use of MT and ME 
models for GP in this research led to the highest accuracy for tuber 
yield and tuber flesh starch as per available literature. Tuber flesh 
starch, which is often estimated from specific gravity measure-
ments, is a very highly heritable trait (Bradshaw 2021; Ortiz et al. 
2021) that is affected very little by the GEs (Killick and 
Simmonds 1974), thus explaining the high prediction accuracy 
noted in this and research elsewhere. The high prediction accur-
acy noted in this, and previous research suggests that developing 
GEBV modeling in potatoes for tuber flesh starch does not require 
a very large training population, but it seems that just a few hun-
dred (including both breeding clones and released cultivars that 
are relevant to the breeding program and covering a broad range 
of trait variation) may suffice.

Genotype × environment interactions may significantly affect 
tuber yield, but the use of ME GP allows identifying promising 
germplasm in both crossing blocks (Ortiz et al. 2022) in potato 
breeding. The significantly high correlations noted when using 
MT, ME modeling suggest that GP may also be useful for the potato 
cultivar development pipeline even when using small breeding 
populations (Selga et al. 2022). Every year, F1 seeds (resulting 
from crossing heterozygous parents) are planted in individual 
pots in a greenhouse, and one tuber (the best in size) for each plant 
is taken at harvest. Thus, thousands of tubers derived from these 
F1 hybrid seeds are produced for further field testing in single 
plant plots during the first year. At harvest, all plants are dug up 
to assess their tuber number, size, shape, color, appearance, and 
health, which are used as the selection criteria for obtaining the 
next breeding generation for further testing the next year. After 
selection in early clonal generations [first (T1), second (T2), and of-
ten third (T3)], the aim is to have about a few dozens for field test-
ing from the fourth generation onward and ending with a few 
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promising breeding clones after the seventh year of field testing 
and selection to include them in MT trials in the target population 
of environments. The GP accuracy over the 2 years within each 
site suggests that it will be possible to select (based on GEBV mod-
els) in early generation trials for each target population of envir-
onments. Furthermore, as per previous GP accuracy estimates 
(Ortiz et al. 2022; Selga et al. 2022) and these results, it seems 
that GEBV for selection will be useful from T3 onward, rather 
than in T1 or even in T2. Hence, as shown herein, genomic selec-
tion appears to be feasible in potato breeding when using 
elite-bred germplasm.

Conclusion
The ST model M3Sp was the best genomic predicted, followed 
by M1Sp and M1Sa at HEL in 2021. In terms of MT GP accuracy, 
M4Mp* was the best for the weight of 40–50 mm and above 
60 mm tubers, and total tuber weight irrespective of size, and 
very similar to tuber flesh starch. The GP accuracy of the 7 
traits at MOS in 2021 indicated that the best models for predict-
ing the majority of the 7 traits were ST M3Sp and M2Sp, except 
for the weight of 50–60 mm tubers, above 60 mm tubers, and to-
tal tuber weight, where the MT model M4Mp* was the best GP 
model. The traits with higher phenotypic correlations between 
location UM 2021 and those at HEL, MOS, and UM in 2020 are 
the weight of tubers with the following sizes: 50–60 mm, below 
40 mm, and above 60 mm. The best model method for predict-
ing the majority of the 7 traits was MT M4Mp* because it allows 
the exchange of information between traits and environments 
followed by M3Sp and M2Sp, which efficiently used information 
between environments. According to Cuevas et al. (2017), M3Sp 
producing better or similar GP accuracy than M2Sp was 
expected.
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