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A B S T R A C T   

Effective detection of potato late blight (PLB) is an essential aspect of potato cultivation. However, it is a 
challenge to detect late blight in asymptomatic biotrophic phase in fields with conventional imaging approaches 
because of the lack of visual symptoms in the canopy. Hyperspectral imaging can capture spectral signals from a 
wide range of wavelengths also outside the visual wavelengths. Here, we propose a deep learning classification 
architecture for hyperspectral images by combining 2D convolutional neural network (2D-CNN) and 3D-CNN 
with deep cooperative attention networks (PLB-2D-3D-A). First, 2D-CNN and 3D-CNN are used to extract rich 
spectral space features, and then the attention mechanism AttentionBlock and SE-ResNet are used to emphasize 
the salient features in the feature maps and increase the generalization ability of the model. The dataset is built 
with 15,360 images (64x64x204), cropped from 240 raw images captured in an experimental field with over 20 
potato genotypes. The accuracy in the test dataset of 2000 images reached 0.739 in the full band and 0.790 in the 
specific bands (492 nm, 519 nm, 560 nm, 592 nm, 717 nm and 765 nm). This study shows an encouraging result 
for classification of the asymptomatic biotrophic phase of PLB disease with deep learning and proximal hyper-
spectral imaging.   

1. Introduction 

Disease monitoring of potatoes is an essential step to improve 
breeding and production. Late blight caused by the oomycete Phytoph-
thora infestans is a devastating disease in potato production, affecting 
farmers’ income and having a negative impact on the environment 
relying sometimes on weekly spraying of fungicides (Chen et al., 2021; 
Zheng et al., 2021), which are expensive and time-consuming to apply 
(Wang et al., 2021). Hence, accurate classification of the asymptomatic 
biotrophic phase is critical to screen for breeding material for resistance, 
reduce fungicide applications and effectively control PLB. 

The development of low-cost sensor technologies for computer vision 
and remote sensing is paving the way for image-based agricultural 
management and show great potential for automatic detection of crop 
disease and diagnosis based on different types of images (e.g., RGB 
images (Su et al., 2021), thermal images (Yang et al., 2021), remote 

sensing images (Bagheri, 2020). Our previous work (Gao et al., 2021) 
has shown great potential to use visual images with deep learning for the 
evaluation of in-field PLB infestation based on the number of recognized 
lesions. However, it only focuses on advanced stages of PLB develop-
ment and is unable to recognize pre-symptomatic potato plants infested 
with P. infestans. Hyperspectral imaging (HSI) benefits from capturing 
many and narrower spectral bands in a continuous spectral range. It 
provides two-dimensional spatial information and rich spectral infor-
mation in the third dimension. 

With the rapid development of hyperspectral remote sensing, many 
excellent machine learning-based algorithms have been proposed to 
solve hyperspectral image classification problems (Han and Deng, 2018 
Zhang et al., 2019), such as Support Vector Machine (SVM), polynomial 
logistic regression, sparse representation, and cooperative representa-
tion. Rodriguez et al. (2021) proposed an Unmanned aerial vehicle 
(UAV)-based multispectral image detection method for PLB, evaluating 
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the performance of five machine learning algorithms: random forest, 
gradient augmented classifier, support vector classifier, linear support 
vector classifier, and k-nearest neighbor classifier to detect PLB with an 
accuracy of 0.982, 0.895, 0.979, 0.981, respectively. In controlled 
conditions, Gold et al. (2020) used random forest discrimination (RF), 
partial least squares discriminant analysis (PLS-DA), and normalized 
difference spectral index to detect regions of late blight occurrence with 
an accuracy of 70.94 %, 71.13 %, and 72.23 %, respectively. Traditional 
machine learning methods have some limitations, and the relatively 
simple mapping structure leads these methods to extract only shallow 
semantic image features. 

To further explore the potential of deep learning in hyperspectral 
image classification, some algorithms with more advantageous gener-
alization performance have been proposed. Representative models 
based on deep learning such as convolutional neural networks (CNNs), 
deep confidence networks, recurrent neural networks, and graph con-
volutional networks are suggested (Ma et al., 2020; Meng et al., 2021). 
CNN-based models can improve the classification of hyperspectral im-
ages of potato leaves because of their excellent performance in many 
image vision domains (Paoletti et al., 2018). Duarte-Carvajalino et al. 
(2018) proposed a custom 2D-CNN-based model designed to predict the 
severity of late blight impact in potato crops using multispectral remote 
sensing images and state-of-the-art machine learning algorithms, which 
achieved an accuracy of 0.74. Shi et al. (2021) proposed a new 3D-CNN 
deep learning model (CropdocNet) for accurate and automated late 
blight diagnosis with an accuracy of 94.2 %. 

Although deep learning-based models can significantly improve the 
classification performance of hyperspectral images, most existing clas-
sification models have inherent restrictions, since they fail to extract 
sufficient spectral-spatial correlation information. The 2D-CNN-based 
deep network structure only utilizes spatial information, missing the 
important information from spectral signals. Similarly, the 3D-CNN- 
based network model performs poorly in many spectral bands to clas-
sify similar texture classes. The purpose of the method presented here is 
to detect the asymptomatic severity of PLB disease. During the bio-
trophic life stage of P. infestans, the degree of leaf infection cannot be 
judged by human visual inspection, thus the capability of extracting 
spectral-spatial features at this early stage of infection is critical. To 
tackle this, we propose a deep learning model combining 2D-CNN and 
3D-CNN to make full use of the respective advantages of the two through 
customized feature extraction for the PLB disease detection. The main 
contributions of this paper are as follows:  

1. A customized deep learning structure designed for classification of 
the asymptomatic biotrophic phase of PLB disease by combining 2D- 
CNN and 3D-CNN as well as attention networks. 

2. The extraction of important bands for PLB classification and vali-
dating their classification effectiveness compared to classification 
using all wavelengths.  

3. The verification of the superiority of model PLB-2D-3D-A by 
comparing with traditional machine learning methods and deep 
learning methods (2D-CNN and 3D-CNN). 

The rest of the paper is organized as follows: Section 2 describes the 
dataset and the proposed model, Section 3 presents the experimental 
results, Section 4 provides a discussion and highlights future work, and 
Section 5 summarizes this work. 

2. Materials and methods 

2.1. Dataset 

The data were collected on July 9, July 13, July 15, and July 18, 
2020 as part of the Danespo field trial outside of Give, Denmark (N 
55.800586, E 9.223748) and contained 20 different potato genotypes 
varying in susceptibility to PLB (four cultivars and sixteen breeding 

lines). Hyperspectral images with a resolution of 512*512*204 and a 
band of 204 were collected using a handheld hyperspectral camera, 
Specim IQ, from Specim (Oulu, Finland). Potatoplants from the infection 
rows were inoculated with P. infestans on 7th July 2020, from where the 
pathogen was expected to spread over the studied plots. P. infestans 
isolated from a local field the previous growth season were maintained 
at 4 ◦C. Before field inoculation propagation were done on disinfected 
tuber discs at 16 ◦C at 100 % humidity for 10 days. The development of 
mycelia and sporangia were examined in a light microscope. Ca 4 potato 
discs were then washed in 20L of 4 ◦C tap water and cold-treated at 4 ◦C 
for ca 1 h to release sporangia. In the field potato inoculation rows were 
then sprayed twice using a handheld pump to initiate the infection. 
Images collected on the third, seventh, ninth and twelfth day after 
inoculation were classified as separate categories. Among them, the 
images collected in the third, seventh and ninth days could not be dis-
cerned by the naked eye as there were no visual disease lesions, and we 
defined them as very early stage of late blight. While few of the images in 
the twelfth day could be discerned by the naked eye as disease lesions, 
we still consider them as early PLB. To reduce the computational 
burden, each collected raw image (512*512*204) were cropped into 64 
subimages (64*64*204) to scale up training samples and reduce 
computation burden. To ensure the integrity of the spatial information, 
we did not pre-process the channel information. The number of images 
per genotype is 12 (We followed the same leaves throughout the infec-
tion), thus the total number of data set is 15,360 (64*12*20) and the 
number of each category is 3840. The examples of original images in 
each category are shown in Fig. 1. 

2.2. Radiation calibrations 

Radiation calibration (Behmann et al., 2018) mainly includes dark 
current removal from the original data radiation intensity, gain cali-
bration of each spectral data channel and wavelength revision, etc. 
Assuming that the calibration is linear, we have 

L = a*DC+ b (1)  

D = a*DC0 + b (2) 

where L refers to the radiance of the image at the sensor pupil 
(W/(m2⋅sr⋅um)) calculated using the radiative transfer model. D in-
dicates the irradiance of the corresponding image in the dark current 
case (W/(m2⋅sr⋅um)). DC represents the grey scale value of the image 
element on the corresponding remote sensing image. DC0 describes the 
dark current value of the image element on the corresponding remote 
sensing image. a and b are the calibration coefficients to be found. In the 
dark current case, D should be zero, and the calibration coefficients a 
and b can be found by combining Equations (3) and (4). Example of 
images calibrated by radiation are shown in Fig. 2. 

a = L/(DC − DC0) (3)  

b = − a⋅DC0 (4)  

2.3. Background removal 

The purpose of background removal is to remove information from 
hyperspectral images of objects besides potato leaves. The result of the 
background removal is shown in Fig. 3. 
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Where N represents the total number of pixels, xi stands for the pixel 
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value and μ indicates the pixel average. 

2.4. Band screening 

Although hyperspectral images provide a great deal of finer feature 
information, not all the images from each band could provide useful 
information. Redundancy in hyperspectral imagery can be both spatial 
and spectral. Spatial redundancy arises at the same band, as the grey-
scales of sampled points on the same feature surface are typically 
spatially coherent with each other, and feature greyscales based on 
discrete pixel sampling do not take full advantage of this feature. 
Spectral redundancy arises because the high spectral resolution and high 
data dimensionality of hyperspectral images allow information in one 
band of the image to be partially or fully predicted by other bands. More 
specifically, our dataset captures 204 bands, leading to that the 
parameter number to be processed reaches about 50 million for each 
image. Any redundant data brings a heavy computational burden, prone 
to slow or even failed network training. Therefore, it is necessary to 
verify whether screening out specific bands has an impact on the 
detection results. We use spectral first-order differentiation and spectral 
second-order differentiation to conduct band screening separately, and 
the final results are intersected to improve the quality of the band 

screening. The principles of spectral first order differentiation and 
spectral second order differentiation are as follows: 

The derivative of a function is defined as: 

f ′

(x) = lim
h→0

f (x + h) − f (x)
h

(6) 

While the h is small enough, we can use a centered difference for-
mula to approximate the derivative: 

f ’(xi) ≈
f (xi + h) − f (xi − h)

2h
(7) 

In practice, Origin treats discrete data by the transform of the 
centered difference formula, and calculates the derivative at point Pi by 
taking the average of the slopes between the point and its two closest 
neighbors. 

The derivative function applied to discrete data points can therefore 
be written: 

f ′

(xi) =
1
2

(
yi+1 − yi

xi+1 − xi
+

yi − yi− 1

xi − xi− 1

)

(8) 

When smooth option is chosen in differentiate, and X data is evenly 
spaced, Savitzky-Golay (1964) method will be used to calculate the 

Fig. 1. Examples of the infected potatoes at four different dates, displaying with RGB bands.  
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derivatives. 
First perform a polynomial regression on the data points in the 

moving window. The polynomial value at position × can be calculated 
as: 

f (x) = anxn + an− 1xn− 1 + an− 2xn− 2 +⋯+ a1x+ a0 (9) 

where n is the polynomial order, and ai, i = 0⋯n are fitted 
coefficients. 

And first order derivative at position × is: 

f
′

(x) = nanxn− 1 +(n − 1)an− 1xn− 2 +⋯+ a1 (10) 

Second order derivative at position × is: 

f ′′(x) = n(n − 1)anxn− 2 +(n − 1)(n − 2)an− 1xn− 3 +⋯+ a2 (11)  

2.5. Classification model 

2.5.1. Plb-2D-3D-A 
First, the pre-processed image (512*512*204) is uniformly sliced 

into 64*64*204 hyperspectral images using 3D convolution. To avoid 
the loss of spatial-spectral information, we only slice for pixel infor-
mation instead of channel information. Second, to better investigate 
spatial-spectral features, this paper designed a sub-structure containing 
2D-CNN and 3D-CNN. In this sub-structure, spatial feature information 
is extracted by 2D-CNN and spectral-spatial context information is ob-
tained by 3D-CNN, and Batch Normalization (BN) (Ioffe and Szegedy, 
2015) and Rectified Linear Activation Function (RELU) (Krizhevsky 
et al., 2012) are embedded after each convolution operation. Moreover, 
the extracted features are combined with two attention mechanisms, 
AttentionBlock and SE-ResNet, to fully extract spectral-spatial features 
and emphasize saliency features. Finally, the identifiable spatial-spectral 
features are fed into a 1 × 1 convolutional layer to facilitate 

Fig. 2. Some images after radiometric calibration (For visualization, the images displayed here are composited with three RGB bands from hyperspectral images). 
The first row represents the images before the radiation calibration, and the second row shows the images after the radiation calibration. 

Fig. 3. Results of background removal. The objects creating noise in the images include calibration plates, marker plates, tripods, etc. Since the images were collected 
in varying illumination, it is difficult to remove this background objects by selecting a specific threshold. Through experience pixels were removed when the standard 
deviation was greater than one half of the pixel mean. The equation for background noise removal is given in Equation (5). 
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classification. The PLB-2D-3D-A structure is shown in Fig. 4. The ex-
periments were conducted on a server with NVIDIA Tesla V100, CUDA 
11.2, and Ubuntu 16. During the training process, the key hyper-
parameters were set as follows: dropout = 0.4, epoch = 60, batch size =
16, learning rate = 2e-4, and the optimizer was Adam (Kingma and Ba, 
2014). 

2.5.2. Spatial feature extraction 
To extract feature maps with sufficient spatial-spectral contextual 

information, two-dimensional and three-dimensional convolution op-
erations were designed in the PLB-2D-3D-A model. The following de-
scribes how to combine the 2D CNN and 3D CNN so that the feature 
maps comprise rich spatial-spectral correlation information. Before 
passing into the deep network, a neighborhood block P ∈ RS×S×B is 
created by selecting a neighborhood square of size S × S around the 
center pixel from I, with the spatial location of the center at (α, β) and the 
number of bands B. In the experiments, S is set to 11 and B to 10. 

For spatial correlation feature extraction, 2D-CNN operations are 
used as the basic unit for spatial feature extraction. The spatial extrac-

tion region contains four 2D-CNN 
(

con2D {i}4
i=1

)
layers to capture 

feature maps of various spatial dimensions. After the conv2D_1, 
conv2D_2 and conv2D_4 operations, 3 × 3 convolution kernels with 
(1,1) downsampling steps are applied. conv2D_3 uses 2 × 2 convolution 
kernels with (2,2) steps. 

For spectral relevant feature extraction, 3D convolution operations 
are employed to capture the correlation of the spectral dimensions. As 

shown in Fig. 4, four 3D convolutional layers 
(

conv3D {i}4
i=1

)
opera-

tions are deployed to acquire spectral features of various depths. In 

conv3D_1, conv3D_2 and conv3D_4, the three 3D convolution kernels 
are 3 × 3 × 4, 3 × 3 × 4 and 3 × 3 × 2, respectively, where each 
convolution kernel has a downsampling step of (1,1,1). conv3D_3 con-
tains convolution kernels of 2 × 2 × 2 and a step of (2,2,2). 

The first three spatially relevant feature maps are fused with the 
spatial-spectral correlated feature maps so that the fused feature maps 
comprise rich relevant information. The fourth spatially correlated 
feature map is fused with the spectral-spatially correlated feature map to 
assist classification. 

2.5.3. AttentionBlock 
Based on the later experimental results, it can be observed that the 

PLB-2D-3D-A model including the attention module AttentionBlock (Yin 
et al., 2020) gives superior classification results. Further investigation 
identified the following steps explains the effectiveness of Attention-
Block from both theoretical and experimental perspectives. In the pro-
posed model, AttentionBlock is utilized to emphasize the relevant 
information in the fused spectral space feature map. First, all the pixels 
in the feature map can be represented as Xin = {x1, x2,⋯, xN}, where N 
denotes the number of pixels. Each pixel xi is represented as an E 
dimensional vector, where E refers to the channel number of the feature 
map. The output of this module is Oout = {o1, o2,⋯, oN}. The similarity 
between each two pixels xi and xj can be expressed as: 

oi = softmax
(
ϕ(xi)

T φ
(
xj
) )

g
(
xj
)
=

1

Σ∀jexpexp(ϕ(xi)
T φ(xj))

(
ϕ(xi)

T φ
(
xj
) )

g
(
xj
)

(12) 

Where ϕ( • ), φ( • ) and g( • ) all represent a Conv2D with a 

Fig. 4. The PLB-2D-3D-A structure. We first described the outline structure of Fig. 4 in Section 2.5.1. Secondly, we introduced how to combine 2D CNN and 3D CNN 
in Fig. 4 to make the feature map contain rich spatial-spectral correlation information in Section 2.5.2. Not only that, we presented the working mechanism of 
AttentionBlock and SE-ResNet in Fig. 4 in detail in Sections 2.5.3 and 2.5.4, respectively. 
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convolution kernel size of 1 × 1 and the number of convolution layers is 
E/2. Then, through two matrix multiplication operations and one reg-
ular softmax operation, the dimensions of the feature map obtained are 
h × w × E/2 (where h and w represent the width and height of Xin, 
respectively). The latitude of the feature map obtained using E Conv2D 
with a spatial kernel size of 1 × 1 to do the spatial convolution operation 
on the feature map is h× w× E. Finally, the obtained feature map is 
added with Xin to get the output Oout . 

In contrast to convolution and pooling operations, AttentionBlock 
considers the relationship between distant pixels with the weights of all 
positions in the feature map. AttentionBlock focuses on the relevance 
between pixels in the whole feature map, whereas the convolution and 
pooling operations only concentrate on pixels in the spatial range of the 
convolution kernel size. The spatial size of the fused feature map is 9 ×
9, 7 × 7, and 3 × 3. Since the spatial range is not very large, thus using 
AttentionBlock will only incur little computational complexity. 

2.5.4. SE-ResNet 
For CNN networks, the core computation is the convolution operator, 

which learns from the input data to the feature maps by employing a 
series of convolution kernels. In essence, convolution is the fusion of 
features over a local region, which includes spatially (H and W di-
mensions) as well as inter-channel (C dimension) fusion of features. For 
convolution operations, a large part of the work is to improve the 
perceptual field, i.e., to fuse more features over space, or to extract 
multi-scale spatial information, such as the multi-branch structure of 
Inception networks (Szegedy et al., 2016). For feature fusion in channel 
dimension, the convolution operation fuses all channels of the input 
feature map by default. The innovation of the SENet network (Li et al., 
2021) is to focus on the relationship between channels, hoping that the 
model can automatically learn the importance of different channel 
features. For this purpose, SENet proposes the Squeeze-and-Excitation 
(SE) module, as shown in Fig. 4. 

The SE module first performs the Squeeze operation on the feature 
map resulting from the convolution to acquire the global features at the 
channel level, followed by an excitation operation on the global features 
to learn the relationship between each channel, while obtaining the 
weights of the different channels, and finally multiplies the original 
feature map to obtain the final features. Essentially, the SE module is 
doing the attention or the rating operation on the channel dimension. 
This attention mechanism allows the model to pay more attention to the 
most informative channel features and suppress those unimportant 
channel features. Another point is that the SE module is generic, which 
means it can be integrated into existing network architectures. 

The SE module mainly comprises two operations, Squeeze and 
Excitation (Hu et al., 2020), which can be adapted to any mapping. Take 
convolution as an example, the convolution kernel is V = [v1, v2,⋯, vC], 
where vC denotes the Cth convolution kernel. The output U =

[u1, u2,⋯, uC]. 

uc = vc*X =
∑C

s=1
vs

c*xs (13) 

Where * stands for the convolution operation, X represents the target 
image, and vs

c refers to a 2D convolution kernel of an s channel, whose 
input is the spatial features on a channel, and it learns the feature spatial 
relations, but since the sum is done on the convolution results of each 
channel, the channel feature relations are mixed with the spatial re-
lations learned by the convolution kernel. The SE module is designed to 
abstract away this mixing, so that the model can directly learn the 
channel feature relations. 

Since convolution only operates in a local space, it is difficult for U to 
obtain enough information to extract the relationship between channels, 
which is more serious for the front layers of the network, because the 
perceptual field is relatively small. SENet proposes the Squeeze opera-
tion, which encodes the entire spatial feature on a channel as a global 

feature, using global average pooling to achieve. 

zc = Fsq(uc) =
1

H × W

∑H

i=1

∑W

j=1
uc(i, j), z ∈ RC (14) 

H represents the height of the feature map. W stands for the width of 
the feature map. 

After the Squeeze operation retrieves the global description of the 
features, we need another operation to capture the relationships be-
tween channels. This operation needs to satisfy-two criteria: firstly, it 
has to be flexible, and able to learn the nonlinear relationships between 
the individual channels; secondly, the learned relationships are not 
mutually exclusive, because here multi-channel features are allowed 
instead of the one-hot form. Based on this, the gating mechanism in 
sigmoid form is used here: 

s = Fex(z,W) = σ(g(z,W)) = σ(W2ReLU(W1z) ) (15) 

Where W1 ∈ RC
r×C and W2 ∈ RC×C

r . To reduce the model complexity as 
well as to improve the generalization ability, a bottleneck structure 
containing two fully connected layers is adopted here, where the first FC 
layer plays the role of dimensionality reduction, and the dimensionality 
reduction factor of r is a hyperparameter, and then ReLU activation 
(Eckle and Schmidt-Hieber, 2019) is applied. The final FC layer restores 
the original dimensionality. Finally, the learned activation values (sig-
moid activation (Han and Moraga, 1995), values 0 to 1) of each channel 
are multiplied by the original features on U: 

x̃c = Fscale(uc, sc) = sc • uc (16) 

In fact, the whole operation can be seen as learning the weight co-
efficients of each channel, thus making the model more discriminative of 
the features of each channel, which should also be considered an 
attention mechanism. SE module applied in ResNet (Zhang et al., 2021), 
the model parameters and the amount of computation will increase, here 
take SE-ResNet-50 as an example, for the increase of model parameters 
is 

2
r
∑S

s=1
Ns • C2

s (17) 

where r denotes the number of descending coefficients, S indicates 
the number of stages, Cs refers to the number of channels in the sth stage, 
and Ns stands for the amounts of duplicate blocks in the sth stage. When 
r = 16, SE-ResNet-50 only increases the number of parameters by about 
10 %. However, the computational volume (GFLOPS (Vuduc et al., 
2010)) is increased by less than 1 %. 

2.6. RF, 2D-CNN and 3D-CNN 

Random Forest (RF) (Li et al., 2019) is a machine learning algorithm 
that combines hundreds of decision trees, where each tree depends on 
the values of independently sampled random vectors. Predictions are 
aggregated for classification or averaged for regression by majority 
voting on the predictions of the set. Since RF is a non-parametric 
method, it does not require values to follow a specific statistical 
distribution. 

PLB-2D-3D-A is a classification algorithm based on 2D-CNN in 
cooperation with 3D-CNN, we split PLB-2D-3D-A into a 2D-CNN based 
classification algorithm and a 3D-CNN based classification algorithm, in 
the splitting process, we only change the feature extraction part, that is, 
we keep the whole network having an only 2D-CNN structure or 3D-CNN 
structure, the specific structure is shown in Fig. 5. 

2.7. Evaluation metrics 

Based on the confusion matrix, we obtained the following metrics: 
Accuracy, Precision, Recall and F1 Score (Jozdani and Chen, 2020). the 
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calculation formula is as follows: 

Accuracy =
TP + TN

TP + FN + FP + TN
(18)  

Precision =
TP

TP + FP
(19)  

Recall =
TP

TP + FN
(20)  

F1 Score =
2 × Precision × Recall

Precision + Recall
(21) 

Where TP, FP, TN and FN are the true positive, false positive, true 
negative and false negative samples, respectively. 

2.8. Experimental setup 

We selected full-band samples and six specific bands from the band 
screening in Section 2.4 as input samples, respectively, to verify the 
classification effectiveness of model PLB-2D-3D-A for the early PLB. To 
investigate the detection performance of PLB-2D-3D-A in-depth, we 
compare the training results with the performance of three classification 
models (RF, 2D-CNN and 3D-CNN). 

3. Results 

The spectral curves for 20 infected potato genotypes are shown in 
Fig. 6. According to the methodology (calculations 11 and 12) in Section 
2.4, the band screening results are shown in Fig. 7 (a), where the peaks 
and troughs represent specific bands. Taking the intersection of all 
specific bands, we screened six important bands (492 nm, 519 nm, 560 

nm, 592 nm, 717 nm and 765 nm). Moreover, we used the principal 
component analysis (PCA) (Tongcham et al., 2020) and the Pearson 
correlation coefficient (PCC) (Khosravi et al., 2019) to verify the feasi-
bility of the approach used in this paper, and the results are shown in 
Fig. 7 (b). It can be observed that the wavelengths screened by the PCA 
and the PCC are basically around 492 nm, 519 nm, 560 nm, 592 nm, 
717 nm and 765 nm (channel 34, channel 43, channel 57, channel 68, 
channel 110 and channel 126). From the experimental results, we found 
that the spectral first-order differentiation and spectral second-order are 
highly similar to PCA and PCC in terms of screening wavelengths. 
However, the methods we used are faster and more concise.Fig. 7a. 
Fig. 7b.. 

Table 1 shows the classification results of the four models under the 
full bands, and Fig. 8 shows the corresponding confusion matrix. It can 
be seen that PLB-2D-3D-A has a significant performance advantage, 
reaching an accuracy of 0.739. As expected with increased infection, the 
fourth class (July 18) has the best classification results, with precision, 
recall and F1 can reach 0.838, 0.892 and 0.864, respectively. Surpris-
ingly, the first class (July 9) was second only to the fourth in terms of 
classification, with precision, recall and F1 reaching 0.764, 0.830 and 
0.796, respectively. The inoculation was on July 7, which means that on 
the third day of infection, the handheld hyperspectral camera was 
already able to capture the reflectance changes of the potato leaves. 
However, the classification performance of the second class (July 13) 
and the third class (July 15) is somewhat disappointing, especially for 
the second class, where precision, recall and F1 only reach 0.632, 0.623 
and 0.627, respectively, as seen from the confusion matrix in Fig. 8. Not 
only the PLB-2D-3D-A model, but also the RF, 2D-CNN and 3D-CNN 
have similar issues, with a large number of features entangled in the 
second and third classes. The RF achieves the lowest accuracy (0.683), 
probably because it fails to learn high-level complex image features in- 

Fig. 5. Customized 2D-CNN structure and 3D-CNN structure.  
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Fig. 5. (continued). 

Fig. 6. Results of band screening.  
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Fig. 7a. Band screening results of first and second order differentiation.  

Fig. 7b. Band screening results of the PCA and the PCC.  

Table 1 
The classification results of the four models under the full bands.  

Models   July9   July13   July15   July18   

Accuracy precision recall F1 precision recall F1 precision recall F1 precision recall F1 
RF 0.683 0.696 0.825 0.755 0.576 0.535 0.555 0.680 0.571 0.621 0.778 0.874 0.823 
2D-CNN 0.705 0.722 0.830 0.772 0.592 0.566 0.579 0.698 0.596 0.643 0.806 0.884 0.843 
3D-CNN 0.717 0.730 0.820 0.772 0.604 0.584 0.594 0.710 0.616 0.660 0.822 0.890 0.855 
Ours 0.739 0.764 0.830 0.796 0.632 0.623 0.627 0.722 0.638 0.677 0.838 0.892 0.864  
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depth. 3D-CNN has a slightly better performance than 2D-CNN, showing 
that the accurate acquisition of spatial information plays a key role in 
analyzing hyperspectral images. 

Table 2 shows the classification results of the four models under six 
specific bands, and Fig. 9 shows the corresponding confusion matrices. 
When we select specific bands with high reflectance, the overall per-
formance of the model is slightly improved, with RF, 2D-CNN, 3D-CNN 
and PLB-2D-3D-A Accuracy improved by 5.56 %, 6.38 %, 6.83 % and 
6.9 %, respectively. It can be seen that the selection of specific bands is 
effective in improving classification performance. 

To investigate the effect of attentional mechanisms on the proposed 
PLB-2D-3D-A, we designed ablation experiments to validate the Atten-
tionBlock module and the SE-ResNet module. Specifically, we removed 
the AttentionBlock module and the SE-ResNet module in turn and tested 
them at full and specific bands, respectively, with the experimental 
setup remaining consistent with the above experiments. The detailed 
data of the results are shown in Table 3 and Table 4, and the confusion 
matrices in the test dataset are shown in Fig. 10 and Fig. 11. 

It can be clearly observed that the attention mechanism has a posi-
tive effect on the classification performance. At the full band, removing 
the AttentionBlock module and the SE-ResNet module reduced the ac-
curacy by 0.011 and 0.02, respectively. At the specific band, removing 
the AttentionBlock module and the SE-ResNet module reduced the 

accuracy by 0.011 and 0.021, respectively. It is worth noting that the 
AttentionBlock module has the most significant ability to distinguish the 
second class (July13). At specific bands, removing the AttentionBlock 
module reduced the precision, recall and F1 of the model by 0.016. The 
SE-ResNet module showed the superior ability to distinguish the third 
category (July15). At specific bands, removing the SE-ResNet module 
reduced the precision, recall and F1 of the model by 0.022, 0.037 and 
0.031, respectively. 

4. Discussion 

This paper focuses on different stages detection of late blight caused 
by P. infestans in potato. It evaluates the combination of 2D-CNN and 3D- 
CNN with deep synergy. First, PLB-2D-3D-A uses a multilayer fusion 
strategy to design the network structure. In the horizontal structure, 2D 
convolution kernel and 3D convolution kernel are used to conduct 
shallow feature extraction for spectral features and spatial features 
respectively. In the vertical structure, the general convolution and 
pooling operations only consider pixels of kernel size and ignore the 
relationship between the whole feature image pixels, especially the 
relationship between two pixels that are far away from each other. This 
could lead to massive entanglement of similar features and seriously 
affect the classification ability of the model. Therefore, we introduce the 

Fig. 8. Confusion matrix results of the four models at full bands.  

Table 2 
The classification results of the four models under the specific bands.  

Models   July9   July13   July15   July18   

Accuracy precision recall F1 precision recall F1 precision recall F1 precision recall F1 
RF 0.721 0.734 0.889 0.804 0.674 0.589 0.629 0.704 0.584 0.638 0.772 0.937 0.847 
2D-CNN 0.750 0.762 0.884 0.829 0.686 0.616 0.649 0.734 0.637 0.682 0.818 0.938 0.874 
3D-CNN 0.766 0.774 0.882 0.824 0.704 0.648 0.675 0.748 0.658 0.700 0.836 0.929 0.880 
Ours 0.790 0.796 0.888 0.839 0.720 0.679 0.699 0.764 0.700 0.731 0.878 0.922 0.899  
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Fig. 9. Confusion matrix results of the four models at specific bands.  

Table 3 
Ablation experiments at full bands.  

Models   July9   July13   July15   July18   

Accuracy precision recall F1 precision recall F1 precision recall F1 precision recall F1 
Ours-A-S 0.700 0.708 0.829 0.764 0.580 0.541 0.560 0.702 0.597 0.645 0.808 0.900 0.852 
Ours-S 0.719 0.744 0.842 0.790 0.612 0.583 0.597 0.704 0.600 0.648 0.814 0.913 0.861 
Ours-A 0.728 0.752 0.836 0.792 0.622 0.599 0.610 0.710 0.616 0.660 0.826 0.908 0.865 
Ours 0.739 0.764 0.830 0.796 0.632 0.623 0.627 0.722 0.638 0.677 0.838 0.892 0.864  

Table 4 
Ablation experiments at specific bands.  

Models   July9   July13   July15   July18   

Accuracy precision recall F1 precision recall F1 precision recall F1 precision recall F1 
Ours-A-S 0.741 0.742 0.877 0.804 0.680 0.605 0.640 0.720 0.632 0.673 0.820 0.921 0.868 
Ours-S 0.769 0.780 0.894 0.833 0.700 0.643 0.670 0.742 0.663 0.700 0.852 0.926 0.887 
Ours-A 0.779 0.786 0.889 0.834 0.704 0.663 0.683 0.760 0.677 0.716 0.866 0.929 0.895 
Ours 0.790 0.796 0.888 0.839 0.720 0.679 0.699 0.764 0.700 0.731 0.878 0.922 0.899  

Fig. 10. Confusion matrix for ablation experiments at the full bands.  
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AttentionBlock attention mechanism to provide a decoupling-like 
operation for similar features. However, applying the attention mecha-
nism to the entire feature map results in a severe computational burden. 
To deal with this, we cropped the size of the original image and used 
small neighbourhood modules of different sizes. As shown in Table 3 and 
Table 4, by removing the AttentionBlock attention mechanism from the 
proposed model structure, the classification accuracy suffers both using 
all bands and specific bands. Specially for the second class (13 July), 
under the specific bands, the precision and recall were reduced by 2.22 
% and 2.36 %, respectively. Due to the large number of sample pa-
rameters (over 50 million parameters to be processed for a single sam-
ple), we designed the horizontal and vertical structures with fewer 
convolution operations to ensure efficient network training, resulting in 
a shallow network depth and width. Generally, it is considered that 
increasing the depth and width of the network can effectively improve 
the model accuracy, such as Inception V3 and Resnet101 (Liao et al., 
2020). To extract deeper spectral and spatial features, we use the widely 
accepted residual network as the underlying architecture and add the SE 
block for HSI classification after the residual transformation. The main 
role of the SE block is to recalibrate the feature mapping after the re-
sidual transformation. The SE block takes the feature map as its input 
and decomposes the spatial dimensional dependencies by global aver-
aging pooling to learn a channel-oriented descriptor that it passes 
through a squeeze function. The goal of the descriptor is to emphasise 
useful channels by recalibrating the feature map, thus embedding the 
global distribution of feature maps for different channels, and is able to 
slightly improve the quality of the features generated by the residual 
block through explicitly modelling the relationship between the chan-
nels of its convolutional feature map. As shown in Table 3 and Table 4, 
when we remove the SE-ResNet module from the proposed model 
structure, the classification accuracy suffers both at full band and at 
specific bands. Especially for the third class (July 15), the precision and 
recall are reduced by 2.88 % and 2.36 % at the specific band, respec-
tively. It can be seen that the AttentionBlock module and the SE-ResNet 
module can better fuse spatial and spectral features and have some non- 
negligible positive effects on the classification of infected samples. 

After discussing the PLB-2D-3D-A network structure, we review the 
whole experimental part. First, to compare the classification effects at 
the full bands and the specific bands, we used spectral first-order dif-
ferentiation and spectral second-order differentiation to screen out six 
specific bands (492 nm, 519 nm, 560 nm, 592 nm, 717 nm and 765 nm) 
through the intersections of the two differentiation results. We counted 
the mean values of the spectral curves of infected samples for four days, 
as shown in Fig. 12. Between 500 nm and 600 nm, the reflectance 
showed a clear regular variation as the infection level increased, 
consistent with the results of the band screening. When the band was 
between 700 nm and 800 nm, the spectral mean reflectance of the sec-
ond class (July 13) and third class (July 15) showed confusion, espe-
cially the spectral curve of the second class (July 13). This is consistent 
with the results in Tables 1 and 2. At the full bands, the classification 
accuracy and recall of the second class (July 13) were 0.632 and 0.623, 
respectively. At the specific bands, the classification accuracy and recall 

of the second class (July 13) were 0.720 and 0.679, respectively. when 
we removed the AttentionBlock module and the SE-ResNet module 
entirely, as shown in Table 3 and Table 4, the classification accuracy and 
recall of the second class (July 13) decreased by 8.23 % and 13.16 %, 
respectively. At the specific bands, the classification accuracy and recall 
of the second class (July 13) decreased by 5.56 % and 10.9 %, respec-
tively. At the full band, the classification accuracy and recall of the third 
class (July 15) decreased by 2.86 % and 6.43 %, respectively. At the 
specific band, the classification accuracy and recall of the second class 
(13 July) sample decreased by 5.76 % and 9.71 %, respectively. The 
positive impact of the AttentionBlock module and the SE-ResNet module 
on HSI classification was verified from a quantitative perspective. An 
interesting observation is that when removing the AttentionBlock 
module at full bands, the recall improves by 0.016 and when removing 
the SE-ResNet module, the recall improves by 0.021. When removing 
both the AttentionBlock and SE-ResNet modules, the recall improves by 
0.008. It should be stated that the goal of this paper is to address the 
early detection of late blight, and the fourth class of samples already has 
some lesions that could be captured by the experienced human eye, the 
fourth class is not considered an early detection of late blight. However, 
we found that the attention mechanism was not effective in classifying 
the class with the strongest variation in reflectance, probably because, 
the features of the fourth class could be extracted well by the traditional 
convolution mechanism, and embedding the attention mechanism 
would conversely generate redundant invalid features, thus reducing the 
generalization ability of the model. When the band is between 800 nm 
and 1000 nm, the reflectance again shows some degree of regularity. 
When the band is between 910 nm and 940 nm, the first class (July 9) 
and the third class (July 15) show a crossover point, indicating that these 
two classes are prone to feature entanglement. Some studies (Rodriguez 
et al., 2021) have shown that when using individual cultivars, there will 
be some improvement in classification performance in a specific band. 
When modelling for one cultivar, we need to avoid using feature 
wavelengths with potentially substantial feature entanglement. It is 

Fig. 11. Confusion matrix for ablation experiments at the specific bands.  
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Fig. 12. Spectral curves of infected samples for four days.  
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worth emphasising that by using 20 cultivars and two band screening 
methods, the final results are intersected and many species-specific 
bands are removed, for example in breeding line 1, 463 nm is a spe-
cific band and when intersected, this specific band is removed. This will 
result in a slight decrease in the accuracy of the model. In a realistic 
scenario, it is not practical to model each cultivar individually and the 
future trend is to integrate more cultivars for modelling. In general, PLB- 
2D-3D-A performed the worst classification for the second class and the 
first class was second only to the fourth class. This indicates that it is 
possible to detect the early stages of late blight by capturing variations in 
spectral information on the third day of infection with P infestans in a 
field environment. It is unfair to direct compare the results in this paper 
with other study since different datasets were used, but it still shows a 
promising accuracy (0.796) and recall (0.888) values for in-field 
recognition (July 9) of PLB with the six selected important bands 
(492 nm, 519 nm, 560 nm, 592 nm, 717 nm and 765 nm) based pro-
posed PLB-2D-3D-A model. 

The red edge is the wavelength between 680 nm and 750 nm where 
the slope of the plant reflectance curve is maximum, i.e. the variation in 
reflectance from the low value region of red light (caused by chlorophyll 
absorption) to the high value region (leaf and canopy scattering effects). 
We calculated the red-edge parameter (Ruiliang et al., 2003) by calcu-
lating the first-order differentiation of the spectral reflectance between 
680 nm and 750 nm, and the results are shown in Fig. 13. We found that 
the peak first-order differential between the 680 nm and 750 nm bands 
slowly shifted towards the longer wavelengths with the severity of the 
infection level, and a red-edge displacement phenomenon occurred. 
Existing studies have found that changes in chlorophyll and nitrogen 
with the health of the vegetation can cause red-edge displacement 
(Molina-Bolivar et al., 2019) phenomena in the spectrum. The occur-
rence of red-edge shifts in infected potato leaves also validates from a 
spectrochemical point of view that it is possible to achieve late blight 
detection. 

The classification performance of the PLB-2D-3D-A model for the 
asymptomatic biological phase of potato late blight shows some 
encouraging results, but is not convincing enough. In future work, 
further improvements in model accuracy, particularly for class 2 and 
class 3, is an urgent matter that needs to be addressed. Not only that, the 
dataset in this paper does not involve healthy samples, and dis-
tinguishing healthy samples from early infected samples is a necessary 
task to explore. Furthermore, canopy level detection over large areas can 
significantly improve operational efficiency in real-world scenarios, 
whereas this paper focuses on canopy level detection in the canopy of 
individual plants. Therefore, it is also meaningful to establish an accu-
rate geometric-optical model between canopy and leaf spectra. Finally, 
the emergence of the red-edge displacement phenomenon has brought 
us inspiration. With a multispectral camera mounted to a UAV, we 
previous picked up this change in the red-edge range at the canopy level 
in a later stage if infection in the EnBlightMe project (Chawade et al., 
2019). Currently our work is mainly focused on the detection of late 
blight, and the understanding between the infection development could 
be improved by accompanying hyperspectral measurements with inva-
sive methods such as pathogen detection by molecular techniques or 
microscope monitoring of the pathogen. It is worth exploring the pos-
sibility of adding factors to the deep learning inputs that could signifi-
cantly influence the variations in spectral reflectance, such as variations 
in chlorophyll, nitrogen content and plant development, to further 
improve the model by incorporating quantitative conditioning 
mechanisms. 

5. Conclusions 

This paper proposes a deep learning architecture combining 2D-CNN 
and 3D-CNN, called PLB-2D-3D-A, for classification of the asymptomatic 
biotrophic phase of PLB disease. We collected the original dataset of 20 
potato genotypes with 15,360 (64x64x204) images. The proposed model 

achieved an accuracy of 0.739 at the full bands in the test dataset. The 
accuracy and recall on day 12 after inoculation were the highest, 
reaching 0.838 and 0.892, respectively. The accuracy and recall on day 
3 were second only to the day 12, reaching 0.764 and 0.830, respec-
tively. The accuracy and recall on day 7 were the lowest, reaching 0.632 
and 0.623, respectively. The proposed model achieves an accuracy of 
0.790 at the specific bands (492 nm, 519 nm, 560 nm, 592 nm, 717 nm 
and 765 nm). The accuracy and recall on day 12 are the highest, 
reaching 0.878 and 0.922, respectively. The accuracy and recall on day 
3 are second only to the day 12, reaching 0.796 and 0.888, respectively. 
The accuracy and recall on day 7 are the lowest, reaching 0.720 and 
0.679, respectively. The results show that both in full bands and in 
specific bands, the proposed model outperforms the accuracy of the 
traditional machine learning method RF and the deep learning-based 
methods 2D-CNN and 3D-CNN. The study shows that our deep 
learning-based model achieves a promising result for in-field classifi-
cation of the asymptomatic biotrophic phase of PLB based on proximal 
hyperspectral images. 
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